1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * R-Car Display Unit CRTCs
4 *
5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 *
7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8 */
9
10#include <linux/clk.h>
11#include <linux/mutex.h>
12#include <linux/platform_device.h>
13
14#include <drm/drm_atomic.h>
15#include <drm/drm_atomic_helper.h>
16#include <drm/drm_bridge.h>
17#include <drm/drm_crtc.h>
18#include <drm/drm_device.h>
19#include <drm/drm_gem_dma_helper.h>
20#include <drm/drm_vblank.h>
21
22#include "rcar_cmm.h"
23#include "rcar_du_crtc.h"
24#include "rcar_du_drv.h"
25#include "rcar_du_encoder.h"
26#include "rcar_du_kms.h"
27#include "rcar_du_plane.h"
28#include "rcar_du_regs.h"
29#include "rcar_du_vsp.h"
30#include "rcar_lvds.h"
31#include "rcar_mipi_dsi.h"
32
33static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
34{
35	struct rcar_du_device *rcdu = rcrtc->dev;
36
37	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
38}
39
40static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
41{
42	struct rcar_du_device *rcdu = rcrtc->dev;
43
44	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
45}
46
47static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
48{
49	struct rcar_du_device *rcdu = rcrtc->dev;
50
51	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
52		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
53}
54
55static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
56{
57	struct rcar_du_device *rcdu = rcrtc->dev;
58
59	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
60		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
61}
62
63void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
64{
65	struct rcar_du_device *rcdu = rcrtc->dev;
66
67	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
68	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
69}
70
71/* -----------------------------------------------------------------------------
72 * Hardware Setup
73 */
74
75struct dpll_info {
76	unsigned int output;
77	unsigned int fdpll;
78	unsigned int n;
79	unsigned int m;
80};
81
82static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
83				 struct dpll_info *dpll,
84				 unsigned long input,
85				 unsigned long target)
86{
87	unsigned long best_diff = (unsigned long)-1;
88	unsigned long diff;
89	unsigned int fdpll;
90	unsigned int m;
91	unsigned int n;
92
93	/*
94	 *   fin                                 fvco        fout       fclkout
95	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
96	 *              +-> |  |                             |
97	 *              |                                    |
98	 *              +---------------- [1/N] <------------+
99	 *
100	 *	fclkout = fvco / P / FDPLL -- (1)
101	 *
102	 * fin/M = fvco/P/N
103	 *
104	 *	fvco = fin * P *  N / M -- (2)
105	 *
106	 * (1) + (2) indicates
107	 *
108	 *	fclkout = fin * N / M / FDPLL
109	 *
110	 * NOTES
111	 *	N	: (n + 1)
112	 *	M	: (m + 1)
113	 *	FDPLL	: (fdpll + 1)
114	 *	P	: 2
115	 *	2kHz < fvco < 4096MHz
116	 *
117	 * To minimize the jitter,
118	 * N : as large as possible
119	 * M : as small as possible
120	 */
121	for (m = 0; m < 4; m++) {
122		for (n = 119; n > 38; n--) {
123			/*
124			 * This code only runs on 64-bit architectures, the
125			 * unsigned long type can thus be used for 64-bit
126			 * computation. It will still compile without any
127			 * warning on 32-bit architectures.
128			 *
129			 * To optimize calculations, use fout instead of fvco
130			 * to verify the VCO frequency constraint.
131			 */
132			unsigned long fout = input * (n + 1) / (m + 1);
133
134			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
135				continue;
136
137			for (fdpll = 1; fdpll < 32; fdpll++) {
138				unsigned long output;
139
140				output = fout / (fdpll + 1);
141				if (output >= 400 * 1000 * 1000)
142					continue;
143
144				diff = abs((long)output - (long)target);
145				if (best_diff > diff) {
146					best_diff = diff;
147					dpll->n = n;
148					dpll->m = m;
149					dpll->fdpll = fdpll;
150					dpll->output = output;
151				}
152
153				if (diff == 0)
154					goto done;
155			}
156		}
157	}
158
159done:
160	dev_dbg(rcrtc->dev->dev,
161		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
162		 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
163}
164
165struct du_clk_params {
166	struct clk *clk;
167	unsigned long rate;
168	unsigned long diff;
169	u32 escr;
170};
171
172static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
173				 u32 escr, struct du_clk_params *params)
174{
175	unsigned long rate;
176	unsigned long diff;
177	u32 div;
178
179	/*
180	 * If the target rate has already been achieved perfectly we can't do
181	 * better.
182	 */
183	if (params->diff == 0)
184		return;
185
186	/*
187	 * Compute the input clock rate and internal divisor values to obtain
188	 * the clock rate closest to the target frequency.
