1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * corsair-psu.c - Linux driver for Corsair power supplies with HID sensors interface
4 * Copyright (C) 2020 Wilken Gottwalt <wilken.gottwalt@posteo.net>
5 */
6
7#include <linux/completion.h>
8#include <linux/debugfs.h>
9#include <linux/errno.h>
10#include <linux/hid.h>
11#include <linux/hwmon.h>
12#include <linux/hwmon-sysfs.h>
13#include <linux/jiffies.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/mutex.h>
17#include <linux/slab.h>
18#include <linux/types.h>
19
20/*
21 * Corsair protocol for PSUs
22 *
23 * message size = 64 bytes (request and response, little endian)
24 * request:
25 *	[length][command][param0][param1][paramX]...
26 * reply:
27 *	[echo of length][echo of command][data0][data1][dataX]...
28 *
29 *	- commands are byte sized opcodes
30 *	- length is the sum of all bytes of the commands/params
31 *	- the micro-controller of most of these PSUs support concatenation in the request and reply,
32 *	  but it is better to not rely on this (it is also hard to parse)
33 *	- the driver uses raw events to be accessible from userspace (though this is not really
34 *	  supported, it is just there for convenience, may be removed in the future)
35 *	- a reply always starts with the length and command in the same order the request used it
36 *	- length of the reply data is specific to the command used
37 *	- some of the commands work on a rail and can be switched to a specific rail (0 = 12v,
38 *	  1 = 5v, 2 = 3.3v)
39 *	- the format of the init command 0xFE is swapped length/command bytes
40 *	- parameter bytes amount and values are specific to the command (rail setting is the only
41 *	  one for now that uses non-zero values)
42 *	- the driver supports debugfs for values not fitting into the hwmon class
43 *	- not every device class (HXi or RMi) supports all commands
44 *	- if configured wrong the PSU resets or shuts down, often before actually hitting the
45 *	  reported critical temperature
46 *	- new models like HX1500i Series 2023 have changes in the reported vendor and product
47 *	  strings, both are slightly longer now, report vendor and product in one string and are
48 *	  the same now
49 */
50
51#define DRIVER_NAME		"corsair-psu"
52
53#define REPLY_SIZE		24 /* max length of a reply to a single command */
54#define CMD_BUFFER_SIZE		64
55#define CMD_TIMEOUT_MS		250
56#define SECONDS_PER_HOUR	(60 * 60)
57#define SECONDS_PER_DAY		(SECONDS_PER_HOUR * 24)
58#define RAIL_COUNT		3 /* 3v3 + 5v + 12v */
59#define TEMP_COUNT		2
60#define OCP_MULTI_RAIL		0x02
61
62#define PSU_CMD_SELECT_RAIL	0x00 /* expects length 2 */
63#define PSU_CMD_FAN_PWM		0x3B /* the rest of the commands expect length 3 */
64#define PSU_CMD_RAIL_VOLTS_HCRIT 0x40
65#define PSU_CMD_RAIL_VOLTS_LCRIT 0x44
66#define PSU_CMD_RAIL_AMPS_HCRIT	0x46
67#define PSU_CMD_TEMP_HCRIT	0x4F
68#define PSU_CMD_IN_VOLTS	0x88
69#define PSU_CMD_IN_AMPS		0x89
70#define PSU_CMD_RAIL_VOLTS	0x8B
71#define PSU_CMD_RAIL_AMPS	0x8C
72#define PSU_CMD_TEMP0		0x8D
73#define PSU_CMD_TEMP1		0x8E
74#define PSU_CMD_FAN		0x90
75#define PSU_CMD_RAIL_WATTS	0x96
76#define PSU_CMD_VEND_STR	0x99
77#define PSU_CMD_PROD_STR	0x9A
78#define PSU_CMD_TOTAL_UPTIME	0xD1
79#define PSU_CMD_UPTIME		0xD2
80#define PSU_CMD_OCPMODE		0xD8
81#define PSU_CMD_TOTAL_WATTS	0xEE
82#define PSU_CMD_FAN_PWM_ENABLE	0xF0
83#define PSU_CMD_INIT		0xFE
84
85#define L_IN_VOLTS		"v_in"
86#define L_OUT_VOLTS_12V		"v_out +12v"
87#define L_OUT_VOLTS_5V		"v_out +5v"
88#define L_OUT_VOLTS_3_3V	"v_out +3.3v"
89#define L_IN_AMPS		"curr in"
90#define L_AMPS_12V		"curr +12v"
91#define L_AMPS_5V		"curr +5v"
92#define L_AMPS_3_3V		"curr +3.3v"
