1// SPDX-License-Identifier: GPL-2.0 or MIT
2/* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
3/* Copyright 2023 Collabora ltd. */
4
5#include <drm/drm_debugfs.h>
6#include <drm/drm_drv.h>
7#include <drm/drm_exec.h>
8#include <drm/drm_gpuvm.h>
9#include <drm/drm_managed.h>
10#include <drm/gpu_scheduler.h>
11#include <drm/panthor_drm.h>
12
13#include <linux/atomic.h>
14#include <linux/bitfield.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/iopoll.h>
20#include <linux/io-pgtable.h>
21#include <linux/iommu.h>
22#include <linux/kmemleak.h>
23#include <linux/platform_device.h>
24#include <linux/pm_runtime.h>
25#include <linux/rwsem.h>
26#include <linux/sched.h>
27#include <linux/shmem_fs.h>
28#include <linux/sizes.h>
29
30#include "panthor_device.h"
31#include "panthor_gem.h"
32#include "panthor_heap.h"
33#include "panthor_mmu.h"
34#include "panthor_regs.h"
35#include "panthor_sched.h"
36
37#define MAX_AS_SLOTS			32
38
39struct panthor_vm;
40
41/**
42 * struct panthor_as_slot - Address space slot
43 */
44struct panthor_as_slot {
45	/** @vm: VM bound to this slot. NULL is no VM is bound. */
46	struct panthor_vm *vm;
47};
48
49/**
50 * struct panthor_mmu - MMU related data
51 */
52struct panthor_mmu {
53	/** @irq: The MMU irq. */
54	struct panthor_irq irq;
55
56	/** @as: Address space related fields.
57	 *
58	 * The GPU has a limited number of address spaces (AS) slots, forcing
59	 * us to re-assign them to re-assign slots on-demand.
60	 */
61	struct {
62		/** @slots_lock: Lock protecting access to all other AS fields. */
63		struct mutex slots_lock;
64
65		/** @alloc_mask: Bitmask encoding the allocated slots. */
66		unsigned long alloc_mask;
67
68		/** @faulty_mask: Bitmask encoding the faulty slots. */
69		unsigned long faulty_mask;
70
71		/** @slots: VMs currently bound to the AS slots. */
72		struct panthor_as_slot slots[MAX_AS_SLOTS];
73
74		/**
75		 * @lru_list: List of least recently used VMs.
76		 *
77		 * We use this list to pick a VM to evict when all slots are
78		 * used.
79		 *
80		 * There should be no more active VMs than there are AS slots,
81		 * so this LRU is just here to keep VMs bound until there's
82		 * a need to release a slot, thus avoid unnecessary TLB/cache
83		 * flushes.
84		 */
85		struct list_head lru_list;
86	} as;
87
88	/** @vm: VMs management fields */
89	struct {
90		/** @lock: Lock protecting access to list. */
91		struct mutex lock;
92
93		/** @list: List containing all VMs. */
94		struct list_head list;
95
96		/** @reset_in_progress: True if a reset is in progress. */
97		bool reset_in_progress;
98
99		/** @wq: Workqueue used for the VM_BIND queues. */
100		struct workqueue_struct *wq;
101	} vm;
102};
103
104/**
105 * struct panthor_vm_pool - VM pool object
106 */
107struct panthor_vm_pool {
108	/** @xa: Array used for VM handle tracking. */
109	struct xarray xa;
110};
111
112/**
113 * struct panthor_vma - GPU mapping object
114 *
115 * This is used to track GEM mappings in GPU space.
116 */
117struct panthor_vma {
118	/** @base: Inherits from drm_gpuva. */
119	struct drm_gpuva base;
120
121	/** @node: Used to implement deferred release of VMAs. */
122	struct list_head node;
123
124	/**
125	 * @flags: Combination of drm_panthor_vm_bind_op_flags.
126	 *
127	 * Only map related flags are accepted.
128	 */
129	u32 flags;
130};
131
132/**
133 * struct panthor_vm_op_ctx - VM operation context
134 *
135 * With VM operations potentially taking place in a dma-signaling path, we
136 * need to make sure everything that might require resource allocation is
137 * pre-allocated upfront. This is what this operation context is far.
138 *
139 * We also collect resources that have been freed, so we can release them
140 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND
141 * request.
142 */
143struct panthor_vm_op_ctx {
144	/** @rsvd_page_tables: Pages reserved for the MMU page table update. */
145	struct {
146		/** @count: Number of pages reserved. */
147		u32 count;
148
149		/** @ptr: Point to the first unused page in the @pages table. */
150		u32 ptr;
151
152		/**
153		 * @page: Array of pages that can be used for an MMU page table update.
154		 *
155		 * After an VM operation, there might be free pages left in this array.
156		 * They should be returned to the pt_cache as part of the op_ctx cleanup.
157		 */
158		void **pages;
159	} rsvd_page_tables;
160
161	/**
162	 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
163	 *
164	 * Partial unmap requests or map requests overlapping existing mappings will
165	 * trigger a remap call, which need to register up to three panthor_vma objects
166	 * (one for the new mapping, and two for the previous and next mappings).
167	 */
168	struct panthor_vma *preallocated_vmas[3];
169
170	/** @flags: Combination of drm_panthor_vm_bind_op_flags. */
171	u32 flags;
172
173	/** @va: Virtual range targeted by the VM operation. */
174	struct {
175		/** @addr: Start address. */
176		u64 addr;
177
178		/** @range: Range size. */
179		u64 range;
180	} va;
181
182	/**
183	 * @returned_vmas: List of panthor_vma objects returned after a VM operation.
184	 *
185	 * For unmap operations, this will contain all VMAs that were covered by the
186	 * specified VA range.
187	 *
188	 * For map operations, this will contain all VMAs that previously mapped to
189	 * the specified VA range.
190	 *
191	 * Those VMAs, and the resources they point to will be released as part of
192	 * the op_ctx cleanup operation.
193	 */
194	struct list_head returned_vmas;
195
196	/** @map: Fields specific to a map operation. */
197	struct {
198		/** @vm_bo: Buffer object to map. */
199		struct drm_gpuvm_bo *vm_bo;
200
201		/** @bo_offset: Offset in the buffer object. */
202		u64 bo_offset;
203
204		/**
205		 * @sgt: sg-table pointing to pages backing the GEM object.
206		 *
207		 * This is gathered at job creation time, such that we don't have
208		 * to allocate in ::run_job().
209		 */
210		struct sg_table *sgt;
211
212		/**
213		 * @new_vma: The new VMA object that will be inserted to the VA tree.
214		 */
215		struct panthor_vma *new_vma;
216	} map;
217};
218
219/**
220 * struct panthor_vm - VM object
221 *
222 * A VM is an object representing a GPU (or MCU) virtual address space.
223 * It embeds the MMU page table for this address space, a tree containing
224 * all the virtual mappings of GEM objects, and other things needed to manage
225 * the VM.
226 *
227 * Except for the MCU VM, which is managed by the kernel, all other VMs are
228 * created by userspace and mostly managed by userspace, using the
229 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
230 *
231 * A portion of the virtual address space is reserved for kernel objects,
232 * like heap chunks, and userspace gets to decide how much of the virtual
233 * address space is left to the kernel (half of the virtual address space
234 * by default).
235 */
236struct panthor_vm {
237	/**
238	 * @base: Inherit from drm_gpuvm.
239	 *
240	 * We delegate all the VA management to the common drm_gpuvm framework
241	 * and only implement hooks to update the MMU page table.
242	 */
243	struct drm_gpuvm base;
244
245	/**
246	 * @sched: Scheduler used for asynchronous VM_BIND request.
247	 *
248	 * We use a 1:1 scheduler here.
249	 */
250	struct drm_gpu_scheduler sched;
251
252	/**
253	 * @entity: Scheduling entity representing the VM_BIND queue.
254	 *
255	 * There's currently one bind queue per VM. It doesn't make sense to
256	 * allow more given the VM operations are serialized anyway.
257	 */
258	struct drm_sched_entity entity;
259
260	/** @ptdev: Device. */
261	struct panthor_device *ptdev;
262
263	/** @memattr: Value to program to the AS_MEMATTR register. */
264	u64 memattr;
265
266	/** @pgtbl_ops: Page table operations. */
267	struct io_pgtable_ops *pgtbl_ops;
268
269	/** @root_page_table: Stores the root page table pointer. */
270	void *root_page_table;
271
272	/**
273	 * @op_lock: Lock used to serialize operations on a VM.
274	 *
275	 * The serialization of jobs queued to the VM_BIND queue is already
276	 * taken care of by drm_sched, but we need to serialize synchronous
277	 * and asynchronous VM_BIND request. This is what this lock is for.
278	 */
279	struct mutex op_lock;
280
281	/**
282	 * @op_ctx: The context attached to the currently executing VM operation.
283	 *
284	 * NULL when no operation is in progress.
285	 */
286	struct panthor_vm_op_ctx *op_ctx;
287
288	/**
289	 * @mm: Memory management object representing the auto-VA/kernel-VA.
290	 *
291	 * Used to auto-allocate VA space for kernel-managed objects (tiler
292	 * heaps, ...).
293	 *
294	 * For the MCU VM, this is managing the VA range that's used to map
295	 * all shared interfaces.
296	 *
297	 * For user VMs, the range is specified by userspace, and must not
298	 * exceed half of the VA space addressable.
299	 */
300	struct drm_mm mm;
301
302	/** @mm_lock: Lock protecting the @mm field. */
303	struct mutex mm_lock;
304
305	/** @kernel_auto_va: Automatic VA-range for kernel BOs. */
306	struct {
307		/** @start: Start of the automatic VA-range for kernel BOs. */
308		u64 start;
309
310		/** @size: Size of the automatic VA-range for kernel BOs. */
311		u64 end;
312	} kernel_auto_va;
313
314	/** @as: Address space related fields. */
315	struct {
316		/**
317		 * @id: ID of the address space this VM is bound to.
318		 *
319		 * A value of -1 means the VM is inactive/not bound.
320		 */
321		int id;
322
323		/** @active_cnt: Number of active users of this VM. */
324		refcount_t active_cnt;
325
326		/**
327		 * @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
328		 *
329		 * Active VMs should not be inserted in the LRU list.
