1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2020 MaxLinear, Inc.
4 *
5 * This driver is a hardware monitoring driver for PVT controller
6 * (MR75203) which is used to configure & control Moortec embedded
7 * analog IP to enable multiple embedded temperature sensor(TS),
8 * voltage monitor(VM) & process detector(PD) modules.
9 */
10#include <linux/bits.h>
11#include <linux/clk.h>
12#include <linux/debugfs.h>
13#include <linux/hwmon.h>
14#include <linux/kstrtox.h>
15#include <linux/module.h>
16#include <linux/mod_devicetable.h>
17#include <linux/mutex.h>
18#include <linux/platform_device.h>
19#include <linux/property.h>
20#include <linux/regmap.h>
21#include <linux/reset.h>
22#include <linux/slab.h>
23#include <linux/units.h>
24
25/* PVT Common register */
26#define PVT_IP_CONFIG	0x04
27#define TS_NUM_MSK	GENMASK(4, 0)
28#define TS_NUM_SFT	0
29#define PD_NUM_MSK	GENMASK(12, 8)
30#define PD_NUM_SFT	8
31#define VM_NUM_MSK	GENMASK(20, 16)
32#define VM_NUM_SFT	16
33#define CH_NUM_MSK	GENMASK(31, 24)
34#define CH_NUM_SFT	24
35
36#define VM_NUM_MAX	(VM_NUM_MSK >> VM_NUM_SFT)
37
38/* Macro Common Register */
39#define CLK_SYNTH		0x00
40#define CLK_SYNTH_LO_SFT	0
41#define CLK_SYNTH_HI_SFT	8
42#define CLK_SYNTH_HOLD_SFT	16
43#define CLK_SYNTH_EN		BIT(24)
44#define CLK_SYS_CYCLES_MAX	514
45#define CLK_SYS_CYCLES_MIN	2
46
47#define SDIF_DISABLE	0x04
48
49#define SDIF_STAT	0x08
50#define SDIF_BUSY	BIT(0)
51#define SDIF_LOCK	BIT(1)
52
53#define SDIF_W		0x0c
54#define SDIF_PROG	BIT(31)
55#define SDIF_WRN_W	BIT(27)
56#define SDIF_WRN_R	0x00
57#define SDIF_ADDR_SFT	24
58
59#define SDIF_HALT	0x10
60#define SDIF_CTRL	0x14
61#define SDIF_SMPL_CTRL	0x20
62
63/* TS & PD Individual Macro Register */
64#define COM_REG_SIZE	0x40
65
66#define SDIF_DONE(n)	(COM_REG_SIZE + 0x14 + 0x40 * (n))
67#define SDIF_SMPL_DONE	BIT(0)
68
69#define SDIF_DATA(n)	(COM_REG_SIZE + 0x18 + 0x40 * (n))
70#define SAMPLE_DATA_MSK	GENMASK(15, 0)
71
72#define HILO_RESET(n)	(COM_REG_SIZE + 0x2c + 0x40 * (n))
73
74/* VM Individual Macro Register */
75#define VM_COM_REG_SIZE	0x200
76#define VM_SDIF_DONE(vm)	(VM_COM_REG_SIZE + 0x34 + 0x200 * (vm))
77#define VM_SDIF_DATA(vm, ch)	\
78	(VM_COM_REG_SIZE + 0x40 + 0x200 * (vm) + 0x4 * (ch))
79
80/* SDA Slave Register */
81#define IP_CTRL			0x00
82#define IP_RST_REL		BIT(1)
83#define IP_RUN_CONT		BIT(3)
84#define IP_AUTO			BIT(8)
85#define IP_VM_MODE		BIT(10)
86
87#define IP_CFG			0x01
88#define CFG0_MODE_2		BIT(0)
89#define CFG0_PARALLEL_OUT	0
90#define CFG0_12_BIT		0
91#define CFG1_VOL_MEAS_MODE	0
92#define CFG1_PARALLEL_OUT	0
93#define CFG1_14_BIT		0
94
95#define IP_DATA		0x03
96
97#define IP_POLL		0x04
98#define VM_CH_INIT	BIT(20)
99#define VM_CH_REQ	BIT(21)
100
101#define IP_TMR			0x05
102#define POWER_DELAY_CYCLE_256	0x100
103#define POWER_DELAY_CYCLE_64	0x40
104
105#define PVT_POLL_DELAY_US	20
106#define PVT_POLL_TIMEOUT_US	20000
107#define PVT_CONV_BITS		10
108#define PVT_N_CONST		90
109#define PVT_R_CONST		245805
110
111#define PVT_TEMP_MIN_mC		-40000
112#define PVT_TEMP_MAX_mC		125000
113
114/* Temperature coefficients for series 5 */
