1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
4 *	       monitoring
5 * Based on lm75.c and lm85.c
6 * Supports adm1030 / adm1031
7 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
8 * Reworked by Jean Delvare <jdelvare@suse.de>
9 */
10
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/slab.h>
14#include <linux/jiffies.h>
15#include <linux/i2c.h>
16#include <linux/hwmon.h>
17#include <linux/hwmon-sysfs.h>
18#include <linux/err.h>
19#include <linux/mutex.h>
20
21/* Following macros takes channel parameter starting from 0 to 2 */
22#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
23#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
24#define ADM1031_REG_PWM			(0x22)
25#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
26#define ADM1031_REG_FAN_FILTER		(0x23)
27
28#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
29#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
30#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
31#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
32
33#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
34#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
35
36#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
37
38#define ADM1031_REG_CONF1		0x00
39#define ADM1031_REG_CONF2		0x01
40#define ADM1031_REG_EXT_TEMP		0x06
41
42#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
43#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
44#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
45
46#define ADM1031_CONF2_PWM1_ENABLE	0x01
47#define ADM1031_CONF2_PWM2_ENABLE	0x02
48#define ADM1031_CONF2_TACH1_ENABLE	0x04
49#define ADM1031_CONF2_TACH2_ENABLE	0x08
50#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
51
52#define ADM1031_UPDATE_RATE_MASK	0x1c
53#define ADM1031_UPDATE_RATE_SHIFT	2
54
55/* Addresses to scan */
56static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
57
58enum chips { adm1030, adm1031 };
59
60typedef u8 auto_chan_table_t[8][2];
61
62/* Each client has this additional data */
63struct adm1031_data {
64	struct i2c_client *client;
65	const struct attribute_group *groups[3];
66	struct mutex update_lock;
67	int chip_type;
68	bool valid;		/* true if following fields are valid */
69	unsigned long last_updated;	/* In jiffies */
70	unsigned int update_interval;	/* In milliseconds */
71	/*
72	 * The chan_select_table contains the possible configurations for
73	 * auto fan control.
74	 */
75	const auto_chan_table_t *chan_select_table;
76	u16 alarm;
77	u8 conf1;
78	u8 conf2;
79	u8 fan[2];
80	u8 fan_div[2];
81	u8 fan_min[2];
82	u8 pwm[2];
83	u8 old_pwm[2];
84	s8 temp[3];
85	u8 ext_temp[3];
86	u8 auto_temp[3];
87	u8 auto_temp_min[3];
88	u8 auto_temp_off[3];
89	u8 auto_temp_max[3];
90	s8 temp_offset[3];
91	s8 temp_min[3];
92	s8 temp_max[3];
93	s8 temp_crit[3];
94};
95
96static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
97{
98	return i2c_smbus_read_byte_data(client, reg);
99}
100
101static inline int
102adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
103{
104	return i2c_smbus_write_byte_data(client, reg, value);
105}
106
107static struct adm1031_data *adm1031_update_device(struct device *dev)
108{
109	struct adm1031_data *data = dev_get_drvdata(dev);
110	struct i2c_client *client = data->client;
111	unsigned long next_update;
112	int chan;
113
114	mutex_lock(&data->update_lock);
115
116	next_update = data->last_updated
117	  + msecs_to_jiffies(data->update_interval);
118	if (time_after(jiffies, next_update) || !data->valid) {
119
120		dev_dbg(&client->dev, "Starting adm1031 update\n");
121		for (chan = 0;
122		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
123			u8 oldh, newh;
124
125			oldh =
126			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
127			data->ext_temp[chan] =
128			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
129			newh =
130			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
131			if (newh != oldh) {
132				data->ext_temp[chan] =
133				    adm1031_read_value(client,
134						       ADM1031_REG_EXT_TEMP);
135#ifdef DEBUG
136				oldh =
