1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2012-2016 Mentor Graphics Inc.
4 *
5 * Queued image conversion support, with tiling and rotation.
6 */
7
8#include <linux/interrupt.h>
9#include <linux/dma-mapping.h>
10#include <linux/math.h>
11
12#include <video/imx-ipu-image-convert.h>
13
14#include "ipu-prv.h"
15
16/*
17 * The IC Resizer has a restriction that the output frame from the
18 * resizer must be 1024 or less in both width (pixels) and height
19 * (lines).
20 *
21 * The image converter attempts to split up a conversion when
22 * the desired output (converted) frame resolution exceeds the
23 * IC resizer limit of 1024 in either dimension.
24 *
25 * If either dimension of the output frame exceeds the limit, the
26 * dimension is split into 1, 2, or 4 equal stripes, for a maximum
27 * of 4*4 or 16 tiles. A conversion is then carried out for each
28 * tile (but taking care to pass the full frame stride length to
29 * the DMA channel's parameter memory!). IDMA double-buffering is used
30 * to convert each tile back-to-back when possible (see note below
31 * when double_buffering boolean is set).
32 *
33 * Note that the input frame must be split up into the same number
34 * of tiles as the output frame:
35 *
36 *                       +---------+-----+
37 *   +-----+---+         |  A      | B   |
38 *   | A   | B |         |         |     |
39 *   +-----+---+   -->   +---------+-----+
40 *   | C   | D |         |  C      | D   |
41 *   +-----+---+         |         |     |
42 *                       +---------+-----+
43 *
44 * Clockwise 90�� rotations are handled by first rescaling into a
45 * reusable temporary tile buffer and then rotating with the 8x8
46 * block rotator, writing to the correct destination:
47 *
48 *                                         +-----+-----+
49 *                                         |     |     |
50 *   +-----+---+         +---------+       | C   | A   |
51 *   | A   | B |         | A,B, |  |       |     |     |
52 *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
53 *   | C   | D |         +---------+       +-----+-----+
54 *   +-----+---+                           | D   | B   |
55 *                                         |     |     |
56 *                                         +-----+-----+
57 *
58 * If the 8x8 block rotator is used, horizontal or vertical flipping
59 * is done during the rotation step, otherwise flipping is done
60 * during the scaling step.
61 * With rotation or flipping, tile order changes between input and
62 * output image. Tiles are numbered row major from top left to bottom
63 * right for both input and output image.
64 */
65
66#define MAX_STRIPES_W    4
67#define MAX_STRIPES_H    4
68#define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
69
70#define MIN_W     16
71#define MIN_H     8
72#define MAX_W     4096
73#define MAX_H     4096
74
75enum ipu_image_convert_type {
76	IMAGE_CONVERT_IN = 0,
77	IMAGE_CONVERT_OUT,
78};
79
80struct ipu_image_convert_dma_buf {
81	void          *virt;
82	dma_addr_t    phys;
83	unsigned long len;
84};
85
86struct ipu_image_convert_dma_chan {
87	int in;
88	int out;
89	int rot_in;
90	int rot_out;
91	int vdi_in_p;
92	int vdi_in;
93	int vdi_in_n;
94};
95
96/* dimensions of one tile */
97struct ipu_image_tile {
98	u32 width;
99	u32 height;
100	u32 left;
101	u32 top;
102	/* size and strides are in bytes */
103	u32 size;
104	u32 stride;
105	u32 rot_stride;
106	/* start Y or packed offset of this tile */
107	u32 offset;
108	/* offset from start to tile in U plane, for planar formats */
109	u32 u_off;
110	/* offset from start to tile in V plane, for planar formats */
111	u32 v_off;
112};
113
114struct ipu_image_convert_image {
115	struct ipu_image base;
116	enum ipu_image_convert_type type;
117
118	const struct ipu_image_pixfmt *fmt;
119	unsigned int stride;
120
121	/* # of rows (horizontal stripes) if dest height is > 1024 */
122	unsigned int num_rows;
123	/* # of columns (vertical stripes) if dest width is > 1024 */
124	unsigned int num_cols;
125
126	struct ipu_image_tile tile[MAX_TILES];
127};
128
129struct ipu_image_pixfmt {
130	u32	fourcc;        /* V4L2 fourcc */
131	int     bpp;           /* total bpp */
132	int     uv_width_dec;  /* decimation in width for U/V planes */
133	int     uv_height_dec; /* decimation in height for U/V planes */
134	bool    planar;        /* planar format */
135	bool    uv_swapped;    /* U and V planes are swapped */
136	bool    uv_packed;     /* partial planar (U and V in same plane) */
137};
138
139struct ipu_image_convert_ctx;
140struct ipu_image_convert_chan;
141struct ipu_image_convert_priv;
142
143enum eof_irq_mask {
144	EOF_IRQ_IN      = BIT(0),
145	EOF_IRQ_ROT_IN  = BIT(1),
146	EOF_IRQ_OUT     = BIT(2),
147	EOF_IRQ_ROT_OUT = BIT(3),
148};
149
150#define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
151#define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT |	\
152			      EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
153
154struct ipu_image_convert_ctx {
155	struct ipu_image_convert_chan *chan;
156
157	ipu_image_convert_cb_t complete;
158	void *complete_context;
159
160	/* Source/destination image data and rotation mode */
161	struct ipu_image_convert_image in;
162	struct ipu_image_convert_image out;
163	struct ipu_ic_csc csc;
164	enum ipu_rotate_mode rot_mode;
165	u32 downsize_coeff_h;
166	u32 downsize_coeff_v;
167	u32 image_resize_coeff_h;
168	u32 image_resize_coeff_v;
169	u32 resize_coeffs_h[MAX_STRIPES_W];
170	u32 resize_coeffs_v[MAX_STRIPES_H];
171
172	/* intermediate buffer for rotation */
173	struct ipu_image_convert_dma_buf rot_intermediate[2];
174
175	/* current buffer number for double buffering */
176	int cur_buf_num;
177
178	bool aborting;
179	struct completion aborted;
180
181	/* can we use double-buffering for this conversion operation? */
182	bool double_buffering;
183	/* num_rows * num_cols */
184	unsigned int num_tiles;
185	/* next tile to process */
186	unsigned int next_tile;
187	/* where to place converted tile in dest image */
188	unsigned int out_tile_map[MAX_TILES];
189
190	/* mask of completed EOF irqs at every tile conversion */
191	enum eof_irq_mask eof_mask;
192
193	struct list_head list;
194};
195
196struct ipu_image_convert_chan {
197	struct ipu_image_convert_priv *priv;
198
199	enum ipu_ic_task ic_task;
200	const struct ipu_image_convert_dma_chan *dma_ch;
201
202	struct ipu_ic *ic;
203	struct ipuv3_channel *in_chan;
204	struct ipuv3_channel *out_chan;
205	struct ipuv3_channel *rotation_in_chan;
206	struct ipuv3_channel *rotation_out_chan;
207
208	/* the IPU end-of-frame irqs */
209	int in_eof_irq;
210	int rot_in_eof_irq;
211	int out_eof_irq;
212	int rot_out_eof_irq;
213
214	spinlock_t irqlock;
215
216	/* list of convert contexts */
217	struct list_head ctx_list;
218	/* queue of conversion runs */
219	struct list_head pending_q;
220	/* queue of completed runs */
221	struct list_head done_q;
222
223	/* the current conversion run */
224	struct ipu_image_convert_run *current_run;
225};
226
227struct ipu_image_convert_priv {
228	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
229	struct ipu_soc *ipu;
230};
231
232static const struct ipu_image_convert_dma_chan
233image_convert_dma_chan[IC_NUM_TASKS] = {
234	[IC_TASK_VIEWFINDER] = {
235		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
236		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
237		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
238		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
239		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
240		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
241		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
242	},
243	[IC_TASK_POST_PROCESSOR] = {
244		.in = IPUV3_CHANNEL_MEM_IC_PP,
245		.out = IPUV3_CHANNEL_IC_PP_MEM,
246		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
247		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
248	},
249};
250
251static const struct ipu_image_pixfmt image_convert_formats[] = {
252	{
253		.fourcc	= V4L2_PIX_FMT_RGB565,
254		.bpp    = 16,
255	}, {
256		.fourcc	= V4L2_PIX_FMT_RGB24,
257		.bpp    = 24,
258	}, {
259		.fourcc	= V4L2_PIX_FMT_BGR24,
260		.bpp    = 24,
261	}, {
262		.fourcc	= V4L2_PIX_FMT_RGB32,
263		.bpp    = 32,
264	}, {
265		.fourcc	= V4L2_PIX_FMT_BGR32,
266		.bpp    = 32,
267	}, {
268		.fourcc	= V4L2_PIX_FMT_XRGB32,
269		.bpp    = 32,
270	}, {
271		.fourcc	= V4L2_PIX_FMT_XBGR32,
272		.bpp    = 32,
273	}, {
274		.fourcc	= V4L2_PIX_FMT_BGRX32,
275		.bpp    = 32,
276	}, {
277		.fourcc	= V4L2_PIX_FMT_RGBX32,
278		.bpp    = 32,
279	}, {
280		.fourcc	= V4L2_PIX_FMT_YUYV,
281		.bpp    = 16,
282		.uv_width_dec = 2,
283		.uv_height_dec = 1,
284	}, {
285		.fourcc	= V4L2_PIX_FMT_UYVY,
286		.bpp    = 16,
287		.uv_width_dec = 2,
288		.uv_height_dec = 1,
289	}, {
290		.fourcc	= V4L2_PIX_FMT_YUV420,
291		.bpp    = 12,
292		.planar = true,
293		.uv_width_dec = 2,
294		.uv_height_dec = 2,
295	}, {
296		.fourcc	= V4L2_PIX_FMT_YVU420,
297		.bpp    = 12,
298		.planar = true,
299		.uv_width_dec = 2,
300		.uv_height_dec = 2,
301		.uv_swapped = true,
302	}, {
303		.fourcc = V4L2_PIX_FMT_NV12,
304		.bpp    = 12,
305		.planar = true,
306		.uv_width_dec = 2,
307		.uv_height_dec = 2,
308		.uv_packed = true,
309	}, {
310		.fourcc = V4L2_PIX_FMT_YUV422P,
311		.bpp    = 16,
312		.planar = true,
313		.uv_width_dec = 2,
314		.uv_height_dec = 1,
315	}, {
316		.fourcc = V4L2_PIX_FMT_NV16,
317		.bpp    = 16,
318		.planar = true,
319		.uv_width_dec = 2,
320		.uv_height_dec = 1,
321		.uv_packed = true,
322	},
323};
324
325static const struct ipu_image_pixfmt *get_format(u32 fourcc)
326{
327	const struct ipu_image_pixfmt *ret = NULL;
328	unsigned int i;
329
330	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
331		if (image_convert_formats[i].fourcc == fourcc) {
332			ret = &image_convert_formats[i];
333			break;
334		}
335	}
336
337	return ret;
338}
339
340static void dump_format(struct ipu_image_convert_ctx *ctx,
341			struct ipu_image_convert_image *ic_image)
342{
343	struct ipu_image_convert_chan *chan = ctx->chan;
344	struct ipu_image_convert_priv *priv = chan->priv;
345
346	dev_dbg(priv->ipu->dev,
347		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
348		chan->ic_task, ctx,
349		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
350		ic_image->base.pix.width, ic_image->base.pix.height,
351		ic_image->num_cols, ic_image->num_rows,
352		ic_image->fmt->fourcc & 0xff,
353		(ic_image->fmt->fourcc >> 8) & 0xff,
354		(ic_image->fmt->fourcc >> 16) & 0xff,
355		(ic_image->fmt->fourcc >> 24) & 0xff);
356}
357
358int ipu_image_convert_enum_format(int index, u32 *fourcc)
359{
360	const struct ipu_image_pixfmt *fmt;
361
362	if (index >= (int)ARRAY_SIZE(image_convert_formats))
363		return -EINVAL;
364
365	/* Format found */
366	fmt = &image_convert_formats[index];
367	*fourcc = fmt->fourcc;
368	return 0;
369}
370EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
371
372static void free_dma_buf(struct ipu_image_convert_priv *priv,
373			 struct ipu_image_convert_dma_buf *buf)
374{
375	if (buf->virt)
376		dma_free_coherent(priv->ipu->dev,
377				  buf->len, buf->virt, buf->phys);
378	buf->virt = NULL;
379	buf->phys = 0;
380}
381
382static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
383			 struct ipu_image_convert_dma_buf *buf,
384			 int size)
385{
386	buf->len = PAGE_ALIGN(size);
387	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
388				       GFP_DMA | GFP_KERNEL);
389	if (!buf->virt) {
390		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
391		return -ENOMEM;
392	}
393
394	return 0;
395}
396
397static inline int num_stripes(int dim)
398{
399	return (dim - 1) / 1024 + 1;
400}
401
402/*
403 * Calculate downsizing coefficients, which are the same for all tiles,
404 * and initial bilinear resizing coefficients, which are used to find the
405 * best seam positions.
