1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2022 Intel Corporation
4 */
5
6#include "xe_gt_mcr.h"
7
8#include "regs/xe_gt_regs.h"
9#include "xe_gt.h"
10#include "xe_gt_topology.h"
11#include "xe_gt_types.h"
12#include "xe_mmio.h"
13#include "xe_sriov.h"
14
15/**
16 * DOC: GT Multicast/Replicated (MCR) Register Support
17 *
18 * Some GT registers are designed as "multicast" or "replicated" registers:
19 * multiple instances of the same register share a single MMIO offset.  MCR
20 * registers are generally used when the hardware needs to potentially track
21 * independent values of a register per hardware unit (e.g., per-subslice,
22 * per-L3bank, etc.).  The specific types of replication that exist vary
23 * per-platform.
24 *
25 * MMIO accesses to MCR registers are controlled according to the settings
26 * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
27 * registers can be done in either multicast (a single write updates all
28 * instances of the register to the same value) or unicast (a write updates only
29 * one specific instance) form.  Reads of MCR registers always operate in a
30 * unicast manner regardless of how the multicast/unicast bit is set in
31 * MCR_SELECTOR.  Selection of a specific MCR instance for unicast operations is
32 * referred to as "steering."
33 *
34 * If MCR register operations are steered toward a hardware unit that is
35 * fused off or currently powered down due to power gating, the MMIO operation
36 * is "terminated" by the hardware.  Terminated read operations will return a
37 * value of zero and terminated unicast write operations will be silently
38 * ignored. During device initialization, the goal of the various
39 * ``init_steering_*()`` functions is to apply the platform-specific rules for
40 * each MCR register type to identify a steering target that will select a
41 * non-terminated instance.
42 *
43 * MCR registers are not available on Virtual Function (VF).
44 */
45
46#define STEER_SEMAPHORE		XE_REG(0xFD0)
47
48static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr)
49{
50	return reg_mcr.__reg;
51}
52
53enum {
54	MCR_OP_READ,
55	MCR_OP_WRITE
56};
57
58static const struct xe_mmio_range xelp_l3bank_steering_table[] = {
59	{ 0x00B100, 0x00B3FF },
60	{},
61};
62
63static const struct xe_mmio_range xehp_l3bank_steering_table[] = {
64	{ 0x008C80, 0x008CFF },
65	{ 0x00B100, 0x00B3FF },
66	{},
67};
68
69/*
70 * Although the bspec lists more "MSLICE" ranges than shown here, some of those
71 * are of a "GAM" subclass that has special rules and doesn't need to be
72 * included here.
73 */
74static const struct xe_mmio_range xehp_mslice_steering_table[] = {
75	{ 0x00DD00, 0x00DDFF },
76	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
77	{},
78};
79
80static const struct xe_mmio_range xehp_lncf_steering_table[] = {
81	{ 0x00B000, 0x00B0FF },
82	{ 0x00D880, 0x00D8FF },
83	{},
84};
85
86/*
87 * We have several types of MCR registers where steering to (0,0) will always
88 * provide us with a non-terminated value.  We'll stick them all in the same
89 * table for simplicity.