93#define L_FAN			"psu fan"
94#define L_TEMP0			"vrm temp"
95#define L_TEMP1			"case temp"
96#define L_WATTS			"power total"
97#define L_WATTS_12V		"power +12v"
98#define L_WATTS_5V		"power +5v"
99#define L_WATTS_3_3V		"power +3.3v"
100
101static const char *const label_watts[] = {
102	L_WATTS,
103	L_WATTS_12V,
104	L_WATTS_5V,
105	L_WATTS_3_3V
106};
107
108static const char *const label_volts[] = {
109	L_IN_VOLTS,
110	L_OUT_VOLTS_12V,
111	L_OUT_VOLTS_5V,
112	L_OUT_VOLTS_3_3V
113};
114
115static const char *const label_amps[] = {
116	L_IN_AMPS,
117	L_AMPS_12V,
118	L_AMPS_5V,
119	L_AMPS_3_3V
120};
121
122struct corsairpsu_data {
123	struct hid_device *hdev;
124	struct device *hwmon_dev;
125	struct dentry *debugfs;
126	struct completion wait_completion;
127	struct mutex lock; /* for locking access to cmd_buffer */
128	u8 *cmd_buffer;
129	char vendor[REPLY_SIZE];
130	char product[REPLY_SIZE];
131	long temp_crit[TEMP_COUNT];
132	long in_crit[RAIL_COUNT];
133	long in_lcrit[RAIL_COUNT];
134	long curr_crit[RAIL_COUNT];
135	u8 temp_crit_support;
136	u8 in_crit_support;
137	u8 in_lcrit_support;
138	u8 curr_crit_support;
139	bool in_curr_cmd_support; /* not all commands are supported on every PSU */
140};
141
142/* some values are SMBus LINEAR11 data which need a conversion */
143static int corsairpsu_linear11_to_int(const u16 val, const int scale)
144{
145	const int exp = ((s16)val) >> 11;
146	const int mant = (((s16)(val & 0x7ff)) << 5) >> 5;
147	const int result = mant * scale;
148
149	return (exp >= 0) ? (result << exp) : (result >> -exp);
150}
151
152/* the micro-controller uses percentage values to control pwm */
153static int corsairpsu_dutycycle_to_pwm(const long dutycycle)
154{
155	const int result = (256 << 16) / 100;
156
157	return (result * dutycycle) >> 16;
158}
159
160static int corsairpsu_usb_cmd(struct corsairpsu_data *priv, u8 p0, u8 p1, u8 p2, void *data)
161{
162	unsigned long time;
163	int ret;
164
165	memset(priv->cmd_buffer, 0, CMD_BUFFER_SIZE);
166	priv->cmd_buffer[0] = p0;
167	priv->cmd_buffer[1] = p1;
168	priv->cmd_buffer[2] = p2;
169
170	reinit_completion(&priv->wait_completion);
171
172	ret = hid_hw_output_report(priv->hdev, priv->cmd_buffer, CMD_BUFFER_SIZE);
173	if (ret < 0)
174		return ret;
175
176	time = wait_for_completion_timeout(&priv->wait_completion,
177					   msecs_to_jiffies(CMD_TIMEOUT_MS));
178	if (!time)
179		return -ETIMEDOUT;
180
181	/*
182	 * at the start of the reply is an echo of the send command/length in the same order it
183	 * was send, not every command is supported on every device class, if a command is not
184	 * supported, the length value in the reply is okay, but the command value is set to 0
185	 */
186	if (p0 != priv->cmd_buffer[0] || p1 != priv->cmd_buffer[1])
187		return -EOPNOTSUPP;
188
189	if (data)
190		memcpy(data, priv->cmd_buffer + 2, REPLY_SIZE);
191
192	return 0;
193}
194
195static int corsairpsu_init(struct corsairpsu_data *priv)
196{
197	/*
198	 * PSU_CMD_INIT uses swapped length/command and expects 2 parameter bytes, this command
199	 * actually generates a reply, but we don't need it
200	 */
201	return corsairpsu_usb_cmd(priv, PSU_CMD_INIT, 3, 0, NULL);
202}
203
204static int corsairpsu_fwinfo(struct corsairpsu_data *priv)
205{
206	int ret;
207
208	ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_VEND_STR, 0, priv->vendor);
209	if (ret < 0)
210		return ret;
211
212	ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_PROD_STR, 0, priv->product);
213	if (ret < 0)
214		return ret;
215
216	return 0;
217}
218
219static int corsairpsu_request(struct corsairpsu_data *priv, u8 cmd, u8 rail, void *data)
220{
221	int ret;
222
223	mutex_lock(&priv->lock);