189	 */
190	rate = clk_round_rate(clk, target);
191	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
192	diff = abs(rate / (div + 1) - target);
193
194	/*
195	 * Store the parameters if the resulting frequency is better than any
196	 * previously calculated value.
197	 */
198	if (diff < params->diff) {
199		params->clk = clk;
200		params->rate = rate;
201		params->diff = diff;
202		params->escr = escr | div;
203	}
204}
205
206static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
207{
208	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
209	struct rcar_du_device *rcdu = rcrtc->dev;
210	unsigned long mode_clock = mode->clock * 1000;
211	unsigned int hdse_offset;
212	u32 dsmr;
213	u32 escr;
214
215	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
216		unsigned long target = mode_clock;
217		struct dpll_info dpll = { 0 };
218		unsigned long extclk;
219		u32 dpllcr;
220		u32 div = 0;
221
222		/*
223		 * DU channels that have a display PLL can't use the internal
224		 * system clock, and have no internal clock divider.
225		 */
226		extclk = clk_get_rate(rcrtc->extclock);
227		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
228
229		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
230		       | DPLLCR_FDPLL(dpll.fdpll)
231		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
232		       | DPLLCR_STBY;
233
234		if (rcrtc->index == 1)
235			dpllcr |= DPLLCR_PLCS1
236			       |  DPLLCR_INCS_DOTCLKIN1;
237		else
238			dpllcr |= DPLLCR_PLCS0
239			       |  DPLLCR_INCS_DOTCLKIN0;
240
241		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
242
243		escr = ESCR_DCLKSEL_DCLKIN | div;
244	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) ||
245		   rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) {
246		/*
247		 * Use the external LVDS or DSI PLL output as the dot clock when
248		 * outputting to the LVDS or DSI encoder on an SoC that supports
249		 * this clock routing option. We use the clock directly in that
250		 * case, without any additional divider.
251		 */
252		escr = ESCR_DCLKSEL_DCLKIN;
253	} else {
254		struct du_clk_params params = { .diff = (unsigned long)-1 };
255
256		rcar_du_escr_divider(rcrtc->clock, mode_clock,
257				     ESCR_DCLKSEL_CLKS, &params);
258		if (rcrtc->extclock)
259			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
260					     ESCR_DCLKSEL_DCLKIN, &params);
261
262		dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
263			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
264			params.rate);
265
266		clk_set_rate(params.clk, params.rate);
267		escr = params.escr;
268	}
269
270	/*
271	 * The ESCR register only exists in DU channels that can output to an
272	 * LVDS or DPAT, and the OTAR register in DU channels that can output
273	 * to a DPAD.
274	 */
275	if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs |
276	     rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs |
277	     rcdu->info->routes[RCAR_DU_OUTPUT_LVDS0].possible_crtcs |
278	     rcdu->info->routes[RCAR_DU_OUTPUT_LVDS1].possible_crtcs) &
279	    BIT(rcrtc->index)) {
280		dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
281
282		rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
283	}
284
285	if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs |
286	     rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs) &
287	    BIT(rcrtc->index))
288		rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
289
290	/* Signal polarities */
291	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
292	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
293	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
294	     | DSMR_DIPM_DISP | DSMR_CSPM;
295	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
296
297	/*
298	 * When the CMM is enabled, an additional offset of 25 pixels must be
299	 * subtracted from the HDS (horizontal display start) and HDE
300	 * (horizontal display end) registers.
