1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2020 Unisoc Inc.
4 */
5
6#include <asm/div64.h>
7#include <linux/delay.h>
8#include <linux/init.h>
9#include <linux/kernel.h>
10#include <linux/regmap.h>
11#include <linux/string.h>
12
13#include "sprd_dsi.h"
14
15#define L						0
16#define H						1
17#define CLK						0
18#define DATA					1
19#define INFINITY				0xffffffff
20#define MIN_OUTPUT_FREQ			(100)
21
22#define AVERAGE(a, b) (min(a, b) + abs((b) - (a)) / 2)
23
24/* sharkle */
25#define VCO_BAND_LOW	750
26#define VCO_BAND_MID	1100
27#define VCO_BAND_HIGH	1500
28#define PHY_REF_CLK	26000
29
30static int dphy_calc_pll_param(struct dphy_pll *pll)
31{
32	const u32 khz = 1000;
33	const u32 mhz = 1000000;
34	const unsigned long long factor = 100;
35	unsigned long long tmp;
36	int i;
37
38	pll->potential_fvco = pll->freq / khz;
39	pll->ref_clk = PHY_REF_CLK / khz;
40
41	for (i = 0; i < 4; ++i) {
42		if (pll->potential_fvco >= VCO_BAND_LOW &&
43		    pll->potential_fvco <= VCO_BAND_HIGH) {
44			pll->fvco = pll->potential_fvco;
45			pll->out_sel = BIT(i);
46			break;
47		}
48		pll->potential_fvco <<= 1;
49	}
50	if (pll->fvco == 0)
51		return -EINVAL;
52
53	if (pll->fvco >= VCO_BAND_LOW && pll->fvco <= VCO_BAND_MID) {
54		/* vco band control */
55		pll->vco_band = 0x0;
56		/* low pass filter control */
57		pll->lpf_sel = 1;
58	} else if (pll->fvco > VCO_BAND_MID && pll->fvco <= VCO_BAND_HIGH) {
59		pll->vco_band = 0x1;
60		pll->lpf_sel = 0;
61	} else {
62		return -EINVAL;
63	}
64
65	pll->nint = pll->fvco / pll->ref_clk;
66	tmp = pll->fvco * factor * mhz;
67	do_div(tmp, pll->ref_clk);
68	tmp = tmp - pll->nint * factor * mhz;
69	tmp *= BIT(20);
70	do_div(tmp, 100000000);
71	pll->kint = (u32)tmp;
72	pll->refin = 3; /* pre-divider bypass */
73	pll->sdm_en = true; /* use fraction N PLL */
74	pll->fdk_s = 0x1; /* fraction */
75	pll->cp_s = 0x0;
76	pll->det_delay = 0x1;
77
78	return 0;
79}
80
81static void dphy_set_pll_reg(struct dphy_pll *pll, struct regmap *regmap)
82{
83	u8 reg_val[9] = {0};
84	int i;
85
86	u8 reg_addr[] = {
87		0x03, 0x04, 0x06, 0x08, 0x09,
88		0x0a, 0x0b, 0x0e, 0x0f
89	};
90
91	reg_val[0] = 1 | (1 << 1) |  (pll->lpf_sel << 2);
92	reg_val[1] = pll->div | (1 << 3) | (pll->cp_s << 5) | (pll->fdk_s << 7);
93	reg_val[2] = pll->nint;
94	reg_val[3] = pll->vco_band | (pll->sdm_en << 1) | (pll->refin << 2);
95	reg_val[4] = pll->kint >> 12;
96	reg_val[5] = pll->kint >> 4;
97	reg_val[6] = pll->out_sel | ((pll->kint << 4) & 0xf);
98	reg_val[7] = 1 << 4;
99	reg_val[8] = pll->det_delay;
100
101	for (i = 0; i < sizeof(reg_addr); ++i) {
102		regmap_write(regmap, reg_addr[i], reg_val[i]);
103		DRM_DEBUG("%02x: %02x\n", reg_addr[i], reg_val[i]);
104	}
105}
106
107int dphy_pll_config(struct dsi_context *ctx)
108{
109	struct sprd_dsi *dsi = container_of(ctx, struct sprd_dsi, ctx);
110	struct regmap *regmap = ctx->regmap;
111	struct dphy_pll *pll = &ctx->pll;
112	int ret;
113
114	pll->freq = dsi->slave->hs_rate;
115
116	/* FREQ = 26M * (NINT + KINT / 2^20) / out_sel */
117	ret = dphy_calc_pll_param(pll);
118	if (ret) {
119		drm_err(dsi->drm, "failed to calculate dphy pll parameters\n");
120		return ret;
121	}
122	dphy_set_pll_reg(pll, regmap);
123
124	return 0;
125}
126
127static void dphy_set_timing_reg(struct regmap *regmap, int type, u8 val[])
128{
129	switch (type) {
130	case REQUEST_TIME:
131		regmap_write(regmap, 0x31, val[CLK]);