115#define PVT_SERIES5_H_CONST	200000
116#define PVT_SERIES5_G_CONST	60000
117#define PVT_SERIES5_J_CONST	-100
118#define PVT_SERIES5_CAL5_CONST	4094
119
120/* Temperature coefficients for series 6 */
121#define PVT_SERIES6_H_CONST	249400
122#define PVT_SERIES6_G_CONST	57400
123#define PVT_SERIES6_J_CONST	0
124#define PVT_SERIES6_CAL5_CONST	4096
125
126#define TEMPERATURE_SENSOR_SERIES_5	5
127#define TEMPERATURE_SENSOR_SERIES_6	6
128
129#define PRE_SCALER_X1	1
130#define PRE_SCALER_X2	2
131
132/**
133 * struct voltage_device - VM single input parameters.
134 * @vm_map: Map channel number to VM index.
135 * @ch_map: Map channel number to channel index.
136 * @pre_scaler: Pre scaler value (1 or 2) used to normalize the voltage output
137 *              result.
138 *
139 * The structure provides mapping between channel-number (0..N-1) to VM-index
140 * (0..num_vm-1) and channel-index (0..ch_num-1) where N = num_vm * ch_num.
141 * It also provides normalization factor for the VM equation.
142 */
143struct voltage_device {
144	u32 vm_map;
145	u32 ch_map;
146	u32 pre_scaler;
147};
148
149/**
150 * struct voltage_channels - VM channel count.
151 * @total: Total number of channels in all VMs.
152 * @max: Maximum number of channels among all VMs.
153 *
154 * The structure provides channel count information across all VMs.
155 */
156struct voltage_channels {
157	u32 total;
158	u8 max;
159};
160
161struct temp_coeff {
162	u32 h;
163	u32 g;
164	u32 cal5;
165	s32 j;
166};
167
168struct pvt_device {
169	struct regmap		*c_map;
170	struct regmap		*t_map;
171	struct regmap		*p_map;
172	struct regmap		*v_map;
173	struct clk		*clk;
174	struct reset_control	*rst;
175	struct dentry		*dbgfs_dir;
176	struct voltage_device	*vd;
177	struct voltage_channels	vm_channels;
178	struct temp_coeff	ts_coeff;
179	u32			t_num;
180	u32			p_num;
181	u32			v_num;
182	u32			ip_freq;
183};
184
185static ssize_t pvt_ts_coeff_j_read(struct file *file, char __user *user_buf,
186				   size_t count, loff_t *ppos)
187{
188	struct pvt_device *pvt = file->private_data;
189	unsigned int len;
190	char buf[13];
191
192	len = scnprintf(buf, sizeof(buf), "%d\n", pvt->ts_coeff.j);
193
194	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
195}
196
197static ssize_t pvt_ts_coeff_j_write(struct file *file,
198				    const char __user *user_buf,
199				    size_t count, loff_t *ppos)
200{
201	struct pvt_device *pvt = file->private_data;
202	int ret;
203
204	ret = kstrtos32_from_user(user_buf, count, 0, &pvt->ts_coeff.j);
205	if (ret)
206		return ret;
207
208	return count;
209}
210
211static const struct file_operations pvt_ts_coeff_j_fops = {
212	.read = pvt_ts_coeff_j_read,
213	.write = pvt_ts_coeff_j_write,
214	.open = simple_open,
215	.owner = THIS_MODULE,
216	.llseek = default_llseek,
217};
218
219static void devm_pvt_ts_dbgfs_remove(void *data)
220{
221	struct pvt_device *pvt = (struct pvt_device *)data;
222
223	debugfs_remove_recursive(pvt->dbgfs_dir);
224	pvt->dbgfs_dir = NULL;
225}
226
227static int pvt_ts_dbgfs_create(struct pvt_device *pvt, struct device *dev)