406 * Also determine the number of tiles necessary to guarantee that no tile
407 * is larger than 1024 pixels in either dimension at the output and between
408 * IC downsizing and main processing sections.
409 */
410static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
411					  struct ipu_image *in,
412					  struct ipu_image *out)
413{
414	u32 downsized_width = in->rect.width;
415	u32 downsized_height = in->rect.height;
416	u32 downsize_coeff_v = 0;
417	u32 downsize_coeff_h = 0;
418	u32 resized_width = out->rect.width;
419	u32 resized_height = out->rect.height;
420	u32 resize_coeff_h;
421	u32 resize_coeff_v;
422	u32 cols;
423	u32 rows;
424
425	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
426		resized_width = out->rect.height;
427		resized_height = out->rect.width;
428	}
429
430	/* Do not let invalid input lead to an endless loop below */
431	if (WARN_ON(resized_width == 0 || resized_height == 0))
432		return -EINVAL;
433
434	while (downsized_width >= resized_width * 2) {
435		downsized_width >>= 1;
436		downsize_coeff_h++;
437	}
438
439	while (downsized_height >= resized_height * 2) {
440		downsized_height >>= 1;
441		downsize_coeff_v++;
442	}
443
444	/*
445	 * Calculate the bilinear resizing coefficients that could be used if
446	 * we were converting with a single tile. The bottom right output pixel
447	 * should sample as close as possible to the bottom right input pixel
448	 * out of the decimator, but not overshoot it:
449	 */
450	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
451	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
452
453	/*
454	 * Both the output of the IC downsizing section before being passed to
455	 * the IC main processing section and the final output of the IC main
456	 * processing section must be <= 1024 pixels in both dimensions.
457	 */
458	cols = num_stripes(max_t(u32, downsized_width, resized_width));
459	rows = num_stripes(max_t(u32, downsized_height, resized_height));
460
461	dev_dbg(ctx->chan->priv->ipu->dev,
462		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
463		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
464		resize_coeff_v, cols, rows);
465
466	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
467	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
468		return -EINVAL;
469
470	ctx->downsize_coeff_h = downsize_coeff_h;
471	ctx->downsize_coeff_v = downsize_coeff_v;
472	ctx->image_resize_coeff_h = resize_coeff_h;
473	ctx->image_resize_coeff_v = resize_coeff_v;
474	ctx->in.num_cols = cols;
475	ctx->in.num_rows = rows;
476
477	return 0;
478}
479
480#define round_closest(x, y) round_down((x) + (y)/2, (y))
481
482/*
483 * Find the best aligned seam position for the given column / row index.
484 * Rotation and image offsets are out of scope.
485 *
486 * @index: column / row index, used to calculate valid interval
487 * @in_edge: input right / bottom edge
488 * @out_edge: output right / bottom edge
489 * @in_align: input alignment, either horizontal 8-byte line start address
490 *            alignment, or pixel alignment due to image format
491 * @out_align: output alignment, either horizontal 8-byte line start address
492 *             alignment, or pixel alignment due to image format or rotator
493 *             block size
494 * @in_burst: horizontal input burst size in case of horizontal flip
495 * @out_burst: horizontal output burst size or rotator block size
496 * @downsize_coeff: downsizing section coefficient
497 * @resize_coeff: main processing section resizing coefficient
498 * @_in_seam: aligned input seam position return value
499 * @_out_seam: aligned output seam position return value
500 */
501static void find_best_seam(struct ipu_image_convert_ctx *ctx,
502			   unsigned int index,
503			   unsigned int in_edge,
504			   unsigned int out_edge,
505			   unsigned int in_align,
506			   unsigned int out_align,
507			   unsigned int in_burst,
508			   unsigned int out_burst,
509			   unsigned int downsize_coeff,
510			   unsigned int resize_coeff,
511			   u32 *_in_seam,
512			   u32 *_out_seam)
513{
514	struct device *dev = ctx->chan->priv->ipu->dev;
515	unsigned int out_pos;
516	/* Input / output seam position candidates */
517	unsigned int out_seam = 0;
518	unsigned int in_seam = 0;
519	unsigned int min_diff = UINT_MAX;
520	unsigned int out_start;
521	unsigned int out_end;
522	unsigned int in_start;
523	unsigned int in_end;
524
525	/* Start within 1024 pixels of the right / bottom edge */
526	out_start = max_t(int, index * out_align, out_edge - 1024);
527	/* End before having to add more columns to the left / rows above */
528	out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
529
530	/*
531	 * Limit input seam position to make sure that the downsized input tile
532	 * to the right or bottom does not exceed 1024 pixels.
533	 */
534	in_start = max_t(int, index * in_align,
535			 in_edge - (1024 << downsize_coeff));
536	in_end = min_t(unsigned int, in_edge,
537		       index * (1024 << downsize_coeff) + 1);
538
539	/*
540	 * Output tiles must start at a multiple of 8 bytes horizontally and
541	 * possibly at an even line horizontally depending on the pixel format.
542	 * Only consider output aligned positions for the seam.
543	 */
544	out_start = round_up(out_start, out_align);
545	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
546		unsigned int in_pos;
547		unsigned int in_pos_aligned;
548		unsigned int in_pos_rounded;
549		unsigned int diff;
550
551		/*
552		 * Tiles in the right row / bottom column may not be allowed to
553		 * overshoot horizontally / vertically. out_burst may be the
554		 * actual DMA burst size, or the rotator block size.
555		 */
556		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
557			continue;
558
559		/*
560		 * Input sample position, corresponding to out_pos, 19.13 fixed
561		 * point.
562		 */
563		in_pos = (out_pos * resize_coeff) << downsize_coeff;
564		/*
565		 * The closest input sample position that we could actually
566		 * start the input tile at, 19.13 fixed point.
567		 */
568		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
569		/* Convert 19.13 fixed point to integer */
570		in_pos_rounded = in_pos_aligned / 8192U;
571
572		if (in_pos_rounded < in_start)
573			continue;
574		if (in_pos_rounded >= in_end)
575			break;
576
577		if ((in_burst > 1) &&
578		    (in_edge - in_pos_rounded) % in_burst)
579			continue;
580
581		diff = abs_diff(in_pos, in_pos_aligned);
582		if (diff < min_diff) {
583			in_seam = in_pos_rounded;
584			out_seam = out_pos;
585			min_diff = diff;
586		}
587	}
588
589	*_out_seam = out_seam;
590	*_in_seam = in_seam;
591
592	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
593		__func__, out_seam, out_align, out_start, out_end,
594		in_seam, in_align, in_start, in_end, min_diff / 8192,
595		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
596}
597
598/*
599 * Tile left edges are required to be aligned to multiples of 8 bytes
600 * by the IDMAC.
601 */
602static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
603{
604	if (fmt->planar)
605		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
606	else
607		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
608}
609
610/*
611 * Tile top edge alignment is only limited by chroma subsampling.
