1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
4 *
5 * Copyright (C) 2013 Samsung Electronics Co., Ltd.
6*/
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10
11#include <linux/i2c.h>
12#include <linux/time.h>
13#include <linux/interrupt.h>
14#include <linux/delay.h>
15#include <linux/errno.h>
16#include <linux/err.h>
17#include <linux/platform_device.h>
18#include <linux/clk.h>
19#include <linux/slab.h>
20#include <linux/io.h>
21#include <linux/of.h>
22#include <linux/spinlock.h>
23
24/*
25 * HSI2C controller from Samsung supports 2 modes of operation
26 * 1. Auto mode: Where in master automatically controls the whole transaction
27 * 2. Manual mode: Software controls the transaction by issuing commands
28 *    START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
29 *
30 * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
31 *
32 * Special bits are available for both modes of operation to set commands
33 * and for checking transfer status
34 */
35
36/* Register Map */
37#define HSI2C_CTL		0x00
38#define HSI2C_FIFO_CTL		0x04
39#define HSI2C_TRAILIG_CTL	0x08
40#define HSI2C_CLK_CTL		0x0C
41#define HSI2C_CLK_SLOT		0x10
42#define HSI2C_INT_ENABLE	0x20
43#define HSI2C_INT_STATUS	0x24
44#define HSI2C_ERR_STATUS	0x2C
45#define HSI2C_FIFO_STATUS	0x30
46#define HSI2C_TX_DATA		0x34
47#define HSI2C_RX_DATA		0x38
48#define HSI2C_CONF		0x40
49#define HSI2C_AUTO_CONF		0x44
50#define HSI2C_TIMEOUT		0x48
51#define HSI2C_MANUAL_CMD	0x4C
52#define HSI2C_TRANS_STATUS	0x50
53#define HSI2C_TIMING_HS1	0x54
54#define HSI2C_TIMING_HS2	0x58
55#define HSI2C_TIMING_HS3	0x5C
56#define HSI2C_TIMING_FS1	0x60
57#define HSI2C_TIMING_FS2	0x64
58#define HSI2C_TIMING_FS3	0x68
59#define HSI2C_TIMING_SLA	0x6C
60#define HSI2C_ADDR		0x70
61
62/* I2C_CTL Register bits */
63#define HSI2C_FUNC_MODE_I2C			(1u << 0)
64#define HSI2C_MASTER				(1u << 3)
65#define HSI2C_RXCHON				(1u << 6)
66#define HSI2C_TXCHON				(1u << 7)
67#define HSI2C_SW_RST				(1u << 31)
68
69/* I2C_FIFO_CTL Register bits */
70#define HSI2C_RXFIFO_EN				(1u << 0)
71#define HSI2C_TXFIFO_EN				(1u << 1)
72#define HSI2C_RXFIFO_TRIGGER_LEVEL(x)		((x) << 4)
73#define HSI2C_TXFIFO_TRIGGER_LEVEL(x)		((x) << 16)
74
75/* I2C_TRAILING_CTL Register bits */
76#define HSI2C_TRAILING_COUNT			(0xf)
77
78/* I2C_INT_EN Register bits */
79#define HSI2C_INT_TX_ALMOSTEMPTY_EN		(1u << 0)
80#define HSI2C_INT_RX_ALMOSTFULL_EN		(1u << 1)
81#define HSI2C_INT_TRAILING_EN			(1u << 6)
82
83/* I2C_INT_STAT Register bits */
84#define HSI2C_INT_TX_ALMOSTEMPTY		(1u << 0)
85#define HSI2C_INT_RX_ALMOSTFULL			(1u << 1)
86#define HSI2C_INT_TX_UNDERRUN			(1u << 2)
87#define HSI2C_INT_TX_OVERRUN			(1u << 3)
88#define HSI2C_INT_RX_UNDERRUN			(1u << 4)
89#define HSI2C_INT_RX_OVERRUN			(1u << 5)
90#define HSI2C_INT_TRAILING			(1u << 6)
91#define HSI2C_INT_I2C				(1u << 9)
92
93#define HSI2C_INT_TRANS_DONE			(1u << 7)
94#define HSI2C_INT_TRANS_ABORT			(1u << 8)
95#define HSI2C_INT_NO_DEV_ACK			(1u << 9)
96#define HSI2C_INT_NO_DEV			(1u << 10)
97#define HSI2C_INT_TIMEOUT			(1u << 11)
98#define HSI2C_INT_I2C_TRANS			(HSI2C_INT_TRANS_DONE |	\