90 */
91static const struct xe_mmio_range xehpc_instance0_steering_table[] = {
92	{ 0x004000, 0x004AFF },		/* HALF-BSLICE */
93	{ 0x008800, 0x00887F },		/* CC */
94	{ 0x008A80, 0x008AFF },		/* TILEPSMI */
95	{ 0x00B000, 0x00B0FF },		/* HALF-BSLICE */
96	{ 0x00B100, 0x00B3FF },		/* L3BANK */
97	{ 0x00C800, 0x00CFFF },		/* HALF-BSLICE */
98	{ 0x00D800, 0x00D8FF },		/* HALF-BSLICE */
99	{ 0x00DD00, 0x00DDFF },		/* BSLICE */
100	{ 0x00E900, 0x00E9FF },		/* HALF-BSLICE */
101	{ 0x00EC00, 0x00EEFF },		/* HALF-BSLICE */
102	{ 0x00F000, 0x00FFFF },		/* HALF-BSLICE */
103	{ 0x024180, 0x0241FF },		/* HALF-BSLICE */
104	{},
105};
106
107static const struct xe_mmio_range xelpg_instance0_steering_table[] = {
108	{ 0x000B00, 0x000BFF },         /* SQIDI */
109	{ 0x001000, 0x001FFF },         /* SQIDI */
110	{ 0x004000, 0x0048FF },         /* GAM */
111	{ 0x008700, 0x0087FF },         /* SQIDI */
112	{ 0x00B000, 0x00B0FF },         /* NODE */
113	{ 0x00C800, 0x00CFFF },         /* GAM */
114	{ 0x00D880, 0x00D8FF },         /* NODE */
115	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
116	{},
117};
118
119static const struct xe_mmio_range xelpg_l3bank_steering_table[] = {
120	{ 0x00B100, 0x00B3FF },
121	{},
122};
123
124static const struct xe_mmio_range xelp_dss_steering_table[] = {
125	{ 0x008150, 0x00815F },
126	{ 0x009520, 0x00955F },
127	{ 0x00DE80, 0x00E8FF },
128	{ 0x024A00, 0x024A7F },
129	{},
130};
131
132/* DSS steering is used for GSLICE ranges as well */
133static const struct xe_mmio_range xehp_dss_steering_table[] = {
134	{ 0x005200, 0x0052FF },		/* GSLICE */
135	{ 0x005400, 0x007FFF },		/* GSLICE */
136	{ 0x008140, 0x00815F },		/* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
137	{ 0x008D00, 0x008DFF },		/* DSS */
138	{ 0x0094D0, 0x00955F },		/* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
139	{ 0x009680, 0x0096FF },		/* DSS */
140	{ 0x00D800, 0x00D87F },		/* GSLICE */
141	{ 0x00DC00, 0x00DCFF },		/* GSLICE */
142	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved ) */
143	{ 0x017000, 0x017FFF },		/* GSLICE */
144	{ 0x024A00, 0x024A7F },		/* DSS */
145	{},
146};
147
148/* DSS steering is used for COMPUTE ranges as well */
149static const struct xe_mmio_range xehpc_dss_steering_table[] = {
150	{ 0x008140, 0x00817F },		/* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */
151	{ 0x0094D0, 0x00955F },		/* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */
152	{ 0x009680, 0x0096FF },		/* DSS */
153	{ 0x00DC00, 0x00DCFF },		/* COMPUTE */
154	{ 0x00DE80, 0x00E7FF },		/* DSS (0xDF00-0xE1FF reserved ) */
155	{},
156};
157
158/* DSS steering is used for SLICE ranges as well */
159static const struct xe_mmio_range xelpg_dss_steering_table[] = {
160	{ 0x005200, 0x0052FF },		/* SLICE */
161	{ 0x005500, 0x007FFF },		/* SLICE */
162	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
163	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
164	{ 0x009680, 0x0096FF },		/* DSS */
165	{ 0x00D800, 0x00D87F },		/* SLICE */
166	{ 0x00DC00, 0x00DCFF },		/* SLICE */
167	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
168	{},
169};
170
171static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = {
172	{ 0x393200, 0x39323F },
173	{ 0x393400, 0x3934FF },
174	{},
175};
176
177static const struct xe_mmio_range dg2_implicit_steering_table[] = {
178	{ 0x000B00, 0x000BFF },		/* SF (SQIDI replication) */
179	{ 0x001000, 0x001FFF },		/* SF (SQIDI replication) */
180	{ 0x004000, 0x004AFF },		/* GAM (MSLICE replication) */
181	{ 0x008700, 0x0087FF },		/* MCFG (SQIDI replication) */
182	{ 0x00C800, 0x00CFFF },		/* GAM (MSLICE replication) */
183	{ 0x00F000, 0x00FFFF },		/* GAM (MSLICE replication) */
184	{},
185};
186
187static const struct xe_mmio_range xe2lpg_dss_steering_table[] = {
188	{ 0x005200, 0x0052FF },         /* SLICE */
189	{ 0x005500, 0x007FFF },         /* SLICE */
190	{ 0x008140, 0x00815F },         /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
191	{ 0x0094D0, 0x00955F },         /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
192	{ 0x009680, 0x0096FF },         /* DSS */
193	{ 0x00D800, 0x00D87F },         /* SLICE */
194	{ 0x00DC00, 0x00DCFF },         /* SLICE */
195	{ 0x00DE80, 0x00E8FF },         /* DSS (0xE000-0xE0FF reserved) */
196	{ 0x00E980, 0x00E9FF },         /* SLICE */
