// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 Unisoc Inc. */ #include #include #include #include #include #include #include "sprd_dsi.h" #define L 0 #define H 1 #define CLK 0 #define DATA 1 #define INFINITY 0xffffffff #define MIN_OUTPUT_FREQ (100) #define AVERAGE(a, b) (min(a, b) + abs((b) - (a)) / 2) /* sharkle */ #define VCO_BAND_LOW 750 #define VCO_BAND_MID 1100 #define VCO_BAND_HIGH 1500 #define PHY_REF_CLK 26000 static int dphy_calc_pll_param(struct dphy_pll *pll) { const u32 khz = 1000; const u32 mhz = 1000000; const unsigned long long factor = 100; unsigned long long tmp; int i; pll->potential_fvco = pll->freq / khz; pll->ref_clk = PHY_REF_CLK / khz; for (i = 0; i < 4; ++i) { if (pll->potential_fvco >= VCO_BAND_LOW && pll->potential_fvco <= VCO_BAND_HIGH) { pll->fvco = pll->potential_fvco; pll->out_sel = BIT(i); break; } pll->potential_fvco <<= 1; } if (pll->fvco == 0) return -EINVAL; if (pll->fvco >= VCO_BAND_LOW && pll->fvco <= VCO_BAND_MID) { /* vco band control */ pll->vco_band = 0x0; /* low pass filter control */ pll->lpf_sel = 1; } else if (pll->fvco > VCO_BAND_MID && pll->fvco <= VCO_BAND_HIGH) { pll->vco_band = 0x1; pll->lpf_sel = 0; } else { return -EINVAL; } pll->nint = pll->fvco / pll->ref_clk; tmp = pll->fvco * factor * mhz; do_div(tmp, pll->ref_clk); tmp = tmp - pll->nint * factor * mhz; tmp *= BIT(20); do_div(tmp, 100000000); pll->kint = (u32)tmp; pll->refin = 3; /* pre-divider bypass */ pll->sdm_en = true; /* use fraction N PLL */ pll->fdk_s = 0x1; /* fraction */ pll->cp_s = 0x0; pll->det_delay = 0x1; return 0; } static void dphy_set_pll_reg(struct dphy_pll *pll, struct regmap *regmap) { u8 reg_val[9] = {0}; int i; u8 reg_addr[] = { 0x03, 0x04, 0x06, 0x08, 0x09, 0x0a, 0x0b, 0x0e, 0x0f }; reg_val[0] = 1 | (1 << 1) | (pll->lpf_sel << 2); reg_val[1] = pll->div | (1 << 3) | (pll->cp_s << 5) | (pll->fdk_s << 7); reg_val[2] = pll->nint; reg_val[3] = pll->vco_band | (pll->sdm_en << 1) | (pll->refin << 2); reg_val[4] = pll->kint >> 12; reg_val[5] = pll->kint >> 4; reg_val[6] = pll->out_sel | ((pll->kint << 4) & 0xf); reg_val[7] = 1 << 4; reg_val[8] = pll->det_delay; for (i = 0; i < sizeof(reg_addr); ++i) { regmap_write(regmap, reg_addr[i], reg_val[i]); DRM_DEBUG("%02x: %02x\n", reg_addr[i], reg_val[i]); } } int dphy_pll_config(struct dsi_context *ctx) { struct sprd_dsi *dsi = container_of(ctx, struct sprd_dsi, ctx); struct regmap *regmap = ctx->regmap; struct dphy_pll *pll = &ctx->pll; int ret; pll->freq = dsi->slave->hs_rate; /* FREQ = 26M * (NINT + KINT / 2^20) / out_sel */ ret = dphy_calc_pll_param(pll); if (ret) { drm_err(dsi->drm, "failed to calculate dphy pll parameters\n"); return ret; } dphy_set_pll_reg(pll, regmap); return 0; } static void dphy_set_timing_reg(struct regmap *regmap, int type, u8 val[]) { switch (type) { case REQUEST_TIME: regmap_write(regmap, 0x31, val[CLK]); regmap_write(regmap, 0x41, val[DATA]); regmap_write(regmap, 0x51, val[DATA]); regmap_write(regmap, 0x61, val[DATA]); regmap_write(regmap, 0x71, val[DATA]); regmap_write(regmap, 0x90, val[CLK]); regmap_write(regmap, 0xa0, val[DATA]); regmap_write(regmap, 0xb0, val[DATA]); regmap_write(regmap, 0xc0, val[DATA]); regmap_write(regmap, 0xd0, val[DATA]); break; case PREPARE_TIME: regmap_write(regmap, 0x32, val[CLK]); regmap_write(regmap, 0x42, val[DATA]); regmap_write(regmap, 0x52, val[DATA]); regmap_write(regmap, 0x62, val[DATA]); regmap_write(regmap, 0x72, val[DATA]); regmap_write(regmap, 0x91, val[CLK]); regmap_write(regmap, 0xa1, val[DATA]); regmap_write(regmap, 0xb1, val[DATA]); regmap_write(regmap, 0xc1, val[DATA]); regmap_write(regmap, 0xd1, val[DATA]); break; case ZERO_TIME: regmap_write(regmap, 0x33, val[CLK]); regmap_write(regmap, 0x43, val[DATA]); regmap_write(regmap, 0x53, val[DATA]); regmap_write(regmap, 0x63, val[DATA]); regmap_write(regmap, 0x73, val[DATA]); regmap_write(regmap, 0x92, val[CLK]); regmap_write(regmap, 0xa2, val[DATA]); regmap_write(regmap, 