137				    adm1031_read_value(client,
138						       ADM1031_REG_TEMP(chan));
139
140				/* oldh is actually newer */
141				if (newh != oldh)
142					dev_warn(&client->dev,
143					  "Remote temperature may be wrong.\n");
144#endif
145			}
146			data->temp[chan] = newh;
147
148			data->temp_offset[chan] =
149			    adm1031_read_value(client,
150					       ADM1031_REG_TEMP_OFFSET(chan));
151			data->temp_min[chan] =
152			    adm1031_read_value(client,
153					       ADM1031_REG_TEMP_MIN(chan));
154			data->temp_max[chan] =
155			    adm1031_read_value(client,
156					       ADM1031_REG_TEMP_MAX(chan));
157			data->temp_crit[chan] =
158			    adm1031_read_value(client,
159					       ADM1031_REG_TEMP_CRIT(chan));
160			data->auto_temp[chan] =
161			    adm1031_read_value(client,
162					       ADM1031_REG_AUTO_TEMP(chan));
163
164		}
165
166		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
167		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
168
169		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
170		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
171		if (data->chip_type == adm1030)
172			data->alarm &= 0xc0ff;
173
174		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
175		     chan++) {
176			data->fan_div[chan] =
177			    adm1031_read_value(client,
178					       ADM1031_REG_FAN_DIV(chan));
179			data->fan_min[chan] =
180			    adm1031_read_value(client,
181					       ADM1031_REG_FAN_MIN(chan));
182			data->fan[chan] =
183			    adm1031_read_value(client,
184					       ADM1031_REG_FAN_SPEED(chan));
185			data->pwm[chan] =
186			  (adm1031_read_value(client,
187					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
188		}
189		data->last_updated = jiffies;
190		data->valid = true;
191	}
192
193	mutex_unlock(&data->update_lock);
194
195	return data;
196}
197
198#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
199					((val + 500) / 1000)))
200
201#define TEMP_FROM_REG(val)		((val) * 1000)
202
203#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
204
205#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
206#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
207						      (val) | 0x70 : (val))
208
209#define FAN_FROM_REG(reg, div)		((reg) ? \
210					 (11250 * 60) / ((reg) * (div)) : 0)
211
212static int FAN_TO_REG(int reg, int div)
213{
214	int tmp;
215	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
216	return tmp > 255 ? 255 : tmp;
217}
218
219#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
220
221#define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
222#define PWM_FROM_REG(val)		((val) << 4)
223
224#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
225#define FAN_CHAN_TO_REG(val, reg)	\
226	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
227
228#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
229	((((val) / 500) & 0xf8) | ((reg) & 0x7))
230#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
231#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
232
233#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
234
235#define AUTO_TEMP_OFF_FROM_REG(reg)		\
236	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
237
238#define AUTO_TEMP_MAX_FROM_REG(reg)		\
239	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
240	AUTO_TEMP_MIN_FROM_REG(reg))
241
242static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
243{
244	int ret;
245	int range = ((val - AUTO_TEMP_MIN_FROM_REG(reg)) * 10) / (16 - pwm);
246
247	ret = ((reg & 0xf8) |
248	       (range < 10000 ? 0 :
249		range < 20000 ? 1 :
250		range < 40000 ? 2 : range < 80000 ? 3 : 4));
251	return ret;
252}
253
254/* FAN auto control */
255#define GET_FAN_AUTO_BITFIELD(data, idx)	\
256	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
257
258/*
259 * The tables below contains the possible values for the auto fan
260 * control bitfields. the index in the table is the register value.
261 * MSb is the auto fan control enable bit, so the four first entries
262 * in the table disables auto fan control when both bitfields are zero.