197	{ 0x013000, 0x0133FF },         /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */
198	{},
199};
200
201static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = {
202	{ 0x000B00, 0x000BFF },
203	{ 0x001000, 0x001FFF },
204	{},
205};
206
207static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = {
208	{ 0x004000, 0x004AFF },         /* GAM, rsvd, GAMWKR */
209	{ 0x008700, 0x00887F },         /* SQIDI, MEMPIPE */
210	{ 0x00B000, 0x00B3FF },         /* NODE, L3BANK */
211	{ 0x00C800, 0x00CFFF },         /* GAM */
212	{ 0x00D880, 0x00D8FF },         /* NODE */
213	{ 0x00DD00, 0x00DDFF },         /* MEMPIPE */
214	{ 0x00E900, 0x00E97F },         /* MEMPIPE */
215	{ 0x00F000, 0x00FFFF },         /* GAM, GAMWKR */
216	{ 0x013400, 0x0135FF },         /* MEMPIPE */
217	{},
218};
219
220static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = {
221	{ 0x388160, 0x38817F },
222	{ 0x389480, 0x3894CF },
223	{},
224};
225
226static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = {
227	{ 0x384000, 0x3847DF },         /* GAM, rsvd, GAM */
228	{ 0x384900, 0x384AFF },         /* GAM */
229	{ 0x389560, 0x3895FF },         /* MEDIAINF */
230	{ 0x38B600, 0x38B8FF },         /* L3BANK */
231	{ 0x38C800, 0x38D07F },         /* GAM, MEDIAINF */
232	{ 0x38F000, 0x38F0FF },         /* GAM */
233	{ 0x393C00, 0x393C7F },         /* MEDIAINF */
234	{},
235};
236
237static void init_steering_l3bank(struct xe_gt *gt)
238{
239	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
240		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
241						xe_mmio_read32(gt, MIRROR_FUSE3));
242		u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK,
243					      xe_mmio_read32(gt, XEHP_FUSE4));
244
245		/*
246		 * Group selects mslice, instance selects bank within mslice.
247		 * Bank 0 is always valid _except_ when the bank mask is 010b.
248		 */
249		gt->steering[L3BANK].group_target = __ffs(mslice_mask);
250		gt->steering[L3BANK].instance_target =
251			bank_mask & BIT(0) ? 0 : 2;
252	} else if (gt_to_xe(gt)->info.platform == XE_DG2) {
253		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
254						xe_mmio_read32(gt, MIRROR_FUSE3));
255		u32 bank = __ffs(mslice_mask) * 8;
256
257		/*
258		 * Like mslice registers, look for a valid mslice and steer to
259		 * the first L3BANK of that quad. Access to the Nth L3 bank is
260		 * split between the first bits of group and instance
261		 */
262		gt->steering[L3BANK].group_target = (bank >> 2) & 0x7;
263		gt->steering[L3BANK].instance_target = bank & 0x3;
264	} else {
265		u32 fuse = REG_FIELD_GET(L3BANK_MASK,
266					 ~xe_mmio_read32(gt, MIRROR_FUSE3));
267
268		gt->steering[L3BANK].group_target = 0;	/* unused */
269		gt->steering[L3BANK].instance_target = __ffs(fuse);
270	}
271}
272
273static void init_steering_mslice(struct xe_gt *gt)
274{
275	u32 mask = REG_FIELD_GET(MEML3_EN_MASK,
276				 xe_mmio_read32(gt, MIRROR_FUSE3));
277
278	/*
279	 * mslice registers are valid (not terminated) if either the meml3
280	 * associated with the mslice is present, or at least one DSS associated
281	 * with the mslice is present.  There will always be at least one meml3
282	 * so we can just use that to find a non-terminated mslice and ignore
283	 * the DSS fusing.
284	 */
285	gt->steering[MSLICE].group_target = __ffs(mask);
286	gt->steering[MSLICE].instance_target = 0;	/* unused */
287
288	/*
289	 * LNCF termination is also based on mslice presence, so we'll set
290	 * it up here.  Either LNCF within a non-terminated mslice will work,
291	 * so we just always pick LNCF 0 here.
292	 */
293	gt->steering[LNCF].group_target = __ffs(mask) << 1;
294	gt->steering[LNCF].instance_target = 0;		/* unused */
295}
296
297static void init_steering_dss(struct xe_gt *gt)
298{
299	unsigned int dss = min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0),
300			       xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0));
301	unsigned int dss_per_grp = gt_to_xe(gt)->info.platform == XE_PVC ? 8 : 4;
302
303	gt->steering[DSS].group_target = dss / dss_per_grp;
304	gt->steering[DSS].instance_target = dss % dss_per_grp;
305}
306
307static void init_steering_oaddrm(struct xe_gt *gt)
308{
309	/*
310	 * First instance is only terminated if the entire first media slice
311	 * is absent (i.e., no VCS0 or VECS0).