99						HSI2C_INT_TRANS_ABORT |	\
100						HSI2C_INT_NO_DEV_ACK |	\
101						HSI2C_INT_NO_DEV |	\
102						HSI2C_INT_TIMEOUT)
103
104/* I2C_FIFO_STAT Register bits */
105#define HSI2C_RX_FIFO_EMPTY			(1u << 24)
106#define HSI2C_RX_FIFO_FULL			(1u << 23)
107#define HSI2C_RX_FIFO_LVL(x)			((x >> 16) & 0x7f)
108#define HSI2C_TX_FIFO_EMPTY			(1u << 8)
109#define HSI2C_TX_FIFO_FULL			(1u << 7)
110#define HSI2C_TX_FIFO_LVL(x)			((x >> 0) & 0x7f)
111
112/* I2C_CONF Register bits */
113#define HSI2C_AUTO_MODE				(1u << 31)
114#define HSI2C_10BIT_ADDR_MODE			(1u << 30)
115#define HSI2C_HS_MODE				(1u << 29)
116
117/* I2C_AUTO_CONF Register bits */
118#define HSI2C_READ_WRITE			(1u << 16)
119#define HSI2C_STOP_AFTER_TRANS			(1u << 17)
120#define HSI2C_MASTER_RUN			(1u << 31)
121
122/* I2C_TIMEOUT Register bits */
123#define HSI2C_TIMEOUT_EN			(1u << 31)
124#define HSI2C_TIMEOUT_MASK			0xff
125
126/* I2C_MANUAL_CMD register bits */
127#define HSI2C_CMD_READ_DATA			(1u << 4)
128#define HSI2C_CMD_SEND_STOP			(1u << 2)
129
130/* I2C_TRANS_STATUS register bits */
131#define HSI2C_MASTER_BUSY			(1u << 17)
132#define HSI2C_SLAVE_BUSY			(1u << 16)
133
134/* I2C_TRANS_STATUS register bits for Exynos5 variant */
135#define HSI2C_TIMEOUT_AUTO			(1u << 4)
136#define HSI2C_NO_DEV				(1u << 3)
137#define HSI2C_NO_DEV_ACK			(1u << 2)
138#define HSI2C_TRANS_ABORT			(1u << 1)
139#define HSI2C_TRANS_DONE			(1u << 0)
140
141/* I2C_TRANS_STATUS register bits for Exynos7 variant */
142#define HSI2C_MASTER_ST_MASK			0xf
143#define HSI2C_MASTER_ST_IDLE			0x0
144#define HSI2C_MASTER_ST_START			0x1
145#define HSI2C_MASTER_ST_RESTART			0x2
146#define HSI2C_MASTER_ST_STOP			0x3
147#define HSI2C_MASTER_ST_MASTER_ID		0x4
148#define HSI2C_MASTER_ST_ADDR0			0x5
149#define HSI2C_MASTER_ST_ADDR1			0x6
150#define HSI2C_MASTER_ST_ADDR2			0x7
151#define HSI2C_MASTER_ST_ADDR_SR			0x8
152#define HSI2C_MASTER_ST_READ			0x9
153#define HSI2C_MASTER_ST_WRITE			0xa
154#define HSI2C_MASTER_ST_NO_ACK			0xb
155#define HSI2C_MASTER_ST_LOSE			0xc
156#define HSI2C_MASTER_ST_WAIT			0xd
157#define HSI2C_MASTER_ST_WAIT_CMD		0xe
158
159/* I2C_ADDR register bits */
160#define HSI2C_SLV_ADDR_SLV(x)			((x & 0x3ff) << 0)
161#define HSI2C_SLV_ADDR_MAS(x)			((x & 0x3ff) << 10)
162#define HSI2C_MASTER_ID(x)			((x & 0xff) << 24)
163#define MASTER_ID(x)				((x & 0x7) + 0x08)
164
165#define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(100))
166
167enum i2c_type_exynos {
168	I2C_TYPE_EXYNOS5,
169	I2C_TYPE_EXYNOS7,
170	I2C_TYPE_EXYNOSAUTOV9,
171};
172
173struct exynos5_i2c {
174	struct i2c_adapter	adap;
175
176	struct i2c_msg		*msg;
177	struct completion	msg_complete;
178	unsigned int		msg_ptr;
179
180	unsigned int		irq;
181
182	void __iomem		*regs;
183	struct clk		*clk;		/* operating clock */
184	struct clk		*pclk;		/* bus clock */
185	struct device		*dev;
186	int			state;
187
188	spinlock_t		lock;		/* IRQ synchronization */
189
190	/*
191	 * Since the TRANS_DONE bit is cleared on read, and we may read it
192	 * either during an IRQ or after a transaction, keep track of its
193	 * state here.