612 */
613static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
614{
615	return fmt->uv_height_dec > 1 ? 2 : 1;
616}
617
618static inline u32 tile_width_align(enum ipu_image_convert_type type,
619				   const struct ipu_image_pixfmt *fmt,
620				   enum ipu_rotate_mode rot_mode)
621{
622	if (type == IMAGE_CONVERT_IN) {
623		/*
624		 * The IC burst reads 8 pixels at a time. Reading beyond the
625		 * end of the line is usually acceptable. Those pixels are
626		 * ignored, unless the IC has to write the scaled line in
627		 * reverse.
628		 */
629		return (!ipu_rot_mode_is_irt(rot_mode) &&
630			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
631	}
632
633	/*
634	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
635	 * formats to guarantee 8-byte aligned line start addresses in the
636	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
637	 * for all other formats.
638	 */
639	return (ipu_rot_mode_is_irt(rot_mode) &&
640		fmt->planar && !fmt->uv_packed) ?
641		8 * fmt->uv_width_dec : 8;
642}
643
644static inline u32 tile_height_align(enum ipu_image_convert_type type,
645				    const struct ipu_image_pixfmt *fmt,
646				    enum ipu_rotate_mode rot_mode)
647{
648	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
649		return 2;
650
651	/*
652	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
653	 * formats to guarantee 8-byte aligned line start addresses in the
654	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
655	 * for all other formats.
656	 */
657	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
658}
659
660/*
661 * Fill in left position and width and for all tiles in an input column, and
662 * for all corresponding output tiles. If the 90�� rotator is used, the output
663 * tiles are in a row, and output tile top position and height are set.
664 */
665static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
666			     unsigned int col,
667			     struct ipu_image_convert_image *in,
668			     unsigned int in_left, unsigned int in_width,
669			     struct ipu_image_convert_image *out,
670			     unsigned int out_left, unsigned int out_width)
671{
672	unsigned int row, tile_idx;
673	struct ipu_image_tile *in_tile, *out_tile;
674
675	for (row = 0; row < in->num_rows; row++) {
676		tile_idx = in->num_cols * row + col;
677		in_tile = &in->tile[tile_idx];
678		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
679
680		in_tile->left = in_left;
681		in_tile->width = in_width;
682
683		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
684			out_tile->top = out_left;
685			out_tile->height = out_width;
686		} else {
687			out_tile->left = out_left;
688			out_tile->width = out_width;
689		}
690	}
691}
692
693/*
694 * Fill in top position and height and for all tiles in an input row, and
695 * for all corresponding output tiles. If the 90�� rotator is used, the output
696 * tiles are in a column, and output tile left position and width are set.
697 */
698static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
699			  struct ipu_image_convert_image *in,
700			  unsigned int in_top, unsigned int in_height,
701			  struct ipu_image_convert_image *out,
702			  unsigned int out_top, unsigned int out_height)
703{
704	unsigned int col, tile_idx;
705	struct ipu_image_tile *in_tile, *out_tile;
706
707	for (col = 0; col < in->num_cols; col++) {
708		tile_idx = in->num_cols * row + col;
709		in_tile = &in->tile[tile_idx];
710		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
711
712		in_tile->top = in_top;
713		in_tile->height = in_height;
714
715		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
716			out_tile->left = out_top;
717			out_tile->width = out_height;
718		} else {
719			out_tile->top = out_top;
720			out_tile->height = out_height;
721		}
722	}
723}
724
725/*
726 * Find the best horizontal and vertical seam positions to split into tiles.
727 * Minimize the fractional part of the input sampling position for the
728 * top / left pixels of each tile.
729 */
730static void find_seams(struct ipu_image_convert_ctx *ctx,
731		       struct ipu_image_convert_image *in,
732		       struct ipu_image_convert_image *out)
733{
734	struct device *dev = ctx->chan->priv->ipu->dev;
735	unsigned int resized_width = out->base.rect.width;
736	unsigned int resized_height = out->base.rect.height;
737	unsigned int col;
738	unsigned int row;
739	unsigned int in_left_align = tile_left_align(in->fmt);
740	unsigned int in_top_align = tile_top_align(in->fmt);
741	unsigned int out_left_align = tile_left_align(out->fmt);
742	unsigned int out_top_align = tile_top_align(out->fmt);
743	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
744							ctx->rot_mode);
745	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
746							  ctx->rot_mode);
747	unsigned int in_right = in->base.rect.width;
748	unsigned int in_bottom = in->base.rect.height;
749	unsigned int out_right = out->base.rect.width;
750	unsigned int out_bottom = out->base.rect.height;
751	unsigned int flipped_out_left;
752	unsigned int flipped_out_top;
753
754	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
755		/* Switch width/height and align top left to IRT block size */
756		resized_width = out->base.rect.height;
757		resized_height = out->base.rect.width;
758		out_left_align = out_height_align;
759		out_top_align = out_width_align;
760		out_width_align = out_left_align;
761		out_height_align = out_top_align;
762		out_right = out->base.rect.height;
763		out_bottom = out->base.rect.width;
764	}
765
766	for (col = in->num_cols - 1; col > 0; col--) {
767		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
768					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
769		bool allow_out_overshoot = (col < in->num_cols - 1) &&
770					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
771		unsigned int in_left;
772		unsigned int out_left;
773
774		/*
775		 * Align input width to burst length if the scaling step flips
776		 * horizontally.
777		 */
778
779		find_best_seam(ctx, col,
780			       in_right, out_right,
781			       in_left_align, out_left_align,
782			       allow_in_overshoot ? 1 : 8 /* burst length */,
783			       allow_out_overshoot ? 1 : out_width_align,
784			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
785			       &in_left, &out_left);
786
787		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
788			flipped_out_left = resized_width - out_right;
789		else
790			flipped_out_left = out_left;
791
792		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
793				 out, flipped_out_left, out_right - out_left);
794
795		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
796			in_left, in_right - in_left,
797			flipped_out_left, out_right - out_left);
798
799		in_right = in_left;
800		out_right = out_left;
801	}
802
803	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
804			   resized_width - out_right : 0;
805
806	fill_tile_column(ctx, 0, in, 0, in_right,
807			 out, flipped_out_left, out_right);
808
809	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
810		in_right, flipped_out_left, out_right);
811
812	for (row = in->num_rows - 1; row > 0; row--) {
813		bool allow_overshoot = row < in->num_rows - 1;
814		unsigned int in_top;
815		unsigned int out_top;
816
817		find_best_seam(ctx, row,
818			       in_bottom, out_bottom,
819			       in_top_align, out_top_align,
820			       1, allow_overshoot ? 1 : out_height_align,
821			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
822			       &in_top, &out_top);
823
824		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
825		    ipu_rot_mode_is_irt(ctx->rot_mode))
826			flipped_out_top = resized_height - out_bottom;
827		else
828			flipped_out_top = out_top;
829
830		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
831			      out, flipped_out_top, out_bottom - out_top);
832
833		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
834			in_top, in_bottom - in_top,
835			flipped_out_top, out_bottom - out_top);
836
837		in_bottom = in_top;
838		out_bottom = out_top;
839	}
840
841	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
842	    ipu_rot_mode_is_irt(ctx->rot_mode))
843		flipped_out_top = resized_height - out_bottom;
844	else
845		flipped_out_top = 0;
846
847	fill_tile_row(ctx, 0, in, 0, in_bottom,
848		      out, flipped_out_top, out_bottom);
849
850	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
851		in_bottom, flipped_out_top, out_bottom);
852}
853
854static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
855				struct ipu_image_convert_image *image)
856{
857	struct ipu_image_convert_chan *chan = ctx->chan;
858	struct ipu_image_convert_priv *priv = chan->priv;
859	unsigned int max_width = 1024;
860	unsigned int max_height = 1024;
861	unsigned int i;
862
863	if (image->type == IMAGE_CONVERT_IN) {
864		/* Up to 4096x4096 input tile size */
865		max_width <<= ctx->downsize_coeff_h;
866		max_height <<= ctx->downsize_coeff_v;
867	}
868
869	for (i = 0; i < ctx->num_tiles; i++) {
870		struct ipu_image_tile *tile;
871		const unsigned int row = i / image->num_cols;
872		const unsigned int col = i % image->num_cols;
873
874		if (image->type == IMAGE_CONVERT_OUT)
875			tile = &image->tile[ctx->out_tile_map[i]];
876		else
877			tile = &image->tile[i];
878
879		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
880			tile->width;
881
882		if (image->fmt->planar) {
883			tile->stride = tile->width;
884			tile->rot_stride = tile->height;
885		} else {
886			tile->stride =
887				(image->fmt->bpp * tile->width) >> 3;
888			tile->rot_stride =
889				(image->fmt->bpp * tile->height) >> 3;
890		}
891
892		dev_dbg(priv->ipu->dev,
893			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
894			chan->ic_task, ctx,
895			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
896			row, col,
897			tile->width, tile->height, tile->left, tile->top);
898
899		if (!tile->width || tile->width > max_width ||
900		    !tile->height || tile->height > max_height) {
901			dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
902				image->type == IMAGE_CONVERT_IN ? "input" :
903				"output", tile->width, tile->height);
904			return -EINVAL;
905		}
906	}
907
908	return 0;
909}
910
911/*
912 * Use the rotation transformation to find the tile coordinates
913 * (row, col) of a tile in the destination frame that corresponds
914 * to the given tile coordinates of a source frame. The destination
915 * coordinate is then converted to a tile index.
916 */
917static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
918				int src_row, int src_col)
919{
920	struct ipu_image_convert_chan *chan = ctx->chan;
921	struct ipu_image_convert_priv *priv = chan->priv;
922	struct ipu_image_convert_image *s_image = &ctx->in;
923	struct ipu_image_convert_image *d_image = &ctx->out;
924	int dst_row, dst_col;
925
926	/* with no rotation it's a 1:1 mapping */
927	if (ctx->rot_mode == IPU_ROTATE_NONE)
928		return src_row * s_image->num_cols + src_col;
929
930	/*
931	 * before doing the transform, first we have to translate
932	 * source row,col for an origin in the center of s_image
933	 */
934	src_row = src_row * 2 - (s_image->num_rows - 1);
935	src_col = src_col * 2 - (s_image->num_cols - 1);
936
937	/* do the rotation transform */
938	if (ctx->rot_mode & IPU_ROT_BIT_90) {
939		dst_col = -src_row;
940		dst_row = src_col;
941	} else {
942		dst_col = src_col;
943		dst_row = src_row;
944	}
945
946	/* apply flip */
947	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
948		dst_col = -dst_col;
949	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
950		dst_row = -dst_row;
951
952	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
953		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
954
955	/*
956	 * finally translate dest row,col using an origin in upper
957	 * left of d_image
958	 */
959	dst_row += d_image->num_rows - 1;
960	dst_col += d_image->num_cols - 1;
961	dst_row /= 2;
962	dst_col /= 2;
963
964	return dst_row * d_image->num_cols + dst_col;
965}
966
967/*
968 * Fill the out_tile_map[] with transformed destination tile indeces.
