1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4 *
5 *  Copyright (C) 2011 Weinmann Medical GmbH
6 *  Author: Nikolaus Voss <n.voss@weinmann.de>
7 *
8 *  Evolved from original work by:
9 *  Copyright (C) 2004 Rick Bronson
10 *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11 *
12 *  Borrowed heavily from original work by:
13 *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14 */
15
16#include <linux/clk.h>
17#include <linux/completion.h>
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
20#include <linux/err.h>
21#include <linux/gpio/consumer.h>
22#include <linux/i2c.h>
23#include <linux/interrupt.h>
24#include <linux/io.h>
25#include <linux/of.h>
26#include <linux/pinctrl/consumer.h>
27#include <linux/platform_device.h>
28#include <linux/pm_runtime.h>
29
30#include "i2c-at91.h"
31
32void at91_init_twi_bus_master(struct at91_twi_dev *dev)
33{
34	struct at91_twi_pdata *pdata = dev->pdata;
35	u32 filtr = 0;
36
37	/* FIFO should be enabled immediately after the software reset */
38	if (dev->fifo_size)
39		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
40	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
41	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
42	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
43
44	/* enable digital filter */
45	if (pdata->has_dig_filtr && dev->enable_dig_filt)
46		filtr |= AT91_TWI_FILTR_FILT;
47
48	/* enable advanced digital filter */
49	if (pdata->has_adv_dig_filtr && dev->enable_dig_filt)
50		filtr |= AT91_TWI_FILTR_FILT |
51			 (AT91_TWI_FILTR_THRES(dev->filter_width) &
52			 AT91_TWI_FILTR_THRES_MASK);
53
54	/* enable analog filter */
55	if (pdata->has_ana_filtr && dev->enable_ana_filt)
56		filtr |= AT91_TWI_FILTR_PADFEN;
57
58	if (filtr)
59		at91_twi_write(dev, AT91_TWI_FILTR, filtr);
60}
61
62/*
63 * Calculate symmetric clock as stated in datasheet:
64 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
65 */
66static void at91_calc_twi_clock(struct at91_twi_dev *dev)
67{
68	int ckdiv, cdiv, div, hold = 0, filter_width = 0;
69	struct at91_twi_pdata *pdata = dev->pdata;
70	int offset = pdata->clk_offset;
71	int max_ckdiv = pdata->clk_max_div;
72	struct i2c_timings timings, *t = &timings;
73
74	i2c_parse_fw_timings(dev->dev, t, true);
75
76	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
77				       2 * t->bus_freq_hz) - offset);
78	ckdiv = fls(div >> 8);
79	cdiv = div >> ckdiv;
80
81	if (ckdiv > max_ckdiv) {
82		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
83			 ckdiv, max_ckdiv);
84		ckdiv = max_ckdiv;
85		cdiv = 255;
86	}
87
88	if (pdata->has_hold_field) {
89		/*
90		 * hold time = HOLD + 3 x T_peripheral_clock
91		 * Use clk rate in kHz to prevent overflows when computing
92		 * hold.
93		 */
94		hold = DIV_ROUND_UP(t->sda_hold_ns
95				    * (clk_get_rate(dev->clk) / 1000), 1000000);
96		hold -= 3;
97		if (hold < 0)
98			hold = 0;
99		if (hold > AT91_TWI_CWGR_HOLD_MAX) {
100			dev_warn(dev->dev,
101				 "HOLD field set to its maximum value (%d instead of %d)\n",
102				 AT91_TWI_CWGR_HOLD_MAX, hold);
103			hold = AT91_TWI_CWGR_HOLD_MAX;
104		}
105	}
106
107	if (pdata->has_adv_dig_filtr) {
108		/*
109		 * filter width = 0 to AT91_TWI_FILTR_THRES_MAX
110		 * peripheral clocks
111		 */
112		filter_width = DIV_ROUND_UP(t->digital_filter_width_ns
113				* (clk_get_rate(dev->clk) / 1000), 1000000);
114		if (filter_width > AT91_TWI_FILTR_THRES_MAX) {
115			dev_warn(dev->dev,
116				"Filter threshold set to its maximum value (%d instead of %d)\n",
117				AT91_TWI_FILTR_THRES_MAX, filter_width);
118			filter_width = AT91_TWI_FILTR_THRES_MAX;
119		}
120	}
121
122	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
123			    | AT91_TWI_CWGR_HOLD(hold);
124
125	dev->filter_width = filter_width;
126
127	dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns), filter_width %d (%d ns)\n",
128		cdiv, ckdiv, hold, t->sda_hold_ns, filter_width,
129		t->digital_filter_width_ns);
130}
131
132static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
133{