228{
229	pvt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
230
231	debugfs_create_u32("ts_coeff_h", 0644, pvt->dbgfs_dir,
232			   &pvt->ts_coeff.h);
233	debugfs_create_u32("ts_coeff_g", 0644, pvt->dbgfs_dir,
234			   &pvt->ts_coeff.g);
235	debugfs_create_u32("ts_coeff_cal5", 0644, pvt->dbgfs_dir,
236			   &pvt->ts_coeff.cal5);
237	debugfs_create_file("ts_coeff_j", 0644, pvt->dbgfs_dir, pvt,
238			    &pvt_ts_coeff_j_fops);
239
240	return devm_add_action_or_reset(dev, devm_pvt_ts_dbgfs_remove, pvt);
241}
242
243static umode_t pvt_is_visible(const void *data, enum hwmon_sensor_types type,
244			      u32 attr, int channel)
245{
246	switch (type) {
247	case hwmon_temp:
248		if (attr == hwmon_temp_input)
249			return 0444;
250		break;
251	case hwmon_in:
252		if (attr == hwmon_in_input)
253			return 0444;
254		break;
255	default:
256		break;
257	}
258	return 0;
259}
260
261static long pvt_calc_temp(struct pvt_device *pvt, u32 nbs)
262{
263	/*
264	 * Convert the register value to degrees centigrade temperature:
265	 * T = G + H * (n / cal5 - 0.5) + J * F
266	 */
267	struct temp_coeff *ts_coeff = &pvt->ts_coeff;
268
269	s64 tmp = ts_coeff->g +
270		div_s64(ts_coeff->h * (s64)nbs, ts_coeff->cal5) -
271		ts_coeff->h / 2 +
272		div_s64(ts_coeff->j * (s64)pvt->ip_freq, HZ_PER_MHZ);
273
274	return clamp_val(tmp, PVT_TEMP_MIN_mC, PVT_TEMP_MAX_mC);
275}
276
277static int pvt_read_temp(struct device *dev, u32 attr, int channel, long *val)
278{
279	struct pvt_device *pvt = dev_get_drvdata(dev);
280	struct regmap *t_map = pvt->t_map;
281	u32 stat, nbs;
282	int ret;
283
284	switch (attr) {
285	case hwmon_temp_input:
286		ret = regmap_read_poll_timeout(t_map, SDIF_DONE(channel),
287					       stat, stat & SDIF_SMPL_DONE,
288					       PVT_POLL_DELAY_US,
289					       PVT_POLL_TIMEOUT_US);
290		if (ret)
291			return ret;
292
293		ret = regmap_read(t_map, SDIF_DATA(channel), &nbs);
294		if (ret < 0)
295			return ret;
296
297		nbs &= SAMPLE_DATA_MSK;
298
299		/*
300		 * Convert the register value to
301		 * degrees centigrade temperature
302		 */
303		*val = pvt_calc_temp(pvt, nbs);
304
305		return 0;
306	default:
307		return -EOPNOTSUPP;
308	}
309}
310
311static int pvt_read_in(struct device *dev, u32 attr, int channel, long *val)
312{
313	struct pvt_device *pvt = dev_get_drvdata(dev);
314	struct regmap *v_map = pvt->v_map;
315	u32 n, stat, pre_scaler;
316	u8 vm_idx, ch_idx;
317	int ret;
318
319	if (channel >= pvt->vm_channels.total)
320		return -EINVAL;
321
322	vm_idx = pvt->vd[channel].vm_map;
323	ch_idx = pvt->vd[channel].ch_map;
324
325	switch (attr) {
326	case hwmon_in_input:
327		ret = regmap_read_poll_timeout(v_map, VM_SDIF_DONE(vm_idx),
328					       stat, stat & SDIF_SMPL_DONE,
329					       PVT_POLL_DELAY_US,
330					       PVT_POLL_TIMEOUT_US);
331		if (ret)
332			return ret;
333
334		ret = regmap_read(v_map, VM_SDIF_DATA(vm_idx, ch_idx), &n);
335		if (ret < 0)
336			return ret;
337
338		n &= SAMPLE_DATA_MSK;
339		pre_scaler = pvt->vd[channel].pre_scaler;
340		/*
341		 * Convert the N bitstream count into voltage.