969 */
970static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
971{
972	struct ipu_image_convert_image *s_image = &ctx->in;
973	unsigned int row, col, tile = 0;
974
975	for (row = 0; row < s_image->num_rows; row++) {
976		for (col = 0; col < s_image->num_cols; col++) {
977			ctx->out_tile_map[tile] =
978				transform_tile_index(ctx, row, col);
979			tile++;
980		}
981	}
982}
983
984static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
985				    struct ipu_image_convert_image *image)
986{
987	struct ipu_image_convert_chan *chan = ctx->chan;
988	struct ipu_image_convert_priv *priv = chan->priv;
989	const struct ipu_image_pixfmt *fmt = image->fmt;
990	unsigned int row, col, tile = 0;
991	u32 H, top, y_stride, uv_stride;
992	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off;
993	u32 y_row_off, y_col_off, y_off;
994	u32 y_size, uv_size;
995
996	/* setup some convenience vars */
997	H = image->base.pix.height;
998
999	y_stride = image->stride;
1000	uv_stride = y_stride / fmt->uv_width_dec;
1001	if (fmt->uv_packed)
1002		uv_stride *= 2;
1003
1004	y_size = H * y_stride;
1005	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
1006
1007	for (row = 0; row < image->num_rows; row++) {
1008		top = image->tile[tile].top;
1009		y_row_off = top * y_stride;
1010		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
1011
1012		for (col = 0; col < image->num_cols; col++) {
1013			y_col_off = image->tile[tile].left;
1014			uv_col_off = y_col_off / fmt->uv_width_dec;
1015			if (fmt->uv_packed)
1016				uv_col_off *= 2;
1017
1018			y_off = y_row_off + y_col_off;
1019			uv_off = uv_row_off + uv_col_off;
1020
1021			u_off = y_size - y_off + uv_off;
1022			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1023			if (fmt->uv_swapped)
1024				swap(u_off, v_off);
1025
1026			image->tile[tile].offset = y_off;
1027			image->tile[tile].u_off = u_off;
1028			image->tile[tile++].v_off = v_off;
1029
1030			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1031				dev_err(priv->ipu->dev,
1032					"task %u: ctx %p: %s@[%d,%d]: "
1033					"y_off %08x, u_off %08x, v_off %08x\n",
1034					chan->ic_task, ctx,
1035					image->type == IMAGE_CONVERT_IN ?
1036					"Input" : "Output", row, col,
1037					y_off, u_off, v_off);
1038				return -EINVAL;
1039			}
1040		}
1041	}
1042
1043	return 0;
1044}
1045
1046static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1047				    struct ipu_image_convert_image *image)
1048{
1049	struct ipu_image_convert_chan *chan = ctx->chan;
1050	struct ipu_image_convert_priv *priv = chan->priv;
1051	const struct ipu_image_pixfmt *fmt = image->fmt;
1052	unsigned int row, col, tile = 0;
1053	u32 bpp, stride, offset;
1054	u32 row_off, col_off;
1055
1056	/* setup some convenience vars */
1057	stride = image->stride;
1058	bpp = fmt->bpp;
1059
1060	for (row = 0; row < image->num_rows; row++) {
1061		row_off = image->tile[tile].top * stride;
1062
1063		for (col = 0; col < image->num_cols; col++) {
1064			col_off = (image->tile[tile].left * bpp) >> 3;
1065
1066			offset = row_off + col_off;
1067
1068			image->tile[tile].offset = offset;
1069			image->tile[tile].u_off = 0;
1070			image->tile[tile++].v_off = 0;
1071
1072			if (offset & 0x7) {
1073				dev_err(priv->ipu->dev,
1074					"task %u: ctx %p: %s@[%d,%d]: "
1075					"phys %08x\n",
1076					chan->ic_task, ctx,
1077					image->type == IMAGE_CONVERT_IN ?
1078					"Input" : "Output", row, col,
1079					row_off + col_off);
1080				return -EINVAL;
1081			}
1082		}
1083	}
1084
1085	return 0;
1086}
1087
1088static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1089			      struct ipu_image_convert_image *image)
1090{
1091	if (image->fmt->planar)
1092		return calc_tile_offsets_planar(ctx, image);
1093
1094	return calc_tile_offsets_packed(ctx, image);
1095}
1096
1097/*
1098 * Calculate the resizing ratio for the IC main processing section given input
1099 * size, fixed downsizing coefficient, and output size.
1100 * Either round to closest for the next tile's first pixel to minimize seams
1101 * and distortion (for all but right column / bottom row), or round down to
1102 * avoid sampling beyond the edges of the input image for this tile's last
1103 * pixel.
1104 * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1105 */
1106static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1107			     u32 output_size, bool allow_overshoot)
1108{
1109	u32 downsized = input_size >> downsize_coeff;
1110
1111	if (allow_overshoot)
1112		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1113	else
1114		return 8192 * (downsized - 1) / (output_size - 1);
1115}
1116
1117/*
1118 * Slightly modify resize coefficients per tile to hide the bilinear
1119 * interpolator reset at tile borders, shifting the right / bottom edge
1120 * by up to a half input pixel. This removes noticeable seams between
1121 * tiles at higher upscaling factors.
1122 */
1123static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1124{
1125	struct ipu_image_convert_chan *chan = ctx->chan;
1126	struct ipu_image_convert_priv *priv = chan->priv;
1127	struct ipu_image_tile *in_tile, *out_tile;
1128	unsigned int col, row, tile_idx;
1129	unsigned int last_output;
1130
1131	for (col = 0; col < ctx->in.num_cols; col++) {
1132		bool closest = (col < ctx->in.num_cols - 1) &&
1133			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1134		u32 resized_width;
1135		u32 resize_coeff_h;
1136		u32 in_width;
1137
1138		tile_idx = col;
1139		in_tile = &ctx->in.tile[tile_idx];
1140		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1141
1142		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1143			resized_width = out_tile->height;
1144		else
1145			resized_width = out_tile->width;
1146
1147		resize_coeff_h = calc_resize_coeff(in_tile->width,
1148						   ctx->downsize_coeff_h,
1149						   resized_width, closest);
1150
1151		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1152			__func__, col, resize_coeff_h);
1153
1154		/*
1155		 * With the horizontal scaling factor known, round up resized
1156		 * width (output width or height) to burst size.
1157		 */
1158		resized_width = round_up(resized_width, 8);
1159
1160		/*
1161		 * Calculate input width from the last accessed input pixel
1162		 * given resized width and scaling coefficients. Round up to
1163		 * burst size.
1164		 */
1165		last_output = resized_width - 1;
1166		if (closest && ((last_output * resize_coeff_h) % 8192))
1167			last_output++;
1168		in_width = round_up(
1169			(DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1170			<< ctx->downsize_coeff_h, 8);
1171
1172		for (row = 0; row < ctx->in.num_rows; row++) {
1173			tile_idx = row * ctx->in.num_cols + col;
1174			in_tile = &ctx->in.tile[tile_idx];
1175			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1176
1177			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1178				out_tile->height = resized_width;
1179			else
1180				out_tile->width = resized_width;
1181
1182			in_tile->width = in_width;
1183		}
1184
1185		ctx->resize_coeffs_h[col] = resize_coeff_h;
1186	}
1187
1188	for (row = 0; row < ctx->in.num_rows; row++) {
1189		bool closest = (row < ctx->in.num_rows - 1) &&
1190			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1191		u32 resized_height;
1192		u32 resize_coeff_v;
1193		u32 in_height;
1194
1195		tile_idx = row * ctx->in.num_cols;
1196		in_tile = &ctx->in.tile[tile_idx];
1197		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1198
1199		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1200			resized_height = out_tile->width;
1201		else
1202			resized_height = out_tile->height;
1203
1204		resize_coeff_v = calc_resize_coeff(in_tile->height,
1205						   ctx->downsize_coeff_v,
1206						   resized_height, closest);
1207
1208		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1209			__func__, row, resize_coeff_v);
1210
1211		/*
1212		 * With the vertical scaling factor known, round up resized
1213		 * height (output width or height) to IDMAC limitations.
1214		 */
1215		resized_height = round_up(resized_height, 2);
1216
1217		/*
1218		 * Calculate input width from the last accessed input pixel
1219		 * given resized height and scaling coefficients. Align to
1220		 * IDMAC restrictions.
1221		 */
1222		last_output = resized_height - 1;
1223		if (closest && ((last_output * resize_coeff_v) % 8192))
1224			last_output++;
1225		in_height = round_up(
1226			(DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1227			<< ctx->downsize_coeff_v, 2);
1228
1229		for (col = 0; col < ctx->in.num_cols; col++) {
1230			tile_idx = row * ctx->in.num_cols + col;
1231			in_tile = &ctx->in.tile[tile_idx];
1232			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1233
1234			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1235				out_tile->width = resized_height;
1236			else
1237				out_tile->height = resized_height;
1238
1239			in_tile->height = in_height;
1240		}
1241
1242		ctx->resize_coeffs_v[row] = resize_coeff_v;
1243	}
1244}
1245
1246/*
1247 * return the number of runs in given queue (pending_q or done_q)
1248 * for this context. hold irqlock when calling.