301	 */
302	hdse_offset = 19;
303	if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
304		hdse_offset += 25;
305
306	/* Display timings */
307	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start -
308					hdse_offset);
309	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
310					mode->hdisplay - hdse_offset);
311	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
312					mode->hsync_start - 1);
313	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
314
315	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
316					mode->crtc_vsync_end - 2);
317	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
318					mode->crtc_vsync_end +
319					mode->crtc_vdisplay - 2);
320	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
321					mode->crtc_vsync_end +
322					mode->crtc_vsync_start - 1);
323	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
324
325	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
326	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
327}
328
329static unsigned int plane_zpos(struct rcar_du_plane *plane)
330{
331	return plane->plane.state->normalized_zpos;
332}
333
334static const struct rcar_du_format_info *
335plane_format(struct rcar_du_plane *plane)
336{
337	return to_rcar_plane_state(plane->plane.state)->format;
338}
339
340static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
341{
342	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
343	struct rcar_du_device *rcdu = rcrtc->dev;
344	unsigned int num_planes = 0;
345	unsigned int dptsr_planes;
346	unsigned int hwplanes = 0;
347	unsigned int prio = 0;
348	unsigned int i;
349	u32 dspr = 0;
350
351	for (i = 0; i < rcrtc->group->num_planes; ++i) {
352		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
353		unsigned int j;
354
355		if (plane->plane.state->crtc != &rcrtc->crtc ||
356		    !plane->plane.state->visible)
357			continue;
358
359		/* Insert the plane in the sorted planes array. */
360		for (j = num_planes++; j > 0; --j) {
361			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
362				break;
363			planes[j] = planes[j-1];
364		}
365
366		planes[j] = plane;
367		prio += plane_format(plane)->planes * 4;
368	}
369
370	for (i = 0; i < num_planes; ++i) {
371		struct rcar_du_plane *plane = planes[i];
372		struct drm_plane_state *state = plane->plane.state;
373		unsigned int index = to_rcar_plane_state(state)->hwindex;
374
375		prio -= 4;
376		dspr |= (index + 1) << prio;
377		hwplanes |= 1 << index;
378
379		if (plane_format(plane)->planes == 2) {
380			index = (index + 1) % 8;
381
382			prio -= 4;
383			dspr |= (index + 1) << prio;
384			hwplanes |= 1 << index;
385		}
386	}
387
388	/* If VSP+DU integration is enabled the plane assignment is fixed. */
389	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
390		if (rcdu->info->gen < 3) {
391			dspr = (rcrtc->index % 2) + 1;
392			hwplanes = 1 << (rcrtc->index % 2);
393		} else {
394			dspr = (rcrtc->index % 2) ? 3 : 1;
395			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
396		}
397	}
398
399	/*
400	 * Update the planes to display timing and dot clock generator
401	 * associations.
402	 *
403	 * Updating the DPTSR register requires restarting the CRTC group,
404	 * resulting in visible flicker. To mitigate the issue only update the
405	 * association if needed by enabled planes. Planes being disabled will
406	 * keep their current association.
407	 */
408	mutex_lock(&rcrtc->group->lock);
409
410	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
411		     : rcrtc->group->dptsr_planes & ~hwplanes;
412
413	if (dptsr_planes != rcrtc->group->dptsr_planes) {
414		rcar_du_group_write(rcrtc->group, DPTSR,
415				    (dptsr_planes << 16) | dptsr_planes);
416		rcrtc->group->dptsr_planes = dptsr_planes;
417
418		if (rcrtc->group->used_crtcs)
419			rcar_du_group_restart(rcrtc->group);
420	}
421
422	/* Restart the group if plane sources have changed. */
423	if (rcrtc->group->need_restart)
424		rcar_du_group_restart(rcrtc->group);
425
426	mutex_unlock(&rcrtc->group->lock);
427
428	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
429			    dspr);
430}
431
432/* -----------------------------------------------------------------------------
433 * Page Flip
434 */
435
436void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
437{
438	struct drm_pending_vblank_event *event;
439	struct drm_device *dev = rcrtc->crtc.dev;
440	unsigned long flags;
441
442	spin_lock_irqsave(&dev->event_lock, flags);
443	event = rcrtc->event;
444	rcrtc->event = NULL;
445	spin_unlock_irqrestore(&dev->event_lock, flags);
446
447	if (event == NULL)
448		return;
449
450	spin_lock_irqsave(&dev->event_lock, flags);
451	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
452	wake_up(&rcrtc->flip_wait);
453	spin_unlock_irqrestore(&dev->event_lock, flags);
454
455	drm_crtc_vblank_put(&rcrtc->crtc);
456}
457
458static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
459{
460	struct drm_device *dev = rcrtc->crtc.dev;
461	unsigned long flags;
462	bool pending;
463
464	spin_lock_irqsave(&dev->event_lock, flags);
465	pending = rcrtc->event != NULL;
466	spin_unlock_irqrestore(&dev->event_lock, flags);
467
468	return pending;
469}
470
471static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
472{
473	struct rcar_du_device *rcdu = rcrtc->dev;
474
475	if (wait_event_timeout(rcrtc->flip_wait,
476			       !rcar_du_crtc_page_flip_pending(rcrtc),
477			       msecs_to_jiffies(50)))
478		return;
479
480	dev_warn(rcdu->dev, "page flip timeout\n");
481
482	rcar_du_crtc_finish_page_flip(rcrtc);
483}
484
485/* -----------------------------------------------------------------------------
486 * Color Management Module (CMM)
487 */
488
489static int rcar_du_cmm_check(struct drm_crtc *crtc,
490			     struct drm_crtc_state *state)
491{
492	struct drm_property_blob *drm_lut = state->gamma_lut;
493	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
494	struct device *dev = rcrtc->dev->dev;
495
496	if (!drm_lut)
497		return 0;
498
499	/* We only accept fully populated LUT tables. */
500	if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
501		dev_err(dev, "invalid gamma lut size: %zu bytes\n",
502			drm_lut->length);
503		return -EINVAL;
504	}
505
506	return 0;
507}
508
509static void rcar_du_cmm_setup(struct drm_crtc *crtc)
510{
511	struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
512	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
513	struct rcar_cmm_config cmm_config = {};
514
515	if (!rcrtc->cmm)
516		return;
517
518	if (drm_lut)
519		cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
520
521	rcar_cmm_setup(rcrtc->cmm, &cmm_config);
522}
523
524/* -----------------------------------------------------------------------------
525 * Start/Stop and Suspend/Resume
526 */
527
528static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
529{
530	/* Set display off and background to black */
531	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
532	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
533
534	/* Configure display timings and output routing */
535	rcar_du_crtc_set_display_timing(rcrtc);
536	rcar_du_group_set_routing(rcrtc->group);
537
538	/* Start with all planes disabled. */
539	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
540
541	/* Enable the VSP compositor. */
542	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
543		rcar_du_vsp_enable(rcrtc);
544
545	/* Turn vertical blanking interrupt reporting on. */
546	drm_crtc_vblank_on(&rcrtc->crtc);
547}
548
549static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
550{
551	int ret;
552
553	/*
554	 * Guard against double-get, as the function is called from both the
555	 * .atomic_enable() and .atomic_begin() handlers.