263 */
264static const auto_chan_table_t auto_channel_select_table_adm1031 = {
265	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
266	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
267	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
268	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
269	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
270};
271
272static const auto_chan_table_t auto_channel_select_table_adm1030 = {
273	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
274	{ 2 /* 0b10 */		, 0 },
275	{ 0xff /* invalid */	, 0 },
276	{ 0xff /* invalid */	, 0 },
277	{ 3 /* 0b11 */		, 0 },
278};
279
280/*
281 * That function checks if a bitfield is valid and returns the other bitfield
282 * nearest match if no exact match where found.
283 */
284static int
285get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
286{
287	int i;
288	int first_match = -1, exact_match = -1;
289	u8 other_reg_val =
290	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
291
292	if (val == 0)
293		return 0;
294
295	for (i = 0; i < 8; i++) {
296		if ((val == (*data->chan_select_table)[i][chan]) &&
297		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
298		     other_reg_val)) {
299			/* We found an exact match */
300			exact_match = i;
301			break;
302		} else if (val == (*data->chan_select_table)[i][chan] &&
303			   first_match == -1) {
304			/*
305			 * Save the first match in case of an exact match has
306			 * not been found
307			 */
308			first_match = i;
309		}
310	}
311
312	if (exact_match >= 0)
313		return exact_match;
314	else if (first_match >= 0)
315		return first_match;
316
317	return -EINVAL;
318}
319
320static ssize_t fan_auto_channel_show(struct device *dev,
321				     struct device_attribute *attr, char *buf)
322{
323	int nr = to_sensor_dev_attr(attr)->index;
324	struct adm1031_data *data = adm1031_update_device(dev);
325	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
326}
327
328static ssize_t
329fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
330		       const char *buf, size_t count)
331{
332	struct adm1031_data *data = dev_get_drvdata(dev);
333	struct i2c_client *client = data->client;
334	int nr = to_sensor_dev_attr(attr)->index;
335	long val;
336	u8 reg;
337	int ret;
338	u8 old_fan_mode;
339
340	ret = kstrtol(buf, 10, &val);
341	if (ret)
342		return ret;
343
344	old_fan_mode = data->conf1;
345
346	mutex_lock(&data->update_lock);
347
348	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
349	if (ret < 0) {
350		mutex_unlock(&data->update_lock);
351		return ret;
352	}
353	reg = ret;
354	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
355	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
356	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
357		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
358			/*
359			 * Switch to Auto Fan Mode
360			 * Save PWM registers
361			 * Set PWM registers to 33% Both
362			 */
363			data->old_pwm[0] = data->pwm[0];
364			data->old_pwm[1] = data->pwm[1];
365			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
366		} else {
367			/* Switch to Manual Mode */
368			data->pwm[0] = data->old_pwm[0];
369			data->pwm[1] = data->old_pwm[1];
370			/* Restore PWM registers */
371			adm1031_write_value(client, ADM1031_REG_PWM,
372					    data->pwm[0] | (data->pwm[1] << 4));
373		}
374	}
375	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
376	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
377	mutex_unlock(&data->update_lock);
378	return count;
379}
380
381static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
382static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
383
384/* Auto Temps */
385static ssize_t auto_temp_off_show(struct device *dev,
386				  struct device_attribute *attr, char *buf)
387{
388	int nr = to_sensor_dev_attr(attr)->index;
389	struct adm1031_data *data = adm1031_update_device(dev);
390	return sprintf(buf, "%d\n",
391		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
392}
393static ssize_t auto_temp_min_show(struct device *dev,
394				  struct device_attribute *attr, char *buf)
395{
396	int nr = to_sensor_dev_attr(attr)->index;
397	struct adm1031_data *data = adm1031_update_device(dev);
398	return sprintf(buf, "%d\n",
399		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
400}
401static ssize_t
402auto_temp_min_store(struct device *dev, struct device_attribute *attr,