330		 */
331		struct list_head lru_node;
332	} as;
333
334	/**
335	 * @heaps: Tiler heap related fields.
336	 */
337	struct {
338		/**
339		 * @pool: The heap pool attached to this VM.
340		 *
341		 * Will stay NULL until someone creates a heap context on this VM.
342		 */
343		struct panthor_heap_pool *pool;
344
345		/** @lock: Lock used to protect access to @pool. */
346		struct mutex lock;
347	} heaps;
348
349	/** @node: Used to insert the VM in the panthor_mmu::vm::list. */
350	struct list_head node;
351
352	/** @for_mcu: True if this is the MCU VM. */
353	bool for_mcu;
354
355	/**
356	 * @destroyed: True if the VM was destroyed.
357	 *
358	 * No further bind requests should be queued to a destroyed VM.
359	 */
360	bool destroyed;
361
362	/**
363	 * @unusable: True if the VM has turned unusable because something
364	 * bad happened during an asynchronous request.
365	 *
366	 * We don't try to recover from such failures, because this implies
367	 * informing userspace about the specific operation that failed, and
368	 * hoping the userspace driver can replay things from there. This all
369	 * sounds very complicated for little gain.
370	 *
371	 * Instead, we should just flag the VM as unusable, and fail any
372	 * further request targeting this VM.
373	 *
374	 * We also provide a way to query a VM state, so userspace can destroy
375	 * it and create a new one.
376	 *
377	 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
378	 * situation, where the logical device needs to be re-created.
379	 */
380	bool unusable;
381
382	/**
383	 * @unhandled_fault: Unhandled fault happened.
384	 *
385	 * This should be reported to the scheduler, and the queue/group be
386	 * flagged as faulty as a result.
387	 */
388	bool unhandled_fault;
389};
390
391/**
392 * struct panthor_vm_bind_job - VM bind job
393 */
394struct panthor_vm_bind_job {
395	/** @base: Inherit from drm_sched_job. */
396	struct drm_sched_job base;
397
398	/** @refcount: Reference count. */
399	struct kref refcount;
400
401	/** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
402	struct work_struct cleanup_op_ctx_work;
403
404	/** @vm: VM targeted by the VM operation. */
405	struct panthor_vm *vm;
406
407	/** @ctx: Operation context. */
408	struct panthor_vm_op_ctx ctx;
409};
410
411/**
412 * @pt_cache: Cache used to allocate MMU page tables.
413 *
414 * The pre-allocation pattern forces us to over-allocate to plan for
415 * the worst case scenario, and return the pages we didn't use.
416 *
417 * Having a kmem_cache allows us to speed allocations.
418 */
419static struct kmem_cache *pt_cache;
420
421/**
422 * alloc_pt() - Custom page table allocator
423 * @cookie: Cookie passed at page table allocation time.
424 * @size: Size of the page table. This size should be fixed,
425 * and determined at creation time based on the granule size.
426 * @gfp: GFP flags.
427 *
428 * We want a custom allocator so we can use a cache for page table
429 * allocations and amortize the cost of the over-reservation that's
430 * done to allow asynchronous VM operations.
431 *
432 * Return: non-NULL on success, NULL if the allocation failed for any
433 * reason.
434 */
435static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
436{
437	struct panthor_vm *vm = cookie;
438	void *page;
439
440	/* Allocation of the root page table happening during init. */
441	if (unlikely(!vm->root_page_table)) {
442		struct page *p;
443
444		drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
445		p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
446				     gfp | __GFP_ZERO, get_order(size));
447		page = p ? page_address(p) : NULL;
448		vm->root_page_table = page;
449		return page;
450	}
451
452	/* We're not supposed to have anything bigger than 4k here, because we picked a
453	 * 4k granule size at init time.
454	 */
455	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
456		return NULL;
457
458	/* We must have some op_ctx attached to the VM and it must have at least one
459	 * free page.
460	 */
461	if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
462	    drm_WARN_ON(&vm->ptdev->base,
463			vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
464		return NULL;
465
466	page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
467	memset(page, 0, SZ_4K);
468
469	/* Page table entries don't use virtual addresses, which trips out
470	 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses
471	 * are mixed with other fields, and I fear kmemleak won't detect that
472	 * either.
473	 *
474	 * Let's just ignore memory passed to the page-table driver for now.
475	 */
476	kmemleak_ignore(page);
477	return page;
478}
479
480/**
481 * @free_pt() - Custom page table free function
482 * @cookie: Cookie passed at page table allocation time.
483 * @data: Page table to free.
484 * @size: Size of the page table. This size should be fixed,
485 * and determined at creation time based on the granule size.
486 */
487static void free_pt(void *cookie, void *data, size_t size)
488{
489	struct panthor_vm *vm = cookie;
490
491	if (unlikely(vm->root_page_table == data)) {
492		free_pages((unsigned long)data, get_order(size));
493		vm->root_page_table = NULL;
494		return;
495	}
496
497	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
498		return;
499
500	/* Return the page to the pt_cache. */
501	kmem_cache_free(pt_cache, data);
502}
503
504static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
505{
506	int ret;
507	u32 val;
508
509	/* Wait for the MMU status to indicate there is no active command, in
510	 * case one is pending.
511	 */
512	ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr),
513						val, !(val & AS_STATUS_AS_ACTIVE),
514						10, 100000);
515
516	if (ret) {
517		panthor_device_schedule_reset(ptdev);
518		drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
519	}
520
521	return ret;
522}
523
524static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
525{
526	int status;
527
528	/* write AS_COMMAND when MMU is ready to accept another command */
529	status = wait_ready(ptdev, as_nr);
530	if (!status)
531		gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
532
533	return status;
534}
535
536static void lock_region(struct panthor_device *ptdev, u32 as_nr,
537			u64 region_start, u64 size)
538{
539	u8 region_width;
540	u64 region;
541	u64 region_end = region_start + size;
542
543	if (!size)
544		return;
545
546	/*
547	 * The locked region is a naturally aligned power of 2 block encoded as
548	 * log2 minus(1).
549	 * Calculate the desired start/end and look for the highest bit which
550	 * differs. The smallest naturally aligned block must include this bit
551	 * change, the desired region starts with this bit (and subsequent bits)
552	 * zeroed and ends with the bit (and subsequent bits) set to one.
553	 */
554	region_width = max(fls64(region_start ^ (region_end - 1)),
555			   const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
556
557	/*
558	 * Mask off the low bits of region_start (which would be ignored by
559	 * the hardware anyway)
560	 */
561	region_start &= GENMASK_ULL(63, region_width);
562
563	region = region_width | region_start;
564
565	/* Lock the region that needs to be updated */
566	gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region));
567	gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region));
568	write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
569}
570
571static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
572				      u64 iova, u64 size, u32 op)
573{
574	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
575
576	if (as_nr < 0)
577		return 0;
578
579	if (op != AS_COMMAND_UNLOCK)
580		lock_region(ptdev, as_nr, iova, size);
581
582	/* Run the MMU operation */
583	write_cmd(ptdev, as_nr, op);
584
585	/* Wait for the flush to complete */
586	return wait_ready(ptdev, as_nr);
587}
588
589static int mmu_hw_do_operation(struct panthor_vm *vm,
590			       u64 iova, u64 size, u32 op)
591{
592	struct panthor_device *ptdev = vm->ptdev;
593	int ret;
594
595	mutex_lock(&ptdev->mmu->as.slots_lock);
596	ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
597	mutex_unlock(&ptdev->mmu->as.slots_lock);
598
599	return ret;
600}
601
602static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
603				 u64 transtab, u64 transcfg, u64 memattr)
604{
605	int ret;
606
607	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
608	if (ret)
609		return ret;
610
611	gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab));
612	gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab));
613
614	gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr));
615	gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr));
616
617	gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg));
618	gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg));
619
620	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
621}
622
623static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
624{
625	int ret;
626
627	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
628	if (ret)
629		return ret;
630
631	gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0);
632	gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0);
633
634	gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0);
635	gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0);
636
637	gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
638	gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0);
639
640	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
641}
642
643static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
644{
645	/* Bits 16 to 31 mean REQ_COMPLETE. */
646	return value & GENMASK(15, 0);
647}
648
649static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
650{
651	return BIT(as);
652}
653
654/**
655 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
656 * @vm: VM to check.
657 *
658 * Return: true if the VM has unhandled faults, false otherwise.
659 */
660bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
661{
662	return vm->unhandled_fault;
663}
664
665/**
666 * panthor_vm_is_unusable() - Check if the VM is still usable
667 * @vm: VM to check.
668 *
669 * Return: true if the VM is unusable, false otherwise.
670 */
671bool panthor_vm_is_unusable(struct panthor_vm *vm)
672{
673	return vm->unusable;
674}
675
676static void panthor_vm_release_as_locked(struct panthor_vm *vm)
677{
678	struct panthor_device *ptdev = vm->ptdev;
679
680	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
681
682	if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
683		return;
684
685	ptdev->mmu->as.slots[vm->as.id].vm = NULL;
686	clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
687	refcount_set(&vm->as.active_cnt, 0);
688	list_del_init(&vm->as.lru_node);
689	vm->as.id = -1;
690}
691
692/**
693 * panthor_vm_active() - Flag a VM as active
694 * @VM: VM to flag as active.
695 *
696 * Assigns an address space to a VM so it can be used by the GPU/MCU.
697 *
698 * Return: 0 on success, a negative error code otherwise.
699 */
700int panthor_vm_active(struct panthor_vm *vm)
701{
702	struct panthor_device *ptdev = vm->ptdev;
703	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
704	struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
705	int ret = 0, as, cookie;
706	u64 transtab, transcfg;
707
708	if (!drm_dev_enter(&ptdev->base, &cookie))
709		return -ENODEV;
710
711	if (refcount_inc_not_zero(&vm->as.active_cnt))
712		goto out_dev_exit;
713
714	mutex_lock(&ptdev->mmu->as.slots_lock);
715
716	if (refcount_inc_not_zero(&vm->as.active_cnt))
717		goto out_unlock;
718
719	as = vm->as.id;
720	if (as >= 0) {
721		/* Unhandled pagefault on this AS, the MMU was disabled. We need to
722		 * re-enable the MMU after clearing+unmasking the AS interrupts.