342		 * To support negative voltage calculation for 64bit machines
343		 * n must be cast to long, since n and *val differ both in
344		 * signedness and in size.
345		 * Division is used instead of right shift, because for signed
346		 * numbers, the sign bit is used to fill the vacated bit
347		 * positions, and if the number is negative, 1 is used.
348		 * BIT(x) may not be used instead of (1 << x) because it's
349		 * unsigned.
350		 */
351		*val = pre_scaler * (PVT_N_CONST * (long)n - PVT_R_CONST) /
352			(1 << PVT_CONV_BITS);
353
354		return 0;
355	default:
356		return -EOPNOTSUPP;
357	}
358}
359
360static int pvt_read(struct device *dev, enum hwmon_sensor_types type,
361		    u32 attr, int channel, long *val)
362{
363	switch (type) {
364	case hwmon_temp:
365		return pvt_read_temp(dev, attr, channel, val);
366	case hwmon_in:
367		return pvt_read_in(dev, attr, channel, val);
368	default:
369		return -EOPNOTSUPP;
370	}
371}
372
373static struct hwmon_channel_info pvt_temp = {
374	.type = hwmon_temp,
375};
376
377static struct hwmon_channel_info pvt_in = {
378	.type = hwmon_in,
379};
380
381static const struct hwmon_ops pvt_hwmon_ops = {
382	.is_visible = pvt_is_visible,
383	.read = pvt_read,
384};
385
386static struct hwmon_chip_info pvt_chip_info = {
387	.ops = &pvt_hwmon_ops,
388};
389
390static int pvt_init(struct pvt_device *pvt)
391{
392	u16 sys_freq, key, middle, low = 4, high = 8;
393	struct regmap *t_map = pvt->t_map;
394	struct regmap *p_map = pvt->p_map;
395	struct regmap *v_map = pvt->v_map;
396	u32 t_num = pvt->t_num;
397	u32 p_num = pvt->p_num;
398	u32 v_num = pvt->v_num;
399	u32 clk_synth, val;
400	int ret;
401
402	sys_freq = clk_get_rate(pvt->clk) / HZ_PER_MHZ;
403	while (high >= low) {
404		middle = (low + high + 1) / 2;
405		key = DIV_ROUND_CLOSEST(sys_freq, middle);
406		if (key > CLK_SYS_CYCLES_MAX) {
407			low = middle + 1;
408			continue;
409		} else if (key < CLK_SYS_CYCLES_MIN) {
410			high = middle - 1;
411			continue;
412		} else {
413			break;
414		}
415	}
416
417	/*
418	 * The system supports 'clk_sys' to 'clk_ip' frequency ratios
419	 * from 2:1 to 512:1
420	 */
421	key = clamp_val(key, CLK_SYS_CYCLES_MIN, CLK_SYS_CYCLES_MAX) - 2;
422
423	clk_synth = ((key + 1) >> 1) << CLK_SYNTH_LO_SFT |
424		    (key >> 1) << CLK_SYNTH_HI_SFT |
425		    (key >> 1) << CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN;
426
427	pvt->ip_freq = clk_get_rate(pvt->clk) / (key + 2);
428
429	if (t_num) {
430		ret = regmap_write(t_map, SDIF_SMPL_CTRL, 0x0);
431		if (ret < 0)
432			return ret;
433
434		ret = regmap_write(t_map, SDIF_HALT, 0x0);
435		if (ret < 0)
436			return ret;
437
438		ret = regmap_write(t_map, CLK_SYNTH, clk_synth);
439		if (ret < 0)
440			return ret;
441
442		ret = regmap_write(t_map, SDIF_DISABLE, 0x0);
443		if (ret < 0)
444			return ret;
445
446		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
447					       val, !(val & SDIF_BUSY),
448					       PVT_POLL_DELAY_US,
449					       PVT_POLL_TIMEOUT_US);
450		if (ret)
451			return ret;
452
453		val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
454		      IP_CFG << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
455		ret = regmap_write(t_map, SDIF_W, val);
456		if (ret < 0)