194	 */
195	int			trans_done;
196
197	/*
198	 * Called from atomic context, don't use interrupts.
199	 */
200	unsigned int		atomic;
201
202	/* Controller operating frequency */
203	unsigned int		op_clock;
204
205	/* Version of HS-I2C Hardware */
206	const struct exynos_hsi2c_variant *variant;
207};
208
209/**
210 * struct exynos_hsi2c_variant - platform specific HSI2C driver data
211 * @fifo_depth: the fifo depth supported by the HSI2C module
212 * @hw: the hardware variant of Exynos I2C controller
213 *
214 * Specifies platform specific configuration of HSI2C module.
215 * Note: A structure for driver specific platform data is used for future
216 * expansion of its usage.
217 */
218struct exynos_hsi2c_variant {
219	unsigned int		fifo_depth;
220	enum i2c_type_exynos	hw;
221};
222
223static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = {
224	.fifo_depth	= 64,
225	.hw		= I2C_TYPE_EXYNOS5,
226};
227
228static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = {
229	.fifo_depth	= 16,
230	.hw		= I2C_TYPE_EXYNOS5,
231};
232
233static const struct exynos_hsi2c_variant exynos7_hsi2c_data = {
234	.fifo_depth	= 16,
235	.hw		= I2C_TYPE_EXYNOS7,
236};
237
238static const struct exynos_hsi2c_variant exynosautov9_hsi2c_data = {
239	.fifo_depth	= 64,
240	.hw		= I2C_TYPE_EXYNOSAUTOV9,
241};
242
243static const struct of_device_id exynos5_i2c_match[] = {
244	{
245		.compatible = "samsung,exynos5-hsi2c",
246		.data = &exynos5250_hsi2c_data
247	}, {
248		.compatible = "samsung,exynos5250-hsi2c",
249		.data = &exynos5250_hsi2c_data
250	}, {
251		.compatible = "samsung,exynos5260-hsi2c",
252		.data = &exynos5260_hsi2c_data
253	}, {
254		.compatible = "samsung,exynos7-hsi2c",
255		.data = &exynos7_hsi2c_data
256	}, {
257		.compatible = "samsung,exynosautov9-hsi2c",
258		.data = &exynosautov9_hsi2c_data
259	}, {},
260};
261MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
262
263static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
264{
265	writel(readl(i2c->regs + HSI2C_INT_STATUS),
266				i2c->regs + HSI2C_INT_STATUS);
267}
268
269/*
270 * exynos5_i2c_set_timing: updates the registers with appropriate
271 * timing values calculated
272 *
273 * Timing values for operation are calculated against 100kHz, 400kHz
274 * or 1MHz controller operating frequency.
275 *
276 * Returns 0 on success, -EINVAL if the cycle length cannot
277 * be calculated.
278 */
279static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, bool hs_timings)
280{
281	u32 i2c_timing_s1;
282	u32 i2c_timing_s2;
283	u32 i2c_timing_s3;
284	u32 i2c_timing_sla;
285	unsigned int t_start_su, t_start_hd;
286	unsigned int t_stop_su;
287	unsigned int t_data_su, t_data_hd;
288	unsigned int t_scl_l, t_scl_h;
289	unsigned int t_sr_release;
290	unsigned int t_ftl_cycle;
291	unsigned int clkin = clk_get_rate(i2c->clk);
292	unsigned int op_clk = hs_timings ? i2c->op_clock :
293		(i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) ? I2C_MAX_STANDARD_MODE_FREQ :
294		i2c->op_clock;
295	int div, clk_cycle, temp;
296
297	/*
298	 * In case of HSI2C controllers in ExynosAutoV9:
299	 *
300	 * FSCL = IPCLK / ((CLK_DIV + 1) * 16)
301	 * T_SCL_LOW = IPCLK * (CLK_DIV + 1) * (N + M)
302	 *   [N : number of 0's in the TSCL_H_HS]
303	 *   [M : number of 0's in the TSCL_L_HS]
304	 * T_SCL_HIGH = IPCLK * (CLK_DIV + 1) * (N + M)
305	 *   [N : number of 1's in the TSCL_H_HS]
306	 *   [M : number of 1's in the TSCL_L_HS]
307	 *
308	 * Result of (N + M) is always 8.
309	 * In general case, we don't need to control timing_s1 and timing_s2.