723		 */
724		if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
725			goto out_enable_as;
726
727		goto out_make_active;
728	}
729
730	/* Check for a free AS */
731	if (vm->for_mcu) {
732		drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
733		as = 0;
734	} else {
735		as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
736	}
737
738	if (!(BIT(as) & ptdev->gpu_info.as_present)) {
739		struct panthor_vm *lru_vm;
740
741		lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
742						  struct panthor_vm,
743						  as.lru_node);
744		if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
745			ret = -EBUSY;
746			goto out_unlock;
747		}
748
749		drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
750		as = lru_vm->as.id;
751		panthor_vm_release_as_locked(lru_vm);
752	}
753
754	/* Assign the free or reclaimed AS to the FD */
755	vm->as.id = as;
756	set_bit(as, &ptdev->mmu->as.alloc_mask);
757	ptdev->mmu->as.slots[as].vm = vm;
758
759out_enable_as:
760	transtab = cfg->arm_lpae_s1_cfg.ttbr;
761	transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
762		   AS_TRANSCFG_PTW_RA |
763		   AS_TRANSCFG_ADRMODE_AARCH64_4K |
764		   AS_TRANSCFG_INA_BITS(55 - va_bits);
765	if (ptdev->coherent)
766		transcfg |= AS_TRANSCFG_PTW_SH_OS;
767
768	/* If the VM is re-activated, we clear the fault. */
769	vm->unhandled_fault = false;
770
771	/* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
772	 * before enabling the AS.
773	 */
774	if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
775		gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
776		ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
777		gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
778	}
779
780	ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
781
782out_make_active:
783	if (!ret) {
784		refcount_set(&vm->as.active_cnt, 1);
785		list_del_init(&vm->as.lru_node);
786	}
787
788out_unlock:
789	mutex_unlock(&ptdev->mmu->as.slots_lock);
790
791out_dev_exit:
792	drm_dev_exit(cookie);
793	return ret;
794}
795
796/**
797 * panthor_vm_idle() - Flag a VM idle
798 * @VM: VM to flag as idle.
799 *
800 * When we know the GPU is done with the VM (no more jobs to process),
801 * we can relinquish the AS slot attached to this VM, if any.
802 *
803 * We don't release the slot immediately, but instead place the VM in
804 * the LRU list, so it can be evicted if another VM needs an AS slot.
805 * This way, VMs keep attached to the AS they were given until we run
806 * out of free slot, limiting the number of MMU operations (TLB flush
807 * and other AS updates).
808 */
809void panthor_vm_idle(struct panthor_vm *vm)
810{
811	struct panthor_device *ptdev = vm->ptdev;
812
813	if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
814		return;
815
816	if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
817		list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
818
819	refcount_set(&vm->as.active_cnt, 0);
820	mutex_unlock(&ptdev->mmu->as.slots_lock);
821}
822
823static void panthor_vm_stop(struct panthor_vm *vm)
824{
825	drm_sched_stop(&vm->sched, NULL);
826}
827
828static void panthor_vm_start(struct panthor_vm *vm)
829{
830	drm_sched_start(&vm->sched, true);
831}
832
833/**
834 * panthor_vm_as() - Get the AS slot attached to a VM
835 * @vm: VM to get the AS slot of.
836 *
837 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
838 */
839int panthor_vm_as(struct panthor_vm *vm)
840{
841	return vm->as.id;
842}
843
844static size_t get_pgsize(u64 addr, size_t size, size_t *count)
845{
846	/*
847	 * io-pgtable only operates on multiple pages within a single table
848	 * entry, so we need to split at boundaries of the table size, i.e.
849	 * the next block size up. The distance from address A to the next
850	 * boundary of block size B is logically B - A % B, but in unsigned
851	 * two's complement where B is a power of two we get the equivalence
852	 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
853	 */
854	size_t blk_offset = -addr % SZ_2M;
855
856	if (blk_offset || size < SZ_2M) {
857		*count = min_not_zero(blk_offset, size) / SZ_4K;
858		return SZ_4K;
859	}
860	blk_offset = -addr % SZ_1G ?: SZ_1G;
861	*count = min(blk_offset, size) / SZ_2M;
862	return SZ_2M;
863}
864
865static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
866{
867	struct panthor_device *ptdev = vm->ptdev;
868	int ret = 0, cookie;
869
870	if (vm->as.id < 0)
871		return 0;
872
873	/* If the device is unplugged, we just silently skip the flush. */
874	if (!drm_dev_enter(&ptdev->base, &cookie))
875		return 0;
876
877	/* Flush the PTs only if we're already awake */
878	if (pm_runtime_active(ptdev->base.dev))
879		ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
880
881	drm_dev_exit(cookie);
882	return ret;
883}
884
885static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
886{
887	struct panthor_device *ptdev = vm->ptdev;
888	struct io_pgtable_ops *ops = vm->pgtbl_ops;
889	u64 offset = 0;
890
891	drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size);
892
893	while (offset < size) {
894		size_t unmapped_sz = 0, pgcount;
895		size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
896
897		unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
898
899		if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
900			drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
901				iova + offset + unmapped_sz,
902				iova + offset + pgsize * pgcount,
903				iova, iova + size);
904			panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
905			return  -EINVAL;
906		}
907		offset += unmapped_sz;
908	}
909
910	return panthor_vm_flush_range(vm, iova, size);
911}
912
913static int
914panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
915		     struct sg_table *sgt, u64 offset, u64 size)
916{
917	struct panthor_device *ptdev = vm->ptdev;
918	unsigned int count;
919	struct scatterlist *sgl;
920	struct io_pgtable_ops *ops = vm->pgtbl_ops;
921	u64 start_iova = iova;
922	int ret;
923
924	if (!size)
925		return 0;
926
927	for_each_sgtable_dma_sg(sgt, sgl, count) {
928		dma_addr_t paddr = sg_dma_address(sgl);
929		size_t len = sg_dma_len(sgl);
930
931		if (len <= offset) {
932			offset -= len;
933			continue;
934		}
935
936		paddr += offset;
937		len -= offset;
938		len = min_t(size_t, len, size);
939		size -= len;
940
941		drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx",
942			vm->as.id, iova, &paddr, len);
943
944		while (len) {
945			size_t pgcount, mapped = 0;
946			size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
947
948			ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
949					     GFP_KERNEL, &mapped);
950			iova += mapped;
951			paddr += mapped;
952			len -= mapped;
953
954			if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
955				ret = -ENOMEM;
956
957			if (ret) {
958				/* If something failed, unmap what we've already mapped before
959				 * returning. The unmap call is not supposed to fail.
960				 */
961				drm_WARN_ON(&ptdev->base,
962					    panthor_vm_unmap_pages(vm, start_iova,
963								   iova - start_iova));
964				return ret;
965			}
966		}
967
968		if (!size)
969			break;
970	}
971
972	return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
973}
974
975static int flags_to_prot(u32 flags)
976{
977	int prot = 0;
978
979	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
980		prot |= IOMMU_NOEXEC;
981
982	if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
983		prot |= IOMMU_CACHE;
984
985	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
986		prot |= IOMMU_READ;
987	else
988		prot |= IOMMU_READ | IOMMU_WRITE;
989
990	return prot;
991}
992
993/**
994 * panthor_vm_alloc_va() - Allocate a region in the auto-va space
995 * @VM: VM to allocate a region on.
996 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
997 * wants the VA to be automatically allocated from the auto-VA range.
998 * @size: size of the VA range.
999 * @va_node: drm_mm_node to initialize. Must be zero-initialized.
1000 *
1001 * Some GPU objects, like heap chunks, are fully managed by the kernel and
1002 * need to be mapped to the userspace VM, in the region reserved for kernel
1003 * objects.
1004 *
1005 * This function takes care of allocating a region in the kernel auto-VA space.
1006 *
1007 * Return: 0 on success, an error code otherwise.
1008 */
1009int
1010panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
1011		    struct drm_mm_node *va_node)
1012{
1013	int ret;
1014
1015	if (!size || (size & ~PAGE_MASK))
1016		return -EINVAL;
1017
1018	if (va != PANTHOR_VM_KERNEL_AUTO_VA && (va & ~PAGE_MASK))
1019		return -EINVAL;
1020
1021	mutex_lock(&vm->mm_lock);
1022	if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
1023		va_node->start = va;
1024		va_node->size = size;
1025		ret = drm_mm_reserve_node(&vm->mm, va_node);
1026	} else {
1027		ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
1028						  size >= SZ_2M ? SZ_2M : SZ_4K,
1029						  0, vm->kernel_auto_va.start,
1030						  vm->kernel_auto_va.end,
1031						  DRM_MM_INSERT_BEST);
1032	}
1033	mutex_unlock(&vm->mm_lock);
1034
1035	return ret;
1036}
1037
1038/**
1039 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
1040 * @VM: VM to free the region on.
1041 * @va_node: Memory node representing the region to free.
1042 */
1043void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
1044{
1045	mutex_lock(&vm->mm_lock);
1046	drm_mm_remove_node(va_node);
1047	mutex_unlock(&vm->mm_lock);
1048}
1049
1050static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo)
1051{
1052	struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
1053	struct drm_gpuvm *vm = vm_bo->vm;
1054	bool unpin;
1055
1056	/* We must retain the GEM before calling drm_gpuvm_bo_put(),
1057	 * otherwise the mutex might be destroyed while we hold it.
1058	 * Same goes for the VM, since we take the VM resv lock.
1059	 */
1060	drm_gem_object_get(&bo->base.base);
1061	drm_gpuvm_get(vm);
1062
1063	/* We take the resv lock to protect against concurrent accesses to the
1064	 * gpuvm evicted/extobj lists that are modified in
1065	 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put()
1066	 * releases sthe last vm_bo reference.
1067	 * We take the BO GPUVA list lock to protect the vm_bo removal from the
1068	 * GEM vm_bo list.
1069	 */
1070	dma_resv_lock(drm_gpuvm_resv(vm), NULL);
1071	mutex_lock(&bo->gpuva_list_lock);
1072	unpin = drm_gpuvm_bo_put(vm_bo);
1073	mutex_unlock(&bo->gpuva_list_lock);
1074	dma_resv_unlock(drm_gpuvm_resv(vm));
1075
1076	/* If the vm_bo object was destroyed, release the pin reference that
1077	 * was hold by this object.