556	 */
557	if (rcrtc->initialized)
558		return 0;
559
560	ret = clk_prepare_enable(rcrtc->clock);
561	if (ret < 0)
562		return ret;
563
564	ret = clk_prepare_enable(rcrtc->extclock);
565	if (ret < 0)
566		goto error_clock;
567
568	ret = rcar_du_group_get(rcrtc->group);
569	if (ret < 0)
570		goto error_group;
571
572	rcar_du_crtc_setup(rcrtc);
573	rcrtc->initialized = true;
574
575	return 0;
576
577error_group:
578	clk_disable_unprepare(rcrtc->extclock);
579error_clock:
580	clk_disable_unprepare(rcrtc->clock);
581	return ret;
582}
583
584static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
585{
586	rcar_du_group_put(rcrtc->group);
587
588	clk_disable_unprepare(rcrtc->extclock);
589	clk_disable_unprepare(rcrtc->clock);
590
591	rcrtc->initialized = false;
592}
593
594static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
595{
596	bool interlaced;
597
598	/*
599	 * Select master sync mode. This enables display operation in master
600	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
601	 * actively driven).
602	 */
603	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
604	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
605				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
606				   DSYSR_TVM_MASTER);
607
608	rcar_du_group_start_stop(rcrtc->group, true);
609}
610
611static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
612{
613	struct rcar_du_device *rcdu = rcrtc->dev;
614	struct drm_crtc *crtc = &rcrtc->crtc;
615	u32 status;
616
617	/* Make sure vblank interrupts are enabled. */
618	drm_crtc_vblank_get(crtc);
619
620	/*
621	 * Disable planes and calculate how many vertical blanking interrupts we
622	 * have to wait for. If a vertical blanking interrupt has been triggered
623	 * but not processed yet, we don't know whether it occurred before or
624	 * after the planes got disabled. We thus have to wait for two vblank
625	 * interrupts in that case.
626	 */
627	spin_lock_irq(&rcrtc->vblank_lock);
628	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
629	status = rcar_du_crtc_read(rcrtc, DSSR);
630	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
631	spin_unlock_irq(&rcrtc->vblank_lock);
632
633	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
634				msecs_to_jiffies(100)))
635		dev_warn(rcdu->dev, "vertical blanking timeout\n");
636
637	drm_crtc_vblank_put(crtc);
638}
639
640static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
641{
642	struct drm_crtc *crtc = &rcrtc->crtc;
643
644	/*
645	 * Disable all planes and wait for the change to take effect. This is
646	 * required as the plane enable registers are updated on vblank, and no
647	 * vblank will occur once the CRTC is stopped. Disabling planes when
648	 * starting the CRTC thus wouldn't be enough as it would start scanning
649	 * out immediately from old frame buffers until the next vblank.
650	 *
651	 * This increases the CRTC stop delay, especially when multiple CRTCs
652	 * are stopped in one operation as we now wait for one vblank per CRTC.
653	 * Whether this can be improved needs to be researched.
654	 */
655	rcar_du_crtc_disable_planes(rcrtc);
656
657	/*
658	 * Disable vertical blanking interrupt reporting. We first need to wait
659	 * for page flip completion before stopping the CRTC as userspace
660	 * expects page flips to eventually complete.
661	 */
662	rcar_du_crtc_wait_page_flip(rcrtc);
663	drm_crtc_vblank_off(crtc);
664
665	/* Disable the VSP compositor. */
666	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
667		rcar_du_vsp_disable(rcrtc);
668
669	if (rcrtc->cmm)
670		rcar_cmm_disable(rcrtc->cmm);
671
672	/*
673	 * Select switch sync mode. This stops display operation and configures
674	 * the HSYNC and VSYNC signals as inputs.