403		    const char *buf, size_t count)
404{
405	struct adm1031_data *data = dev_get_drvdata(dev);
406	struct i2c_client *client = data->client;
407	int nr = to_sensor_dev_attr(attr)->index;
408	long val;
409	int ret;
410
411	ret = kstrtol(buf, 10, &val);
412	if (ret)
413		return ret;
414
415	val = clamp_val(val, 0, 127000);
416	mutex_lock(&data->update_lock);
417	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
418	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
419			    data->auto_temp[nr]);
420	mutex_unlock(&data->update_lock);
421	return count;
422}
423static ssize_t auto_temp_max_show(struct device *dev,
424				  struct device_attribute *attr, char *buf)
425{
426	int nr = to_sensor_dev_attr(attr)->index;
427	struct adm1031_data *data = adm1031_update_device(dev);
428	return sprintf(buf, "%d\n",
429		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
430}
431static ssize_t
432auto_temp_max_store(struct device *dev, struct device_attribute *attr,
433		    const char *buf, size_t count)
434{
435	struct adm1031_data *data = dev_get_drvdata(dev);
436	struct i2c_client *client = data->client;
437	int nr = to_sensor_dev_attr(attr)->index;
438	long val;
439	int ret;
440
441	ret = kstrtol(buf, 10, &val);
442	if (ret)
443		return ret;
444
445	val = clamp_val(val, 0, 127000);
446	mutex_lock(&data->update_lock);
447	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
448						  data->pwm[nr]);
449	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
450			    data->temp_max[nr]);
451	mutex_unlock(&data->update_lock);
452	return count;
453}
454
455static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
456static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
457static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
458static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
459static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
460static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
461static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
462static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
463static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
464
465/* pwm */
466static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
467			char *buf)
468{
469	int nr = to_sensor_dev_attr(attr)->index;
470	struct adm1031_data *data = adm1031_update_device(dev);
471	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
472}
473static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
474			 const char *buf, size_t count)
475{
476	struct adm1031_data *data = dev_get_drvdata(dev);
477	struct i2c_client *client = data->client;
478	int nr = to_sensor_dev_attr(attr)->index;
479	long val;
480	int ret, reg;
481
482	ret = kstrtol(buf, 10, &val);
483	if (ret)
484		return ret;
485
486	mutex_lock(&data->update_lock);
487	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
488	    (((val>>4) & 0xf) != 5)) {
489		/* In automatic mode, the only PWM accepted is 33% */
490		mutex_unlock(&data->update_lock);
491		return -EINVAL;
492	}
493	data->pwm[nr] = PWM_TO_REG(val);
494	reg = adm1031_read_value(client, ADM1031_REG_PWM);
495	adm1031_write_value(client, ADM1031_REG_PWM,
496			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
497			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
498	mutex_unlock(&data->update_lock);
499	return count;
500}
501
502static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
503static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
504static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
505static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
506
507/* Fans */
508
509/*
510 * That function checks the cases where the fan reading is not
511 * relevant.  It is used to provide 0 as fan reading when the fan is
512 * not supposed to run
513 */
514static int trust_fan_readings(struct adm1031_data *data, int chan)
515{
516	int res = 0;
517
518	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
519		switch (data->conf1 & 0x60) {
520		case 0x00:
521			/*
522			 * remote temp1 controls fan1,
523			 * remote temp2 controls fan2
524			 */
525			res = data->temp[chan+1] >=
526			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
527			break;
528		case 0x20:	/* remote temp1 controls both fans */
529			res =
530			    data->temp[1] >=
531			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