1078	 */
1079	if (unpin && !bo->base.base.import_attach)
1080		drm_gem_shmem_unpin(&bo->base);
1081
1082	drm_gpuvm_put(vm);
1083	drm_gem_object_put(&bo->base.base);
1084}
1085
1086static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1087				      struct panthor_vm *vm)
1088{
1089	struct panthor_vma *vma, *tmp_vma;
1090
1091	u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
1092				 op_ctx->rsvd_page_tables.ptr;
1093
1094	if (remaining_pt_count) {
1095		kmem_cache_free_bulk(pt_cache, remaining_pt_count,
1096				     op_ctx->rsvd_page_tables.pages +
1097				     op_ctx->rsvd_page_tables.ptr);
1098	}
1099
1100	kfree(op_ctx->rsvd_page_tables.pages);
1101
1102	if (op_ctx->map.vm_bo)
1103		panthor_vm_bo_put(op_ctx->map.vm_bo);
1104
1105	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
1106		kfree(op_ctx->preallocated_vmas[i]);
1107
1108	list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) {
1109		list_del(&vma->node);
1110		panthor_vm_bo_put(vma->base.vm_bo);
1111		kfree(vma);
1112	}
1113}
1114
1115static struct panthor_vma *
1116panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
1117{
1118	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1119		struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
1120
1121		if (vma) {
1122			op_ctx->preallocated_vmas[i] = NULL;
1123			return vma;
1124		}
1125	}
1126
1127	return NULL;
1128}
1129
1130static int
1131panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
1132{
1133	u32 vma_count;
1134
1135	switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
1136	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
1137		/* One VMA for the new mapping, and two more VMAs for the remap case
1138		 * which might contain both a prev and next VA.
1139		 */
1140		vma_count = 3;
1141		break;
1142
1143	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
1144		/* Partial unmaps might trigger a remap with either a prev or a next VA,
1145		 * but not both.
1146		 */
1147		vma_count = 1;
1148		break;
1149
1150	default:
1151		return 0;
1152	}
1153
1154	for (u32 i = 0; i < vma_count; i++) {
1155		struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1156
1157		if (!vma)
1158			return -ENOMEM;
1159
1160		op_ctx->preallocated_vmas[i] = vma;
1161	}
1162
1163	return 0;
1164}
1165
1166#define PANTHOR_VM_BIND_OP_MAP_FLAGS \
1167	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1168	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1169	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
1170	 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
1171
1172static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1173					 struct panthor_vm *vm,
1174					 struct panthor_gem_object *bo,
1175					 u64 offset,
1176					 u64 size, u64 va,
1177					 u32 flags)
1178{
1179	struct drm_gpuvm_bo *preallocated_vm_bo;
1180	struct sg_table *sgt = NULL;
1181	u64 pt_count;
1182	int ret;
1183
1184	if (!bo)
1185		return -EINVAL;
1186
1187	if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
1188	    (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
1189		return -EINVAL;
1190
1191	/* Make sure the VA and size are aligned and in-bounds. */
1192	if (size > bo->base.base.size || offset > bo->base.base.size - size)
1193		return -EINVAL;
1194
1195	/* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
1196	if (bo->exclusive_vm_root_gem &&
1197	    bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
1198		return -EINVAL;
1199
1200	memset(op_ctx, 0, sizeof(*op_ctx));
1201	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1202	op_ctx->flags = flags;
1203	op_ctx->va.range = size;
1204	op_ctx->va.addr = va;
1205
1206	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1207	if (ret)
1208		goto err_cleanup;
1209
1210	if (!bo->base.base.import_attach) {
1211		/* Pre-reserve the BO pages, so the map operation doesn't have to
1212		 * allocate.
1213		 */
1214		ret = drm_gem_shmem_pin(&bo->base);
1215		if (ret)
1216			goto err_cleanup;
1217	}
1218
1219	sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
1220	if (IS_ERR(sgt)) {
1221		if (!bo->base.base.import_attach)
1222			drm_gem_shmem_unpin(&bo->base);
1223
1224		ret = PTR_ERR(sgt);
1225		goto err_cleanup;
1226	}
1227
1228	op_ctx->map.sgt = sgt;
1229
1230	preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
1231	if (!preallocated_vm_bo) {
1232		if (!bo->base.base.import_attach)
1233			drm_gem_shmem_unpin(&bo->base);
1234
1235		ret = -ENOMEM;
1236		goto err_cleanup;
1237	}
1238
1239	mutex_lock(&bo->gpuva_list_lock);
1240	op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
1241	mutex_unlock(&bo->gpuva_list_lock);
1242
1243	/* If the a vm_bo for this <VM,BO> combination exists, it already
1244	 * retains a pin ref, and we can release the one we took earlier.
1245	 *
1246	 * If our pre-allocated vm_bo is picked, it now retains the pin ref,
1247	 * which will be released in panthor_vm_bo_put().
1248	 */
1249	if (preallocated_vm_bo != op_ctx->map.vm_bo &&
1250	    !bo->base.base.import_attach)
1251		drm_gem_shmem_unpin(&bo->base);
1252
1253	op_ctx->map.bo_offset = offset;
1254
1255	/* L1, L2 and L3 page tables.
1256	 * We could optimize L3 allocation by iterating over the sgt and merging
1257	 * 2M contiguous blocks, but it's simpler to over-provision and return
1258	 * the pages if they're not used.
1259	 */
1260	pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
1261		   ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
1262		   ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
1263
1264	op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1265						 sizeof(*op_ctx->rsvd_page_tables.pages),
1266						 GFP_KERNEL);
1267	if (!op_ctx->rsvd_page_tables.pages) {
1268		ret = -ENOMEM;
1269		goto err_cleanup;
1270	}
1271
1272	ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1273				    op_ctx->rsvd_page_tables.pages);
1274	op_ctx->rsvd_page_tables.count = ret;
1275	if (ret != pt_count) {
1276		ret = -ENOMEM;
1277		goto err_cleanup;
1278	}
1279
1280	/* Insert BO into the extobj list last, when we know nothing can fail. */
1281	dma_resv_lock(panthor_vm_resv(vm), NULL);
1282	drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
1283	dma_resv_unlock(panthor_vm_resv(vm));
1284
1285	return 0;
1286
1287err_cleanup:
1288	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1289	return ret;
1290}
1291
1292static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1293					   struct panthor_vm *vm,
1294					   u64 va, u64 size)
1295{
1296	u32 pt_count = 0;
1297	int ret;
1298
1299	memset(op_ctx, 0, sizeof(*op_ctx));
1300	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1301	op_ctx->va.range = size;
1302	op_ctx->va.addr = va;
1303	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
1304
1305	/* Pre-allocate L3 page tables to account for the split-2M-block
1306	 * situation on unmap.
1307	 */
1308	if (va != ALIGN(va, SZ_2M))
1309		pt_count++;
1310
1311	if (va + size != ALIGN(va + size, SZ_2M) &&
1312	    ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
1313		pt_count++;
1314
1315	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1316	if (ret)
1317		goto err_cleanup;
1318
1319	if (pt_count) {
1320		op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1321							 sizeof(*op_ctx->rsvd_page_tables.pages),
1322							 GFP_KERNEL);
1323		if (!op_ctx->rsvd_page_tables.pages) {
1324			ret = -ENOMEM;
1325			goto err_cleanup;
1326		}
1327
1328		ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1329					    op_ctx->rsvd_page_tables.pages);
1330		if (ret != pt_count) {
1331			ret = -ENOMEM;
1332			goto err_cleanup;
1333		}
1334		op_ctx->rsvd_page_tables.count = pt_count;
1335	}
1336
1337	return 0;
1338
1339err_cleanup:
1340	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1341	return ret;
1342}
1343
1344static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1345						struct panthor_vm *vm)
1346{
1347	memset(op_ctx, 0, sizeof(*op_ctx));
1348	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1349	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
1350}
1351
1352/**
1353 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
1354 * @vm: VM to look into.
1355 * @va: Virtual address to search for.
1356 * @bo_offset: Offset of the GEM object mapped at this virtual address.
1357 * Only valid on success.
1358 *
1359 * The object returned by this function might no longer be mapped when the
1360 * function returns. It's the caller responsibility to ensure there's no
1361 * concurrent map/unmap operations making the returned value invalid, or
1362 * make sure it doesn't matter if the object is no longer mapped.
1363 *
1364 * Return: A valid pointer on success, an ERR_PTR() otherwise.
1365 */
1366struct panthor_gem_object *
1367panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
1368{
1369	struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
1370	struct drm_gpuva *gpuva;
1371	struct panthor_vma *vma;
1372
1373	/* Take the VM lock to prevent concurrent map/unmap operations. */
1374	mutex_lock(&vm->op_lock);
1375	gpuva = drm_gpuva_find_first(&vm->base, va, 1);
1376	vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
1377	if (vma && vma->base.gem.obj) {
1378		drm_gem_object_get(vma->base.gem.obj);
1379		bo = to_panthor_bo(vma->base.gem.obj);
1380		*bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
1381	}
1382	mutex_unlock(&vm->op_lock);
1383
1384	return bo;
1385}
1386
1387#define PANTHOR_VM_MIN_KERNEL_VA_SIZE	SZ_256M
1388
1389static u64
1390panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
1391				    u64 full_va_range)
1392{
1393	u64 user_va_range;
1394
1395	/* Make sure we have a minimum amount of VA space for kernel objects. */
1396	if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
1397		return 0;
1398
1399	if (args->user_va_range) {
1400		/* Use the user provided value if != 0. */
1401		user_va_range = args->user_va_range;
1402	} else if (TASK_SIZE_OF(current) < full_va_range) {
1403		/* If the task VM size is smaller than the GPU VA range, pick this
1404		 * as our default user VA range, so userspace can CPU/GPU map buffers
1405		 * at the same address.
1406		 */
1407		user_va_range = TASK_SIZE_OF(current);
1408	} else {
1409		/* If the GPU VA range is smaller than the task VM size, we
1410		 * just have to live with the fact we won't be able to map
1411		 * all buffers at the same GPU/CPU address.
1412		 *
1413		 * If the GPU VA range is bigger than 4G (more than 32-bit of
1414		 * VA), we split the range in two, and assign half of it to
1415		 * the user and the other half to the kernel, if it's not, we
1416		 * keep the kernel VA space as small as possible.