312	 */
313	if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0))
314		gt->steering[OADDRM].group_target = 0;
315	else
316		gt->steering[OADDRM].group_target = 1;
317
318	gt->steering[DSS].instance_target = 0;		/* unused */
319}
320
321static void init_steering_sqidi_psmi(struct xe_gt *gt)
322{
323	u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK,
324				 xe_mmio_read32(gt, MIRROR_FUSE3));
325	u32 select = __ffs(mask);
326
327	gt->steering[SQIDI_PSMI].group_target = select >> 1;
328	gt->steering[SQIDI_PSMI].instance_target = select & 0x1;
329}
330
331static void init_steering_inst0(struct xe_gt *gt)
332{
333	gt->steering[DSS].group_target = 0;		/* unused */
334	gt->steering[DSS].instance_target = 0;		/* unused */
335}
336
337static const struct {
338	const char *name;
339	void (*init)(struct xe_gt *gt);
340} xe_steering_types[] = {
341	[L3BANK] =	{ "L3BANK",	init_steering_l3bank },
342	[MSLICE] =	{ "MSLICE",	init_steering_mslice },
343	[LNCF] =	{ "LNCF",	NULL }, /* initialized by mslice init */
344	[DSS] =		{ "DSS",	init_steering_dss },
345	[OADDRM] =	{ "OADDRM / GPMXMT", init_steering_oaddrm },
346	[SQIDI_PSMI] =  { "SQIDI_PSMI", init_steering_sqidi_psmi },
347	[INSTANCE0] =	{ "INSTANCE 0",	init_steering_inst0 },
348	[IMPLICIT_STEERING] = { "IMPLICIT", NULL },
349};
350
351void xe_gt_mcr_init(struct xe_gt *gt)
352{
353	struct xe_device *xe = gt_to_xe(gt);
354
355	BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES);
356	BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES);
357
358	if (IS_SRIOV_VF(xe))
359		return;
360
361	spin_lock_init(&gt->mcr_lock);
362
363	if (gt->info.type == XE_GT_TYPE_MEDIA) {
364		drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13);
365
366		if (MEDIA_VER(xe) >= 20) {
367			gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table;
368			gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table;
369		} else {
370			gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table;
371		}
372	} else {
373		if (GRAPHICS_VER(xe) >= 20) {
374			gt->steering[DSS].ranges = xe2lpg_dss_steering_table;
375			gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table;
376			gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table;
377		} else if (GRAPHICS_VERx100(xe) >= 1270) {
378			gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table;
379			gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table;
380			gt->steering[DSS].ranges = xelpg_dss_steering_table;
381		} else if (xe->info.platform == XE_PVC) {
382			gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table;
383			gt->steering[DSS].ranges = xehpc_dss_steering_table;
384		} else if (xe->info.platform == XE_DG2) {
385			gt->steering[L3BANK].ranges = xehp_l3bank_steering_table;
386			gt->steering[MSLICE].ranges = xehp_mslice_steering_table;
387			gt->steering[LNCF].ranges = xehp_lncf_steering_table;
388			gt->steering[DSS].ranges = xehp_dss_steering_table;
389			gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table;
390		} else {
391			gt->steering[L3BANK].ranges = xelp_l3bank_steering_table;
392			gt->steering[DSS].ranges = xelp_dss_steering_table;
393		}
394	}
395
396	/* Select non-terminated steering target for each type */
397	for (int i = 0; i < NUM_STEERING_TYPES; i++)
398		if (gt->steering[i].ranges && xe_steering_types[i].init)
399			xe_steering_types[i].init(gt);
400}
401
402/**
403 * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers
404 * @gt: GT structure
405 *
406 * Some register ranges don't need to have their steering control registers
407 * changed on each access - it's sufficient to set them once on initialization.