532			break;
533		case 0x40:	/* remote temp2 controls both fans */
534			res =
535			    data->temp[2] >=
536			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
537			break;
538		case 0x60:	/* max controls both fans */
539			res =
540			    data->temp[0] >=
541			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
542			    || data->temp[1] >=
543			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
544			    || (data->chip_type == adm1031
545				&& data->temp[2] >=
546				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
547			break;
548		}
549	} else {
550		res = data->pwm[chan] > 0;
551	}
552	return res;
553}
554
555static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
556			char *buf)
557{
558	int nr = to_sensor_dev_attr(attr)->index;
559	struct adm1031_data *data = adm1031_update_device(dev);
560	int value;
561
562	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
563				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
564	return sprintf(buf, "%d\n", value);
565}
566
567static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
568			    char *buf)
569{
570	int nr = to_sensor_dev_attr(attr)->index;
571	struct adm1031_data *data = adm1031_update_device(dev);
572	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
573}
574static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
575			    char *buf)
576{
577	int nr = to_sensor_dev_attr(attr)->index;
578	struct adm1031_data *data = adm1031_update_device(dev);
579	return sprintf(buf, "%d\n",
580		       FAN_FROM_REG(data->fan_min[nr],
581				    FAN_DIV_FROM_REG(data->fan_div[nr])));
582}
583static ssize_t fan_min_store(struct device *dev,
584			     struct device_attribute *attr, const char *buf,
585			     size_t count)
586{
587	struct adm1031_data *data = dev_get_drvdata(dev);
588	struct i2c_client *client = data->client;
589	int nr = to_sensor_dev_attr(attr)->index;
590	long val;
591	int ret;
592
593	ret = kstrtol(buf, 10, &val);
594	if (ret)
595		return ret;
596
597	mutex_lock(&data->update_lock);
598	if (val) {
599		data->fan_min[nr] =
600			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
601	} else {
602		data->fan_min[nr] = 0xff;
603	}
604	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
605	mutex_unlock(&data->update_lock);
606	return count;
607}
608static ssize_t fan_div_store(struct device *dev,
609			     struct device_attribute *attr, const char *buf,
610			     size_t count)
611{
612	struct adm1031_data *data = dev_get_drvdata(dev);
613	struct i2c_client *client = data->client;
614	int nr = to_sensor_dev_attr(attr)->index;
615	long val;
616	u8 tmp;
617	int old_div;
618	int new_min;
619	int ret;
620
621	ret = kstrtol(buf, 10, &val);
622	if (ret)
623		return ret;
624
625	tmp = val == 8 ? 0xc0 :
626	      val == 4 ? 0x80 :
627	      val == 2 ? 0x40 :
628	      val == 1 ? 0x00 :
629	      0xff;
630	if (tmp == 0xff)
631		return -EINVAL;
632
633	mutex_lock(&data->update_lock);
634	/* Get fresh readings */
635	data->fan_div[nr] = adm1031_read_value(client,
636					       ADM1031_REG_FAN_DIV(nr));
637	data->fan_min[nr] = adm1031_read_value(client,
638					       ADM1031_REG_FAN_MIN(nr));
639
640	/* Write the new clock divider and fan min */
641	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
642	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
643	new_min = data->fan_min[nr] * old_div / val;
644	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
645
646	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
647			    data->fan_div[nr]);
648	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
649			    data->fan_min[nr]);
650
651	/* Invalidate the cache: fan speed is no longer valid */
652	data->valid = false;
653	mutex_unlock(&data->update_lock);
654	return count;
655}
656
657static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
658static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
659static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
660static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
661static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
662static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
663
664/* Temps */
665static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
666			 char *buf)
667{
668	int nr = to_sensor_dev_attr(attr)->index;
669	struct adm1031_data *data = adm1031_update_device(dev);
670	int ext;
671	ext = nr == 0 ?