310	 */
311	if (i2c->variant->hw == I2C_TYPE_EXYNOSAUTOV9) {
312		div = ((clkin / (16 * i2c->op_clock)) - 1);
313		i2c_timing_s3 = div << 16;
314		if (hs_timings)
315			writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
316		else
317			writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
318
319		return 0;
320	}
321
322	/*
323	 * In case of HSI2C controller in Exynos5 series
324	 * FPCLK / FI2C =
325	 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
326	 *
327	 * In case of HSI2C controllers in Exynos7 series
328	 * FPCLK / FI2C =
329	 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE
330	 *
331	 * clk_cycle := TSCLK_L + TSCLK_H
332	 * temp := (CLK_DIV + 1) * (clk_cycle + 2)
333	 *
334	 * Constraints: 4 <= temp, 0 <= CLK_DIV < 256, 2 <= clk_cycle <= 510
335	 *
336	 * To split SCL clock into low, high periods appropriately, one
337	 * proportion factor for each I2C mode is used, which is calculated
338	 * using this formula.
339	 * ```
340	 * ((t_low_min + (scl_clock - t_low_min - t_high_min) / 2) / scl_clock)
341	 * ```
342	 * where:
343	 * t_low_min is the minimal value of low period of the SCL clock in us;
344	 * t_high_min is the minimal value of high period of the SCL clock in us;
345	 * scl_clock is converted from SCL clock frequency into us.
346	 *
347	 * Below are the proportion factors for these I2C modes:
348	 *                t_low_min, t_high_min, scl_clock, proportion
349	 * Standard Mode:     4.7us,      4.0us,      10us,      0.535
350	 * Fast Mode:         1.3us,      0.6us,     2.5us,       0.64
351	 * Fast-Plus Mode:    0.5us,     0.26us,       1us,       0.62
352	 *
353	 */
354	t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
355	temp = clkin / op_clk - 8 - t_ftl_cycle;
356	if (i2c->variant->hw != I2C_TYPE_EXYNOS7)
357		temp -= t_ftl_cycle;
358	div = temp / 512;
359	clk_cycle = temp / (div + 1) - 2;
360	if (temp < 4 || div >= 256 || clk_cycle < 2) {
361		dev_err(i2c->dev, "%s clock set-up failed\n",
362			hs_timings ? "HS" : "FS");
363		return -EINVAL;
364	}
365
366	/*
367	 * Scale clk_cycle to get t_scl_l using the proption factors for individual I2C modes.
368	 */
369	if (op_clk <= I2C_MAX_STANDARD_MODE_FREQ)
370		t_scl_l = clk_cycle * 535 / 1000;
371	else if (op_clk <= I2C_MAX_FAST_MODE_FREQ)
372		t_scl_l = clk_cycle * 64 / 100;
373	else
374		t_scl_l = clk_cycle * 62 / 100;
375
376	if (t_scl_l > 0xFF)
377		t_scl_l = 0xFF;
378	t_scl_h = clk_cycle - t_scl_l;
379	t_start_su = t_scl_l;
380	t_start_hd = t_scl_l;
381	t_stop_su = t_scl_l;
382	t_data_su = t_scl_l / 2;
383	t_data_hd = t_scl_l / 2;
384	t_sr_release = clk_cycle;
385
386	i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
387	i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
388	i2c_timing_s3 = div << 16 | t_sr_release << 0;
389	i2c_timing_sla = t_data_hd << 0;
390
391	dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
392		t_start_su, t_start_hd, t_stop_su);
393	dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
394		t_data_su, t_scl_l, t_scl_h);
395	dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
396		div, t_sr_release);
397	dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
398
399	if (hs_timings) {
400		writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
401		writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
402		writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
403	} else {
404		writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
405		writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
406		writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
407	}
408	writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
409
410	return 0;
411}
412
413static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
414{
415	/* always set Fast Speed timings */
416	int ret = exynos5_i2c_set_timing(i2c, false);
417
418	if (ret < 0 || i2c->op_clock < I2C_MAX_FAST_MODE_PLUS_FREQ)
419		return ret;
420
421	return exynos5_i2c_set_timing(i2c, true);
422}
423
424/*
425 * exynos5_i2c_init: configures the controller for I2C functionality
426 * Programs I2C controller for Master mode operation
427 */
428static void exynos5_i2c_init(struct exynos5_i2c *i2c)
429{
430	u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
431	u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
432
433	/* Clear to disable Timeout */
434	i2c_timeout &= ~HSI2C_TIMEOUT_EN;
435	writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
436
437	writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
438					i2c->regs + HSI2C_CTL);
439	writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
440
441	if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) {
442		writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
443					i2c->regs + HSI2C_ADDR);
444		i2c_conf |= HSI2C_HS_MODE;
445	}
446
447	writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
448}
449
450static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
451{
452	u32 i2c_ctl;
453
454	/* Set and clear the bit for reset */
455	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
456	i2c_ctl |= HSI2C_SW_RST;
457	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
458
459	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
460	i2c_ctl &= ~HSI2C_SW_RST;
461	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
462
463	/* We don't expect calculations to fail during the run */
464	exynos5_hsi2c_clock_setup(i2c);
465	/* Initialize the configure registers */
466	exynos5_i2c_init(i2c);
467}
468
469/*
470 * exynos5_i2c_irq: top level IRQ servicing routine
471 *
472 * INT_STATUS registers gives the interrupt details. Further,
473 * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
474 * state of the bus.