224	switch (cmd) {
225	case PSU_CMD_RAIL_VOLTS_HCRIT:
226	case PSU_CMD_RAIL_VOLTS_LCRIT:
227	case PSU_CMD_RAIL_AMPS_HCRIT:
228	case PSU_CMD_RAIL_VOLTS:
229	case PSU_CMD_RAIL_AMPS:
230	case PSU_CMD_RAIL_WATTS:
231		ret = corsairpsu_usb_cmd(priv, 2, PSU_CMD_SELECT_RAIL, rail, NULL);
232		if (ret < 0)
233			goto cmd_fail;
234		break;
235	default:
236		break;
237	}
238
239	ret = corsairpsu_usb_cmd(priv, 3, cmd, 0, data);
240
241cmd_fail:
242	mutex_unlock(&priv->lock);
243	return ret;
244}
245
246static int corsairpsu_get_value(struct corsairpsu_data *priv, u8 cmd, u8 rail, long *val)
247{
248	u8 data[REPLY_SIZE];
249	long tmp;
250	int ret;
251
252	ret = corsairpsu_request(priv, cmd, rail, data);
253	if (ret < 0)
254		return ret;
255
256	/*
257	 * the biggest value here comes from the uptime command and to exceed MAXINT total uptime
258	 * needs to be about 68 years, the rest are u16 values and the biggest value coming out of
259	 * the LINEAR11 conversion are the watts values which are about 1500 for the strongest psu
260	 * supported (HX1500i)
261	 */
262	tmp = ((long)data[3] << 24) + (data[2] << 16) + (data[1] << 8) + data[0];
263	switch (cmd) {
264	case PSU_CMD_RAIL_VOLTS_HCRIT:
265	case PSU_CMD_RAIL_VOLTS_LCRIT:
266	case PSU_CMD_RAIL_AMPS_HCRIT:
267	case PSU_CMD_TEMP_HCRIT:
268	case PSU_CMD_IN_VOLTS:
269	case PSU_CMD_IN_AMPS:
270	case PSU_CMD_RAIL_VOLTS:
271	case PSU_CMD_RAIL_AMPS:
272	case PSU_CMD_TEMP0:
273	case PSU_CMD_TEMP1:
274		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000);
275		break;
276	case PSU_CMD_FAN:
277		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1);
278		break;
279	case PSU_CMD_FAN_PWM_ENABLE:
280		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1);
281		/*
282		 * 0 = automatic mode, means the micro-controller controls the fan using a plan
283		 *     which can be modified, but changing this plan is not supported by this
284		 *     driver, the matching PWM mode is automatic fan speed control = PWM 2
285		 * 1 = fixed mode, fan runs at a fixed speed represented by a percentage
286		 *     value 0-100, this matches the PWM manual fan speed control = PWM 1
287		 * technically there is no PWM no fan speed control mode, it would be a combination
288		 * of 1 at 100%
289		 */
290		if (*val == 0)
291			*val = 2;
292		break;
293	case PSU_CMD_FAN_PWM:
294		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1);
295		*val = corsairpsu_dutycycle_to_pwm(*val);
296		break;
297	case PSU_CMD_RAIL_WATTS:
298	case PSU_CMD_TOTAL_WATTS:
299		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000000);
300		break;
301	case PSU_CMD_TOTAL_UPTIME:
302	case PSU_CMD_UPTIME:
303	case PSU_CMD_OCPMODE:
304		*val = tmp;
305		break;
306	default:
307		ret = -EOPNOTSUPP;
308		break;
309	}
310
311	return ret;
312}
313
314static void corsairpsu_get_criticals(struct corsairpsu_data *priv)
315{
316	long tmp;
317	int rail;
318
319	for (rail = 0; rail < TEMP_COUNT; ++rail) {
320		if (!corsairpsu_get_value(priv, PSU_CMD_TEMP_HCRIT, rail, &tmp)) {
321			priv->temp_crit_support |= BIT(rail);
322			priv->temp_crit[rail] = tmp;
323		}
324	}
325
326	for (rail = 0; rail < RAIL_COUNT; ++rail) {
327		if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_HCRIT, rail, &tmp)) {
328			priv->in_crit_support |= BIT(rail);
329			priv->in_crit[rail] = tmp;
330		}
331
332		if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_LCRIT, rail, &tmp)) {
333			priv->in_lcrit_support |= BIT(rail);
334			priv->in_lcrit[rail] = tmp;
335		}
336
337		if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS_HCRIT, rail, &tmp)) {
338			priv->curr_crit_support |= BIT(rail);
339			priv->curr_crit[rail] = tmp;
340		}
341	}