1417		 */
1418		user_va_range = full_va_range > SZ_4G ?
1419				full_va_range / 2 :
1420				full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1421	}
1422
1423	if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
1424		user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1425
1426	return user_va_range;
1427}
1428
1429#define PANTHOR_VM_CREATE_FLAGS		0
1430
1431static int
1432panthor_vm_create_check_args(const struct panthor_device *ptdev,
1433			     const struct drm_panthor_vm_create *args,
1434			     u64 *kernel_va_start, u64 *kernel_va_range)
1435{
1436	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
1437	u64 full_va_range = 1ull << va_bits;
1438	u64 user_va_range;
1439
1440	if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
1441		return -EINVAL;
1442
1443	user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
1444	if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
1445		return -EINVAL;
1446
1447	/* Pick a kernel VA range that's a power of two, to have a clear split. */
1448	*kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
1449	*kernel_va_start = full_va_range - *kernel_va_range;
1450	return 0;
1451}
1452
1453/*
1454 * Only 32 VMs per open file. If that becomes a limiting factor, we can
1455 * increase this number.
1456 */
1457#define PANTHOR_MAX_VMS_PER_FILE	32
1458
1459/**
1460 * panthor_vm_pool_create_vm() - Create a VM
1461 * @pool: The VM to create this VM on.
1462 * @kernel_va_start: Start of the region reserved for kernel objects.
1463 * @kernel_va_range: Size of the region reserved for kernel objects.
1464 *
1465 * Return: a positive VM ID on success, a negative error code otherwise.
1466 */
1467int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
1468			      struct panthor_vm_pool *pool,
1469			      struct drm_panthor_vm_create *args)
1470{
1471	u64 kernel_va_start, kernel_va_range;
1472	struct panthor_vm *vm;
1473	int ret;
1474	u32 id;
1475
1476	ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
1477	if (ret)
1478		return ret;
1479
1480	vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
1481			       kernel_va_start, kernel_va_range);
1482	if (IS_ERR(vm))
1483		return PTR_ERR(vm);
1484
1485	ret = xa_alloc(&pool->xa, &id, vm,
1486		       XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
1487
1488	if (ret) {
1489		panthor_vm_put(vm);
1490		return ret;
1491	}
1492
1493	args->user_va_range = kernel_va_start;
1494	return id;
1495}
1496
1497static void panthor_vm_destroy(struct panthor_vm *vm)
1498{
1499	if (!vm)
1500		return;
1501
1502	vm->destroyed = true;
1503
1504	mutex_lock(&vm->heaps.lock);
1505	panthor_heap_pool_destroy(vm->heaps.pool);
1506	vm->heaps.pool = NULL;
1507	mutex_unlock(&vm->heaps.lock);
1508
1509	drm_WARN_ON(&vm->ptdev->base,
1510		    panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
1511	panthor_vm_put(vm);
1512}
1513
1514/**
1515 * panthor_vm_pool_destroy_vm() - Destroy a VM.
1516 * @pool: VM pool.
1517 * @handle: VM handle.
1518 *
1519 * This function doesn't free the VM object or its resources, it just kills
1520 * all mappings, and makes sure nothing can be mapped after that point.
1521 *
1522 * If there was any active jobs at the time this function is called, these
1523 * jobs should experience page faults and be killed as a result.
1524 *
1525 * The VM resources are freed when the last reference on the VM object is
1526 * dropped.
1527 */
1528int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
1529{
1530	struct panthor_vm *vm;
1531
1532	vm = xa_erase(&pool->xa, handle);
1533
1534	panthor_vm_destroy(vm);
1535
1536	return vm ? 0 : -EINVAL;
1537}
1538
1539/**
1540 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
1541 * @pool: VM pool to check.
1542 * @handle: Handle of the VM to retrieve.
1543 *
1544 * Return: A valid pointer if the VM exists, NULL otherwise.
1545 */
1546struct panthor_vm *
1547panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
1548{
1549	struct panthor_vm *vm;
1550
1551	vm = panthor_vm_get(xa_load(&pool->xa, handle));
1552
1553	return vm;
1554}
1555
1556/**
1557 * panthor_vm_pool_destroy() - Destroy a VM pool.
1558 * @pfile: File.
1559 *
1560 * Destroy all VMs in the pool, and release the pool resources.
1561 *
1562 * Note that VMs can outlive the pool they were created from if other
1563 * objects hold a reference to there VMs.
1564 */
1565void panthor_vm_pool_destroy(struct panthor_file *pfile)
1566{
1567	struct panthor_vm *vm;
1568	unsigned long i;
1569
1570	if (!pfile->vms)
1571		return;
1572
1573	xa_for_each(&pfile->vms->xa, i, vm)
1574		panthor_vm_destroy(vm);
1575
1576	xa_destroy(&pfile->vms->xa);
1577	kfree(pfile->vms);
1578}
1579
1580/**
1581 * panthor_vm_pool_create() - Create a VM pool
1582 * @pfile: File.
1583 *
1584 * Return: 0 on success, a negative error code otherwise.
1585 */
1586int panthor_vm_pool_create(struct panthor_file *pfile)
1587{
1588	pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
1589	if (!pfile->vms)
1590		return -ENOMEM;
1591
1592	xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
1593	return 0;
1594}
1595
1596/* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
1597static void mmu_tlb_flush_all(void *cookie)
1598{
1599}
1600
1601static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
1602{
1603}
1604
1605static const struct iommu_flush_ops mmu_tlb_ops = {
1606	.tlb_flush_all = mmu_tlb_flush_all,
1607	.tlb_flush_walk = mmu_tlb_flush_walk,
1608};
1609
1610static const char *access_type_name(struct panthor_device *ptdev,
1611				    u32 fault_status)
1612{
1613	switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
1614	case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
1615		return "ATOMIC";
1616	case AS_FAULTSTATUS_ACCESS_TYPE_READ:
1617		return "READ";
1618	case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
1619		return "WRITE";
1620	case AS_FAULTSTATUS_ACCESS_TYPE_EX:
1621		return "EXECUTE";
1622	default:
1623		drm_WARN_ON(&ptdev->base, 1);
1624		return NULL;
1625	}
1626}
1627
1628static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
1629{
1630	bool has_unhandled_faults = false;
1631
1632	status = panthor_mmu_fault_mask(ptdev, status);
1633	while (status) {
1634		u32 as = ffs(status | (status >> 16)) - 1;
1635		u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
1636		u32 new_int_mask;
1637		u64 addr;
1638		u32 fault_status;
1639		u32 exception_type;
1640		u32 access_type;
1641		u32 source_id;
1642
1643		fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
1644		addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as));
1645		addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32;
1646
1647		/* decode the fault status */
1648		exception_type = fault_status & 0xFF;
1649		access_type = (fault_status >> 8) & 0x3;
1650		source_id = (fault_status >> 16);
1651
1652		mutex_lock(&ptdev->mmu->as.slots_lock);
1653
1654		ptdev->mmu->as.faulty_mask |= mask;
1655		new_int_mask =
1656			panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
1657
1658		/* terminal fault, print info about the fault */
1659		drm_err(&ptdev->base,
1660			"Unhandled Page fault in AS%d at VA 0x%016llX\n"
1661			"raw fault status: 0x%X\n"
1662			"decoded fault status: %s\n"
1663			"exception type 0x%X: %s\n"
1664			"access type 0x%X: %s\n"
1665			"source id 0x%X\n",
1666			as, addr,
1667			fault_status,
1668			(fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
1669			exception_type, panthor_exception_name(ptdev, exception_type),
1670			access_type, access_type_name(ptdev, fault_status),
1671			source_id);
1672
1673		/* Ignore MMU interrupts on this AS until it's been
1674		 * re-enabled.
1675		 */
1676		ptdev->mmu->irq.mask = new_int_mask;
1677		gpu_write(ptdev, MMU_INT_MASK, new_int_mask);
1678
1679		if (ptdev->mmu->as.slots[as].vm)
1680			ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
1681
1682		/* Disable the MMU to kill jobs on this AS. */
1683		panthor_mmu_as_disable(ptdev, as);
1684		mutex_unlock(&ptdev->mmu->as.slots_lock);
1685
1686		status &= ~mask;
1687		has_unhandled_faults = true;
1688	}
1689
1690	if (has_unhandled_faults)
1691		panthor_sched_report_mmu_fault(ptdev);
1692}
1693PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
1694
1695/**
1696 * panthor_mmu_suspend() - Suspend the MMU logic
1697 * @ptdev: Device.
1698 *
1699 * All we do here is de-assign the AS slots on all active VMs, so things
1700 * get flushed to the main memory, and no further access to these VMs are
1701 * possible.
1702 *
1703 * We also suspend the MMU IRQ.
1704 */
1705void panthor_mmu_suspend(struct panthor_device *ptdev)
1706{
1707	mutex_lock(&ptdev->mmu->as.slots_lock);
1708	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1709		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1710
1711		if (vm) {
1712			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
1713			panthor_vm_release_as_locked(vm);
1714		}
1715	}
1716	mutex_unlock(&ptdev->mmu->as.slots_lock);
1717
1718	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1719}
1720
1721/**
1722 * panthor_mmu_resume() - Resume the MMU logic
1723 * @ptdev: Device.
1724 *
1725 * Resume the IRQ.
1726 *
1727 * We don't re-enable previously active VMs. We assume other parts of the
1728 * driver will call panthor_vm_active() on the VMs they intend to use.
1729 */
1730void panthor_mmu_resume(struct panthor_device *ptdev)
1731{
1732	mutex_lock(&ptdev->mmu->as.slots_lock);
1733	ptdev->mmu->as.alloc_mask = 0;
1734	ptdev->mmu->as.faulty_mask = 0;
1735	mutex_unlock(&ptdev->mmu->as.slots_lock);
1736
1737	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1738}
1739
1740/**
1741 * panthor_mmu_pre_reset() - Prepare for a reset
1742 * @ptdev: Device.
1743 *
1744 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
1745 * don't get asked to do a VM operation while the GPU is down.
1746 *
1747 * We don't cleanly shutdown the AS slots here, because the reset might
1748 * come from an AS_ACTIVE_BIT stuck situation.