408 * This function sets those registers for each platform *
409 */
410void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt)
411{
412	struct xe_device *xe = gt_to_xe(gt);
413
414	if (IS_SRIOV_VF(xe))
415		return;
416
417	if (xe->info.platform == XE_DG2) {
418		u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) |
419			REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2);
420
421		xe_mmio_write32(gt, MCFG_MCR_SELECTOR, steer_val);
422		xe_mmio_write32(gt, SF_MCR_SELECTOR, steer_val);
423		/*
424		 * For GAM registers, all reads should be directed to instance 1
425		 * (unicast reads against other instances are not allowed),
426		 * and instance 1 is already the hardware's default steering
427		 * target, which we never change
428		 */
429	}
430}
431
432/*
433 * xe_gt_mcr_get_nonterminated_steering - find group/instance values that
434 *    will steer a register to a non-terminated instance
435 * @gt: GT structure
436 * @reg: register for which the steering is required
437 * @group: return variable for group steering
438 * @instance: return variable for instance steering
439 *
440 * This function returns a group/instance pair that is guaranteed to work for
441 * read steering of the given register. Note that a value will be returned even
442 * if the register is not replicated and therefore does not actually require
443 * steering.
444 *
445 * Returns true if the caller should steer to the @group/@instance values
446 * returned.  Returns false if the caller need not perform any steering
447 */
448static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt,
449						 struct xe_reg_mcr reg_mcr,
450						 u8 *group, u8 *instance)
451{
452	const struct xe_reg reg = to_xe_reg(reg_mcr);
453	const struct xe_mmio_range *implicit_ranges;
454
455	for (int type = 0; type < IMPLICIT_STEERING; type++) {
456		if (!gt->steering[type].ranges)
457			continue;
458
459		for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) {
460			if (xe_mmio_in_range(gt, &gt->steering[type].ranges[i], reg)) {
461				*group = gt->steering[type].group_target;
462				*instance = gt->steering[type].instance_target;
463				return true;
464			}
465		}
466	}
467
468	implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges;
469	if (implicit_ranges)
470		for (int i = 0; implicit_ranges[i].end > 0; i++)
471			if (xe_mmio_in_range(gt, &implicit_ranges[i], reg))
472				return false;
473
474	/*
475	 * Not found in a steering table and not a register with implicit
476	 * steering. Just steer to 0/0 as a guess and raise a warning.
477	 */
478	drm_WARN(&gt_to_xe(gt)->drm, true,
479		 "Did not find MCR register %#x in any MCR steering table\n",
480		 reg.addr);
481	*group = 0;
482	*instance = 0;
483
484	return true;
485}
486
487/*
488 * Obtain exclusive access to MCR steering.  On MTL and beyond we also need
489 * to synchronize with external clients (e.g., firmware), so a semaphore
490 * register will also need to be taken.
491 */
492static void mcr_lock(struct xe_gt *gt) __acquires(&gt->mcr_lock)
493{
494	struct xe_device *xe = gt_to_xe(gt);
495	int ret = 0;
496
497	spin_lock(&gt->mcr_lock);
498
499	/*
500	 * Starting with MTL we also need to grab a semaphore register
501	 * to synchronize with external agents (e.g., firmware) that now
502	 * shares the same steering control register. The semaphore is obtained
503	 * when a read to the relevant register returns 1.
504	 */
505	if (GRAPHICS_VERx100(xe) >= 1270)
506		ret = xe_mmio_wait32(gt, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL,
507				     true);
508
509	drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT);
510}
511
512static void mcr_unlock(struct xe_gt *gt) __releases(&gt->mcr_lock)
513{
514	/* Release hardware semaphore - this is done by writing 1 to the register */
515	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
516		xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1);
517
518	spin_unlock(&gt->mcr_lock);
519}
520
521/*
522 * Access a register with specific MCR steering
523 *
524 * Caller needs to make sure the relevant forcewake wells are up.
525 */
526static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
527				u8 rw_flag, int group, int instance, u32 value)
528{
529	const struct xe_reg reg = to_xe_reg(reg_mcr);
530	struct xe_reg steer_reg;
531	u32 steer_val, val = 0;
532
533	lockdep_assert_held(&gt->mcr_lock);
534
535	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
536		steer_reg = MTL_MCR_SELECTOR;
537		steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
538			REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance);
539	} else {
540		steer_reg = MCR_SELECTOR;
541		steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) |
542			REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance);
543	}
544
545	/*
546	 * Always leave the hardware in multicast mode when doing reads and only
547	 * change it to unicast mode when doing writes of a specific instance.