342}
343
344static void corsairpsu_check_cmd_support(struct corsairpsu_data *priv)
345{
346	long tmp;
347
348	priv->in_curr_cmd_support = !corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, &tmp);
349}
350
351static umode_t corsairpsu_hwmon_temp_is_visible(const struct corsairpsu_data *priv, u32 attr,
352						int channel)
353{
354	umode_t res = 0444;
355
356	switch (attr) {
357	case hwmon_temp_input:
358	case hwmon_temp_label:
359	case hwmon_temp_crit:
360		if (channel > 0 && !(priv->temp_crit_support & BIT(channel - 1)))
361			res = 0;
362		break;
363	default:
364		break;
365	}
366
367	return res;
368}
369
370static umode_t corsairpsu_hwmon_fan_is_visible(const struct corsairpsu_data *priv, u32 attr,
371					       int channel)
372{
373	switch (attr) {
374	case hwmon_fan_input:
375	case hwmon_fan_label:
376		return 0444;
377	default:
378		return 0;
379	}
380}
381
382static umode_t corsairpsu_hwmon_pwm_is_visible(const struct corsairpsu_data *priv, u32 attr,
383					       int channel)
384{
385	switch (attr) {
386	case hwmon_pwm_input:
387	case hwmon_pwm_enable:
388		return 0444;
389	default:
390		return 0;
391	}
392}
393
394static umode_t corsairpsu_hwmon_power_is_visible(const struct corsairpsu_data *priv, u32 attr,
395						 int channel)
396{
397	switch (attr) {
398	case hwmon_power_input:
399	case hwmon_power_label:
400		return 0444;
401	default:
402		return 0;
403	}
404}
405
406static umode_t corsairpsu_hwmon_in_is_visible(const struct corsairpsu_data *priv, u32 attr,
407					      int channel)
408{
409	umode_t res = 0444;
410
411	switch (attr) {
412	case hwmon_in_input:
413	case hwmon_in_label:
414	case hwmon_in_crit:
415		if (channel > 0 && !(priv->in_crit_support & BIT(channel - 1)))
416			res = 0;
417		break;
418	case hwmon_in_lcrit:
419		if (channel > 0 && !(priv->in_lcrit_support & BIT(channel - 1)))
420			res = 0;
421		break;
422	default:
423		break;
424	}
425
426	return res;
427}
428
429static umode_t corsairpsu_hwmon_curr_is_visible(const struct corsairpsu_data *priv, u32 attr,
430						int channel)
431{
432	umode_t res = 0444;
433
434	switch (attr) {
435	case hwmon_curr_input:
436		if (channel == 0 && !priv->in_curr_cmd_support)
437			res = 0;
438		break;
439	case hwmon_curr_label:
440	case hwmon_curr_crit:
441		if (channel > 0 && !(priv->curr_crit_support & BIT(channel - 1)))
442			res = 0;
443		break;
444	default:
445		break;
446	}
447
448	return res;
449}
450
451static umode_t corsairpsu_hwmon_ops_is_visible(const void *data, enum hwmon_sensor_types type,
452					       u32 attr, int channel)
453{
454	const struct corsairpsu_data *priv = data;
455
456	switch (type) {
457	case hwmon_temp:
458		return corsairpsu_hwmon_temp_is_visible(priv, attr, channel);
459	case hwmon_fan:
460		return corsairpsu_hwmon_fan_is_visible(priv, attr, channel);
461	case hwmon_pwm:
462		return corsairpsu_hwmon_pwm_is_visible(priv, attr, channel);
463	case hwmon_power:
464		return corsairpsu_hwmon_power_is_visible(priv, attr, channel);
465	case hwmon_in:
466		return corsairpsu_hwmon_in_is_visible(priv, attr, channel);
467	case hwmon_curr:
468		return corsairpsu_hwmon_curr_is_visible(priv, attr, channel);
469	default:
470		return 0;
471	}
472}
473
474static int corsairpsu_hwmon_temp_read(struct corsairpsu_data *priv, u32 attr, int channel,
475				      long *val)
476{
477	int err = -EOPNOTSUPP;
478
479	switch (attr) {
480	case hwmon_temp_input:
481		return corsairpsu_get_value(priv, channel ? PSU_CMD_TEMP1 : PSU_CMD_TEMP0,
482					    channel, val);
483	case hwmon_temp_crit:
484		*val = priv->temp_crit[channel];
485		err = 0;
486		break;
487	default:
488		break;
489	}
490
491	return err;
492}
493