1749 */
1750void panthor_mmu_pre_reset(struct panthor_device *ptdev)
1751{
1752	struct panthor_vm *vm;
1753
1754	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1755
1756	mutex_lock(&ptdev->mmu->vm.lock);
1757	ptdev->mmu->vm.reset_in_progress = true;
1758	list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
1759		panthor_vm_stop(vm);
1760	mutex_unlock(&ptdev->mmu->vm.lock);
1761}
1762
1763/**
1764 * panthor_mmu_post_reset() - Restore things after a reset
1765 * @ptdev: Device.
1766 *
1767 * Put the MMU logic back in action after a reset. That implies resuming the
1768 * IRQ and re-enabling the VM_BIND queues.
1769 */
1770void panthor_mmu_post_reset(struct panthor_device *ptdev)
1771{
1772	struct panthor_vm *vm;
1773
1774	mutex_lock(&ptdev->mmu->as.slots_lock);
1775
1776	/* Now that the reset is effective, we can assume that none of the
1777	 * AS slots are setup, and clear the faulty flags too.
1778	 */
1779	ptdev->mmu->as.alloc_mask = 0;
1780	ptdev->mmu->as.faulty_mask = 0;
1781
1782	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1783		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1784
1785		if (vm)
1786			panthor_vm_release_as_locked(vm);
1787	}
1788
1789	mutex_unlock(&ptdev->mmu->as.slots_lock);
1790
1791	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1792
1793	/* Restart the VM_BIND queues. */
1794	mutex_lock(&ptdev->mmu->vm.lock);
1795	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
1796		panthor_vm_start(vm);
1797	}
1798	ptdev->mmu->vm.reset_in_progress = false;
1799	mutex_unlock(&ptdev->mmu->vm.lock);
1800}
1801
1802static void panthor_vm_free(struct drm_gpuvm *gpuvm)
1803{
1804	struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
1805	struct panthor_device *ptdev = vm->ptdev;
1806
1807	mutex_lock(&vm->heaps.lock);
1808	if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
1809		panthor_heap_pool_destroy(vm->heaps.pool);
1810	mutex_unlock(&vm->heaps.lock);
1811	mutex_destroy(&vm->heaps.lock);
1812
1813	mutex_lock(&ptdev->mmu->vm.lock);
1814	list_del(&vm->node);
1815	/* Restore the scheduler state so we can call drm_sched_entity_destroy()
1816	 * and drm_sched_fini(). If get there, that means we have no job left
1817	 * and no new jobs can be queued, so we can start the scheduler without
1818	 * risking interfering with the reset.
1819	 */
1820	if (ptdev->mmu->vm.reset_in_progress)
1821		panthor_vm_start(vm);
1822	mutex_unlock(&ptdev->mmu->vm.lock);
1823
1824	drm_sched_entity_destroy(&vm->entity);
1825	drm_sched_fini(&vm->sched);
1826
1827	mutex_lock(&ptdev->mmu->as.slots_lock);
1828	if (vm->as.id >= 0) {
1829		int cookie;
1830
1831		if (drm_dev_enter(&ptdev->base, &cookie)) {
1832			panthor_mmu_as_disable(ptdev, vm->as.id);
1833			drm_dev_exit(cookie);
1834		}
1835
1836		ptdev->mmu->as.slots[vm->as.id].vm = NULL;
1837		clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
1838		list_del(&vm->as.lru_node);
1839	}
1840	mutex_unlock(&ptdev->mmu->as.slots_lock);
1841
1842	free_io_pgtable_ops(vm->pgtbl_ops);
1843
1844	drm_mm_takedown(&vm->mm);
1845	kfree(vm);
1846}
1847
1848/**
1849 * panthor_vm_put() - Release a reference on a VM
1850 * @vm: VM to release the reference on. Can be NULL.
1851 */
1852void panthor_vm_put(struct panthor_vm *vm)
1853{
1854	drm_gpuvm_put(vm ? &vm->base : NULL);
1855}
1856
1857/**
1858 * panthor_vm_get() - Get a VM reference
1859 * @vm: VM to get the reference on. Can be NULL.
1860 *
1861 * Return: @vm value.
1862 */
1863struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
1864{
1865	if (vm)
1866		drm_gpuvm_get(&vm->base);
1867
1868	return vm;
1869}
1870
1871/**
1872 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
1873 * @vm: VM to query the heap pool on.
1874 * @create: True if the heap pool should be created when it doesn't exist.
1875 *
1876 * Heap pools are per-VM. This function allows one to retrieve the heap pool
1877 * attached to a VM.
1878 *
1879 * If no heap pool exists yet, and @create is true, we create one.
1880 *
1881 * The returned panthor_heap_pool should be released with panthor_heap_pool_put().
1882 *
1883 * Return: A valid pointer on success, an ERR_PTR() otherwise.
1884 */
1885struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
1886{
1887	struct panthor_heap_pool *pool;
1888
1889	mutex_lock(&vm->heaps.lock);
1890	if (!vm->heaps.pool && create) {
1891		if (vm->destroyed)
1892			pool = ERR_PTR(-EINVAL);
1893		else
1894			pool = panthor_heap_pool_create(vm->ptdev, vm);
1895
1896		if (!IS_ERR(pool))
1897			vm->heaps.pool = panthor_heap_pool_get(pool);
1898	} else {
1899		pool = panthor_heap_pool_get(vm->heaps.pool);
1900		if (!pool)
1901			pool = ERR_PTR(-ENOENT);
1902	}
1903	mutex_unlock(&vm->heaps.lock);
1904
1905	return pool;
1906}
1907
1908static u64 mair_to_memattr(u64 mair)
1909{
1910	u64 memattr = 0;
1911	u32 i;
1912
1913	for (i = 0; i < 8; i++) {
1914		u8 in_attr = mair >> (8 * i), out_attr;
1915		u8 outer = in_attr >> 4, inner = in_attr & 0xf;
1916
1917		/* For caching to be enabled, inner and outer caching policy
1918		 * have to be both write-back, if one of them is write-through
1919		 * or non-cacheable, we just choose non-cacheable. Device
1920		 * memory is also translated to non-cacheable.
1921		 */
1922		if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
1923			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
1924				   AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
1925				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
1926		} else {
1927			/* Use SH_CPU_INNER mode so SH_IS, which is used when
1928			 * IOMMU_CACHE is set, actually maps to the standard
1929			 * definition of inner-shareable and not Mali's
1930			 * internal-shareable mode.
1931			 */
1932			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
1933				   AS_MEMATTR_AARCH64_SH_CPU_INNER |
1934				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
1935		}
1936
1937		memattr |= (u64)out_attr << (8 * i);
1938	}
1939
1940	return memattr;
1941}
1942
1943static void panthor_vma_link(struct panthor_vm *vm,
1944			     struct panthor_vma *vma,
1945			     struct drm_gpuvm_bo *vm_bo)
1946{
1947	struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
1948
1949	mutex_lock(&bo->gpuva_list_lock);
1950	drm_gpuva_link(&vma->base, vm_bo);
1951	drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo));
1952	mutex_unlock(&bo->gpuva_list_lock);
1953}
1954
1955static void panthor_vma_unlink(struct panthor_vm *vm,
1956			       struct panthor_vma *vma)
1957{
1958	struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
1959	struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo);
1960
1961	mutex_lock(&bo->gpuva_list_lock);
1962	drm_gpuva_unlink(&vma->base);
1963	mutex_unlock(&bo->gpuva_list_lock);
1964
1965	/* drm_gpuva_unlink() release the vm_bo, but we manually retained it
1966	 * when entering this function, so we can implement deferred VMA
1967	 * destruction. Re-assign it here.
1968	 */
1969	vma->base.vm_bo = vm_bo;
1970	list_add_tail(&vma->node, &vm->op_ctx->returned_vmas);
1971}
1972
1973static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
1974{
1975	INIT_LIST_HEAD(&vma->node);
1976	vma->flags = flags;
1977}
1978
1979#define PANTHOR_VM_MAP_FLAGS \
1980	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1981	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1982	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
1983
1984static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
1985{
1986	struct panthor_vm *vm = priv;
1987	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
1988	struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
1989	int ret;
1990
1991	if (!vma)
1992		return -EINVAL;
1993
1994	panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
1995
1996	ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
1997				   op_ctx->map.sgt, op->map.gem.offset,
1998				   op->map.va.range);
1999	if (ret)
2000		return ret;
2001
2002	/* Ref owned by the mapping now, clear the obj field so we don't release the
2003	 * pinning/obj ref behind GPUVA's back.
2004	 */
2005	drm_gpuva_map(&vm->base, &vma->base, &op->map);
2006	panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
2007	op_ctx->map.vm_bo = NULL;
2008	return 0;
2009}
2010
2011static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
2012				       void *priv)
2013{
2014	struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
2015	struct panthor_vm *vm = priv;
2016	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2017	struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
2018	u64 unmap_start, unmap_range;
2019	int ret;
2020
2021	drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
2022	ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
2023	if (ret)
2024		return ret;
2025
2026	if (op->remap.prev) {
2027		prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2028		panthor_vma_init(prev_vma, unmap_vma->flags);
2029	}
2030
2031	if (op->remap.next) {
2032		next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2033		panthor_vma_init(next_vma, unmap_vma->flags);
2034	}
2035
2036	drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
2037			next_vma ? &next_vma->base : NULL,
2038			&op->remap);
2039
2040	if (prev_vma) {
2041		/* panthor_vma_link() transfers the vm_bo ownership to
2042		 * the VMA object. Since the vm_bo we're passing is still
2043		 * owned by the old mapping which will be released when this
2044		 * mapping is destroyed, we need to grab a ref here.
2045		 */
2046		panthor_vma_link(vm, prev_vma,
2047				 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2048	}
2049
2050	if (next_vma) {
2051		panthor_vma_link(vm, next_vma,
2052				 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2053	}
2054
2055	panthor_vma_unlink(vm, unmap_vma);
2056	return 0;
2057}
2058
2059static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
2060				       void *priv)
2061{
2062	struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
2063	struct panthor_vm *vm = priv;
2064	int ret;
2065
2066	ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
2067				     unmap_vma->base.va.range);
2068	if (drm_WARN_ON(&vm->ptdev->base, ret))
2069		return ret;
2070
2071	drm_gpuva_unmap(&op->unmap);
2072	panthor_vma_unlink(vm, unmap_vma);
2073	return 0;
2074}
2075
2076static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
2077	.vm_free = panthor_vm_free,
2078	.sm_step_map = panthor_gpuva_sm_step_map,
2079	.sm_step_remap = panthor_gpuva_sm_step_remap,
2080	.sm_step_unmap = panthor_gpuva_sm_step_unmap,
2081};
2082
2083/**
2084 * panthor_vm_resv() - Get the dma_resv object attached to a VM.