132		regmap_write(regmap, 0x41, val[DATA]);
133		regmap_write(regmap, 0x51, val[DATA]);
134		regmap_write(regmap, 0x61, val[DATA]);
135		regmap_write(regmap, 0x71, val[DATA]);
136
137		regmap_write(regmap, 0x90, val[CLK]);
138		regmap_write(regmap, 0xa0, val[DATA]);
139		regmap_write(regmap, 0xb0, val[DATA]);
140		regmap_write(regmap, 0xc0, val[DATA]);
141		regmap_write(regmap, 0xd0, val[DATA]);
142		break;
143	case PREPARE_TIME:
144		regmap_write(regmap, 0x32, val[CLK]);
145		regmap_write(regmap, 0x42, val[DATA]);
146		regmap_write(regmap, 0x52, val[DATA]);
147		regmap_write(regmap, 0x62, val[DATA]);
148		regmap_write(regmap, 0x72, val[DATA]);
149
150		regmap_write(regmap, 0x91, val[CLK]);
151		regmap_write(regmap, 0xa1, val[DATA]);
152		regmap_write(regmap, 0xb1, val[DATA]);
153		regmap_write(regmap, 0xc1, val[DATA]);
154		regmap_write(regmap, 0xd1, val[DATA]);
155		break;
156	case ZERO_TIME:
157		regmap_write(regmap, 0x33, val[CLK]);
158		regmap_write(regmap, 0x43, val[DATA]);
159		regmap_write(regmap, 0x53, val[DATA]);
160		regmap_write(regmap, 0x63, val[DATA]);
161		regmap_write(regmap, 0x73, val[DATA]);
162
163		regmap_write(regmap, 0x92, val[CLK]);
164		regmap_write(regmap, 0xa2, val[DATA]);
165		regmap_write(regmap, 0xb2, val[DATA]);
166		regmap_write(regmap, 0xc2, val[DATA]);
167		regmap_write(regmap, 0xd2, val[DATA]);
168		break;
169	case TRAIL_TIME:
170		regmap_write(regmap, 0x34, val[CLK]);
171		regmap_write(regmap, 0x44, val[DATA]);
172		regmap_write(regmap, 0x54, val[DATA]);
173		regmap_write(regmap, 0x64, val[DATA]);
174		regmap_write(regmap, 0x74, val[DATA]);
175
176		regmap_write(regmap, 0x93, val[CLK]);
177		regmap_write(regmap, 0xa3, val[DATA]);
178		regmap_write(regmap, 0xb3, val[DATA]);
179		regmap_write(regmap, 0xc3, val[DATA]);
180		regmap_write(regmap, 0xd3, val[DATA]);
181		break;
182	case EXIT_TIME:
183		regmap_write(regmap, 0x36, val[CLK]);
184		regmap_write(regmap, 0x46, val[DATA]);
185		regmap_write(regmap, 0x56, val[DATA]);
186		regmap_write(regmap, 0x66, val[DATA]);
187		regmap_write(regmap, 0x76, val[DATA]);
188
189		regmap_write(regmap, 0x95, val[CLK]);
190		regmap_write(regmap, 0xA5, val[DATA]);
191		regmap_write(regmap, 0xB5, val[DATA]);
192		regmap_write(regmap, 0xc5, val[DATA]);
193		regmap_write(regmap, 0xd5, val[DATA]);
194		break;
195	case CLKPOST_TIME:
196		regmap_write(regmap, 0x35, val[CLK]);
197		regmap_write(regmap, 0x94, val[CLK]);
198		break;
199
200	/* the following just use default value */
201	case SETTLE_TIME:
202		fallthrough;
203	case TA_GET:
204		fallthrough;
205	case TA_GO:
206		fallthrough;
207	case TA_SURE:
208		fallthrough;
209	default:
210		break;
211	}
212}
213
214void dphy_timing_config(struct dsi_context *ctx)
215{
216	struct regmap *regmap = ctx->regmap;
217	struct dphy_pll *pll = &ctx->pll;
218	const u32 factor = 2;
219	const u32 scale = 100;
220	u32 t_ui, t_byteck, t_half_byteck;
221	u32 range[2], constant;
222	u8 val[2];
223	u32 tmp = 0;
224
225	/* t_ui: 1 ui, byteck: 8 ui, half byteck: 4 ui */
226	t_ui = 1000 * scale / (pll->freq / 1000);
227	t_byteck = t_ui << 3;
228	t_half_byteck = t_ui << 2;
229	constant = t_ui << 1;
230
231	/* REQUEST_TIME: HS T-LPX: LP-01
232	 * For T-LPX, mipi spec defined min value is 50ns,
233	 * but maybe it shouldn't be too small, because BTA,
234	 * LP-10, LP-00, LP-01, all of this is related to T-LPX.