0xb2, val[DATA]); regmap_write(regmap, 0xc2, val[DATA]); regmap_write(regmap, 0xd2, val[DATA]); break; case TRAIL_TIME: regmap_write(regmap, 0x34, val[CLK]); regmap_write(regmap, 0x44, val[DATA]); regmap_write(regmap, 0x54, val[DATA]); regmap_write(regmap, 0x64, val[DATA]); regmap_write(regmap, 0x74, val[DATA]); regmap_write(regmap, 0x93, val[CLK]); regmap_write(regmap, 0xa3, val[DATA]); regmap_write(regmap, 0xb3, val[DATA]); regmap_write(regmap, 0xc3, val[DATA]); regmap_write(regmap, 0xd3, val[DATA]); break; case EXIT_TIME: regmap_write(regmap, 0x36, val[CLK]); regmap_write(regmap, 0x46, val[DATA]); regmap_write(regmap, 0x56, val[DATA]); regmap_write(regmap, 0x66, val[DATA]); regmap_write(regmap, 0x76, val[DATA]); regmap_write(regmap, 0x95, val[CLK]); regmap_write(regmap, 0xA5, val[DATA]); regmap_write(regmap, 0xB5, val[DATA]); regmap_write(regmap, 0xc5, val[DATA]); regmap_write(regmap, 0xd5, val[DATA]); break; case CLKPOST_TIME: regmap_write(regmap, 0x35, val[CLK]); regmap_write(regmap, 0x94, val[CLK]); break; /* the following just use default value */ case SETTLE_TIME: fallthrough; case TA_GET: fallthrough; case TA_GO: fallthrough; case TA_SURE: fallthrough; default: break; } } void dphy_timing_config(struct dsi_context *ctx) { struct regmap *regmap = ctx->regmap; struct dphy_pll *pll = &ctx->pll; const u32 factor = 2; const u32 scale = 100; u32 t_ui, t_byteck, t_half_byteck; u32 range[2], constant; u8 val[2]; u32 tmp = 0; /* t_ui: 1 ui, byteck: 8 ui, half byteck: 4 ui */ t_ui = 1000 * scale / (pll->freq / 1000); t_byteck = t_ui << 3; t_half_byteck = t_ui << 2; constant = t_ui << 1; /* REQUEST_TIME: HS T-LPX: LP-01 * For T-LPX, mipi spec defined min value is 50ns, * but maybe it shouldn't be too small, because BTA, * LP-10, LP-00, LP-01, all of this is related to T-LPX. */ range[L] = 50 * scale; range[H] = INFINITY; val[CLK] = DIV_ROUND_UP(range[L] * (factor << 1), t_byteck) - 2; val[DATA] = val[CLK]; dphy_set_timing_reg(regmap, REQUEST_TIME, val); /* PREPARE_TIME: HS sequence: LP-00 */ range[L] = 38 * scale; range[H] = 95 * scale; tmp = AVERAGE(range[L], range[H]); val[CLK] = DIV_ROUND_UP(AVERAGE(range[L], range[H]), t_half_byteck) - 1; range[L] = 40 * scale + 4 * t_ui; range[H] = 85 * scale + 6 * t_ui; tmp |= AVERAGE(range[L], range[H]) << 16; val[DATA] = DIV_ROUND_UP(AVERAGE(range[L], range[H]), t_half_byteck) - 1; dphy_set_timing_reg(regmap, PREPARE_TIME, val); /* ZERO_TIME: HS-ZERO */ range[L] = 300 * scale; range[H] = INFINITY; val[CLK] = DIV_ROUND_UP(range[L] * factor + (tmp & 0xffff) - 525 * t_byteck / 100, t_byteck) - 2; range[L] = 145 * scale + 10 * t_ui; val[DATA] = DIV_ROUND_UP(range[L] * factor + ((tmp >> 16) & 0xffff) - 525 * t_byteck / 100, t_byteck) - 2; dphy_set_timing_reg(regmap, ZERO_TIME, val); /* TRAIL_TIME: HS-TRAIL */ range[L] = 60 * scale; range[H] = INFINITY; val[CLK] = DIV_ROUND_UP(range[L] * factor - constant, t_half_byteck); range[L] = max(8 * t_ui, 60 * scale + 4 * t_ui); val[DATA] = DIV_ROUND_UP(range[L] * 3 / 2 - constant, t_half_byteck) - 2; dphy_set_timing_reg(regmap, TRAIL_TIME, val); /* EXIT_TIME: */ range[L] = 100 * scale; range[H] = INFINITY; val[CLK] = DIV_ROUND_UP(range[L] * factor, t_byteck) - 2; val[DATA] = val[CLK]; dphy_set_timing_reg(regmap, EXIT_TIME, val); /* CLKPOST_TIME: */ range[L] = 60 * scale + 52 * t_ui; range[H] = INFINITY; val[CLK] = DIV_ROUND_UP(range[L] * factor, t_byteck) - 2; val[DATA] = val[CLK]; dphy_set_timing_reg(regmap, CLKPOST_TIME, val); /* SETTLE_TIME: * This time is used for receiver. So for transmitter, * it can be ignored. */ /* TA_GO: * transmitter drives bridge state(LP-00) before releasing control, * reg 0x1f default value: 0x04, which is good. */ /* TA_SURE: * After LP-10 state and before bridge state(LP-00), * reg 0x20 default value: 0x01, which is good. */ /* TA_GET: * receiver drives Bridge state(LP-00) before releasing control * reg 0x21 default value: 0x03, which is good. */ }