675	 *
676	 * TODO: Find another way to stop the display for DUs that don't support
677	 * TVM sync.
678	 */
679	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
680		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
681					   DSYSR_TVM_SWITCH);
682
683	rcar_du_group_start_stop(rcrtc->group, false);
684}
685
686/* -----------------------------------------------------------------------------
687 * CRTC Functions
688 */
689
690static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
691				     struct drm_atomic_state *state)
692{
693	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
694									  crtc);
695	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state);
696	struct drm_encoder *encoder;
697	int ret;
698
699	ret = rcar_du_cmm_check(crtc, crtc_state);
700	if (ret)
701		return ret;
702
703	/* Store the routes from the CRTC output to the DU outputs. */
704	rstate->outputs = 0;
705
706	drm_for_each_encoder_mask(encoder, crtc->dev,
707				  crtc_state->encoder_mask) {
708		struct rcar_du_encoder *renc;
709
710		/* Skip the writeback encoder. */
711		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
712			continue;
713
714		renc = to_rcar_encoder(encoder);
715		rstate->outputs |= BIT(renc->output);
716	}
717
718	return 0;
719}
720
721static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
722				       struct drm_atomic_state *state)
723{
724	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
725	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
726	struct rcar_du_device *rcdu = rcrtc->dev;
727
728	if (rcrtc->cmm)
729		rcar_cmm_enable(rcrtc->cmm);
730	rcar_du_crtc_get(rcrtc);
731
732	/*
733	 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
734	 * the DU channel. We need to enable its clock output explicitly before
735	 * starting the CRTC, as the bridge hasn't been enabled by the atomic
736	 * helpers yet.
737	 */
738	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
739		bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0);
740		struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
741		const struct drm_display_mode *mode =
742			&crtc->state->adjusted_mode;
743
744		rcar_lvds_pclk_enable(bridge, mode->clock * 1000, dot_clk_only);
745	}
746
747	/*
748	 * Similarly to LVDS, on V3U the dot clock is provided by the DSI
749	 * encoder, and we need to enable the DSI clocks before enabling the CRTC.
750	 */
751	if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
752	    (rstate->outputs &
753	     (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
754		struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
755
756		rcar_mipi_dsi_pclk_enable(bridge, state);
757	}
758
759	rcar_du_crtc_start(rcrtc);
760
761	/*
762	 * TODO: The chip manual indicates that CMM tables should be written
763	 * after the DU channel has been activated. Investigate the impact
764	 * of this restriction on the first displayed frame.
765	 */
766	rcar_du_cmm_setup(crtc);
767}
768
769static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
770					struct drm_atomic_state *state)
771{
772	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
773									 crtc);
774	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
775	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
776	struct rcar_du_device *rcdu = rcrtc->dev;
777
778	rcar_du_crtc_stop(rcrtc);
779	rcar_du_crtc_put(rcrtc);
780
781	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
782		bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0);
783		struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
784
785		/*
786		 * Disable the LVDS clock output, see
787		 * rcar_du_crtc_atomic_enable(). When the LVDS output is used,
788		 * this also disables the LVDS encoder.
789		 */
790		rcar_lvds_pclk_disable(bridge, dot_clk_only);
791	}
792
793	if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
794	    (rstate->outputs &
795	     (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
796		struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
797
798		/*
799		 * Disable the DSI clock output, see
800		 * rcar_du_crtc_atomic_enable().
801		 */
802		rcar_mipi_dsi_pclk_disable(bridge);
803	}
804
805	spin_lock_irq(&crtc->dev->event_lock);
806	if (crtc->state->event) {
807		drm_crtc_send_vblank_event(crtc, crtc->state->event);
808		crtc->state->event = NULL;
809	}
810	spin_unlock_irq(&crtc->dev->event_lock);
811}
812
813static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
814				      struct drm_atomic_state *state)
815{
816	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
817
818	WARN_ON(!crtc->state->enable);
819
820	/*
821	 * If a mode set is in progress we can be called with the CRTC disabled.
822	 * We thus need to first get and setup the CRTC in order to configure
823	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
824	 * kept awake until the .atomic_enable() call that will follow. The get
825	 * operation in .atomic_enable() will in that case be a no-op, and the
826	 * CRTC will be put later in .atomic_disable().
827	 *
828	 * If a mode set is not in progress the CRTC is enabled, and the
829	 * following get call will be a no-op. There is thus no need to balance
830	 * it in .atomic_flush() either.