672	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
673	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
674	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
675}
676static ssize_t temp_offset_show(struct device *dev,
677				struct device_attribute *attr, char *buf)
678{
679	int nr = to_sensor_dev_attr(attr)->index;
680	struct adm1031_data *data = adm1031_update_device(dev);
681	return sprintf(buf, "%d\n",
682		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
683}
684static ssize_t temp_min_show(struct device *dev,
685			     struct device_attribute *attr, char *buf)
686{
687	int nr = to_sensor_dev_attr(attr)->index;
688	struct adm1031_data *data = adm1031_update_device(dev);
689	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
690}
691static ssize_t temp_max_show(struct device *dev,
692			     struct device_attribute *attr, char *buf)
693{
694	int nr = to_sensor_dev_attr(attr)->index;
695	struct adm1031_data *data = adm1031_update_device(dev);
696	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
697}
698static ssize_t temp_crit_show(struct device *dev,
699			      struct device_attribute *attr, char *buf)
700{
701	int nr = to_sensor_dev_attr(attr)->index;
702	struct adm1031_data *data = adm1031_update_device(dev);
703	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
704}
705static ssize_t temp_offset_store(struct device *dev,
706				 struct device_attribute *attr,
707				 const char *buf, size_t count)
708{
709	struct adm1031_data *data = dev_get_drvdata(dev);
710	struct i2c_client *client = data->client;
711	int nr = to_sensor_dev_attr(attr)->index;
712	long val;
713	int ret;
714
715	ret = kstrtol(buf, 10, &val);
716	if (ret)
717		return ret;
718
719	val = clamp_val(val, -15000, 15000);
720	mutex_lock(&data->update_lock);
721	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
722	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
723			    data->temp_offset[nr]);
724	mutex_unlock(&data->update_lock);
725	return count;
726}
727static ssize_t temp_min_store(struct device *dev,
728			      struct device_attribute *attr, const char *buf,
729			      size_t count)
730{
731	struct adm1031_data *data = dev_get_drvdata(dev);
732	struct i2c_client *client = data->client;
733	int nr = to_sensor_dev_attr(attr)->index;
734	long val;
735	int ret;
736
737	ret = kstrtol(buf, 10, &val);
738	if (ret)
739		return ret;
740
741	val = clamp_val(val, -55000, 127000);
742	mutex_lock(&data->update_lock);
743	data->temp_min[nr] = TEMP_TO_REG(val);
744	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
745			    data->temp_min[nr]);
746	mutex_unlock(&data->update_lock);
747	return count;
748}
749static ssize_t temp_max_store(struct device *dev,
750			      struct device_attribute *attr, const char *buf,
751			      size_t count)
752{
753	struct adm1031_data *data = dev_get_drvdata(dev);
754	struct i2c_client *client = data->client;
755	int nr = to_sensor_dev_attr(attr)->index;
756	long val;
757	int ret;
758
759	ret = kstrtol(buf, 10, &val);
760	if (ret)
761		return ret;
762
763	val = clamp_val(val, -55000, 127000);
764	mutex_lock(&data->update_lock);
765	data->temp_max[nr] = TEMP_TO_REG(val);
766	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
767			    data->temp_max[nr]);
768	mutex_unlock(&data->update_lock);
769	return count;
770}
771static ssize_t temp_crit_store(struct device *dev,
772			       struct device_attribute *attr, const char *buf,
773			       size_t count)
774{
775	struct adm1031_data *data = dev_get_drvdata(dev);
776	struct i2c_client *client = data->client;
777	int nr = to_sensor_dev_attr(attr)->index;
778	long val;
779	int ret;
780
781	ret = kstrtol(buf, 10, &val);
782	if (ret)
783		return ret;
784
785	val = clamp_val(val, -55000, 127000);
786	mutex_lock(&data->update_lock);
787	data->temp_crit[nr] = TEMP_TO_REG(val);
788	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
789			    data->temp_crit[nr]);
790	mutex_unlock(&data->update_lock);
791	return count;
792}
793
794static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
795static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
796static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
797static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
798static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
799static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
800static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
801static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
802static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
803static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
804static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
805static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
806static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
807static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
808static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
809
810/* Alarms */
811static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
812			   char *buf)
813{
814	struct adm1031_data *data = adm1031_update_device(dev);
815	return sprintf(buf, "%d\n", data->alarm);
816}
817
818static DEVICE_ATTR_RO(alarms);
819
820static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
821			  char *buf)
822{
823	int bitnr = to_sensor_dev_attr(attr)->index;
824	struct adm1031_data *data = adm1031_update_device(dev);
825	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
826}
827
828static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
829static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
830static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
831static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
832static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
833static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
834static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
835static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
836static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
837static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
838static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
839static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
840static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
841static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
842static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
843
844/* Update Interval */
845static const unsigned int update_intervals[] = {
846	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
847};
848
849static ssize_t update_interval_show(struct device *dev,
850				    struct device_attribute *attr, char *buf)
851{
852	struct adm1031_data *data = dev_get_drvdata(dev);
853
854	return sprintf(buf, "%u\n", data->update_interval);
855}
856
857static ssize_t update_interval_store(struct device *dev,
858				     struct device_attribute *attr,
859				     const char *buf, size_t count)
860{
861	struct adm1031_data *data = dev_get_drvdata(dev);
862	struct i2c_client *client = data->client;
863	unsigned long val;
864	int i, err;
865	u8 reg;
866
867	err = kstrtoul(buf, 10, &val);
868	if (err)
869		return err;
870
871	/*
872	 * Find the nearest update interval from the table.