134	struct at91_twi_dma *dma = &dev->dma;
135
136	at91_twi_irq_save(dev);
137
138	if (dma->xfer_in_progress) {
139		if (dma->direction == DMA_FROM_DEVICE)
140			dmaengine_terminate_sync(dma->chan_rx);
141		else
142			dmaengine_terminate_sync(dma->chan_tx);
143		dma->xfer_in_progress = false;
144	}
145	if (dma->buf_mapped) {
146		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
147				 dev->buf_len, dma->direction);
148		dma->buf_mapped = false;
149	}
150
151	at91_twi_irq_restore(dev);
152}
153
154static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
155{
156	if (!dev->buf_len)
157		return;
158
159	/* 8bit write works with and without FIFO */
160	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
161
162	/* send stop when last byte has been written */
163	if (--dev->buf_len == 0) {
164		if (!dev->use_alt_cmd)
165			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
166		at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
167	}
168
169	dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
170
171	++dev->buf;
172}
173
174static void at91_twi_write_data_dma_callback(void *data)
175{
176	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
177
178	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
179			 dev->buf_len, DMA_TO_DEVICE);
180
181	/*
182	 * When this callback is called, THR/TX FIFO is likely not to be empty
183	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
184	 * Status Register to be sure that the STOP bit has been sent and the
185	 * transfer is completed. The NACK interrupt has already been enabled,
186	 * we just have to enable TXCOMP one.
187	 */
188	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
189	if (!dev->use_alt_cmd)
190		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
191}
192
193static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
194{
195	dma_addr_t dma_addr;
196	struct dma_async_tx_descriptor *txdesc;
197	struct at91_twi_dma *dma = &dev->dma;
198	struct dma_chan *chan_tx = dma->chan_tx;
199	unsigned int sg_len = 1;
200
201	if (!dev->buf_len)
202		return;
203
204	dma->direction = DMA_TO_DEVICE;
205
206	at91_twi_irq_save(dev);
207	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
208				  DMA_TO_DEVICE);
209	if (dma_mapping_error(dev->dev, dma_addr)) {
210		dev_err(dev->dev, "dma map failed\n");
211		return;
212	}
213	dma->buf_mapped = true;
214	at91_twi_irq_restore(dev);
215
216	if (dev->fifo_size) {
217		size_t part1_len, part2_len;
218		struct scatterlist *sg;
219		unsigned fifo_mr;
220
221		sg_len = 0;
222
223		part1_len = dev->buf_len & ~0x3;
224		if (part1_len) {
225			sg = &dma->sg[sg_len++];
226			sg_dma_len(sg) = part1_len;
227			sg_dma_address(sg) = dma_addr;
228		}
229
230		part2_len = dev->buf_len & 0x3;
231		if (part2_len) {
232			sg = &dma->sg[sg_len++];
233			sg_dma_len(sg) = part2_len;
234			sg_dma_address(sg) = dma_addr + part1_len;
235		}
236
237		/*
238		 * DMA controller is triggered when at least 4 data can be
239		 * written into the TX FIFO
240		 */
241		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
242		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
243		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
244		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
245	} else {
246		sg_dma_len(&dma->sg[0]) = dev->buf_len;
247		sg_dma_address(&dma->sg[0]) = dma_addr;
248	}
249
250	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
251					 DMA_MEM_TO_DEV,
252					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
253	if (!txdesc) {
254		dev_err(dev->dev, "dma prep slave sg failed\n");
255		goto error;
256	}
257
258	txdesc->callback = at91_twi_write_data_dma_callback;
259	txdesc->callback_param = dev;
260
261	dma->xfer_in_progress = true;
262	dmaengine_submit(txdesc);
263	dma_async_issue_pending(chan_tx);
264
265	return;
266
267error:
268	at91_twi_dma_cleanup(dev);
269}
270
271static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
272{
273	/*
274	 * If we are in this case, it means there is garbage data in RHR, so
275	 * delete them.