475 */
476static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
477{
478	struct exynos5_i2c *i2c = dev_id;
479	u32 fifo_level, int_status, fifo_status, trans_status;
480	unsigned char byte;
481	int len = 0;
482
483	i2c->state = -EINVAL;
484
485	spin_lock(&i2c->lock);
486
487	int_status = readl(i2c->regs + HSI2C_INT_STATUS);
488	writel(int_status, i2c->regs + HSI2C_INT_STATUS);
489
490	/* handle interrupt related to the transfer status */
491	switch (i2c->variant->hw) {
492	case I2C_TYPE_EXYNOSAUTOV9:
493		fallthrough;
494	case I2C_TYPE_EXYNOS7:
495		if (int_status & HSI2C_INT_TRANS_DONE) {
496			i2c->trans_done = 1;
497			i2c->state = 0;
498		} else if (int_status & HSI2C_INT_TRANS_ABORT) {
499			dev_dbg(i2c->dev, "Deal with arbitration lose\n");
500			i2c->state = -EAGAIN;
501			goto stop;
502		} else if (int_status & HSI2C_INT_NO_DEV_ACK) {
503			dev_dbg(i2c->dev, "No ACK from device\n");
504			i2c->state = -ENXIO;
505			goto stop;
506		} else if (int_status & HSI2C_INT_NO_DEV) {
507			dev_dbg(i2c->dev, "No device\n");
508			i2c->state = -ENXIO;
509			goto stop;
510		} else if (int_status & HSI2C_INT_TIMEOUT) {
511			dev_dbg(i2c->dev, "Accessing device timed out\n");
512			i2c->state = -ETIMEDOUT;
513			goto stop;
514		}
515
516		break;
517	case I2C_TYPE_EXYNOS5:
518		if (!(int_status & HSI2C_INT_I2C))
519			break;
520
521		trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
522		if (trans_status & HSI2C_NO_DEV_ACK) {
523			dev_dbg(i2c->dev, "No ACK from device\n");
524			i2c->state = -ENXIO;
525			goto stop;
526		} else if (trans_status & HSI2C_NO_DEV) {
527			dev_dbg(i2c->dev, "No device\n");
528			i2c->state = -ENXIO;
529			goto stop;
530		} else if (trans_status & HSI2C_TRANS_ABORT) {
531			dev_dbg(i2c->dev, "Deal with arbitration lose\n");
532			i2c->state = -EAGAIN;
533			goto stop;
534		} else if (trans_status & HSI2C_TIMEOUT_AUTO) {
535			dev_dbg(i2c->dev, "Accessing device timed out\n");
536			i2c->state = -ETIMEDOUT;
537			goto stop;
538		} else if (trans_status & HSI2C_TRANS_DONE) {
539			i2c->trans_done = 1;
540			i2c->state = 0;
541		}
542
543		break;
544	}
545
546	if ((i2c->msg->flags & I2C_M_RD) && (int_status &
547			(HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
548		fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
549		fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
550		len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
551
552		while (len > 0) {
553			byte = (unsigned char)
554				readl(i2c->regs + HSI2C_RX_DATA);
555			i2c->msg->buf[i2c->msg_ptr++] = byte;
556			len--;
557		}
558		i2c->state = 0;
559	} else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
560		fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
561		fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
562
563		len = i2c->variant->fifo_depth - fifo_level;
564		if (len > (i2c->msg->len - i2c->msg_ptr)) {
565			u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE);
566
567			int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN;
568			writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
569			len = i2c->msg->len - i2c->msg_ptr;
570		}
571
572		while (len > 0) {
573			byte = i2c->msg->buf[i2c->msg_ptr++];
574			writel(byte, i2c->regs + HSI2C_TX_DATA);
575			len--;
576		}
577		i2c->state = 0;
578	}
579
580 stop:
581	if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
582	    (i2c->state < 0)) {
583		writel(0, i2c->regs + HSI2C_INT_ENABLE);
584		exynos5_i2c_clr_pend_irq(i2c);
585		complete(&i2c->msg_complete);
586	}
587
588	spin_unlock(&i2c->lock);
589
590	return IRQ_HANDLED;
591}
592
593/*
594 * exynos5_i2c_wait_bus_idle
595 *
596 * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
597 * cleared.