1249 */
1250static int get_run_count(struct ipu_image_convert_ctx *ctx,
1251			 struct list_head *q)
1252{
1253	struct ipu_image_convert_run *run;
1254	int count = 0;
1255
1256	lockdep_assert_held(&ctx->chan->irqlock);
1257
1258	list_for_each_entry(run, q, list) {
1259		if (run->ctx == ctx)
1260			count++;
1261	}
1262
1263	return count;
1264}
1265
1266static void convert_stop(struct ipu_image_convert_run *run)
1267{
1268	struct ipu_image_convert_ctx *ctx = run->ctx;
1269	struct ipu_image_convert_chan *chan = ctx->chan;
1270	struct ipu_image_convert_priv *priv = chan->priv;
1271
1272	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1273		__func__, chan->ic_task, ctx, run);
1274
1275	/* disable IC tasks and the channels */
1276	ipu_ic_task_disable(chan->ic);
1277	ipu_idmac_disable_channel(chan->in_chan);
1278	ipu_idmac_disable_channel(chan->out_chan);
1279
1280	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1281		ipu_idmac_disable_channel(chan->rotation_in_chan);
1282		ipu_idmac_disable_channel(chan->rotation_out_chan);
1283		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1284	}
1285
1286	ipu_ic_disable(chan->ic);
1287}
1288
1289static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1290			       struct ipuv3_channel *channel,
1291			       struct ipu_image_convert_image *image,
1292			       enum ipu_rotate_mode rot_mode,
1293			       bool rot_swap_width_height,
1294			       unsigned int tile)
1295{
1296	struct ipu_image_convert_chan *chan = ctx->chan;
1297	unsigned int burst_size;
1298	u32 width, height, stride;
1299	dma_addr_t addr0, addr1 = 0;
1300	struct ipu_image tile_image;
1301	unsigned int tile_idx[2];
1302
1303	if (image->type == IMAGE_CONVERT_OUT) {
1304		tile_idx[0] = ctx->out_tile_map[tile];
1305		tile_idx[1] = ctx->out_tile_map[1];
1306	} else {
1307		tile_idx[0] = tile;
1308		tile_idx[1] = 1;
1309	}
1310
1311	if (rot_swap_width_height) {
1312		width = image->tile[tile_idx[0]].height;
1313		height = image->tile[tile_idx[0]].width;
1314		stride = image->tile[tile_idx[0]].rot_stride;
1315		addr0 = ctx->rot_intermediate[0].phys;
1316		if (ctx->double_buffering)
1317			addr1 = ctx->rot_intermediate[1].phys;
1318	} else {
1319		width = image->tile[tile_idx[0]].width;
1320		height = image->tile[tile_idx[0]].height;
1321		stride = image->stride;
1322		addr0 = image->base.phys0 +
1323			image->tile[tile_idx[0]].offset;
1324		if (ctx->double_buffering)
1325			addr1 = image->base.phys0 +
1326				image->tile[tile_idx[1]].offset;
1327	}
1328
1329	ipu_cpmem_zero(channel);
1330
1331	memset(&tile_image, 0, sizeof(tile_image));
1332	tile_image.pix.width = tile_image.rect.width = width;
1333	tile_image.pix.height = tile_image.rect.height = height;
1334	tile_image.pix.bytesperline = stride;
1335	tile_image.pix.pixelformat =  image->fmt->fourcc;
1336	tile_image.phys0 = addr0;
1337	tile_image.phys1 = addr1;
1338	if (image->fmt->planar && !rot_swap_width_height) {
1339		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1340		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1341	}
1342
1343	ipu_cpmem_set_image(channel, &tile_image);
1344
1345	if (rot_mode)
1346		ipu_cpmem_set_rotation(channel, rot_mode);
1347
1348	/*
1349	 * Skip writing U and V components to odd rows in the output
1350	 * channels for planar 4:2:0.
1351	 */
1352	if ((channel == chan->out_chan ||
1353	     channel == chan->rotation_out_chan) &&
1354	    image->fmt->planar && image->fmt->uv_height_dec == 2)
1355		ipu_cpmem_skip_odd_chroma_rows(channel);
1356
1357	if (channel == chan->rotation_in_chan ||
1358	    channel == chan->rotation_out_chan) {
1359		burst_size = 8;
1360		ipu_cpmem_set_block_mode(channel);
1361	} else
1362		burst_size = (width % 16) ? 8 : 16;
1363
1364	ipu_cpmem_set_burstsize(channel, burst_size);
1365
1366	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1367			      burst_size, rot_mode);
1368
1369	/*
1370	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1371	 * only do this when there is no PRG present.
1372	 */
1373	if (!channel->ipu->prg_priv)
1374		ipu_cpmem_set_axi_id(channel, 1);
1375
1376	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1377}
1378
1379static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1380{
1381	struct ipu_image_convert_ctx *ctx = run->ctx;
1382	struct ipu_image_convert_chan *chan = ctx->chan;
1383	struct ipu_image_convert_priv *priv = chan->priv;
1384	struct ipu_image_convert_image *s_image = &ctx->in;
1385	struct ipu_image_convert_image *d_image = &ctx->out;
1386	unsigned int dst_tile = ctx->out_tile_map[tile];
1387	unsigned int dest_width, dest_height;
1388	unsigned int col, row;
1389	u32 rsc;
1390	int ret;
1391
1392	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1393		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1394
1395	/* clear EOF irq mask */
1396	ctx->eof_mask = 0;
1397
1398	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1399		/* swap width/height for resizer */
1400		dest_width = d_image->tile[dst_tile].height;
1401		dest_height = d_image->tile[dst_tile].width;
1402	} else {
1403		dest_width = d_image->tile[dst_tile].width;
1404		dest_height = d_image->tile[dst_tile].height;
1405	}
1406
1407	row = tile / s_image->num_cols;
1408	col = tile % s_image->num_cols;
1409
1410	rsc =  (ctx->downsize_coeff_v << 30) |
1411	       (ctx->resize_coeffs_v[row] << 16) |
1412	       (ctx->downsize_coeff_h << 14) |
1413	       (ctx->resize_coeffs_h[col]);
1414
1415	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1416		__func__, s_image->tile[tile].width,
1417		s_image->tile[tile].height, dest_width, dest_height, rsc);
1418
1419	/* setup the IC resizer and CSC */
1420	ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1421				   s_image->tile[tile].width,
1422				   s_image->tile[tile].height,
1423				   dest_width,
1424				   dest_height,
1425				   rsc);
1426	if (ret) {
1427		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1428		return ret;
1429	}
1430
1431	/* init the source MEM-->IC PP IDMAC channel */
1432	init_idmac_channel(ctx, chan->in_chan, s_image,
1433			   IPU_ROTATE_NONE, false, tile);
1434
1435	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1436		/* init the IC PP-->MEM IDMAC channel */
1437		init_idmac_channel(ctx, chan->out_chan, d_image,
1438				   IPU_ROTATE_NONE, true, tile);
1439
1440		/* init the MEM-->IC PP ROT IDMAC channel */
1441		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1442				   ctx->rot_mode, true, tile);
1443
1444		/* init the destination IC PP ROT-->MEM IDMAC channel */
1445		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1446				   IPU_ROTATE_NONE, false, tile);
1447
1448		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1449		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1450	} else {
1451		/* init the destination IC PP-->MEM IDMAC channel */
1452		init_idmac_channel(ctx, chan->out_chan, d_image,
1453				   ctx->rot_mode, false, tile);
1454	}
1455
1456	/* enable the IC */
1457	ipu_ic_enable(chan->ic);
1458
1459	/* set buffers ready */
1460	ipu_idmac_select_buffer(chan->in_chan, 0);
1461	ipu_idmac_select_buffer(chan->out_chan, 0);
1462	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1463		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1464	if (ctx->double_buffering) {
1465		ipu_idmac_select_buffer(chan->in_chan, 1);
1466		ipu_idmac_select_buffer(chan->out_chan, 1);
1467		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1468			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1469	}
1470
1471	/* enable the channels! */
1472	ipu_idmac_enable_channel(chan->in_chan);
1473	ipu_idmac_enable_channel(chan->out_chan);
1474	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1475		ipu_idmac_enable_channel(chan->rotation_in_chan);
1476		ipu_idmac_enable_channel(chan->rotation_out_chan);
1477	}
1478
1479	ipu_ic_task_enable(chan->ic);
1480
1481	ipu_cpmem_dump(chan->in_chan);
1482	ipu_cpmem_dump(chan->out_chan);
1483	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1484		ipu_cpmem_dump(chan->rotation_in_chan);
1485		ipu_cpmem_dump(chan->rotation_out_chan);
1486	}
1487
1488	ipu_dump(priv->ipu);
1489
1490	return 0;
1491}
1492
1493/* hold irqlock when calling */
1494static int do_run(struct ipu_image_convert_run *run)
1495{
1496	struct ipu_image_convert_ctx *ctx = run->ctx;
1497	struct ipu_image_convert_chan *chan = ctx->chan;
1498
1499	lockdep_assert_held(&chan->irqlock);
1500
1501	ctx->in.base.phys0 = run->in_phys;
1502	ctx->out.base.phys0 = run->out_phys;
1503
1504	ctx->cur_buf_num = 0;
1505	ctx->next_tile = 1;
1506
1507	/* remove run from pending_q and set as current */
1508	list_del(&run->list);
1509	chan->current_run = run;
1510
1511	return convert_start(run, 0);
1512}
1513
1514/* hold irqlock when calling */
1515static void run_next(struct ipu_image_convert_chan *chan)
1516{
1517	struct ipu_image_convert_priv *priv = chan->priv;
1518	struct ipu_image_convert_run *run, *tmp;
1519	int ret;
1520
1521	lockdep_assert_held(&chan->irqlock);
1522
1523	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1524		/* skip contexts that are aborting */
1525		if (run->ctx->aborting) {
1526			dev_dbg(priv->ipu->dev,
1527				"%s: task %u: skipping aborting ctx %p run %p\n",
1528				__func__, chan->ic_task, run->ctx, run);
1529			continue;
1530		}
1531
1532		ret = do_run(run);
1533		if (!ret)
1534			break;
1535
1536		/*
1537		 * something went wrong with start, add the run
1538		 * to done q and continue to the next run in the
1539		 * pending q.