276	 */
277	if (!dev->buf_len) {
278		at91_twi_read(dev, AT91_TWI_RHR);
279		return;
280	}
281
282	/* 8bit read works with and without FIFO */
283	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
284	--dev->buf_len;
285
286	/* return if aborting, we only needed to read RHR to clear RXRDY*/
287	if (dev->recv_len_abort)
288		return;
289
290	/* handle I2C_SMBUS_BLOCK_DATA */
291	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
292		/* ensure length byte is a valid value */
293		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
294			dev->msg->flags &= ~I2C_M_RECV_LEN;
295			dev->buf_len += *dev->buf;
296			dev->msg->len = dev->buf_len + 1;
297			dev_dbg(dev->dev, "received block length %zu\n",
298					 dev->buf_len);
299		} else {
300			/* abort and send the stop by reading one more byte */
301			dev->recv_len_abort = true;
302			dev->buf_len = 1;
303		}
304	}
305
306	/* send stop if second but last byte has been read */
307	if (!dev->use_alt_cmd && dev->buf_len == 1)
308		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
309
310	dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
311
312	++dev->buf;
313}
314
315static void at91_twi_read_data_dma_callback(void *data)
316{
317	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
318	unsigned ier = AT91_TWI_TXCOMP;
319
320	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
321			 dev->buf_len, DMA_FROM_DEVICE);
322
323	if (!dev->use_alt_cmd) {
324		/* The last two bytes have to be read without using dma */
325		dev->buf += dev->buf_len - 2;
326		dev->buf_len = 2;
327		ier |= AT91_TWI_RXRDY;
328	}
329	at91_twi_write(dev, AT91_TWI_IER, ier);
330}
331
332static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
333{
334	dma_addr_t dma_addr;
335	struct dma_async_tx_descriptor *rxdesc;
336	struct at91_twi_dma *dma = &dev->dma;
337	struct dma_chan *chan_rx = dma->chan_rx;
338	size_t buf_len;
339
340	buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
341	dma->direction = DMA_FROM_DEVICE;
342
343	/* Keep in mind that we won't use dma to read the last two bytes */
344	at91_twi_irq_save(dev);
345	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
346	if (dma_mapping_error(dev->dev, dma_addr)) {
347		dev_err(dev->dev, "dma map failed\n");
348		return;
349	}
350	dma->buf_mapped = true;
351	at91_twi_irq_restore(dev);
352
353	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
354		unsigned fifo_mr;
355
356		/*
357		 * DMA controller is triggered when at least 4 data can be
358		 * read from the RX FIFO
359		 */
360		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
361		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
362		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
363		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
364	}
365
366	sg_dma_len(&dma->sg[0]) = buf_len;
367	sg_dma_address(&dma->sg[0]) = dma_addr;
368
369	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
370					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
371	if (!rxdesc) {
372		dev_err(dev->dev, "dma prep slave sg failed\n");
373		goto error;
374	}
375
376	rxdesc->callback = at91_twi_read_data_dma_callback;
377	rxdesc->callback_param = dev;
378
379	dma->xfer_in_progress = true;
380	dmaengine_submit(rxdesc);
381	dma_async_issue_pending(dma->chan_rx);
382
383	return;
384
385error:
386	at91_twi_dma_cleanup(dev);
387}
388
389static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
390{
391	struct at91_twi_dev *dev = dev_id;
392	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
393	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
394
395	if (!irqstatus)
396		return IRQ_NONE;
397	/*
398	 * In reception, the behavior of the twi device (before sama5d2) is
399	 * weird. There is some magic about RXRDY flag! When a data has been
400	 * almost received, the reception of a new one is anticipated if there
401	 * is no stop command to send. That is the reason why ask for sending
402	 * the stop command not on the last data but on the second last one.
403	 *
404	 * Unfortunately, we could still have the RXRDY flag set even if the
405	 * transfer is done and we have read the last data. It might happen
406	 * when the i2c slave device sends too quickly data after receiving the
407	 * ack from the master. The data has been almost received before having
408	 * the order to send stop. In this case, sending the stop command could
409	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
410	 * the RXRDY interrupt first in order to not keep garbage data in the
411	 * Receive Holding Register for the next transfer.
412	 */
413	if (irqstatus & AT91_TWI_RXRDY) {
414		/*
415		 * Read all available bytes at once by polling RXRDY usable w/
416		 * and w/o FIFO. With FIFO enabled we could also read RXFL and
417		 * avoid polling RXRDY.