2085 * @vm: VM to get the dma_resv of.
2086 *
2087 * Return: A dma_resv object.
2088 */
2089struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
2090{
2091	return drm_gpuvm_resv(&vm->base);
2092}
2093
2094struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
2095{
2096	if (!vm)
2097		return NULL;
2098
2099	return vm->base.r_obj;
2100}
2101
2102static int
2103panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
2104		   bool flag_vm_unusable_on_failure)
2105{
2106	u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
2107	int ret;
2108
2109	if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
2110		return 0;
2111
2112	mutex_lock(&vm->op_lock);
2113	vm->op_ctx = op;
2114	switch (op_type) {
2115	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2116		if (vm->unusable) {
2117			ret = -EINVAL;
2118			break;
2119		}
2120
2121		ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range,
2122				       op->map.vm_bo->obj, op->map.bo_offset);
2123		break;
2124
2125	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2126		ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
2127		break;
2128
2129	default:
2130		ret = -EINVAL;
2131		break;
2132	}
2133
2134	if (ret && flag_vm_unusable_on_failure)
2135		vm->unusable = true;
2136
2137	vm->op_ctx = NULL;
2138	mutex_unlock(&vm->op_lock);
2139
2140	return ret;
2141}
2142
2143static struct dma_fence *
2144panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
2145{
2146	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2147	bool cookie;
2148	int ret;
2149
2150	/* Not only we report an error whose result is propagated to the
2151	 * drm_sched finished fence, but we also flag the VM as unusable, because
2152	 * a failure in the async VM_BIND results in an inconsistent state. VM needs
2153	 * to be destroyed and recreated.
2154	 */
2155	cookie = dma_fence_begin_signalling();
2156	ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
2157	dma_fence_end_signalling(cookie);
2158
2159	return ret ? ERR_PTR(ret) : NULL;
2160}
2161
2162static void panthor_vm_bind_job_release(struct kref *kref)
2163{
2164	struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
2165
2166	if (job->base.s_fence)
2167		drm_sched_job_cleanup(&job->base);
2168
2169	panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
2170	panthor_vm_put(job->vm);
2171	kfree(job);
2172}
2173
2174/**
2175 * panthor_vm_bind_job_put() - Release a VM_BIND job reference
2176 * @sched_job: Job to release the reference on.
2177 */
2178void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
2179{
2180	struct panthor_vm_bind_job *job =
2181		container_of(sched_job, struct panthor_vm_bind_job, base);
2182
2183	if (sched_job)
2184		kref_put(&job->refcount, panthor_vm_bind_job_release);
2185}
2186
2187static void
2188panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
2189{
2190	struct panthor_vm_bind_job *job =
2191		container_of(sched_job, struct panthor_vm_bind_job, base);
2192
2193	drm_sched_job_cleanup(sched_job);
2194
2195	/* Do the heavy cleanups asynchronously, so we're out of the
2196	 * dma-signaling path and can acquire dma-resv locks safely.
2197	 */
2198	queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
2199}
2200
2201static enum drm_gpu_sched_stat
2202panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
2203{
2204	WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
2205	return DRM_GPU_SCHED_STAT_NOMINAL;
2206}
2207
2208static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
2209	.run_job = panthor_vm_bind_run_job,
2210	.free_job = panthor_vm_bind_free_job,
2211	.timedout_job = panthor_vm_bind_timedout_job,
2212};
2213
2214/**
2215 * panthor_vm_create() - Create a VM
2216 * @ptdev: Device.
2217 * @for_mcu: True if this is the FW MCU VM.
2218 * @kernel_va_start: Start of the range reserved for kernel BO mapping.
2219 * @kernel_va_size: Size of the range reserved for kernel BO mapping.
2220 * @auto_kernel_va_start: Start of the auto-VA kernel range.
2221 * @auto_kernel_va_size: Size of the auto-VA kernel range.
2222 *
2223 * Return: A valid pointer on success, an ERR_PTR() otherwise.
2224 */
2225struct panthor_vm *
2226panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
2227		  u64 kernel_va_start, u64 kernel_va_size,
2228		  u64 auto_kernel_va_start, u64 auto_kernel_va_size)
2229{
2230	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2231	u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
2232	u64 full_va_range = 1ull << va_bits;
2233	struct drm_gem_object *dummy_gem;
2234	struct drm_gpu_scheduler *sched;
2235	struct io_pgtable_cfg pgtbl_cfg;
2236	u64 mair, min_va, va_range;
2237	struct panthor_vm *vm;
2238	int ret;
2239
2240	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
2241	if (!vm)
2242		return ERR_PTR(-ENOMEM);
2243
2244	/* We allocate a dummy GEM for the VM. */
2245	dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
2246	if (!dummy_gem) {
2247		ret = -ENOMEM;
2248		goto err_free_vm;
2249	}
2250
2251	mutex_init(&vm->heaps.lock);
2252	vm->for_mcu = for_mcu;
2253	vm->ptdev = ptdev;
2254	mutex_init(&vm->op_lock);
2255
2256	if (for_mcu) {
2257		/* CSF MCU is a cortex M7, and can only address 4G */
2258		min_va = 0;
2259		va_range = SZ_4G;
2260	} else {
2261		min_va = 0;
2262		va_range = full_va_range;
2263	}
2264
2265	mutex_init(&vm->mm_lock);
2266	drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
2267	vm->kernel_auto_va.start = auto_kernel_va_start;
2268	vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
2269
2270	INIT_LIST_HEAD(&vm->node);
2271	INIT_LIST_HEAD(&vm->as.lru_node);
2272	vm->as.id = -1;
2273	refcount_set(&vm->as.active_cnt, 0);
2274
2275	pgtbl_cfg = (struct io_pgtable_cfg) {
2276		.pgsize_bitmap	= SZ_4K | SZ_2M,
2277		.ias		= va_bits,
2278		.oas		= pa_bits,
2279		.coherent_walk	= ptdev->coherent,
2280		.tlb		= &mmu_tlb_ops,
2281		.iommu_dev	= ptdev->base.dev,
2282		.alloc		= alloc_pt,
2283		.free		= free_pt,
2284	};
2285
2286	vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
2287	if (!vm->pgtbl_ops) {
2288		ret = -EINVAL;
2289		goto err_mm_takedown;
2290	}
2291
2292	/* Bind operations are synchronous for now, no timeout needed. */
2293	ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq,
2294			     1, 1, 0,
2295			     MAX_SCHEDULE_TIMEOUT, NULL, NULL,
2296			     "panthor-vm-bind", ptdev->base.dev);
2297	if (ret)
2298		goto err_free_io_pgtable;
2299
2300	sched = &vm->sched;
2301	ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
2302	if (ret)
2303		goto err_sched_fini;
2304
2305	mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
2306	vm->memattr = mair_to_memattr(mair);
2307
2308	mutex_lock(&ptdev->mmu->vm.lock);
2309	list_add_tail(&vm->node, &ptdev->mmu->vm.list);
2310
2311	/* If a reset is in progress, stop the scheduler. */
2312	if (ptdev->mmu->vm.reset_in_progress)
2313		panthor_vm_stop(vm);
2314	mutex_unlock(&ptdev->mmu->vm.lock);
2315
2316	/* We intentionally leave the reserved range to zero, because we want kernel VMAs
2317	 * to be handled the same way user VMAs are.
2318	 */
2319	drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
2320		       DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem,
2321		       min_va, va_range, 0, 0, &panthor_gpuvm_ops);
2322	drm_gem_object_put(dummy_gem);
2323	return vm;
2324
2325err_sched_fini:
2326	drm_sched_fini(&vm->sched);
2327
2328err_free_io_pgtable:
2329	free_io_pgtable_ops(vm->pgtbl_ops);
2330
2331err_mm_takedown:
2332	drm_mm_takedown(&vm->mm);
2333	drm_gem_object_put(dummy_gem);
2334
2335err_free_vm:
2336	kfree(vm);
2337	return ERR_PTR(ret);
2338}
2339
2340static int
2341panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
2342			       struct panthor_vm *vm,
2343			       const struct drm_panthor_vm_bind_op *op,
2344			       struct panthor_vm_op_ctx *op_ctx)
2345{
2346	struct drm_gem_object *gem;
2347	int ret;
2348
2349	/* Aligned on page size. */
2350	if ((op->va | op->size) & ~PAGE_MASK)
2351		return -EINVAL;
2352
2353	switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
2354	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2355		gem = drm_gem_object_lookup(file, op->bo_handle);
2356		ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
2357						    gem ? to_panthor_bo(gem) : NULL,
2358						    op->bo_offset,
2359						    op->size,
2360						    op->va,
2361						    op->flags);
2362		drm_gem_object_put(gem);
2363		return ret;
2364
2365	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2366		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2367			return -EINVAL;
2368
2369		if (op->bo_handle || op->bo_offset)
2370			return -EINVAL;
2371
2372		return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
2373
2374	case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
2375		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2376			return -EINVAL;
2377
2378		if (op->bo_handle || op->bo_offset)
2379			return -EINVAL;
2380
2381		if (op->va || op->size)
2382			return -EINVAL;
2383
2384		if (!op->syncs.count)
2385			return -EINVAL;
2386
2387		panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
2388		return 0;
2389
2390	default:
2391		return -EINVAL;
2392	}
2393}
2394
2395static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
2396{
2397	struct panthor_vm_bind_job *job =
2398		container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
2399
2400	panthor_vm_bind_job_put(&job->base);
2401}
2402
2403/**
2404 * panthor_vm_bind_job_create() - Create a VM_BIND job
2405 * @file: File.
2406 * @vm: VM targeted by the VM_BIND job.
2407 * @op: VM operation data.