831	 */
832	rcar_du_crtc_get(rcrtc);
833
834	/* If the active state changed, we let .atomic_enable handle CMM. */
835	if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
836		rcar_du_cmm_setup(crtc);
837
838	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
839		rcar_du_vsp_atomic_begin(rcrtc);
840}
841
842static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
843				      struct drm_atomic_state *state)
844{
845	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
846	struct drm_device *dev = rcrtc->crtc.dev;
847	unsigned long flags;
848
849	rcar_du_crtc_update_planes(rcrtc);
850
851	if (crtc->state->event) {
852		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
853
854		spin_lock_irqsave(&dev->event_lock, flags);
855		rcrtc->event = crtc->state->event;
856		crtc->state->event = NULL;
857		spin_unlock_irqrestore(&dev->event_lock, flags);
858	}
859
860	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
861		rcar_du_vsp_atomic_flush(rcrtc);
862}
863
864static enum drm_mode_status
865rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
866			const struct drm_display_mode *mode)
867{
868	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
869	struct rcar_du_device *rcdu = rcrtc->dev;
870	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
871	unsigned int min_sync_porch;
872	unsigned int vbp;
873
874	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
875		return MODE_NO_INTERLACE;
876
877	/*
878	 * The hardware requires a minimum combined horizontal sync and back
879	 * porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is
880	 * used), and a minimum vertical back porch of 3 lines.
881	 */
882	min_sync_porch = 20;
883	if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
884		min_sync_porch += 25;
885
886	if (mode->htotal - mode->hsync_start < min_sync_porch)
887		return MODE_HBLANK_NARROW;
888
889	vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
890	if (vbp < 3)
891		return MODE_VBLANK_NARROW;
892
893	return MODE_OK;
894}
895
896static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
897	.atomic_check = rcar_du_crtc_atomic_check,
898	.atomic_begin = rcar_du_crtc_atomic_begin,
899	.atomic_flush = rcar_du_crtc_atomic_flush,
900	.atomic_enable = rcar_du_crtc_atomic_enable,
901	.atomic_disable = rcar_du_crtc_atomic_disable,
902	.mode_valid = rcar_du_crtc_mode_valid,
903};
904
905static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
906{
907	struct rcar_du_device *rcdu = rcrtc->dev;
908	const char **sources;
909	unsigned int count;
910	int i = -1;
911
912	/* CRC available only on Gen3 HW. */
913	if (rcdu->info->gen < 3)
914		return;
915
916	/* Reserve 1 for "auto" source. */
917	count = rcrtc->vsp->num_planes + 1;
918
919	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
920	if (!sources)
921		return;
922
923	sources[0] = kstrdup("auto", GFP_KERNEL);
924	if (!sources[0])
925		goto error;
926
927	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
928		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
929		char name[16];
930
931		sprintf(name, "plane%u", plane->base.id);
932		sources[i + 1] = kstrdup(name, GFP_KERNEL);
933		if (!sources[i + 1])
934			goto error;
935	}
936
937	rcrtc->sources = sources;
938	rcrtc->sources_count = count;
939	return;
940
941error:
942	while (i >= 0) {
943		kfree(sources[i]);
944		i--;
945	}
946	kfree(sources);
947}
948
949static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
950{
951	unsigned int i;
952
953	if (!rcrtc->sources)
954		return;
955
956	for (i = 0; i < rcrtc->sources_count; i++)
957		kfree(rcrtc->sources[i]);
958	kfree(rcrtc->sources);
959
960	rcrtc->sources = NULL;
961	rcrtc->sources_count = 0;
962}
963
964static struct drm_crtc_state *
965rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
966{
967	struct rcar_du_crtc_state *state;
968	struct rcar_du_crtc_state *copy;
969
970	if (WARN_ON(!crtc->state))
971		return NULL;
972
973	state = to_rcar_crtc_state(crtc->state);
974	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
975	if (copy == NULL)
976		return NULL;
977
978	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
979
980	return &copy->state;
981}
982
983static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
984					      struct drm_crtc_state *state)
985{
986	__drm_atomic_helper_crtc_destroy_state(state);
987	kfree(to_rcar_crtc_state(state));
988}
989
990static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
991{
992	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
993
994	rcar_du_crtc_crc_cleanup(rcrtc);
995
996	return drm_crtc_cleanup(crtc);
997}
998
999static void rcar_du_crtc_reset(struct drm_crtc *crtc)
1000{
1001	struct rcar_du_crtc_state *state;
1002
1003	if (crtc->state) {
1004		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
1005		crtc->state = NULL;
1006	}
1007
1008	state = kzalloc(sizeof(*state), GFP_KERNEL);
1009	if (state == NULL)
1010		return;
1011
1012	state->crc.source = VSP1_DU_CRC_NONE;
1013	state->crc.index = 0;
1014
1015	__drm_atomic_helper_crtc_reset(crtc, &state->state);
1016}
1017
1018static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
1019{
1020	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1021
1022	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
1023	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
1024	rcrtc->vblank_enable = true;
1025
1026	return 0;
1027}
1028
1029static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
1030{
1031	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1032
1033	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
1034	rcrtc->vblank_enable = false;
1035}
1036
1037static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1038					 const char *source_name,
1039					 enum vsp1_du_crc_source *source)
1040{
1041	unsigned int index;
1042	int ret;
1043
1044	/*
1045	 * Parse the source name. Supported values are "plane%u" to compute the
1046	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1047	 * CRC on the composer (VSP) output.