418		 */
419		do {
420			at91_twi_read_next_byte(dev);
421		} while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
422	}
423
424	/*
425	 * When a NACK condition is detected, the I2C controller sets the NACK,
426	 * TXCOMP and TXRDY bits all together in the Status Register (SR).
427	 *
428	 * 1 - Handling NACK errors with CPU write transfer.
429	 *
430	 * In such case, we should not write the next byte into the Transmit
431	 * Holding Register (THR) otherwise the I2C controller would start a new
432	 * transfer and the I2C slave is likely to reply by another NACK.
433	 *
434	 * 2 - Handling NACK errors with DMA write transfer.
435	 *
436	 * By setting the TXRDY bit in the SR, the I2C controller also triggers
437	 * the DMA controller to write the next data into the THR. Then the
438	 * result depends on the hardware version of the I2C controller.
439	 *
440	 * 2a - Without support of the Alternative Command mode.
441	 *
442	 * This is the worst case: the DMA controller is triggered to write the
443	 * next data into the THR, hence starting a new transfer: the I2C slave
444	 * is likely to reply by another NACK.
445	 * Concurrently, this interrupt handler is likely to be called to manage
446	 * the first NACK before the I2C controller detects the second NACK and
447	 * sets once again the NACK bit into the SR.
448	 * When handling the first NACK, this interrupt handler disables the I2C
449	 * controller interruptions, especially the NACK interrupt.
450	 * Hence, the NACK bit is pending into the SR. This is why we should
451	 * read the SR to clear all pending interrupts at the beginning of
452	 * at91_do_twi_transfer() before actually starting a new transfer.
453	 *
454	 * 2b - With support of the Alternative Command mode.
455	 *
456	 * When a NACK condition is detected, the I2C controller also locks the
457	 * THR (and sets the LOCK bit in the SR): even though the DMA controller
458	 * is triggered by the TXRDY bit to write the next data into the THR,
459	 * this data actually won't go on the I2C bus hence a second NACK is not
460	 * generated.
461	 */
462	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
463		at91_disable_twi_interrupts(dev);
464		complete(&dev->cmd_complete);
465	} else if (irqstatus & AT91_TWI_TXRDY) {
466		at91_twi_write_next_byte(dev);
467	}
468
469	/* catch error flags */
470	dev->transfer_status |= status;
471
472	return IRQ_HANDLED;
473}
474
475static int at91_do_twi_transfer(struct at91_twi_dev *dev)
476{
477	int ret;
478	unsigned long time_left;
479	bool has_unre_flag = dev->pdata->has_unre_flag;
480	bool has_alt_cmd = dev->pdata->has_alt_cmd;
481
482	/*
483	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
484	 * read flag but shows the state of the transmission at the time the
485	 * Status Register is read. According to the programmer datasheet,
486	 * TXCOMP is set when both holding register and internal shifter are
487	 * empty and STOP condition has been sent.
488	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
489	 * detect transmission failure.
490	 * Indeed let's take the case of an i2c write command using DMA.
491	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
492	 * TXCOMP bits are set together into the Status Register.
493	 * LOCK is a clear on write bit, which is set to prevent the DMA
494	 * controller from sending new data on the i2c bus after a NACK
495	 * condition has happened. Once locked, this i2c peripheral stops
496	 * triggering the DMA controller for new data but it is more than
497	 * likely that a new DMA transaction is already in progress, writing
498	 * into the Transmit Holding Register. Since the peripheral is locked,
499	 * these new data won't be sent to the i2c bus but they will remain
500	 * into the Transmit Holding Register, so TXCOMP bit is cleared.
501	 * Then when the interrupt handler is called, the Status Register is
502	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
503	 * manage the error properly, without waiting for timeout.
504	 * This case can be reproduced easyly when writing into an at24 eeprom.
505	 *
506	 * Besides, the TXCOMP bit is already set before the i2c transaction
507	 * has been started. For read transactions, this bit is cleared when
508	 * writing the START bit into the Control Register. So the
509	 * corresponding interrupt can safely be enabled just after.
510	 * However for write transactions managed by the CPU, we first write
511	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
512	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
513	 * the interrupt handler would be called immediately and the i2c command
514	 * would be reported as completed.