598 *
599 * Returns -EBUSY if the bus cannot be bought to idle
600 */
601static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
602{
603	unsigned long stop_time;
604	u32 trans_status;
605
606	/* wait for 100 milli seconds for the bus to be idle */
607	stop_time = jiffies + msecs_to_jiffies(100) + 1;
608	do {
609		trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
610		if (!(trans_status & HSI2C_MASTER_BUSY))
611			return 0;
612
613		usleep_range(50, 200);
614	} while (time_before(jiffies, stop_time));
615
616	return -EBUSY;
617}
618
619static void exynos5_i2c_bus_recover(struct exynos5_i2c *i2c)
620{
621	u32 val;
622
623	val = readl(i2c->regs + HSI2C_CTL) | HSI2C_RXCHON;
624	writel(val, i2c->regs + HSI2C_CTL);
625	val = readl(i2c->regs + HSI2C_CONF) & ~HSI2C_AUTO_MODE;
626	writel(val, i2c->regs + HSI2C_CONF);
627
628	/*
629	 * Specification says master should send nine clock pulses. It can be
630	 * emulated by sending manual read command (nine pulses for read eight
631	 * bits + one pulse for NACK).
632	 */
633	writel(HSI2C_CMD_READ_DATA, i2c->regs + HSI2C_MANUAL_CMD);
634	exynos5_i2c_wait_bus_idle(i2c);
635	writel(HSI2C_CMD_SEND_STOP, i2c->regs + HSI2C_MANUAL_CMD);
636	exynos5_i2c_wait_bus_idle(i2c);
637
638	val = readl(i2c->regs + HSI2C_CTL) & ~HSI2C_RXCHON;
639	writel(val, i2c->regs + HSI2C_CTL);
640	val = readl(i2c->regs + HSI2C_CONF) | HSI2C_AUTO_MODE;
641	writel(val, i2c->regs + HSI2C_CONF);
642}
643
644static void exynos5_i2c_bus_check(struct exynos5_i2c *i2c)
645{
646	unsigned long timeout;
647
648	if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
649		return;
650
651	/*
652	 * HSI2C_MASTER_ST_LOSE state (in Exynos7 and ExynosAutoV9 variants)
653	 * before transaction indicates that bus is stuck (SDA is low).
654	 * In such case bus recovery can be performed.
655	 */
656	timeout = jiffies + msecs_to_jiffies(100);
657	for (;;) {
658		u32 st = readl(i2c->regs + HSI2C_TRANS_STATUS);
659
660		if ((st & HSI2C_MASTER_ST_MASK) != HSI2C_MASTER_ST_LOSE)
661			return;
662
663		if (time_is_before_jiffies(timeout))
664			return;
665
666		exynos5_i2c_bus_recover(i2c);
667	}
668}
669
670/*
671 * exynos5_i2c_message_start: Configures the bus and starts the xfer
672 * i2c: struct exynos5_i2c pointer for the current bus
673 * stop: Enables stop after transfer if set. Set for last transfer of
674 *       in the list of messages.
675 *
676 * Configures the bus for read/write function
677 * Sets chip address to talk to, message length to be sent.
678 * Enables appropriate interrupts and sends start xfer command.
679 */
680static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
681{
682	u32 i2c_ctl;
683	u32 int_en = 0;
684	u32 i2c_auto_conf = 0;
685	u32 i2c_addr = 0;
686	u32 fifo_ctl;
687	unsigned long flags;
688	unsigned short trig_lvl;
689
690	if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
691		int_en |= HSI2C_INT_I2C;
692	else
693		int_en |= HSI2C_INT_I2C_TRANS;
694
695	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
696	i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
697	fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
698
699	if (i2c->msg->flags & I2C_M_RD) {
700		i2c_ctl |= HSI2C_RXCHON;
701
702		i2c_auto_conf |= HSI2C_READ_WRITE;
703
704		trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
705			(i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len;
706		fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl);
707
708		int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
709			HSI2C_INT_TRAILING_EN);
710	} else {
711		i2c_ctl |= HSI2C_TXCHON;
712
713		trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
714			(i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len;
715		fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl);
716
717		int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
718	}
719
720	i2c_addr = HSI2C_SLV_ADDR_MAS(i2c->msg->addr);
721
722	if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ)
723		i2c_addr |= HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr));
724
725	writel(i2c_addr, i2c->regs + HSI2C_ADDR);
726
727	writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
728	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
729
730	exynos5_i2c_bus_check(i2c);
731
732	/*
733	 * Enable interrupts before starting the transfer so that we don't
734	 * miss any INT_I2C interrupts.