1048	 */
1049
1050	if (!source_name) {
1051		*source = VSP1_DU_CRC_NONE;
1052		return 0;
1053	} else if (!strcmp(source_name, "auto")) {
1054		*source = VSP1_DU_CRC_OUTPUT;
1055		return 0;
1056	} else if (strstarts(source_name, "plane")) {
1057		unsigned int i;
1058
1059		*source = VSP1_DU_CRC_PLANE;
1060
1061		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1062		if (ret < 0)
1063			return ret;
1064
1065		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1066			if (index == rcrtc->vsp->planes[i].plane.base.id)
1067				return i;
1068		}
1069	}
1070
1071	return -EINVAL;
1072}
1073
1074static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1075					  const char *source_name,
1076					  size_t *values_cnt)
1077{
1078	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1079	enum vsp1_du_crc_source source;
1080
1081	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1082		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1083		return -EINVAL;
1084	}
1085
1086	*values_cnt = 1;
1087	return 0;
1088}
1089
1090static const char *const *
1091rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1092{
1093	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1094
1095	*count = rcrtc->sources_count;
1096	return rcrtc->sources;
1097}
1098
1099static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1100				       const char *source_name)
1101{
1102	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1103	struct drm_modeset_acquire_ctx ctx;
1104	struct drm_crtc_state *crtc_state;
1105	struct drm_atomic_state *state;
1106	enum vsp1_du_crc_source source;
1107	unsigned int index;
1108	int ret;
1109
1110	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1111	if (ret < 0)
1112		return ret;
1113
1114	index = ret;
1115
1116	/* Perform an atomic commit to set the CRC source. */
1117	drm_modeset_acquire_init(&ctx, 0);
1118
1119	state = drm_atomic_state_alloc(crtc->dev);
1120	if (!state) {
1121		ret = -ENOMEM;
1122		goto unlock;
1123	}
1124
1125	state->acquire_ctx = &ctx;
1126
1127retry:
1128	crtc_state = drm_atomic_get_crtc_state(state, crtc);
1129	if (!IS_ERR(crtc_state)) {
1130		struct rcar_du_crtc_state *rcrtc_state;
1131
1132		rcrtc_state = to_rcar_crtc_state(crtc_state);
1133		rcrtc_state->crc.source = source;
1134		rcrtc_state->crc.index = index;
1135
1136		ret = drm_atomic_commit(state);
1137	} else {
1138		ret = PTR_ERR(crtc_state);
1139	}
1140
1141	if (ret == -EDEADLK) {
1142		drm_atomic_state_clear(state);
1143		drm_modeset_backoff(&ctx);
1144		goto retry;
1145	}
1146
1147	drm_atomic_state_put(state);
1148
1149unlock:
1150	drm_modeset_drop_locks(&ctx);
1151	drm_modeset_acquire_fini(&ctx);
1152
1153	return ret;
1154}
1155
1156static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1157	.reset = rcar_du_crtc_reset,
1158	.destroy = drm_crtc_cleanup,
1159	.set_config = drm_atomic_helper_set_config,
1160	.page_flip = drm_atomic_helper_page_flip,
1161	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1162	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1163	.enable_vblank = rcar_du_crtc_enable_vblank,
1164	.disable_vblank = rcar_du_crtc_disable_vblank,
1165};
1166
1167static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1168	.reset = rcar_du_crtc_reset,
1169	.destroy = rcar_du_crtc_cleanup,
1170	.set_config = drm_atomic_helper_set_config,
1171	.page_flip = drm_atomic_helper_page_flip,
1172	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1173	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1174	.enable_vblank = rcar_du_crtc_enable_vblank,
1175	.disable_vblank = rcar_du_crtc_disable_vblank,
1176	.set_crc_source = rcar_du_crtc_set_crc_source,
1177	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1178	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1179};
1180
1181/* -----------------------------------------------------------------------------
1182 * Interrupt Handling
1183 */
1184
1185static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1186{
1187	struct rcar_du_crtc *rcrtc = arg;
1188	struct rcar_du_device *rcdu = rcrtc->dev;
1189	irqreturn_t ret = IRQ_NONE;
1190	u32 status;
1191
1192	spin_lock(&rcrtc->vblank_lock);
1193
1194	status = rcar_du_crtc_read(rcrtc, DSSR);
1195	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1196
1197	if (status & DSSR_VBK) {
1198		/*
1199		 * Wake up the vblank wait if the counter reaches 0. This must
1200		 * be protected by the vblank_lock to avoid races in
1201		 * rcar_du_crtc_disable_planes().