457			return ret;
458
459		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
460					       val, !(val & SDIF_BUSY),
461					       PVT_POLL_DELAY_US,
462					       PVT_POLL_TIMEOUT_US);
463		if (ret)
464			return ret;
465
466		val = POWER_DELAY_CYCLE_256 | IP_TMR << SDIF_ADDR_SFT |
467			      SDIF_WRN_W | SDIF_PROG;
468		ret = regmap_write(t_map, SDIF_W, val);
469		if (ret < 0)
470			return ret;
471
472		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
473					       val, !(val & SDIF_BUSY),
474					       PVT_POLL_DELAY_US,
475					       PVT_POLL_TIMEOUT_US);
476		if (ret)
477			return ret;
478
479		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
480		      IP_CTRL << SDIF_ADDR_SFT |
481		      SDIF_WRN_W | SDIF_PROG;
482		ret = regmap_write(t_map, SDIF_W, val);
483		if (ret < 0)
484			return ret;
485	}
486
487	if (p_num) {
488		ret = regmap_write(p_map, SDIF_HALT, 0x0);
489		if (ret < 0)
490			return ret;
491
492		ret = regmap_write(p_map, SDIF_DISABLE, BIT(p_num) - 1);
493		if (ret < 0)
494			return ret;
495
496		ret = regmap_write(p_map, CLK_SYNTH, clk_synth);
497		if (ret < 0)
498			return ret;
499	}
500
501	if (v_num) {
502		ret = regmap_write(v_map, SDIF_SMPL_CTRL, 0x0);
503		if (ret < 0)
504			return ret;
505
506		ret = regmap_write(v_map, SDIF_HALT, 0x0);
507		if (ret < 0)
508			return ret;
509
510		ret = regmap_write(v_map, CLK_SYNTH, clk_synth);
511		if (ret < 0)
512			return ret;
513
514		ret = regmap_write(v_map, SDIF_DISABLE, 0x0);
515		if (ret < 0)
516			return ret;
517
518		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
519					       val, !(val & SDIF_BUSY),
520					       PVT_POLL_DELAY_US,
521					       PVT_POLL_TIMEOUT_US);
522		if (ret)
523			return ret;
524
525		val = (BIT(pvt->vm_channels.max) - 1) | VM_CH_INIT |
526		      IP_POLL << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
527		ret = regmap_write(v_map, SDIF_W, val);
528		if (ret < 0)
529			return ret;
530
531		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
532					       val, !(val & SDIF_BUSY),
533					       PVT_POLL_DELAY_US,
534					       PVT_POLL_TIMEOUT_US);
535		if (ret)
536			return ret;
537
538		val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
539		      CFG1_14_BIT | IP_CFG << SDIF_ADDR_SFT |
540		      SDIF_WRN_W | SDIF_PROG;
541		ret = regmap_write(v_map, SDIF_W, val);
542		if (ret < 0)
543			return ret;
544
545		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
546					       val, !(val & SDIF_BUSY),
547					       PVT_POLL_DELAY_US,
548					       PVT_POLL_TIMEOUT_US);
549		if (ret)
550			return ret;
551
552		val = POWER_DELAY_CYCLE_64 | IP_TMR << SDIF_ADDR_SFT |
553		      SDIF_WRN_W | SDIF_PROG;
554		ret = regmap_write(v_map, SDIF_W, val);
555		if (ret < 0)
556			return ret;
557
558		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
559					       val, !(val & SDIF_BUSY),
560					       PVT_POLL_DELAY_US,
561					       PVT_POLL_TIMEOUT_US);
562		if (ret)
563			return ret;
564
565		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
566		      IP_CTRL << SDIF_ADDR_SFT |
567		      SDIF_WRN_W | SDIF_PROG;
568		ret = regmap_write(v_map, SDIF_W, val);
569		if (ret < 0)
570			return ret;
571	}
572
573	return 0;
574}
575