494static int corsairpsu_hwmon_pwm_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val)
495{
496	switch (attr) {
497	case hwmon_pwm_input:
498		return corsairpsu_get_value(priv, PSU_CMD_FAN_PWM, 0, val);
499	case hwmon_pwm_enable:
500		return corsairpsu_get_value(priv, PSU_CMD_FAN_PWM_ENABLE, 0, val);
501	default:
502		break;
503	}
504
505	return -EOPNOTSUPP;
506}
507
508static int corsairpsu_hwmon_power_read(struct corsairpsu_data *priv, u32 attr, int channel,
509				       long *val)
510{
511	if (attr == hwmon_power_input) {
512		switch (channel) {
513		case 0:
514			return corsairpsu_get_value(priv, PSU_CMD_TOTAL_WATTS, 0, val);
515		case 1 ... 3:
516			return corsairpsu_get_value(priv, PSU_CMD_RAIL_WATTS, channel - 1, val);
517		default:
518			break;
519		}
520	}
521
522	return -EOPNOTSUPP;
523}
524
525static int corsairpsu_hwmon_in_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val)
526{
527	int err = -EOPNOTSUPP;
528
529	switch (attr) {
530	case hwmon_in_input:
531		switch (channel) {
532		case 0:
533			return corsairpsu_get_value(priv, PSU_CMD_IN_VOLTS, 0, val);
534		case 1 ... 3:
535			return corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS, channel - 1, val);
536		default:
537			break;
538		}
539		break;
540	case hwmon_in_crit:
541		*val = priv->in_crit[channel - 1];
542		err = 0;
543		break;
544	case hwmon_in_lcrit:
545		*val = priv->in_lcrit[channel - 1];
546		err = 0;
547		break;
548	}
549
550	return err;
551}
552
553static int corsairpsu_hwmon_curr_read(struct corsairpsu_data *priv, u32 attr, int channel,
554				      long *val)
555{
556	int err = -EOPNOTSUPP;
557
558	switch (attr) {
559	case hwmon_curr_input:
560		switch (channel) {
561		case 0:
562			return corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, val);
563		case 1 ... 3:
564			return corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS, channel - 1, val);
565		default:
566			break;
567		}
568		break;
569	case hwmon_curr_crit:
570		*val = priv->curr_crit[channel - 1];
571		err = 0;
572		break;
573	default:
574		break;
575	}
576
577	return err;
578}
579
580static int corsairpsu_hwmon_ops_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
581				     int channel, long *val)
582{
583	struct corsairpsu_data *priv = dev_get_drvdata(dev);
584
585	switch (type) {
586	case hwmon_temp:
587		return corsairpsu_hwmon_temp_read(priv, attr, channel, val);
588	case hwmon_fan:
589		if (attr == hwmon_fan_input)
590			return corsairpsu_get_value(priv, PSU_CMD_FAN, 0, val);
591		return -EOPNOTSUPP;
592	case hwmon_pwm:
593		return corsairpsu_hwmon_pwm_read(priv, attr, channel, val);
594	case hwmon_power:
595		return corsairpsu_hwmon_power_read(priv, attr, channel, val);
596	case hwmon_in:
597		return corsairpsu_hwmon_in_read(priv, attr, channel, val);
598	case hwmon_curr:
599		return corsairpsu_hwmon_curr_read(priv, attr, channel, val);
600	default:
601		return -EOPNOTSUPP;
602	}
603}
604
605static int corsairpsu_hwmon_ops_read_string(struct device *dev, enum hwmon_sensor_types type,
606					    u32 attr, int channel, const char **str)
607{
608	if (type == hwmon_temp && attr == hwmon_temp_label) {
609		*str = channel ? L_TEMP1 : L_TEMP0;
610		return 0;
611	} else if (type == hwmon_fan && attr == hwmon_fan_label) {
612		*str = L_FAN;
613		return 0;
614	} else if (type == hwmon_power && attr == hwmon_power_label && channel < 4) {
615		*str = label_watts[channel];
616		return 0;
617	} else if (type == hwmon_in && attr == hwmon_in_label && channel < 4) {
618		*str = label_volts[channel];
619		return 0;
620	} else if (type == hwmon_curr && attr == hwmon_curr_label && channel < 4) {
621		*str = label_amps[channel];
622		return 0;