1540		 */
1541		run->status = ret;
1542		list_add_tail(&run->list, &chan->done_q);
1543		chan->current_run = NULL;
1544	}
1545}
1546
1547static void empty_done_q(struct ipu_image_convert_chan *chan)
1548{
1549	struct ipu_image_convert_priv *priv = chan->priv;
1550	struct ipu_image_convert_run *run;
1551	unsigned long flags;
1552
1553	spin_lock_irqsave(&chan->irqlock, flags);
1554
1555	while (!list_empty(&chan->done_q)) {
1556		run = list_entry(chan->done_q.next,
1557				 struct ipu_image_convert_run,
1558				 list);
1559
1560		list_del(&run->list);
1561
1562		dev_dbg(priv->ipu->dev,
1563			"%s: task %u: completing ctx %p run %p with %d\n",
1564			__func__, chan->ic_task, run->ctx, run, run->status);
1565
1566		/* call the completion callback and free the run */
1567		spin_unlock_irqrestore(&chan->irqlock, flags);
1568		run->ctx->complete(run, run->ctx->complete_context);
1569		spin_lock_irqsave(&chan->irqlock, flags);
1570	}
1571
1572	spin_unlock_irqrestore(&chan->irqlock, flags);
1573}
1574
1575/*
1576 * the bottom half thread clears out the done_q, calling the
1577 * completion handler for each.
1578 */
1579static irqreturn_t do_bh(int irq, void *dev_id)
1580{
1581	struct ipu_image_convert_chan *chan = dev_id;
1582	struct ipu_image_convert_priv *priv = chan->priv;
1583	struct ipu_image_convert_ctx *ctx;
1584	unsigned long flags;
1585
1586	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1587		chan->ic_task);
1588
1589	empty_done_q(chan);
1590
1591	spin_lock_irqsave(&chan->irqlock, flags);
1592
1593	/*
1594	 * the done_q is cleared out, signal any contexts
1595	 * that are aborting that abort can complete.
1596	 */
1597	list_for_each_entry(ctx, &chan->ctx_list, list) {
1598		if (ctx->aborting) {
1599			dev_dbg(priv->ipu->dev,
1600				"%s: task %u: signaling abort for ctx %p\n",
1601				__func__, chan->ic_task, ctx);
1602			complete_all(&ctx->aborted);
1603		}
1604	}
1605
1606	spin_unlock_irqrestore(&chan->irqlock, flags);
1607
1608	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1609		chan->ic_task);
1610
1611	return IRQ_HANDLED;
1612}
1613
1614static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1615{
1616	unsigned int cur_tile = ctx->next_tile - 1;
1617	unsigned int next_tile = ctx->next_tile;
1618
1619	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1620	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1621	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1622	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1623	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1624	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1625	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1626	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1627		return true;
1628
1629	return false;
1630}
1631
1632/* hold irqlock when calling */
1633static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run)
1634{
1635	struct ipu_image_convert_ctx *ctx = run->ctx;
1636	struct ipu_image_convert_chan *chan = ctx->chan;
1637	struct ipu_image_tile *src_tile, *dst_tile;
1638	struct ipu_image_convert_image *s_image = &ctx->in;
1639	struct ipu_image_convert_image *d_image = &ctx->out;
1640	struct ipuv3_channel *outch;
1641	unsigned int dst_idx;
1642
1643	lockdep_assert_held(&chan->irqlock);
1644
1645	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1646		chan->rotation_out_chan : chan->out_chan;
1647
1648	/*
1649	 * It is difficult to stop the channel DMA before the channels
1650	 * enter the paused state. Without double-buffering the channels
1651	 * are always in a paused state when the EOF irq occurs, so it
1652	 * is safe to stop the channels now. For double-buffering we
1653	 * just ignore the abort until the operation completes, when it
1654	 * is safe to shut down.
1655	 */
1656	if (ctx->aborting && !ctx->double_buffering) {
1657		convert_stop(run);
1658		run->status = -EIO;
1659		goto done;
1660	}
1661
1662	if (ctx->next_tile == ctx->num_tiles) {
1663		/*
1664		 * the conversion is complete
1665		 */
1666		convert_stop(run);
1667		run->status = 0;
1668		goto done;
1669	}
1670
1671	/*
1672	 * not done, place the next tile buffers.
1673	 */
1674	if (!ctx->double_buffering) {
1675		if (ic_settings_changed(ctx)) {
1676			convert_stop(run);
1677			convert_start(run, ctx->next_tile);
1678		} else {
1679			src_tile = &s_image->tile[ctx->next_tile];
1680			dst_idx = ctx->out_tile_map[ctx->next_tile];
1681			dst_tile = &d_image->tile[dst_idx];
1682
1683			ipu_cpmem_set_buffer(chan->in_chan, 0,
1684					     s_image->base.phys0 +
1685					     src_tile->offset);
1686			ipu_cpmem_set_buffer(outch, 0,
1687					     d_image->base.phys0 +
1688					     dst_tile->offset);
1689			if (s_image->fmt->planar)
1690				ipu_cpmem_set_uv_offset(chan->in_chan,
1691							src_tile->u_off,
1692							src_tile->v_off);
1693			if (d_image->fmt->planar)
1694				ipu_cpmem_set_uv_offset(outch,
1695							dst_tile->u_off,
1696							dst_tile->v_off);
1697
1698			ipu_idmac_select_buffer(chan->in_chan, 0);
1699			ipu_idmac_select_buffer(outch, 0);
1700		}
1701	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1702
1703		src_tile = &s_image->tile[ctx->next_tile + 1];
1704		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1705		dst_tile = &d_image->tile[dst_idx];
1706
1707		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1708				     s_image->base.phys0 + src_tile->offset);
1709		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1710				     d_image->base.phys0 + dst_tile->offset);
1711
1712		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1713		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1714
1715		ctx->cur_buf_num ^= 1;
1716	}
1717
1718	ctx->eof_mask = 0; /* clear EOF irq mask for next tile */
1719	ctx->next_tile++;
1720	return IRQ_HANDLED;
1721done:
1722	list_add_tail(&run->list, &chan->done_q);
1723	chan->current_run = NULL;
1724	run_next(chan);
1725	return IRQ_WAKE_THREAD;
1726}
1727
1728static irqreturn_t eof_irq(int irq, void *data)
1729{
1730	struct ipu_image_convert_chan *chan = data;
1731	struct ipu_image_convert_priv *priv = chan->priv;
1732	struct ipu_image_convert_ctx *ctx;
1733	struct ipu_image_convert_run *run;
1734	irqreturn_t ret = IRQ_HANDLED;
1735	bool tile_complete = false;
1736	unsigned long flags;
1737
1738	spin_lock_irqsave(&chan->irqlock, flags);
1739
1740	/* get current run and its context */
1741	run = chan->current_run;
1742	if (!run) {
1743		ret = IRQ_NONE;
1744		goto out;
1745	}
1746
1747	ctx = run->ctx;
1748
1749	if (irq == chan->in_eof_irq) {
1750		ctx->eof_mask |= EOF_IRQ_IN;
1751	} else if (irq == chan->out_eof_irq) {
1752		ctx->eof_mask |= EOF_IRQ_OUT;
1753	} else if (irq == chan->rot_in_eof_irq ||
1754		   irq == chan->rot_out_eof_irq) {
1755		if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1756			/* this was NOT a rotation op, shouldn't happen */
1757			dev_err(priv->ipu->dev,
1758				"Unexpected rotation interrupt\n");
1759			goto out;
1760		}
1761		ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ?
1762			EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT;
1763	} else {
1764		dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq);
1765		ret = IRQ_NONE;
1766		goto out;
1767	}
1768
1769	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1770		tile_complete =	(ctx->eof_mask == EOF_IRQ_ROT_COMPLETE);
1771	else
1772		tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE);
1773
1774	if (tile_complete)
1775		ret = do_tile_complete(run);
1776out:
1777	spin_unlock_irqrestore(&chan->irqlock, flags);
1778	return ret;
1779}
1780
1781/*
1782 * try to force the completion of runs for this ctx. Called when
1783 * abort wait times out in ipu_image_convert_abort().