1202		 */
1203		if (rcrtc->vblank_count) {
1204			if (--rcrtc->vblank_count == 0)
1205				wake_up(&rcrtc->vblank_wait);
1206		}
1207	}
1208
1209	spin_unlock(&rcrtc->vblank_lock);
1210
1211	if (status & DSSR_VBK) {
1212		if (rcdu->info->gen < 3) {
1213			drm_crtc_handle_vblank(&rcrtc->crtc);
1214			rcar_du_crtc_finish_page_flip(rcrtc);
1215		}
1216
1217		ret = IRQ_HANDLED;
1218	}
1219
1220	return ret;
1221}
1222
1223/* -----------------------------------------------------------------------------
1224 * Initialization
1225 */
1226
1227int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1228			unsigned int hwindex)
1229{
1230	static const unsigned int mmio_offsets[] = {
1231		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1232	};
1233
1234	struct rcar_du_device *rcdu = rgrp->dev;
1235	struct platform_device *pdev = to_platform_device(rcdu->dev);
1236	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1237	struct drm_crtc *crtc = &rcrtc->crtc;
1238	struct drm_plane *primary;
1239	unsigned int irqflags;
1240	struct clk *clk;
1241	char clk_name[9];
1242	char *name;
1243	int irq;
1244	int ret;
1245
1246	/* Get the CRTC clock and the optional external clock. */
1247	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) {
1248		sprintf(clk_name, "du.%u", hwindex);
1249		name = clk_name;
1250	} else {
1251		name = NULL;
1252	}
1253
1254	rcrtc->clock = devm_clk_get(rcdu->dev, name);
1255	if (IS_ERR(rcrtc->clock)) {
1256		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1257		return PTR_ERR(rcrtc->clock);
1258	}
1259
1260	sprintf(clk_name, "dclkin.%u", hwindex);
1261	clk = devm_clk_get(rcdu->dev, clk_name);
1262	if (!IS_ERR(clk)) {
1263		rcrtc->extclock = clk;
1264	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1265		return -EPROBE_DEFER;
1266	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1267		/*
1268		 * DU channels that have a display PLL can't use the internal
1269		 * system clock and thus require an external clock.
1270		 */
1271		ret = PTR_ERR(clk);
1272		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1273		return ret;
1274	}
1275
1276	init_waitqueue_head(&rcrtc->flip_wait);
1277	init_waitqueue_head(&rcrtc->vblank_wait);
1278	spin_lock_init(&rcrtc->vblank_lock);
1279
1280	rcrtc->dev = rcdu;
1281	rcrtc->group = rgrp;
1282	rcrtc->mmio_offset = mmio_offsets[hwindex];
1283	rcrtc->index = hwindex;
1284	rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES;
1285
1286	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC))
1287		rcrtc->dsysr |= DSYSR_TVM_TVSYNC;
1288
1289	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1290		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1291	else
1292		primary = &rgrp->planes[swindex % 2].plane;
1293
1294	ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL,
1295					rcdu->info->gen <= 2 ?
1296					&crtc_funcs_gen2 : &crtc_funcs_gen3,
1297					NULL);
1298	if (ret < 0)
1299		return ret;
1300
1301	/* CMM might be disabled for this CRTC. */
1302	if (rcdu->cmms[swindex]) {
1303		rcrtc->cmm = rcdu->cmms[swindex];
1304		rgrp->cmms_mask |= BIT(hwindex % 2);
1305
1306		drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1307		drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1308	}
1309
1310	drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1311
1312	/* Register the interrupt handler. */
1313	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) {
1314		/* The IRQ's are associated with the CRTC (sw)index. */
1315		irq = platform_get_irq(pdev, swindex);
1316		irqflags = 0;
1317	} else {
1318		irq = platform_get_irq(pdev, 0);
1319		irqflags = IRQF_SHARED;
1320	}
1321
1322	if (irq < 0) {
1323		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1324		return irq;
1325	}
1326
1327	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1328			       dev_name(rcdu->dev), rcrtc);
1329	if (ret < 0) {
1330		dev_err(rcdu->dev,
1331			"failed to register IRQ for CRTC %u\n", swindex);
1332		return ret;
1333	}
1334
1335	rcar_du_crtc_crc_init(rcrtc);
1336
1337	return 0;
1338}
1339