623	}
624
625	return -EOPNOTSUPP;
626}
627
628static const struct hwmon_ops corsairpsu_hwmon_ops = {
629	.is_visible	= corsairpsu_hwmon_ops_is_visible,
630	.read		= corsairpsu_hwmon_ops_read,
631	.read_string	= corsairpsu_hwmon_ops_read_string,
632};
633
634static const struct hwmon_channel_info *const corsairpsu_info[] = {
635	HWMON_CHANNEL_INFO(chip,
636			   HWMON_C_REGISTER_TZ),
637	HWMON_CHANNEL_INFO(temp,
638			   HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
639			   HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT),
640	HWMON_CHANNEL_INFO(fan,
641			   HWMON_F_INPUT | HWMON_F_LABEL),
642	HWMON_CHANNEL_INFO(pwm,
643			   HWMON_PWM_INPUT | HWMON_PWM_ENABLE),
644	HWMON_CHANNEL_INFO(power,
645			   HWMON_P_INPUT | HWMON_P_LABEL,
646			   HWMON_P_INPUT | HWMON_P_LABEL,
647			   HWMON_P_INPUT | HWMON_P_LABEL,
648			   HWMON_P_INPUT | HWMON_P_LABEL),
649	HWMON_CHANNEL_INFO(in,
650			   HWMON_I_INPUT | HWMON_I_LABEL,
651			   HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT,
652			   HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT,
653			   HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT),
654	HWMON_CHANNEL_INFO(curr,
655			   HWMON_C_INPUT | HWMON_C_LABEL,
656			   HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT,
657			   HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT,
658			   HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT),
659	NULL
660};
661
662static const struct hwmon_chip_info corsairpsu_chip_info = {
663	.ops	= &corsairpsu_hwmon_ops,
664	.info	= corsairpsu_info,
665};
666
667#ifdef CONFIG_DEBUG_FS
668
669static void print_uptime(struct seq_file *seqf, u8 cmd)
670{
671	struct corsairpsu_data *priv = seqf->private;
672	long val;
673	int ret;
674
675	ret = corsairpsu_get_value(priv, cmd, 0, &val);
676	if (ret < 0) {
677		seq_puts(seqf, "N/A\n");
678		return;
679	}
680
681	if (val > SECONDS_PER_DAY) {
682		seq_printf(seqf, "%ld day(s), %02ld:%02ld:%02ld\n", val / SECONDS_PER_DAY,
683			   val % SECONDS_PER_DAY / SECONDS_PER_HOUR, val % SECONDS_PER_HOUR / 60,
684			   val % 60);
685		return;
686	}
687
688	seq_printf(seqf, "%02ld:%02ld:%02ld\n", val % SECONDS_PER_DAY / SECONDS_PER_HOUR,
689		   val % SECONDS_PER_HOUR / 60, val % 60);
690}
691
692static int uptime_show(struct seq_file *seqf, void *unused)
693{
694	print_uptime(seqf, PSU_CMD_UPTIME);
695
696	return 0;
697}
698DEFINE_SHOW_ATTRIBUTE(uptime);
699
700static int uptime_total_show(struct seq_file *seqf, void *unused)
701{
702	print_uptime(seqf, PSU_CMD_TOTAL_UPTIME);
703
704	return 0;
705}
706DEFINE_SHOW_ATTRIBUTE(uptime_total);
707
708static int vendor_show(struct seq_file *seqf, void *unused)
709{
710	struct corsairpsu_data *priv = seqf->private;
711
712	seq_printf(seqf, "%s\n", priv->vendor);
713
714	return 0;
715}
716DEFINE_SHOW_ATTRIBUTE(vendor);
717
718static int product_show(struct seq_file *seqf, void *unused)
719{
720	struct corsairpsu_data *priv = seqf->private;
721
722	seq_printf(seqf, "%s\n", priv->product);
723
724	return 0;
725}
726DEFINE_SHOW_ATTRIBUTE(product);
727
728static int ocpmode_show(struct seq_file *seqf, void *unused)
729{
730	struct corsairpsu_data *priv = seqf->private;
731	long val;
732	int ret;
733
734	/*
735	 * The rail mode is switchable on the fly. The RAW interface can be used for this. But it
736	 * will not be included here, because I consider it somewhat dangerous for the health of the
737	 * PSU. The returned value can be a bogus one, if the PSU is in the process of switching and
738	 * getting of the value itself can also fail during this. Because of this every other value
739	 * than OCP_MULTI_RAIL can be considered as "single rail".