1784 */
1785static void force_abort(struct ipu_image_convert_ctx *ctx)
1786{
1787	struct ipu_image_convert_chan *chan = ctx->chan;
1788	struct ipu_image_convert_run *run;
1789	unsigned long flags;
1790
1791	spin_lock_irqsave(&chan->irqlock, flags);
1792
1793	run = chan->current_run;
1794	if (run && run->ctx == ctx) {
1795		convert_stop(run);
1796		run->status = -EIO;
1797		list_add_tail(&run->list, &chan->done_q);
1798		chan->current_run = NULL;
1799		run_next(chan);
1800	}
1801
1802	spin_unlock_irqrestore(&chan->irqlock, flags);
1803
1804	empty_done_q(chan);
1805}
1806
1807static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1808{
1809	if (chan->in_eof_irq >= 0)
1810		free_irq(chan->in_eof_irq, chan);
1811	if (chan->rot_in_eof_irq >= 0)
1812		free_irq(chan->rot_in_eof_irq, chan);
1813	if (chan->out_eof_irq >= 0)
1814		free_irq(chan->out_eof_irq, chan);
1815	if (chan->rot_out_eof_irq >= 0)
1816		free_irq(chan->rot_out_eof_irq, chan);
1817
1818	if (!IS_ERR_OR_NULL(chan->in_chan))
1819		ipu_idmac_put(chan->in_chan);
1820	if (!IS_ERR_OR_NULL(chan->out_chan))
1821		ipu_idmac_put(chan->out_chan);
1822	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1823		ipu_idmac_put(chan->rotation_in_chan);
1824	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1825		ipu_idmac_put(chan->rotation_out_chan);
1826	if (!IS_ERR_OR_NULL(chan->ic))
1827		ipu_ic_put(chan->ic);
1828
1829	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1830		chan->rotation_out_chan = NULL;
1831	chan->in_eof_irq = -1;
1832	chan->rot_in_eof_irq = -1;
1833	chan->out_eof_irq = -1;
1834	chan->rot_out_eof_irq = -1;
1835}
1836
1837static int get_eof_irq(struct ipu_image_convert_chan *chan,
1838		       struct ipuv3_channel *channel)
1839{
1840	struct ipu_image_convert_priv *priv = chan->priv;
1841	int ret, irq;
1842
1843	irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF);
1844
1845	ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan);
1846	if (ret < 0) {
1847		dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq);
1848		return ret;
1849	}
1850
1851	return irq;
1852}
1853
1854static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1855{
1856	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1857	struct ipu_image_convert_priv *priv = chan->priv;
1858	int ret;
1859
1860	/* get IC */
1861	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1862	if (IS_ERR(chan->ic)) {
1863		dev_err(priv->ipu->dev, "could not acquire IC\n");
1864		ret = PTR_ERR(chan->ic);
1865		goto err;
1866	}
1867
1868	/* get IDMAC channels */
1869	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1870	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1871	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1872		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1873		ret = -EBUSY;
1874		goto err;
1875	}
1876
1877	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1878	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1879	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1880		dev_err(priv->ipu->dev,
1881			"could not acquire idmac rotation channels\n");
1882		ret = -EBUSY;
1883		goto err;
1884	}
1885
1886	/* acquire the EOF interrupts */
1887	ret = get_eof_irq(chan, chan->in_chan);
1888	if (ret < 0) {
1889		chan->in_eof_irq = -1;
1890		goto err;
1891	}
1892	chan->in_eof_irq = ret;
1893
1894	ret = get_eof_irq(chan, chan->rotation_in_chan);
1895	if (ret < 0) {
1896		chan->rot_in_eof_irq = -1;
1897		goto err;
1898	}
1899	chan->rot_in_eof_irq = ret;
1900
1901	ret = get_eof_irq(chan, chan->out_chan);
1902	if (ret < 0) {
1903		chan->out_eof_irq = -1;
1904		goto err;
1905	}
1906	chan->out_eof_irq = ret;
1907
1908	ret = get_eof_irq(chan, chan->rotation_out_chan);
1909	if (ret < 0) {
1910		chan->rot_out_eof_irq = -1;
1911		goto err;
1912	}
1913	chan->rot_out_eof_irq = ret;
1914
1915	return 0;
1916err:
1917	release_ipu_resources(chan);
1918	return ret;
1919}
1920
1921static int fill_image(struct ipu_image_convert_ctx *ctx,
1922		      struct ipu_image_convert_image *ic_image,
1923		      struct ipu_image *image,
1924		      enum ipu_image_convert_type type)
1925{
1926	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1927
1928	ic_image->base = *image;
1929	ic_image->type = type;
1930
1931	ic_image->fmt = get_format(image->pix.pixelformat);
1932	if (!ic_image->fmt) {
1933		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1934			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1935		return -EINVAL;
1936	}
1937
1938	if (ic_image->fmt->planar)
1939		ic_image->stride = ic_image->base.pix.width;
1940	else
1941		ic_image->stride  = ic_image->base.pix.bytesperline;
1942
1943	return 0;
1944}
1945
1946/* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1947static unsigned int clamp_align(unsigned int x, unsigned int min,
1948				unsigned int max, unsigned int align)
1949{
1950	/* Bits that must be zero to be aligned */
1951	unsigned int mask = ~((1 << align) - 1);
1952
1953	/* Clamp to aligned min and max */
1954	x = clamp(x, (min + ~mask) & mask, max & mask);
1955
1956	/* Round to nearest aligned value */
1957	if (align)
1958		x = (x + (1 << (align - 1))) & mask;
1959
1960	return x;
1961}
1962
1963/* Adjusts input/output images to IPU restrictions */
1964void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1965			      enum ipu_rotate_mode rot_mode)
1966{
1967	const struct ipu_image_pixfmt *infmt, *outfmt;
1968	u32 w_align_out, h_align_out;
1969	u32 w_align_in, h_align_in;
1970
1971	infmt = get_format(in->pix.pixelformat);
1972	outfmt = get_format(out->pix.pixelformat);
1973
1974	/* set some default pixel formats if needed */
1975	if (!infmt) {
1976		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1977		infmt = get_format(V4L2_PIX_FMT_RGB24);
1978	}
1979	if (!outfmt) {
1980		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1981		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1982	}
1983
1984	/* image converter does not handle fields */
1985	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1986
1987	/* resizer cannot downsize more than 4:1 */
1988	if (ipu_rot_mode_is_irt(rot_mode)) {
1989		out->pix.height = max_t(__u32, out->pix.height,
1990					in->pix.width / 4);
1991		out->pix.width = max_t(__u32, out->pix.width,
1992				       in->pix.height / 4);
1993	} else {
1994		out->pix.width = max_t(__u32, out->pix.width,
1995				       in->pix.width / 4);
1996		out->pix.height = max_t(__u32, out->pix.height,
1997					in->pix.height / 4);
1998	}
1999
2000	/* align input width/height */
2001	w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
2002					    rot_mode));
2003	h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
2004					     rot_mode));
2005	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
2006				    w_align_in);
2007	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
2008				     h_align_in);
2009
2010	/* align output width/height */
2011	w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
2012					     rot_mode));
2013	h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
2014					      rot_mode));
2015	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
2016				     w_align_out);
2017	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
2018				      h_align_out);
2019
2020	/* set input/output strides and image sizes */
2021	in->pix.bytesperline = infmt->planar ?
2022		clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
2023			    w_align_in) :
2024		clamp_align((in->pix.width * infmt->bpp) >> 3,
2025			    ((2 << w_align_in) * infmt->bpp) >> 3,
2026			    (MAX_W * infmt->bpp) >> 3,
2027			    w_align_in);
2028	in->pix.sizeimage = infmt->planar ?
2029		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
2030		in->pix.height * in->pix.bytesperline;
2031	out->pix.bytesperline = outfmt->planar ? out->pix.width :
2032		(out->pix.width * outfmt->bpp) >> 3;
2033	out->pix.sizeimage = outfmt->planar ?
2034		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2035		out->pix.height * out->pix.bytesperline;
2036}
2037EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2038
2039/*
2040 * this is used by ipu_image_convert_prepare() to verify set input and
2041 * output images are valid before starting the conversion. Clients can
2042 * also call it before calling ipu_image_convert_prepare().
2043 */
2044int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2045			     enum ipu_rotate_mode rot_mode)
2046{
2047	struct ipu_image testin, testout;
2048
2049	testin = *in;
2050	testout = *out;
2051
2052	ipu_image_convert_adjust(&testin, &testout, rot_mode);
2053
2054	if (testin.pix.width != in->pix.width ||
2055	    testin.pix.height != in->pix.height ||
2056	    testout.pix.width != out->pix.width ||
2057	    testout.pix.height != out->pix.height)
2058		return -EINVAL;
2059
2060	return 0;
2061}
2062EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2063
2064/*
2065 * Call ipu_image_convert_prepare() to prepare for the conversion of
2066 * given images and rotation mode. Returns a new conversion context.
2067 */
2068struct ipu_image_convert_ctx *
2069ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2070			  struct ipu_image *in, struct ipu_image *out,
2071			  enum ipu_rotate_mode rot_mode,
2072			  ipu_image_convert_cb_t complete,
2073			  void *complete_context)
2074{
2075	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2076	struct ipu_image_convert_image *s_image, *d_image;
2077	struct ipu_image_convert_chan *chan;
2078	struct ipu_image_convert_ctx *ctx;
2079	unsigned long flags;
2080	unsigned int i;
2081	bool get_res;
2082	int ret;
2083
2084	if (!in || !out || !complete ||
2085	    (ic_task != IC_TASK_VIEWFINDER &&
2086	     ic_task != IC_TASK_POST_PROCESSOR))
2087		return ERR_PTR(-EINVAL);
2088
2089	/* verify the in/out images before continuing */
2090	ret = ipu_image_convert_verify(in, out, rot_mode);
2091	if (ret) {
2092		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2093			__func__);
2094		return ERR_PTR(ret);
2095	}
2096
2097	chan = &priv->chan[ic_task];
2098
2099	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2100	if (!ctx)
2101		return ERR_PTR(-ENOMEM);
2102
2103	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2104		chan->ic_task, ctx);
2105
2106	ctx->chan = chan;
2107	init_completion(&ctx->aborted);
2108
2109	ctx->rot_mode = rot_mode;
2110
2111	/* Sets ctx->in.num_rows/cols as well */
2112	ret = calc_image_resize_coefficients(ctx, in, out);
2113	if (ret)
2114		goto out_free;
2115
2116	s_image = &ctx->in;
2117	d_image = &ctx->out;
2118
2119	/* set tiling and rotation */
2120	if (ipu_rot_mode_is_irt(rot_mode)) {
2121		d_image->num_rows = s_image->num_cols;
2122		d_image->num_cols = s_image->num_rows;
2123	} else {
2124		d_image->num_rows = s_image->num_rows;
2125		d_image->num_cols = s_image->num_cols;
2126	}
2127
2128	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2129
2130	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2131	if (ret)
2132		goto out_free;
2133	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2134	if (ret)
2135		goto out_free;
2136
2137	calc_out_tile_map(ctx);
2138
2139	find_seams(ctx, s_image, d_image);
2140
2141	ret = calc_tile_dimensions(ctx, s_image);
2142	if (ret)
2143		goto out_free;
2144
2145	ret = calc_tile_offsets(ctx, s_image);
2146	if (ret)
2147		goto out_free;
2148
2149	calc_tile_dimensions(ctx, d_image);
2150	ret = calc_tile_offsets(ctx, d_image);
2151	if (ret)
2152		goto out_free;
2153
2154	calc_tile_resize_coefficients(ctx);
2155
2156	ret = ipu_ic_calc_csc(&ctx->csc,
2157			s_image->base.pix.ycbcr_enc,
2158			s_image->base.pix.quantization,
2159			ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2160			d_image->base.pix.ycbcr_enc,
2161			d_image->base.pix.quantization,
2162			ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2163	if (ret)
2164		goto out_free;
2165
2166	dump_format(ctx, s_image);
2167	dump_format(ctx, d_image);
2168
2169	ctx->complete = complete;
2170	ctx->complete_context = complete_context;
2171
2172	/*
2173	 * Can we use double-buffering for this operation? If there is
2174	 * only one tile (the whole image can be converted in a single
2175	 * operation) there's no point in using double-buffering. Also,
2176	 * the IPU's IDMAC channels allow only a single U and V plane
2177	 * offset shared between both buffers, but these offsets change
2178	 * for every tile, and therefore would have to be updated for
2179	 * each buffer which is not possible. So double-buffering is
2180	 * impossible when either the source or destination images are
2181	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2182	 * sized tiles or different resizing coefficients per tile
2183	 * prevent double-buffering as well.