735	 */
736	spin_lock_irqsave(&i2c->lock, flags);
737	writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
738
739	if (stop == 1)
740		i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
741	i2c_auto_conf |= i2c->msg->len;
742	i2c_auto_conf |= HSI2C_MASTER_RUN;
743	writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
744	spin_unlock_irqrestore(&i2c->lock, flags);
745}
746
747static bool exynos5_i2c_poll_irqs_timeout(struct exynos5_i2c *i2c,
748					  unsigned long timeout)
749{
750	unsigned long time_left = jiffies + timeout;
751
752	while (time_before(jiffies, time_left) &&
753	       !((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
754	         (i2c->state < 0))) {
755		while (readl(i2c->regs + HSI2C_INT_ENABLE) &
756		       readl(i2c->regs + HSI2C_INT_STATUS))
757			exynos5_i2c_irq(i2c->irq, i2c);
758		usleep_range(100, 200);
759	}
760	return time_before(jiffies, time_left);
761}
762
763static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
764			      struct i2c_msg *msgs, int stop)
765{
766	unsigned long timeout;
767	int ret;
768
769	i2c->msg = msgs;
770	i2c->msg_ptr = 0;
771	i2c->trans_done = 0;
772
773	reinit_completion(&i2c->msg_complete);
774
775	exynos5_i2c_message_start(i2c, stop);
776
777	if (!i2c->atomic)
778		timeout = wait_for_completion_timeout(&i2c->msg_complete,
779						      EXYNOS5_I2C_TIMEOUT);
780	else
781		timeout = exynos5_i2c_poll_irqs_timeout(i2c,
782							EXYNOS5_I2C_TIMEOUT);
783
784	if (timeout == 0)
785		ret = -ETIMEDOUT;
786	else
787		ret = i2c->state;
788
789	/*
790	 * If this is the last message to be transfered (stop == 1)
791	 * Then check if the bus can be brought back to idle.
792	 */
793	if (ret == 0 && stop)
794		ret = exynos5_i2c_wait_bus_idle(i2c);
795
796	if (ret < 0) {
797		exynos5_i2c_reset(i2c);
798		if (ret == -ETIMEDOUT)
799			dev_warn(i2c->dev, "%s timeout\n",
800				 (msgs->flags & I2C_M_RD) ? "rx" : "tx");
801	}
802
803	/* Return the state as in interrupt routine */
804	return ret;
805}
806
807static int exynos5_i2c_xfer(struct i2c_adapter *adap,
808			struct i2c_msg *msgs, int num)
809{
810	struct exynos5_i2c *i2c = adap->algo_data;
811	int i, ret;
812
813	ret = clk_enable(i2c->pclk);
814	if (ret)
815		return ret;
816
817	ret = clk_enable(i2c->clk);
818	if (ret)
819		goto err_pclk;
820
821	for (i = 0; i < num; ++i) {
822		ret = exynos5_i2c_xfer_msg(i2c, msgs + i, i + 1 == num);
823		if (ret)
824			break;
825	}
826
827	clk_disable(i2c->clk);
828err_pclk:
829	clk_disable(i2c->pclk);
830
831	return ret ?: num;
832}
833
834static int exynos5_i2c_xfer_atomic(struct i2c_adapter *adap,
835				   struct i2c_msg *msgs, int num)
836{
837	struct exynos5_i2c *i2c = adap->algo_data;
838	int ret;
839
840	disable_irq(i2c->irq);
841	i2c->atomic = true;
842	ret = exynos5_i2c_xfer(adap, msgs, num);
843	i2c->atomic = false;
844	enable_irq(i2c->irq);
845
846	return ret;
847}
848
849static u32 exynos5_i2c_func(struct i2c_adapter *adap)
850{
851	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
852}
853
854static const struct i2c_algorithm exynos5_i2c_algorithm = {
855	.master_xfer		= exynos5_i2c_xfer,
856	.master_xfer_atomic	= exynos5_i2c_xfer_atomic,
857	.functionality		= exynos5_i2c_func,
858};
859
860static int exynos5_i2c_probe(struct platform_device *pdev)
861{
862	struct device_node *np = pdev->dev.of_node;
863	struct exynos5_i2c *i2c;
864	int ret;
865
866	i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
867	if (!i2c)
868		return -ENOMEM;
869
870	if (of_property_read_u32(np, "clock-frequency", &i2c->op_clock))
871		i2c->op_clock = I2C_MAX_STANDARD_MODE_FREQ;
872
873	strscpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
874	i2c->adap.owner   = THIS_MODULE;