2408 *
2409 * Return: A valid pointer on success, an ERR_PTR() otherwise.
2410 */
2411struct drm_sched_job *
2412panthor_vm_bind_job_create(struct drm_file *file,
2413			   struct panthor_vm *vm,
2414			   const struct drm_panthor_vm_bind_op *op)
2415{
2416	struct panthor_vm_bind_job *job;
2417	int ret;
2418
2419	if (!vm)
2420		return ERR_PTR(-EINVAL);
2421
2422	if (vm->destroyed || vm->unusable)
2423		return ERR_PTR(-EINVAL);
2424
2425	job = kzalloc(sizeof(*job), GFP_KERNEL);
2426	if (!job)
2427		return ERR_PTR(-ENOMEM);
2428
2429	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
2430	if (ret) {
2431		kfree(job);
2432		return ERR_PTR(ret);
2433	}
2434
2435	INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
2436	kref_init(&job->refcount);
2437	job->vm = panthor_vm_get(vm);
2438
2439	ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm);
2440	if (ret)
2441		goto err_put_job;
2442
2443	return &job->base;
2444
2445err_put_job:
2446	panthor_vm_bind_job_put(&job->base);
2447	return ERR_PTR(ret);
2448}
2449
2450/**
2451 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
2452 * @exec: The locking/preparation context.
2453 * @sched_job: The job to prepare resvs on.
2454 *
2455 * Locks and prepare the VM resv.
2456 *
2457 * If this is a map operation, locks and prepares the GEM resv.
2458 *
2459 * Return: 0 on success, a negative error code otherwise.
2460 */
2461int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
2462				      struct drm_sched_job *sched_job)
2463{
2464	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2465	int ret;
2466
2467	/* Acquire the VM lock an reserve a slot for this VM bind job. */
2468	ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
2469	if (ret)
2470		return ret;
2471
2472	if (job->ctx.map.vm_bo) {
2473		/* Lock/prepare the GEM being mapped. */
2474		ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
2475		if (ret)
2476			return ret;
2477	}
2478
2479	return 0;
2480}
2481
2482/**
2483 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
2484 * @exec: drm_exec context.
2485 * @sched_job: Job to update the resvs on.
2486 */
2487void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
2488				      struct drm_sched_job *sched_job)
2489{
2490	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2491
2492	/* Explicit sync => we just register our job finished fence as bookkeep. */
2493	drm_gpuvm_resv_add_fence(&job->vm->base, exec,
2494				 &sched_job->s_fence->finished,
2495				 DMA_RESV_USAGE_BOOKKEEP,
2496				 DMA_RESV_USAGE_BOOKKEEP);
2497}
2498
2499void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
2500			     struct dma_fence *fence,
2501			     enum dma_resv_usage private_usage,
2502			     enum dma_resv_usage extobj_usage)
2503{
2504	drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
2505}
2506
2507/**
2508 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
2509 * @file: File.
2510 * @vm: VM targeted by the VM operation.
2511 * @op: Data describing the VM operation.
2512 *
2513 * Return: 0 on success, a negative error code otherwise.
2514 */
2515int panthor_vm_bind_exec_sync_op(struct drm_file *file,
2516				 struct panthor_vm *vm,
2517				 struct drm_panthor_vm_bind_op *op)
2518{
2519	struct panthor_vm_op_ctx op_ctx;
2520	int ret;
2521
2522	/* No sync objects allowed on synchronous operations. */
2523	if (op->syncs.count)
2524		return -EINVAL;
2525
2526	if (!op->size)
2527		return 0;
2528
2529	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
2530	if (ret)
2531		return ret;
2532
2533	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2534	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2535
2536	return ret;
2537}
2538
2539/**
2540 * panthor_vm_map_bo_range() - Map a GEM object range to a VM
2541 * @vm: VM to map the GEM to.
2542 * @bo: GEM object to map.
2543 * @offset: Offset in the GEM object.
2544 * @size: Size to map.
2545 * @va: Virtual address to map the object to.
2546 * @flags: Combination of drm_panthor_vm_bind_op_flags flags.
2547 * Only map-related flags are valid.
2548 *
2549 * Internal use only. For userspace requests, use
2550 * panthor_vm_bind_exec_sync_op() instead.
2551 *
2552 * Return: 0 on success, a negative error code otherwise.
2553 */
2554int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
2555			    u64 offset, u64 size, u64 va, u32 flags)
2556{
2557	struct panthor_vm_op_ctx op_ctx;
2558	int ret;
2559
2560	ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
2561	if (ret)
2562		return ret;
2563
2564	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2565	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2566
2567	return ret;
2568}
2569
2570/**
2571 * panthor_vm_unmap_range() - Unmap a portion of the VA space
2572 * @vm: VM to unmap the region from.
2573 * @va: Virtual address to unmap. Must be 4k aligned.
2574 * @size: Size of the region to unmap. Must be 4k aligned.
2575 *
2576 * Internal use only. For userspace requests, use
2577 * panthor_vm_bind_exec_sync_op() instead.
2578 *
2579 * Return: 0 on success, a negative error code otherwise.
2580 */
2581int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
2582{
2583	struct panthor_vm_op_ctx op_ctx;
2584	int ret;
2585
2586	ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
2587	if (ret)
2588		return ret;
2589
2590	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2591	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2592
2593	return ret;
2594}
2595
2596/**
2597 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
2598 * @exec: Locking/preparation context.
2599 * @vm: VM targeted by the GPU job.
2600 * @slot_count: Number of slots to reserve.
2601 *
2602 * GPU jobs assume all BOs bound to the VM at the time the job is submitted
2603 * are available when the job is executed. In order to guarantee that, we
2604 * need to reserve a slot on all BOs mapped to a VM and update this slot with
2605 * the job fence after its submission.
2606 *
2607 * Return: 0 on success, a negative error code otherwise.
2608 */
2609int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
2610					u32 slot_count)
2611{
2612	int ret;
2613
2614	/* Acquire the VM lock and reserve a slot for this GPU job. */
2615	ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
2616	if (ret)
2617		return ret;
2618
2619	return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
2620}
2621
2622/**
2623 * panthor_mmu_unplug() - Unplug the MMU logic
2624 * @ptdev: Device.
2625 *
2626 * No access to the MMU regs should be done after this function is called.
2627 * We suspend the IRQ and disable all VMs to guarantee that.
2628 */
2629void panthor_mmu_unplug(struct panthor_device *ptdev)
2630{
2631	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
2632
2633	mutex_lock(&ptdev->mmu->as.slots_lock);
2634	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
2635		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
2636
2637		if (vm) {
2638			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
2639			panthor_vm_release_as_locked(vm);
2640		}
2641	}
2642	mutex_unlock(&ptdev->mmu->as.slots_lock);
2643}
2644
2645static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
2646{
2647	destroy_workqueue(res);
2648}
2649
2650/**
2651 * panthor_mmu_init() - Initialize the MMU logic.
2652 * @ptdev: Device.
2653 *
2654 * Return: 0 on success, a negative error code otherwise.
2655 */
2656int panthor_mmu_init(struct panthor_device *ptdev)
2657{
2658	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2659	struct panthor_mmu *mmu;
2660	int ret, irq;
2661
2662	mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
2663	if (!mmu)
2664		return -ENOMEM;
2665
2666	INIT_LIST_HEAD(&mmu->as.lru_list);
2667
2668	ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
2669	if (ret)
2670		return ret;
2671
2672	INIT_LIST_HEAD(&mmu->vm.list);
2673	ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
2674	if (ret)
2675		return ret;
2676
2677	ptdev->mmu = mmu;
2678
2679	irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
2680	if (irq <= 0)
2681		return -ENODEV;
2682
2683	ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
2684				      panthor_mmu_fault_mask(ptdev, ~0));
2685	if (ret)
2686		return ret;
2687
2688	mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
2689	if (!mmu->vm.wq)
2690		return -ENOMEM;
2691
2692	/* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
2693	 * which passes iova as an unsigned long. Patch the mmu_features to reflect this
2694	 * limitation.
2695	 */
2696	if (sizeof(unsigned long) * 8 < va_bits) {
2697		ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
2698		ptdev->gpu_info.mmu_features |= sizeof(unsigned long) * 8;
2699	}
2700
2701	return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
2702}
2703
2704#ifdef CONFIG_DEBUG_FS
2705static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
2706{
2707	int ret;
2708
2709	mutex_lock(&vm->op_lock);
2710	ret = drm_debugfs_gpuva_info(m, &vm->base);
2711	mutex_unlock(&vm->op_lock);
2712
2713	return ret;
2714}
2715
2716static int show_each_vm(struct seq_file *m, void *arg)
2717{
2718	struct drm_info_node *node = (struct drm_info_node *)m->private;
2719	struct drm_device *ddev = node->minor->dev;
2720	struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
2721	int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
2722	struct panthor_vm *vm;
2723	int ret = 0;
2724
2725	mutex_lock(&ptdev->mmu->vm.lock);
2726	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
2727		ret = show(vm, m);
2728		if (ret < 0)
2729			break;
2730
2731		seq_puts(m, "\n");
2732	}
2733	mutex_unlock(&ptdev->mmu->vm.lock);
2734
2735	return ret;
2736}
2737
2738static struct drm_info_list panthor_mmu_debugfs_list[] = {
2739	DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
2740};
2741
2742/**
2743 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
2744 * @minor: Minor.
2745 */
2746void panthor_mmu_debugfs_init(struct drm_minor *minor)
2747{
2748	drm_debugfs_create_files(panthor_mmu_debugfs_list,
2749				 ARRAY_SIZE(panthor_mmu_debugfs_list),
2750				 minor->debugfs_root, minor);
2751}
2752#endif /* CONFIG_DEBUG_FS */
2753
2754/**
2755 * panthor_mmu_pt_cache_init() - Initialize the page table cache.
2756 *
2757 * Return: 0 on success, a negative error code otherwise.
2758 */
2759int panthor_mmu_pt_cache_init(void)
2760{
2761	pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
2762	if (!pt_cache)
2763		return -ENOMEM;
2764
2765	return 0;
2766}
2767
2768/**
2769 * panthor_mmu_pt_cache_fini() - Destroy the page table cache.
2770 */
2771void panthor_mmu_pt_cache_fini(void)
2772{
2773	kmem_cache_destroy(pt_cache);
2774}
2775