2184	 */
2185	ctx->double_buffering = (ctx->num_tiles > 1 &&
2186				 !s_image->fmt->planar &&
2187				 !d_image->fmt->planar);
2188	for (i = 1; i < ctx->num_tiles; i++) {
2189		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2190		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2191		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2192		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2193			ctx->double_buffering = false;
2194			break;
2195		}
2196	}
2197	for (i = 1; i < ctx->in.num_cols; i++) {
2198		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2199			ctx->double_buffering = false;
2200			break;
2201		}
2202	}
2203	for (i = 1; i < ctx->in.num_rows; i++) {
2204		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2205			ctx->double_buffering = false;
2206			break;
2207		}
2208	}
2209
2210	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2211		unsigned long intermediate_size = d_image->tile[0].size;
2212
2213		for (i = 1; i < ctx->num_tiles; i++) {
2214			if (d_image->tile[i].size > intermediate_size)
2215				intermediate_size = d_image->tile[i].size;
2216		}
2217
2218		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2219				    intermediate_size);
2220		if (ret)
2221			goto out_free;
2222		if (ctx->double_buffering) {
2223			ret = alloc_dma_buf(priv,
2224					    &ctx->rot_intermediate[1],
2225					    intermediate_size);
2226			if (ret)
2227				goto out_free_dmabuf0;
2228		}
2229	}
2230
2231	spin_lock_irqsave(&chan->irqlock, flags);
2232
2233	get_res = list_empty(&chan->ctx_list);
2234
2235	list_add_tail(&ctx->list, &chan->ctx_list);
2236
2237	spin_unlock_irqrestore(&chan->irqlock, flags);
2238
2239	if (get_res) {
2240		ret = get_ipu_resources(chan);
2241		if (ret)
2242			goto out_free_dmabuf1;
2243	}
2244
2245	return ctx;
2246
2247out_free_dmabuf1:
2248	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2249	spin_lock_irqsave(&chan->irqlock, flags);
2250	list_del(&ctx->list);
2251	spin_unlock_irqrestore(&chan->irqlock, flags);
2252out_free_dmabuf0:
2253	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2254out_free:
2255	kfree(ctx);
2256	return ERR_PTR(ret);
2257}
2258EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2259
2260/*
2261 * Carry out a single image conversion run. Only the physaddr's of the input
2262 * and output image buffers are needed. The conversion context must have
2263 * been created previously with ipu_image_convert_prepare().
2264 */
2265int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2266{
2267	struct ipu_image_convert_chan *chan;
2268	struct ipu_image_convert_priv *priv;
2269	struct ipu_image_convert_ctx *ctx;
2270	unsigned long flags;
2271	int ret = 0;
2272
2273	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2274		return -EINVAL;
2275
2276	ctx = run->ctx;
2277	chan = ctx->chan;
2278	priv = chan->priv;
2279
2280	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2281		chan->ic_task, ctx, run);
2282
2283	INIT_LIST_HEAD(&run->list);
2284
2285	spin_lock_irqsave(&chan->irqlock, flags);
2286
2287	if (ctx->aborting) {
2288		ret = -EIO;
2289		goto unlock;
2290	}
2291
2292	list_add_tail(&run->list, &chan->pending_q);
2293
2294	if (!chan->current_run) {
2295		ret = do_run(run);
2296		if (ret)
2297			chan->current_run = NULL;
2298	}
2299unlock:
2300	spin_unlock_irqrestore(&chan->irqlock, flags);
2301	return ret;
2302}
2303EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2304
2305/* Abort any active or pending conversions for this context */
2306static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2307{
2308	struct ipu_image_convert_chan *chan = ctx->chan;
2309	struct ipu_image_convert_priv *priv = chan->priv;
2310	struct ipu_image_convert_run *run, *active_run, *tmp;
2311	unsigned long flags;
2312	int run_count, ret;
2313
2314	spin_lock_irqsave(&chan->irqlock, flags);
2315
2316	/* move all remaining pending runs in this context to done_q */
2317	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2318		if (run->ctx != ctx)
2319			continue;
2320		run->status = -EIO;
2321		list_move_tail(&run->list, &chan->done_q);
2322	}
2323
2324	run_count = get_run_count(ctx, &chan->done_q);
2325	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2326		chan->current_run : NULL;
2327
2328	if (active_run)
2329		reinit_completion(&ctx->aborted);
2330
2331	ctx->aborting = true;
2332
2333	spin_unlock_irqrestore(&chan->irqlock, flags);
2334
2335	if (!run_count && !active_run) {
2336		dev_dbg(priv->ipu->dev,
2337			"%s: task %u: no abort needed for ctx %p\n",
2338			__func__, chan->ic_task, ctx);
2339		return;
2340	}
2341
2342	if (!active_run) {
2343		empty_done_q(chan);
2344		return;
2345	}
2346
2347	dev_dbg(priv->ipu->dev,
2348		"%s: task %u: wait for completion: %d runs\n",
2349		__func__, chan->ic_task, run_count);
2350
2351	ret = wait_for_completion_timeout(&ctx->aborted,
2352					  msecs_to_jiffies(10000));
2353	if (ret == 0) {
2354		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2355		force_abort(ctx);
2356	}
2357}
2358
2359void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2360{
2361	__ipu_image_convert_abort(ctx);
2362	ctx->aborting = false;
2363}
2364EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2365
2366/* Unprepare image conversion context */
2367void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2368{
2369	struct ipu_image_convert_chan *chan = ctx->chan;
2370	struct ipu_image_convert_priv *priv = chan->priv;
2371	unsigned long flags;
2372	bool put_res;
2373
2374	/* make sure no runs are hanging around */
2375	__ipu_image_convert_abort(ctx);
2376
2377	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2378		chan->ic_task, ctx);
2379
2380	spin_lock_irqsave(&chan->irqlock, flags);
2381
2382	list_del(&ctx->list);
2383
2384	put_res = list_empty(&chan->ctx_list);
2385
2386	spin_unlock_irqrestore(&chan->irqlock, flags);
2387
2388	if (put_res)
2389		release_ipu_resources(chan);
2390
2391	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2392	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2393
2394	kfree(ctx);
2395}
2396EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2397
2398/*
2399 * "Canned" asynchronous single image conversion. Allocates and returns
2400 * a new conversion run.  On successful return the caller must free the
2401 * run and call ipu_image_convert_unprepare() after conversion completes.
2402 */
2403struct ipu_image_convert_run *
2404ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2405		  struct ipu_image *in, struct ipu_image *out,
2406		  enum ipu_rotate_mode rot_mode,
2407		  ipu_image_convert_cb_t complete,
2408		  void *complete_context)
2409{
2410	struct ipu_image_convert_ctx *ctx;
2411	struct ipu_image_convert_run *run;
2412	int ret;
2413
2414	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2415					complete, complete_context);
2416	if (IS_ERR(ctx))
2417		return ERR_CAST(ctx);
2418
2419	run = kzalloc(sizeof(*run), GFP_KERNEL);
2420	if (!run) {
2421		ipu_image_convert_unprepare(ctx);
2422		return ERR_PTR(-ENOMEM);
2423	}
2424
2425	run->ctx = ctx;
2426	run->in_phys = in->phys0;
2427	run->out_phys = out->phys0;
2428
2429	ret = ipu_image_convert_queue(run);
2430	if (ret) {
2431		ipu_image_convert_unprepare(ctx);
2432		kfree(run);
2433		return ERR_PTR(ret);
2434	}
2435
2436	return run;
2437}
2438EXPORT_SYMBOL_GPL(ipu_image_convert);
2439
2440/* "Canned" synchronous single image conversion */
2441static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2442					void *data)
2443{
2444	struct completion *comp = data;
2445
2446	complete(comp);
2447}
2448
2449int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2450			   struct ipu_image *in, struct ipu_image *out,
2451			   enum ipu_rotate_mode rot_mode)
2452{
2453	struct ipu_image_convert_run *run;
2454	struct completion comp;
2455	int ret;
2456
2457	init_completion(&comp);
2458
2459	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2460				image_convert_sync_complete, &comp);
2461	if (IS_ERR(run))
2462		return PTR_ERR(run);
2463
2464	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2465	ret = (ret == 0) ? -ETIMEDOUT : 0;
2466
2467	ipu_image_convert_unprepare(run->ctx);
2468	kfree(run);
2469
2470	return ret;
2471}
2472EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2473
2474int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2475{
2476	struct ipu_image_convert_priv *priv;
2477	int i;
2478
2479	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2480	if (!priv)
2481		return -ENOMEM;
2482
2483	ipu->image_convert_priv = priv;
2484	priv->ipu = ipu;
2485
2486	for (i = 0; i < IC_NUM_TASKS; i++) {
2487		struct ipu_image_convert_chan *chan = &priv->chan[i];
2488
2489		chan->ic_task = i;
2490		chan->priv = priv;
2491		chan->dma_ch = &image_convert_dma_chan[i];
2492		chan->in_eof_irq = -1;
2493		chan->rot_in_eof_irq = -1;
2494		chan->out_eof_irq = -1;
2495		chan->rot_out_eof_irq = -1;
2496
2497		spin_lock_init(&chan->irqlock);
2498		INIT_LIST_HEAD(&chan->ctx_list);
2499		INIT_LIST_HEAD(&chan->pending_q);
2500		INIT_LIST_HEAD(&chan->done_q);
2501	}
2502
2503	return 0;
2504}
2505
2506void ipu_image_convert_exit(struct ipu_soc *ipu)
2507{
2508}
2509