873	 * Use it to determine the matching update rate.
874	 */
875	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
876		if (val >= update_intervals[i])
877			break;
878	}
879	/* if not found, we point to the last entry (lowest update interval) */
880
881	/* set the new update rate while preserving other settings */
882	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
883	reg &= ~ADM1031_UPDATE_RATE_MASK;
884	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
885	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
886
887	mutex_lock(&data->update_lock);
888	data->update_interval = update_intervals[i];
889	mutex_unlock(&data->update_lock);
890
891	return count;
892}
893
894static DEVICE_ATTR_RW(update_interval);
895
896static struct attribute *adm1031_attributes[] = {
897	&sensor_dev_attr_fan1_input.dev_attr.attr,
898	&sensor_dev_attr_fan1_div.dev_attr.attr,
899	&sensor_dev_attr_fan1_min.dev_attr.attr,
900	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
901	&sensor_dev_attr_fan1_fault.dev_attr.attr,
902	&sensor_dev_attr_pwm1.dev_attr.attr,
903	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
904	&sensor_dev_attr_temp1_input.dev_attr.attr,
905	&sensor_dev_attr_temp1_offset.dev_attr.attr,
906	&sensor_dev_attr_temp1_min.dev_attr.attr,
907	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
908	&sensor_dev_attr_temp1_max.dev_attr.attr,
909	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
910	&sensor_dev_attr_temp1_crit.dev_attr.attr,
911	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
912	&sensor_dev_attr_temp2_input.dev_attr.attr,
913	&sensor_dev_attr_temp2_offset.dev_attr.attr,
914	&sensor_dev_attr_temp2_min.dev_attr.attr,
915	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
916	&sensor_dev_attr_temp2_max.dev_attr.attr,
917	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
918	&sensor_dev_attr_temp2_crit.dev_attr.attr,
919	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
920	&sensor_dev_attr_temp2_fault.dev_attr.attr,
921
922	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
923	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
924	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
925
926	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
927	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
928	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
929
930	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
931
932	&dev_attr_update_interval.attr,
933	&dev_attr_alarms.attr,
934
935	NULL
936};
937
938static const struct attribute_group adm1031_group = {
939	.attrs = adm1031_attributes,
940};
941
942static struct attribute *adm1031_attributes_opt[] = {
943	&sensor_dev_attr_fan2_input.dev_attr.attr,
944	&sensor_dev_attr_fan2_div.dev_attr.attr,
945	&sensor_dev_attr_fan2_min.dev_attr.attr,
946	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
947	&sensor_dev_attr_fan2_fault.dev_attr.attr,
948	&sensor_dev_attr_pwm2.dev_attr.attr,
949	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
950	&sensor_dev_attr_temp3_input.dev_attr.attr,
951	&sensor_dev_attr_temp3_offset.dev_attr.attr,
952	&sensor_dev_attr_temp3_min.dev_attr.attr,
953	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
954	&sensor_dev_attr_temp3_max.dev_attr.attr,
955	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
956	&sensor_dev_attr_temp3_crit.dev_attr.attr,
957	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
958	&sensor_dev_attr_temp3_fault.dev_attr.attr,
959	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
960	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
961	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