576static struct regmap_config pvt_regmap_config = {
577	.reg_bits = 32,
578	.reg_stride = 4,
579	.val_bits = 32,
580};
581
582static int pvt_get_regmap(struct platform_device *pdev, char *reg_name,
583			  struct pvt_device *pvt)
584{
585	struct device *dev = &pdev->dev;
586	struct regmap **reg_map;
587	void __iomem *io_base;
588
589	if (!strcmp(reg_name, "common"))
590		reg_map = &pvt->c_map;
591	else if (!strcmp(reg_name, "ts"))
592		reg_map = &pvt->t_map;
593	else if (!strcmp(reg_name, "pd"))
594		reg_map = &pvt->p_map;
595	else if (!strcmp(reg_name, "vm"))
596		reg_map = &pvt->v_map;
597	else
598		return -EINVAL;
599
600	io_base = devm_platform_ioremap_resource_byname(pdev, reg_name);
601	if (IS_ERR(io_base))
602		return PTR_ERR(io_base);
603
604	pvt_regmap_config.name = reg_name;
605	*reg_map = devm_regmap_init_mmio(dev, io_base, &pvt_regmap_config);
606	if (IS_ERR(*reg_map)) {
607		dev_err(dev, "failed to init register map\n");
608		return PTR_ERR(*reg_map);
609	}
610
611	return 0;
612}
613
614static void pvt_reset_control_assert(void *data)
615{
616	struct pvt_device *pvt = data;
617
618	reset_control_assert(pvt->rst);
619}
620
621static int pvt_reset_control_deassert(struct device *dev, struct pvt_device *pvt)
622{
623	int ret;
624
625	ret = reset_control_deassert(pvt->rst);
626	if (ret)
627		return ret;
628
629	return devm_add_action_or_reset(dev, pvt_reset_control_assert, pvt);
630}
631
632static int pvt_get_active_channel(struct device *dev, struct pvt_device *pvt,
633				  u32 vm_num, u32 ch_num, u8 *vm_idx)
634{
635	u8 vm_active_ch[VM_NUM_MAX];
636	int ret, i, j, k;
637
638	ret = device_property_read_u8_array(dev, "moortec,vm-active-channels",
639					    vm_active_ch, vm_num);
640	if (ret) {
641		/*
642		 * Incase "moortec,vm-active-channels" property is not defined,
643		 * we assume each VM sensor has all of its channels active.
644		 */
645		memset(vm_active_ch, ch_num, vm_num);
646		pvt->vm_channels.max = ch_num;
647		pvt->vm_channels.total = ch_num * vm_num;
648	} else {
649		for (i = 0; i < vm_num; i++) {
650			if (vm_active_ch[i] > ch_num) {
651				dev_err(dev, "invalid active channels: %u\n",
652					vm_active_ch[i]);
653				return -EINVAL;
654			}
655
656			pvt->vm_channels.total += vm_active_ch[i];
657
658			if (vm_active_ch[i] > pvt->vm_channels.max)
659				pvt->vm_channels.max = vm_active_ch[i];
660		}
661	}
662
663	/*
664	 * Map between the channel-number to VM-index and channel-index.
665	 * Example - 3 VMs, "moortec,vm_active_ch" = <5 2 4>:
666	 * vm_map = [0 0 0 0 0 1 1 2 2 2 2]
667	 * ch_map = [0 1 2 3 4 0 1 0 1 2 3]
668	 */
669	pvt->vd = devm_kcalloc(dev, pvt->vm_channels.total, sizeof(*pvt->vd),
670			       GFP_KERNEL);
671	if (!pvt->vd)
672		return -ENOMEM;
673
674	k = 0;
675	for (i = 0; i < vm_num; i++) {
676		for (j = 0; j < vm_active_ch[i]; j++) {
677			pvt->vd[k].vm_map = vm_idx[i];
678			pvt->vd[k].ch_map = j;
679			k++;
680		}
681	}
682
683	return 0;
684}
685
686static int pvt_get_pre_scaler(struct device *dev, struct pvt_device *pvt)
687{
688	u8 *pre_scaler_ch_list;
689	int i, ret, num_ch;
690	u32 channel;
691
692	/* Set default pre-scaler value to be 1. */
693	for (i = 0; i < pvt->vm_channels.total; i++)
694		pvt->vd[i].pre_scaler = PRE_SCALER_X1;