235	 */
236	range[L] = 50 * scale;
237	range[H] = INFINITY;
238	val[CLK] = DIV_ROUND_UP(range[L] * (factor << 1), t_byteck) - 2;
239	val[DATA] = val[CLK];
240	dphy_set_timing_reg(regmap, REQUEST_TIME, val);
241
242	/* PREPARE_TIME: HS sequence: LP-00 */
243	range[L] = 38 * scale;
244	range[H] = 95 * scale;
245	tmp = AVERAGE(range[L], range[H]);
246	val[CLK] = DIV_ROUND_UP(AVERAGE(range[L], range[H]), t_half_byteck) - 1;
247	range[L] = 40 * scale + 4 * t_ui;
248	range[H] = 85 * scale + 6 * t_ui;
249	tmp |= AVERAGE(range[L], range[H]) << 16;
250	val[DATA] = DIV_ROUND_UP(AVERAGE(range[L], range[H]), t_half_byteck) - 1;
251	dphy_set_timing_reg(regmap, PREPARE_TIME, val);
252
253	/* ZERO_TIME: HS-ZERO */
254	range[L] = 300 * scale;
255	range[H] = INFINITY;
256	val[CLK] = DIV_ROUND_UP(range[L] * factor + (tmp & 0xffff)
257			- 525 * t_byteck / 100, t_byteck) - 2;
258	range[L] = 145 * scale + 10 * t_ui;
259	val[DATA] = DIV_ROUND_UP(range[L] * factor
260			+ ((tmp >> 16) & 0xffff) - 525 * t_byteck / 100,
261			t_byteck) - 2;
262	dphy_set_timing_reg(regmap, ZERO_TIME, val);
263
264	/* TRAIL_TIME: HS-TRAIL */
265	range[L] = 60 * scale;
266	range[H] = INFINITY;
267	val[CLK] = DIV_ROUND_UP(range[L] * factor - constant, t_half_byteck);
268	range[L] = max(8 * t_ui, 60 * scale + 4 * t_ui);
269	val[DATA] = DIV_ROUND_UP(range[L] * 3 / 2 - constant, t_half_byteck) - 2;
270	dphy_set_timing_reg(regmap, TRAIL_TIME, val);
271
272	/* EXIT_TIME: */
273	range[L] = 100 * scale;
274	range[H] = INFINITY;
275	val[CLK] = DIV_ROUND_UP(range[L] * factor, t_byteck) - 2;
276	val[DATA] = val[CLK];
277	dphy_set_timing_reg(regmap, EXIT_TIME, val);
278
279	/* CLKPOST_TIME: */
280	range[L] = 60 * scale + 52 * t_ui;
281	range[H] = INFINITY;
282	val[CLK] = DIV_ROUND_UP(range[L] * factor, t_byteck) - 2;
283	val[DATA] = val[CLK];
284	dphy_set_timing_reg(regmap, CLKPOST_TIME, val);
285
286	/* SETTLE_TIME:
287	 * This time is used for receiver. So for transmitter,
288	 * it can be ignored.
289	 */
290
291	/* TA_GO:
292	 * transmitter drives bridge state(LP-00) before releasing control,
293	 * reg 0x1f default value: 0x04, which is good.
294	 */
295
296	/* TA_SURE:
297	 * After LP-10 state and before bridge state(LP-00),
298	 * reg 0x20 default value: 0x01, which is good.
299	 */
300
301	/* TA_GET:
302	 * receiver drives Bridge state(LP-00) before releasing control
303	 * reg 0x21 default value: 0x03, which is good.
304	 */
305}
306