875	i2c->adap.algo    = &exynos5_i2c_algorithm;
876	i2c->adap.retries = 3;
877
878	i2c->dev = &pdev->dev;
879	i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
880	if (IS_ERR(i2c->clk)) {
881		dev_err(&pdev->dev, "cannot get clock\n");
882		return -ENOENT;
883	}
884
885	i2c->pclk = devm_clk_get_optional(&pdev->dev, "hsi2c_pclk");
886	if (IS_ERR(i2c->pclk)) {
887		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
888				     "cannot get pclk");
889	}
890
891	ret = clk_prepare_enable(i2c->pclk);
892	if (ret)
893		return ret;
894
895	ret = clk_prepare_enable(i2c->clk);
896	if (ret)
897		goto err_pclk;
898
899	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
900	if (IS_ERR(i2c->regs)) {
901		ret = PTR_ERR(i2c->regs);
902		goto err_clk;
903	}
904
905	i2c->adap.dev.of_node = np;
906	i2c->adap.algo_data = i2c;
907	i2c->adap.dev.parent = &pdev->dev;
908
909	/* Clear pending interrupts from u-boot or misc causes */
910	exynos5_i2c_clr_pend_irq(i2c);
911
912	spin_lock_init(&i2c->lock);
913	init_completion(&i2c->msg_complete);
914
915	i2c->irq = ret = platform_get_irq(pdev, 0);
916	if (ret < 0)
917		goto err_clk;
918
919	ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
920			       IRQF_NO_SUSPEND, dev_name(&pdev->dev), i2c);
921	if (ret != 0) {
922		dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
923		goto err_clk;
924	}
925
926	i2c->variant = of_device_get_match_data(&pdev->dev);
927
928	ret = exynos5_hsi2c_clock_setup(i2c);
929	if (ret)
930		goto err_clk;
931
932	exynos5_i2c_reset(i2c);
933
934	ret = i2c_add_adapter(&i2c->adap);
935	if (ret < 0)
936		goto err_clk;
937
938	platform_set_drvdata(pdev, i2c);
939
940	clk_disable(i2c->clk);
941	clk_disable(i2c->pclk);
942
943	return 0;
944
945 err_clk:
946	clk_disable_unprepare(i2c->clk);
947
948 err_pclk:
949	clk_disable_unprepare(i2c->pclk);
950	return ret;
951}
952
953static void exynos5_i2c_remove(struct platform_device *pdev)
954{
955	struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
956
957	i2c_del_adapter(&i2c->adap);
958
959	clk_unprepare(i2c->clk);
960	clk_unprepare(i2c->pclk);
961}
962
963static int exynos5_i2c_suspend_noirq(struct device *dev)
964{
965	struct exynos5_i2c *i2c = dev_get_drvdata(dev);
966
967	i2c_mark_adapter_suspended(&i2c->adap);
968	clk_unprepare(i2c->clk);
969	clk_unprepare(i2c->pclk);
970
971	return 0;
972}
973
974static int exynos5_i2c_resume_noirq(struct device *dev)
975{
976	struct exynos5_i2c *i2c = dev_get_drvdata(dev);
977	int ret = 0;
978
979	ret = clk_prepare_enable(i2c->pclk);
980	if (ret)
981		return ret;
982
983	ret = clk_prepare_enable(i2c->clk);
984	if (ret)
985		goto err_pclk;
986
987	ret = exynos5_hsi2c_clock_setup(i2c);
988	if (ret)
989		goto err_clk;
990
991	exynos5_i2c_init(i2c);
992	clk_disable(i2c->clk);
993	clk_disable(i2c->pclk);
994	i2c_mark_adapter_resumed(&i2c->adap);
995
996	return 0;
997
998err_clk:
999	clk_disable_unprepare(i2c->clk);
1000err_pclk:
1001	clk_disable_unprepare(i2c->pclk);
1002	return ret;
1003}
1004
1005static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = {
1006	NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq,
1007				  exynos5_i2c_resume_noirq)
1008};
1009
1010static struct platform_driver exynos5_i2c_driver = {
1011	.probe		= exynos5_i2c_probe,
1012	.remove_new	= exynos5_i2c_remove,
1013	.driver		= {
1014		.name	= "exynos5-hsi2c",
1015		.pm	= pm_sleep_ptr(&exynos5_i2c_dev_pm_ops),
1016		.of_match_table = exynos5_i2c_match,
1017	},
1018};
1019
1020module_platform_driver(exynos5_i2c_driver);
1021
1022MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
1023MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1024MODULE_AUTHOR("Taekgyun Ko <taeggyun.ko@samsung.com>");
1025MODULE_LICENSE("GPL v2");
1026