740	 */
741	ret = corsairpsu_get_value(priv, PSU_CMD_OCPMODE, 0, &val);
742	if (ret < 0)
743		seq_puts(seqf, "N/A\n");
744	else
745		seq_printf(seqf, "%s\n", (val == OCP_MULTI_RAIL) ? "multi rail" : "single rail");
746
747	return 0;
748}
749DEFINE_SHOW_ATTRIBUTE(ocpmode);
750
751static void corsairpsu_debugfs_init(struct corsairpsu_data *priv)
752{
753	char name[32];
754
755	scnprintf(name, sizeof(name), "%s-%s", DRIVER_NAME, dev_name(&priv->hdev->dev));
756
757	priv->debugfs = debugfs_create_dir(name, NULL);
758	debugfs_create_file("uptime", 0444, priv->debugfs, priv, &uptime_fops);
759	debugfs_create_file("uptime_total", 0444, priv->debugfs, priv, &uptime_total_fops);
760	debugfs_create_file("vendor", 0444, priv->debugfs, priv, &vendor_fops);
761	debugfs_create_file("product", 0444, priv->debugfs, priv, &product_fops);
762	debugfs_create_file("ocpmode", 0444, priv->debugfs, priv, &ocpmode_fops);
763}
764
765#else
766
767static void corsairpsu_debugfs_init(struct corsairpsu_data *priv)
768{
769}
770
771#endif
772
773static int corsairpsu_probe(struct hid_device *hdev, const struct hid_device_id *id)
774{
775	struct corsairpsu_data *priv;
776	int ret;
777
778	priv = devm_kzalloc(&hdev->dev, sizeof(struct corsairpsu_data), GFP_KERNEL);
779	if (!priv)
780		return -ENOMEM;
781
782	priv->cmd_buffer = devm_kmalloc(&hdev->dev, CMD_BUFFER_SIZE, GFP_KERNEL);
783	if (!priv->cmd_buffer)
784		return -ENOMEM;
785
786	ret = hid_parse(hdev);
787	if (ret)
788		return ret;
789
790	ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
791	if (ret)
792		return ret;
793
794	ret = hid_hw_open(hdev);
795	if (ret)
796		goto fail_and_stop;
797
798	priv->hdev = hdev;
799	hid_set_drvdata(hdev, priv);
800	mutex_init(&priv->lock);
801	init_completion(&priv->wait_completion);
802
803	hid_device_io_start(hdev);
804
805	ret = corsairpsu_init(priv);
806	if (ret < 0) {
807		dev_err(&hdev->dev, "unable to initialize device (%d)\n", ret);
808		goto fail_and_stop;
809	}
810
811	ret = corsairpsu_fwinfo(priv);
812	if (ret < 0) {
813		dev_err(&hdev->dev, "unable to query firmware (%d)\n", ret);
814		goto fail_and_stop;
815	}
816
817	corsairpsu_get_criticals(priv);
818	corsairpsu_check_cmd_support(priv);
819
820	priv->hwmon_dev = hwmon_device_register_with_info(&hdev->dev, "corsairpsu", priv,
821							  &corsairpsu_chip_info, NULL);
822
823	if (IS_ERR(priv->hwmon_dev)) {
824		ret = PTR_ERR(priv->hwmon_dev);
825		goto fail_and_close;
826	}
827
828	corsairpsu_debugfs_init(priv);
829
830	return 0;
831
832fail_and_close:
833	hid_hw_close(hdev);
834fail_and_stop:
835	hid_hw_stop(hdev);
836	return ret;
837}
838
839static void corsairpsu_remove(struct hid_device *hdev)
840{
841	struct corsairpsu_data *priv = hid_get_drvdata(hdev);