548	 *
549	 * The setting of the multicast/unicast bit usually wouldn't matter for
550	 * read operations (which always return the value from a single register
551	 * instance regardless of how that bit is set), but some platforms may
552	 * have workarounds requiring us to remain in multicast mode for reads,
553	 * e.g. Wa_22013088509 on PVC.  There's no real downside to this, so
554	 * we'll just go ahead and do so on all platforms; we'll only clear the
555	 * multicast bit from the mask when explicitly doing a write operation.
556	 *
557	 * No need to save old steering reg value.
558	 */
559	if (rw_flag == MCR_OP_READ)
560		steer_val |= MCR_MULTICAST;
561
562	xe_mmio_write32(gt, steer_reg, steer_val);
563
564	if (rw_flag == MCR_OP_READ)
565		val = xe_mmio_read32(gt, reg);
566	else
567		xe_mmio_write32(gt, reg, value);
568
569	/*
570	 * If we turned off the multicast bit (during a write) we're required
571	 * to turn it back on before finishing.  The group and instance values
572	 * don't matter since they'll be re-programmed on the next MCR
573	 * operation.
574	 */
575	if (rw_flag == MCR_OP_WRITE)
576		xe_mmio_write32(gt, steer_reg, MCR_MULTICAST);
577
578	return val;
579}
580
581/**
582 * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register
583 * @gt: GT structure
584 * @reg_mcr: register to read
585 *
586 * Reads a GT MCR register.  The read will be steered to a non-terminated
587 * instance (i.e., one that isn't fused off or powered down by power gating).
588 * This function assumes the caller is already holding any necessary forcewake
589 * domains.
590 *
591 * Returns the value from a non-terminated instance of @reg.
592 */
593u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr)
594{
595	const struct xe_reg reg = to_xe_reg(reg_mcr);
596	u8 group, instance;
597	u32 val;
598	bool steer;
599
600	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
601
602	steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr,
603						     &group, &instance);
604
605	if (steer) {
606		mcr_lock(gt);
607		val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ,
608					   group, instance, 0);
609		mcr_unlock(gt);
610	} else {
611		val = xe_mmio_read32(gt, reg);
612	}
613
614	return val;
615}
616
617/**
618 * xe_gt_mcr_unicast_read - read a specific instance of an MCR register
619 * @gt: GT structure
620 * @reg_mcr: the MCR register to read
621 * @group: the MCR group
622 * @instance: the MCR instance
623 *
624 * Returns the value read from an MCR register after steering toward a specific
625 * group/instance.
626 */
627u32 xe_gt_mcr_unicast_read(struct xe_gt *gt,
628			   struct xe_reg_mcr reg_mcr,
629			   int group, int instance)
630{
631	u32 val;
632
633	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
634
635	mcr_lock(gt);
636	val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0);
637	mcr_unlock(gt);
638
639	return val;
640}
641
642/**
643 * xe_gt_mcr_unicast_write - write a specific instance of an MCR register
644 * @gt: GT structure
645 * @reg_mcr: the MCR register to write
646 * @value: value to write
647 * @group: the MCR group
648 * @instance: the MCR instance
649 *
650 * Write an MCR register in unicast mode after steering toward a specific
651 * group/instance.
652 */
653void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
654			     u32 value, int group, int instance)
655{
656	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
657
658	mcr_lock(gt);
659	rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value);
660	mcr_unlock(gt);
661}
662
663/**
664 * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register
665 * @gt: GT structure
666 * @reg_mcr: the MCR register to write
667 * @value: value to write
668 *
669 * Write an MCR register in multicast mode to update all instances.
670 */
671void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
672			       u32 value)
673{
674	struct xe_reg reg = to_xe_reg(reg_mcr);
675
676	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
677
678	/*
679	 * Synchronize with any unicast operations.  Once we have exclusive
680	 * access, the MULTICAST bit should already be set, so there's no need
681	 * to touch the steering register.
682	 */
683	mcr_lock(gt);
684	xe_mmio_write32(gt, reg, value);
685	mcr_unlock(gt);
686}
687
688void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p)
689{
690	for (int i = 0; i < NUM_STEERING_TYPES; i++) {
691		if (gt->steering[i].ranges) {
692			drm_printf(p, "%s steering: group=%#x, instance=%#x\n",
693				   xe_steering_types[i].name,
694				   gt->steering[i].group_target,
695				   gt->steering[i].instance_target);
696			for (int j = 0; gt->steering[i].ranges[j].end; j++)
697				drm_printf(p, "\t0x%06x - 0x%06x\n",
698					   gt->steering[i].ranges[j].start,
699					   gt->steering[i].ranges[j].end);
700		}
701	}
702}
703