962	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
963	NULL
964};
965
966static const struct attribute_group adm1031_group_opt = {
967	.attrs = adm1031_attributes_opt,
968};
969
970/* Return 0 if detection is successful, -ENODEV otherwise */
971static int adm1031_detect(struct i2c_client *client,
972			  struct i2c_board_info *info)
973{
974	struct i2c_adapter *adapter = client->adapter;
975	const char *name;
976	int id, co;
977
978	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
979		return -ENODEV;
980
981	id = i2c_smbus_read_byte_data(client, 0x3d);
982	co = i2c_smbus_read_byte_data(client, 0x3e);
983
984	if (!((id == 0x31 || id == 0x30) && co == 0x41))
985		return -ENODEV;
986	name = (id == 0x30) ? "adm1030" : "adm1031";
987
988	strscpy(info->type, name, I2C_NAME_SIZE);
989
990	return 0;
991}
992
993static void adm1031_init_client(struct i2c_client *client)
994{
995	unsigned int read_val;
996	unsigned int mask;
997	int i;
998	struct adm1031_data *data = i2c_get_clientdata(client);
999
1000	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1001	if (data->chip_type == adm1031) {
1002		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1003			ADM1031_CONF2_TACH2_ENABLE);
1004	}
1005	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1006	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1007	if ((read_val | mask) != read_val)
1008		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1009
1010	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1011	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1012		adm1031_write_value(client, ADM1031_REG_CONF1,
1013				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1014	}
1015
1016	/* Read the chip's update rate */
1017	mask = ADM1031_UPDATE_RATE_MASK;
1018	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1019	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1020	/* Save it as update interval */
1021	data->update_interval = update_intervals[i];
1022}
1023
1024static const struct i2c_device_id adm1031_id[];
1025
1026static int adm1031_probe(struct i2c_client *client)
1027{
1028	struct device *dev = &client->dev;
1029	struct device *hwmon_dev;
1030	struct adm1031_data *data;
1031
1032	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1033	if (!data)
1034		return -ENOMEM;
1035
1036	i2c_set_clientdata(client, data);
1037	data->client = client;
1038	data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
1039	mutex_init(&data->update_lock);
1040
1041	if (data->chip_type == adm1030)
1042		data->chan_select_table = &auto_channel_select_table_adm1030;
1043	else
1044		data->chan_select_table = &auto_channel_select_table_adm1031;
1045
1046	/* Initialize the ADM1031 chip */
1047	adm1031_init_client(client);
1048
1049	/* sysfs hooks */
1050	data->groups[0] = &adm1031_group;
1051	if (data->chip_type == adm1031)
1052		data->groups[1] = &adm1031_group_opt;
1053
1054	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1055							   data, data->groups);
1056	return PTR_ERR_OR_ZERO(hwmon_dev);
1057}
1058
1059static const struct i2c_device_id adm1031_id[] = {
1060	{ "adm1030", adm1030 },
1061	{ "adm1031", adm1031 },
1062	{ }
1063};
1064MODULE_DEVICE_TABLE(i2c, adm1031_id);
1065
1066static struct i2c_driver adm1031_driver = {
1067	.class		= I2C_CLASS_HWMON,
1068	.driver = {
1069		.name = "adm1031",
1070	},
1071	.probe		= adm1031_probe,
1072	.id_table	= adm1031_id,
1073	.detect		= adm1031_detect,
1074	.address_list	= normal_i2c,
1075};
1076
1077module_i2c_driver(adm1031_driver);
1078
1079MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1080MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1081MODULE_LICENSE("GPL");
1082