515	 * Also when a write transaction is managed by the DMA controller,
516	 * enabling the TXCOMP interrupt in this function may lead to a race
517	 * condition since we don't know whether the TXCOMP interrupt is enabled
518	 * before or after the DMA has started to write into THR. So the TXCOMP
519	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
520	 * Immediately after in that DMA callback, if the alternative command
521	 * mode is not used, we still need to send the STOP condition manually
522	 * writing the corresponding bit into the Control Register.
523	 */
524
525	dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
526		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
527
528	reinit_completion(&dev->cmd_complete);
529	dev->transfer_status = 0;
530
531	/* Clear pending interrupts, such as NACK. */
532	at91_twi_read(dev, AT91_TWI_SR);
533
534	if (dev->fifo_size) {
535		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
536
537		/* Reset FIFO mode register */
538		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
539			     AT91_TWI_FMR_RXRDYM_MASK);
540		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
541		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
542		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
543
544		/* Flush FIFOs */
545		at91_twi_write(dev, AT91_TWI_CR,
546			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
547	}
548
549	if (!dev->buf_len) {
550		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
551		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
552	} else if (dev->msg->flags & I2C_M_RD) {
553		unsigned start_flags = AT91_TWI_START;
554
555		/* if only one byte is to be read, immediately stop transfer */
556		if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
557		    !(dev->msg->flags & I2C_M_RECV_LEN))
558			start_flags |= AT91_TWI_STOP;
559		at91_twi_write(dev, AT91_TWI_CR, start_flags);
560		/*
561		 * When using dma without alternative command mode, the last
562		 * byte has to be read manually in order to not send the stop
563		 * command too late and then to receive extra data.
564		 * In practice, there are some issues if you use the dma to
565		 * read n-1 bytes because of latency.
566		 * Reading n-2 bytes with dma and the two last ones manually
567		 * seems to be the best solution.
568		 */
569		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
570			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
571			at91_twi_read_data_dma(dev);
572		} else {
573			at91_twi_write(dev, AT91_TWI_IER,
574				       AT91_TWI_TXCOMP |
575				       AT91_TWI_NACK |
576				       AT91_TWI_RXRDY);
577		}
578	} else {
579		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
580			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
581			at91_twi_write_data_dma(dev);
582		} else {
583			at91_twi_write_next_byte(dev);
584			at91_twi_write(dev, AT91_TWI_IER,
585				       AT91_TWI_TXCOMP | AT91_TWI_NACK |
586				       (dev->buf_len ? AT91_TWI_TXRDY : 0));
587		}
588	}
589
590	time_left = wait_for_completion_timeout(&dev->cmd_complete,
591					      dev->adapter.timeout);
592	if (time_left == 0) {
593		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
594		dev_err(dev->dev, "controller timed out\n");
595		at91_init_twi_bus(dev);
596		ret = -ETIMEDOUT;
597		goto error;
598	}
599	if (dev->transfer_status & AT91_TWI_NACK) {
600		dev_dbg(dev->dev, "received nack\n");
601		ret = -EREMOTEIO;
602		goto error;
603	}
604	if (dev->transfer_status & AT91_TWI_OVRE) {
605		dev_err(dev->dev, "overrun while reading\n");
606		ret = -EIO;
607		goto error;
608	}
609	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
610		dev_err(dev->dev, "underrun while writing\n");
611		ret = -EIO;
612		goto error;
613	}
614	if ((has_alt_cmd || dev->fifo_size) &&
615	    (dev->transfer_status & AT91_TWI_LOCK)) {
616		dev_err(dev->dev, "tx locked\n");
617		ret = -EIO;
618		goto error;
619	}
620	if (dev->recv_len_abort) {
621		dev_err(dev->dev, "invalid smbus block length recvd\n");
622		ret = -EPROTO;
623		goto error;
624	}
625
626	dev_dbg(dev->dev, "transfer complete\n");
627
628	return 0;
629
630error:
631	/* first stop DMA transfer if still in progress */
632	at91_twi_dma_cleanup(dev);