695
696	/* Get number of channels configured in "moortec,vm-pre-scaler-x2". */
697	num_ch = device_property_count_u8(dev, "moortec,vm-pre-scaler-x2");
698	if (num_ch <= 0)
699		return 0;
700
701	pre_scaler_ch_list = kcalloc(num_ch, sizeof(*pre_scaler_ch_list),
702				     GFP_KERNEL);
703	if (!pre_scaler_ch_list)
704		return -ENOMEM;
705
706	/* Get list of all channels that have pre-scaler of 2. */
707	ret = device_property_read_u8_array(dev, "moortec,vm-pre-scaler-x2",
708					    pre_scaler_ch_list, num_ch);
709	if (ret)
710		goto out;
711
712	for (i = 0; i < num_ch; i++) {
713		channel = pre_scaler_ch_list[i];
714		pvt->vd[channel].pre_scaler = PRE_SCALER_X2;
715	}
716
717out:
718	kfree(pre_scaler_ch_list);
719
720	return ret;
721}
722
723static int pvt_set_temp_coeff(struct device *dev, struct pvt_device *pvt)
724{
725	struct temp_coeff *ts_coeff = &pvt->ts_coeff;
726	u32 series;
727	int ret;
728
729	/* Incase ts-series property is not defined, use default 5. */
730	ret = device_property_read_u32(dev, "moortec,ts-series", &series);
731	if (ret)
732		series = TEMPERATURE_SENSOR_SERIES_5;
733
734	switch (series) {
735	case TEMPERATURE_SENSOR_SERIES_5:
736		ts_coeff->h = PVT_SERIES5_H_CONST;
737		ts_coeff->g = PVT_SERIES5_G_CONST;
738		ts_coeff->j = PVT_SERIES5_J_CONST;
739		ts_coeff->cal5 = PVT_SERIES5_CAL5_CONST;
740		break;
741	case TEMPERATURE_SENSOR_SERIES_6:
742		ts_coeff->h = PVT_SERIES6_H_CONST;
743		ts_coeff->g = PVT_SERIES6_G_CONST;
744		ts_coeff->j = PVT_SERIES6_J_CONST;
745		ts_coeff->cal5 = PVT_SERIES6_CAL5_CONST;
746		break;
747	default:
748		dev_err(dev, "invalid temperature sensor series (%u)\n",
749			series);
750		return -EINVAL;
751	}
752
753	dev_dbg(dev, "temperature sensor series = %u\n", series);
754
755	/* Override ts-coeff-h/g/j/cal5 if they are defined. */
756	device_property_read_u32(dev, "moortec,ts-coeff-h", &ts_coeff->h);
757	device_property_read_u32(dev, "moortec,ts-coeff-g", &ts_coeff->g);
758	device_property_read_u32(dev, "moortec,ts-coeff-j", &ts_coeff->j);
759	device_property_read_u32(dev, "moortec,ts-coeff-cal5", &ts_coeff->cal5);
760
761	dev_dbg(dev, "ts-coeff: h = %u, g = %u, j = %d, cal5 = %u\n",
762		ts_coeff->h, ts_coeff->g, ts_coeff->j, ts_coeff->cal5);
763
764	return 0;
765}
766
767static int mr75203_probe(struct platform_device *pdev)
768{
769	u32 ts_num, vm_num, pd_num, ch_num, val, index, i;
770	const struct hwmon_channel_info **pvt_info;
771	struct device *dev = &pdev->dev;
772	u32 *temp_config, *in_config;
773	struct device *hwmon_dev;
774	struct pvt_device *pvt;
775	int ret;
776
777	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
778	if (!pvt)
779		return -ENOMEM;
780
781	ret = pvt_get_regmap(pdev, "common", pvt);
782	if (ret)
783		return ret;
784
785	pvt->clk = devm_clk_get_enabled(dev, NULL);
786	if (IS_ERR(pvt->clk))
787		return dev_err_probe(dev, PTR_ERR(pvt->clk), "failed to get clock\n");
788
789	pvt->rst = devm_reset_control_get_optional_exclusive(dev, NULL);
790	if (IS_ERR(pvt->rst))
791		return dev_err_probe(dev, PTR_ERR(pvt->rst),
792				     "failed to get reset control\n");
793
794	if (pvt->rst) {
795		ret = pvt_reset_control_deassert(dev, pvt);
796		if (ret)
797			return dev_err_probe(dev, ret,