842
843	debugfs_remove_recursive(priv->debugfs);
844	hwmon_device_unregister(priv->hwmon_dev);
845	hid_hw_close(hdev);
846	hid_hw_stop(hdev);
847}
848
849static int corsairpsu_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data,
850				int size)
851{
852	struct corsairpsu_data *priv = hid_get_drvdata(hdev);
853
854	if (completion_done(&priv->wait_completion))
855		return 0;
856
857	memcpy(priv->cmd_buffer, data, min(CMD_BUFFER_SIZE, size));
858	complete(&priv->wait_completion);
859
860	return 0;
861}
862
863#ifdef CONFIG_PM
864static int corsairpsu_resume(struct hid_device *hdev)
865{
866	struct corsairpsu_data *priv = hid_get_drvdata(hdev);
867
868	/* some PSUs turn off the microcontroller during standby, so a reinit is required */
869	return corsairpsu_init(priv);
870}
871#endif
872
873static const struct hid_device_id corsairpsu_idtable[] = {
874	{ HID_USB_DEVICE(0x1b1c, 0x1c03) }, /* Corsair HX550i */
875	{ HID_USB_DEVICE(0x1b1c, 0x1c04) }, /* Corsair HX650i */
876	{ HID_USB_DEVICE(0x1b1c, 0x1c05) }, /* Corsair HX750i */
877	{ HID_USB_DEVICE(0x1b1c, 0x1c06) }, /* Corsair HX850i */
878	{ HID_USB_DEVICE(0x1b1c, 0x1c07) }, /* Corsair HX1000i Series 2022 */
879	{ HID_USB_DEVICE(0x1b1c, 0x1c08) }, /* Corsair HX1200i */
880	{ HID_USB_DEVICE(0x1b1c, 0x1c09) }, /* Corsair RM550i */
881	{ HID_USB_DEVICE(0x1b1c, 0x1c0a) }, /* Corsair RM650i */
882	{ HID_USB_DEVICE(0x1b1c, 0x1c0b) }, /* Corsair RM750i */
883	{ HID_USB_DEVICE(0x1b1c, 0x1c0c) }, /* Corsair RM850i */
884	{ HID_USB_DEVICE(0x1b1c, 0x1c0d) }, /* Corsair RM1000i */
885	{ HID_USB_DEVICE(0x1b1c, 0x1c1e) }, /* Corsair HX1000i Series 2023 */
886	{ HID_USB_DEVICE(0x1b1c, 0x1c1f) }, /* Corsair HX1500i Series 2022 and 2023 */
887	{ },
888};
889MODULE_DEVICE_TABLE(hid, corsairpsu_idtable);
890
891static struct hid_driver corsairpsu_driver = {
892	.name		= DRIVER_NAME,
893	.id_table	= corsairpsu_idtable,
894	.probe		= corsairpsu_probe,
895	.remove		= corsairpsu_remove,
896	.raw_event	= corsairpsu_raw_event,
897#ifdef CONFIG_PM
898	.resume		= corsairpsu_resume,
899	.reset_resume	= corsairpsu_resume,
900#endif
901};
902
903static int __init corsair_init(void)
904{
905	return hid_register_driver(&corsairpsu_driver);
906}
907
908static void __exit corsair_exit(void)
909{
910	hid_unregister_driver(&corsairpsu_driver);
911}
912
913/*
914 * With module_init() the driver would load before the HID bus when
915 * built-in, so use late_initcall() instead.
916 */
917late_initcall(corsair_init);
918module_exit(corsair_exit);
919
920MODULE_LICENSE("GPL");
921MODULE_AUTHOR("Wilken Gottwalt <wilken.gottwalt@posteo.net>");
922MODULE_DESCRIPTION("Linux driver for Corsair power supplies with HID sensors interface");
923