633	/* then flush THR/FIFO and unlock TX if locked */
634	if ((has_alt_cmd || dev->fifo_size) &&
635	    (dev->transfer_status & AT91_TWI_LOCK)) {
636		dev_dbg(dev->dev, "unlock tx\n");
637		at91_twi_write(dev, AT91_TWI_CR,
638			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
639	}
640
641	/*
642	 * some faulty I2C slave devices might hold SDA down;
643	 * we can send a bus clear command, hoping that the pins will be
644	 * released
645	 */
646	i2c_recover_bus(&dev->adapter);
647
648	return ret;
649}
650
651static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
652{
653	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
654	int ret;
655	unsigned int_addr_flag = 0;
656	struct i2c_msg *m_start = msg;
657	bool is_read;
658	u8 *dma_buf = NULL;
659
660	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
661
662	ret = pm_runtime_get_sync(dev->dev);
663	if (ret < 0)
664		goto out;
665
666	if (num == 2) {
667		int internal_address = 0;
668		int i;
669
670		/* 1st msg is put into the internal address, start with 2nd */
671		m_start = &msg[1];
672		for (i = 0; i < msg->len; ++i) {
673			const unsigned addr = msg->buf[msg->len - 1 - i];
674
675			internal_address |= addr << (8 * i);
676			int_addr_flag += AT91_TWI_IADRSZ_1;
677		}
678		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
679	}
680
681	dev->use_alt_cmd = false;
682	is_read = (m_start->flags & I2C_M_RD);
683	if (dev->pdata->has_alt_cmd) {
684		if (m_start->len > 0 &&
685		    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
686			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
687			at91_twi_write(dev, AT91_TWI_ACR,
688				       AT91_TWI_ACR_DATAL(m_start->len) |
689				       ((is_read) ? AT91_TWI_ACR_DIR : 0));
690			dev->use_alt_cmd = true;
691		} else {
692			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
693		}
694	}
695
696	at91_twi_write(dev, AT91_TWI_MMR,
697		       (m_start->addr << 16) |
698		       int_addr_flag |
699		       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
700
701	dev->buf_len = m_start->len;
702	dev->buf = m_start->buf;
703	dev->msg = m_start;
704	dev->recv_len_abort = false;
705
706	if (dev->use_dma) {
707		dma_buf = i2c_get_dma_safe_msg_buf(m_start, 1);
708		if (!dma_buf) {
709			ret = -ENOMEM;
710			goto out;
711		}
712		dev->buf = dma_buf;
713	}
714
715	ret = at91_do_twi_transfer(dev);
716	i2c_put_dma_safe_msg_buf(dma_buf, m_start, !ret);
717
718	ret = (ret < 0) ? ret : num;
719out:
720	pm_runtime_mark_last_busy(dev->dev);
721	pm_runtime_put_autosuspend(dev->dev);
722
723	return ret;
724}
725
726/*
727 * The hardware can handle at most two messages concatenated by a
728 * repeated start via it's internal address feature.
729 */
730static const struct i2c_adapter_quirks at91_twi_quirks = {
731	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
732	.max_comb_1st_msg_len = 3,
733};
734
735static u32 at91_twi_func(struct i2c_adapter *adapter)
736{
737	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
738		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
739}
740
741static const struct i2c_algorithm at91_twi_algorithm = {
742	.master_xfer	= at91_twi_xfer,
743	.functionality	= at91_twi_func,
744};
745
746static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
747{
748	int ret = 0;
749	struct dma_slave_config slave_config;
750	struct at91_twi_dma *dma = &dev->dma;
751	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
752
753	/*
754	 * The actual width of the access will be chosen in
755	 * dmaengine_prep_slave_sg():
756	 * for each buffer in the scatter-gather list, if its size is aligned
757	 * to addr_width then addr_width accesses will be performed to transfer
758	 * the buffer. On the other hand, if the buffer size is not aligned to
759	 * addr_width then the buffer is transferred using single byte accesses.
760	 * Please refer to the Atmel eXtended DMA controller driver.
761	 * When FIFOs are used, the TXRDYM threshold can always be set to
762	 * trigger the XDMAC when at least 4 data can be written into the TX
763	 * FIFO, even if single byte accesses are performed.
764	 * However the RXRDYM threshold must be set to fit the access width,
765	 * deduced from buffer length, so the XDMAC is triggered properly to
766	 * read data from the RX FIFO.