798					     "cannot deassert reset control\n");
799	}
800
801	ret = regmap_read(pvt->c_map, PVT_IP_CONFIG, &val);
802	if (ret < 0)
803		return ret;
804
805	ts_num = (val & TS_NUM_MSK) >> TS_NUM_SFT;
806	pd_num = (val & PD_NUM_MSK) >> PD_NUM_SFT;
807	vm_num = (val & VM_NUM_MSK) >> VM_NUM_SFT;
808	ch_num = (val & CH_NUM_MSK) >> CH_NUM_SFT;
809	pvt->t_num = ts_num;
810	pvt->p_num = pd_num;
811	pvt->v_num = vm_num;
812	val = 0;
813	if (ts_num)
814		val++;
815	if (vm_num)
816		val++;
817	if (!val)
818		return -ENODEV;
819
820	pvt_info = devm_kcalloc(dev, val + 2, sizeof(*pvt_info), GFP_KERNEL);
821	if (!pvt_info)
822		return -ENOMEM;
823	pvt_info[0] = HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ);
824	index = 1;
825
826	if (ts_num) {
827		ret = pvt_get_regmap(pdev, "ts", pvt);
828		if (ret)
829			return ret;
830
831		ret = pvt_set_temp_coeff(dev, pvt);
832		if (ret)
833			return ret;
834
835		temp_config = devm_kcalloc(dev, ts_num + 1,
836					   sizeof(*temp_config), GFP_KERNEL);
837		if (!temp_config)
838			return -ENOMEM;
839
840		memset32(temp_config, HWMON_T_INPUT, ts_num);
841		pvt_temp.config = temp_config;
842		pvt_info[index++] = &pvt_temp;
843
844		pvt_ts_dbgfs_create(pvt, dev);
845	}
846
847	if (pd_num) {
848		ret = pvt_get_regmap(pdev, "pd", pvt);
849		if (ret)
850			return ret;
851	}
852
853	if (vm_num) {
854		u8 vm_idx[VM_NUM_MAX];
855
856		ret = pvt_get_regmap(pdev, "vm", pvt);
857		if (ret)
858			return ret;
859
860		ret = device_property_read_u8_array(dev, "intel,vm-map", vm_idx,
861						    vm_num);
862		if (ret) {
863			/*
864			 * Incase intel,vm-map property is not defined, we
865			 * assume incremental channel numbers.
866			 */
867			for (i = 0; i < vm_num; i++)
868				vm_idx[i] = i;
869		} else {
870			for (i = 0; i < vm_num; i++)
871				if (vm_idx[i] >= vm_num || vm_idx[i] == 0xff) {
872					pvt->v_num = i;
873					vm_num = i;
874					break;
875				}
876		}
877
878		ret = pvt_get_active_channel(dev, pvt, vm_num, ch_num, vm_idx);
879		if (ret)
880			return ret;
881
882		ret = pvt_get_pre_scaler(dev, pvt);
883		if (ret)
884			return ret;
885
886		in_config = devm_kcalloc(dev, pvt->vm_channels.total + 1,
887					 sizeof(*in_config), GFP_KERNEL);
888		if (!in_config)
889			return -ENOMEM;
890
891		memset32(in_config, HWMON_I_INPUT, pvt->vm_channels.total);
892		in_config[pvt->vm_channels.total] = 0;
893		pvt_in.config = in_config;
894
895		pvt_info[index++] = &pvt_in;
896	}
897
898	ret = pvt_init(pvt);
899	if (ret) {
900		dev_err(dev, "failed to init pvt: %d\n", ret);
901		return ret;
902	}
903
904	pvt_chip_info.info = pvt_info;
905	hwmon_dev = devm_hwmon_device_register_with_info(dev, "pvt",
906							 pvt,
907							 &pvt_chip_info,
908							 NULL);
909
910	return PTR_ERR_OR_ZERO(hwmon_dev);
911}
912
913static const struct of_device_id moortec_pvt_of_match[] = {
914	{ .compatible = "moortec,mr75203" },
915	{ }
916};
917MODULE_DEVICE_TABLE(of, moortec_pvt_of_match);
918
919static struct platform_driver moortec_pvt_driver = {
920	.driver = {
921		.name = "moortec-pvt",
922		.of_match_table = moortec_pvt_of_match,
923	},
924	.probe = mr75203_probe,
925};
926module_platform_driver(moortec_pvt_driver);
927
928MODULE_LICENSE("GPL v2");
929