767	 */
768	if (dev->fifo_size)
769		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
770
771	memset(&slave_config, 0, sizeof(slave_config));
772	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
773	slave_config.src_addr_width = addr_width;
774	slave_config.src_maxburst = 1;
775	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
776	slave_config.dst_addr_width = addr_width;
777	slave_config.dst_maxburst = 1;
778	slave_config.device_fc = false;
779
780	dma->chan_tx = dma_request_chan(dev->dev, "tx");
781	if (IS_ERR(dma->chan_tx)) {
782		ret = PTR_ERR(dma->chan_tx);
783		dma->chan_tx = NULL;
784		goto error;
785	}
786
787	dma->chan_rx = dma_request_chan(dev->dev, "rx");
788	if (IS_ERR(dma->chan_rx)) {
789		ret = PTR_ERR(dma->chan_rx);
790		dma->chan_rx = NULL;
791		goto error;
792	}
793
794	slave_config.direction = DMA_MEM_TO_DEV;
795	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
796		dev_err(dev->dev, "failed to configure tx channel\n");
797		ret = -EINVAL;
798		goto error;
799	}
800
801	slave_config.direction = DMA_DEV_TO_MEM;
802	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
803		dev_err(dev->dev, "failed to configure rx channel\n");
804		ret = -EINVAL;
805		goto error;
806	}
807
808	sg_init_table(dma->sg, 2);
809	dma->buf_mapped = false;
810	dma->xfer_in_progress = false;
811	dev->use_dma = true;
812
813	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
814		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
815
816	return ret;
817
818error:
819	if (ret != -EPROBE_DEFER)
820		dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
821	if (dma->chan_rx)
822		dma_release_channel(dma->chan_rx);
823	if (dma->chan_tx)
824		dma_release_channel(dma->chan_tx);
825	return ret;
826}
827
828static int at91_init_twi_recovery_gpio(struct platform_device *pdev,
829				       struct at91_twi_dev *dev)
830{
831	struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
832
833	rinfo->pinctrl = devm_pinctrl_get(&pdev->dev);
834	if (!rinfo->pinctrl) {
835		dev_info(dev->dev, "pinctrl unavailable, bus recovery not supported\n");
836		return 0;
837	}
838	if (IS_ERR(rinfo->pinctrl)) {
839		dev_info(dev->dev, "can't get pinctrl, bus recovery not supported\n");
840		return PTR_ERR(rinfo->pinctrl);
841	}
842	dev->adapter.bus_recovery_info = rinfo;
843
844	return 0;
845}
846
847static int at91_twi_recover_bus_cmd(struct i2c_adapter *adap)
848{
849	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
850
851	dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
852	if (!(dev->transfer_status & AT91_TWI_SDA)) {
853		dev_dbg(dev->dev, "SDA is down; sending bus clear command\n");
854		if (dev->use_alt_cmd) {
855			unsigned int acr;
856
857			acr = at91_twi_read(dev, AT91_TWI_ACR);
858			acr &= ~AT91_TWI_ACR_DATAL_MASK;
859			at91_twi_write(dev, AT91_TWI_ACR, acr);
860		}
861		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_CLEAR);
862	}
863
864	return 0;
865}
866
867static int at91_init_twi_recovery_info(struct platform_device *pdev,
868				       struct at91_twi_dev *dev)
869{
870	struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
871	bool has_clear_cmd = dev->pdata->has_clear_cmd;
872
873	if (!has_clear_cmd)
874		return at91_init_twi_recovery_gpio(pdev, dev);
875
876	rinfo->recover_bus = at91_twi_recover_bus_cmd;
877	dev->adapter.bus_recovery_info = rinfo;
878
879	return 0;
880}
881
882int at91_twi_probe_master(struct platform_device *pdev,
883			  u32 phy_addr, struct at91_twi_dev *dev)
884{
885	int rc;
886
887	init_completion(&dev->cmd_complete);
888
889	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
890			      dev_name(dev->dev), dev);
891	if (rc) {
892		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
893		return rc;
894	}
895
896	if (dev->dev->of_node) {
897		rc = at91_twi_configure_dma(dev, phy_addr);
898		if (rc == -EPROBE_DEFER)
899			return rc;
900	}
901
902	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
903				  &dev->fifo_size)) {
904		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
905	}
906
907	dev->enable_dig_filt = of_property_read_bool(pdev->dev.of_node,
908						     "i2c-digital-filter");
909
910	dev->enable_ana_filt = of_property_read_bool(pdev->dev.of_node,
911						     "i2c-analog-filter");
912	at91_calc_twi_clock(dev);
913
914	rc = at91_init_twi_recovery_info(pdev, dev);
915	if (rc == -EPROBE_DEFER)
916		return rc;
917
918	dev->adapter.algo = &at91_twi_algorithm;
919	dev->adapter.quirks = &at91_twi_quirks;
920
921	return 0;
922}
923