1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * DMM IOMMU driver support functions for TI OMAP processors.
4 *
5 * Copyright (C) 2011 Texas Instruments Incorporated - https://www.ti.com/
6 * Author: Rob Clark <rob@ti.com>
7 *         Andy Gross <andy.gross@ti.com>
8 */
9
10#include <linux/completion.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/errno.h>
15#include <linux/init.h>
16#include <linux/interrupt.h>
17#include <linux/list.h>
18#include <linux/mm.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/platform_device.h> /* platform_device() */
22#include <linux/sched.h>
23#include <linux/seq_file.h>
24#include <linux/slab.h>
25#include <linux/time.h>
26#include <linux/vmalloc.h>
27#include <linux/wait.h>
28
29#include "omap_dmm_tiler.h"
30#include "omap_dmm_priv.h"
31
32#define DMM_DRIVER_NAME "dmm"
33
34/* mappings for associating views to luts */
35static struct tcm *containers[TILFMT_NFORMATS];
36static struct dmm *omap_dmm;
37
38#if defined(CONFIG_OF)
39static const struct of_device_id dmm_of_match[];
40#endif
41
42/* global spinlock for protecting lists */
43static DEFINE_SPINLOCK(list_lock);
44
45/* Geometry table */
46#define GEOM(xshift, yshift, bytes_per_pixel) { \
47		.x_shft = (xshift), \
48		.y_shft = (yshift), \
49		.cpp    = (bytes_per_pixel), \
50		.slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \
51		.slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \
52	}
53
54static const struct {
55	u32 x_shft;	/* unused X-bits (as part of bpp) */
56	u32 y_shft;	/* unused Y-bits (as part of bpp) */
57	u32 cpp;		/* bytes/chars per pixel */
58	u32 slot_w;	/* width of each slot (in pixels) */
59	u32 slot_h;	/* height of each slot (in pixels) */
60} geom[TILFMT_NFORMATS] = {
61	[TILFMT_8BIT]  = GEOM(0, 0, 1),
62	[TILFMT_16BIT] = GEOM(0, 1, 2),
63	[TILFMT_32BIT] = GEOM(1, 1, 4),
64	[TILFMT_PAGE]  = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1),
65};
66
67
68/* lookup table for registers w/ per-engine instances */
69static const u32 reg[][4] = {
70	[PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1,
71			DMM_PAT_STATUS__2, DMM_PAT_STATUS__3},
72	[PAT_DESCR]  = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1,
73			DMM_PAT_DESCR__2, DMM_PAT_DESCR__3},
74};
75
76static int dmm_dma_copy(struct dmm *dmm, dma_addr_t src, dma_addr_t dst)
77{
78	struct dma_async_tx_descriptor *tx;
79	enum dma_status status;
80	dma_cookie_t cookie;
81
82	tx = dmaengine_prep_dma_memcpy(dmm->wa_dma_chan, dst, src, 4, 0);
83	if (!tx) {
84		dev_err(dmm->dev, "Failed to prepare DMA memcpy\n");
85		return -EIO;
86	}
87
88	cookie = tx->tx_submit(tx);
89	if (dma_submit_error(cookie)) {
90		dev_err(dmm->dev, "Failed to do DMA tx_submit\n");
91		return -EIO;
92	}
93
94	status = dma_sync_wait(dmm->wa_dma_chan, cookie);
95	if (status != DMA_COMPLETE)
96		dev_err(dmm->dev, "i878 wa DMA copy failure\n");
97
98	dmaengine_terminate_all(dmm->wa_dma_chan);
99	return 0;
100}
101
102static u32 dmm_read_wa(struct dmm *dmm, u32 reg)
103{
104	dma_addr_t src, dst;
105	int r;
106
107	src = dmm->phys_base + reg;
108	dst = dmm->wa_dma_handle;
109
110	r = dmm_dma_copy(dmm, src, dst);
111	if (r) {
112		dev_err(dmm->dev, "sDMA read transfer timeout\n");
113		return readl(dmm->base + reg);
114	}
115
116	/*
117	 * As per i878 workaround, the DMA is used to access the DMM registers.
118	 * Make sure that the readl is not moved by the compiler or the CPU
119	 * earlier than the DMA finished writing the value to memory.
120	 */
121	rmb();
122	return readl(dmm->wa_dma_data);
123}
124
125static void dmm_write_wa(struct dmm *dmm, u32 val, u32 reg)
126{
127	dma_addr_t src, dst;
128	int r;
129
130	writel(val, dmm->wa_dma_data);
131	/*
132	 * As per i878 workaround, the DMA is used to access the DMM registers.
133	 * Make sure that the writel is not moved by the compiler or the CPU, so
134	 * the data will be in place before we start the DMA to do the actual
135	 * register write.
136	 */
137	wmb();
138
139	src = dmm->wa_dma_handle;
140	dst = dmm->phys_base + reg;
141
142	r = dmm_dma_copy(dmm, src, dst);
143	if (r) {
144		dev_err(dmm->dev, "sDMA write transfer timeout\n");
145		writel(val, dmm->base + reg);
146	}
147}
148
149static u32 dmm_read(struct dmm *dmm, u32 reg)
150{
151	if (dmm->dmm_workaround) {
152		u32 v;
153		unsigned long flags;
154
155		spin_lock_irqsave(&dmm->wa_lock, flags);
156		v = dmm_read_wa(dmm, reg);
157		spin_unlock_irqrestore(&dmm->wa_lock, flags);
158
159		return v;
160	} else {
161		return readl(dmm->base + reg);
162	}
163}
164
165static void dmm_write(struct dmm *dmm, u32 val, u32 reg)
166{
167	if (dmm->dmm_workaround) {
168		unsigned long flags;
169
170		spin_lock_irqsave(&dmm->wa_lock, flags);
171		dmm_write_wa(dmm, val, reg);
172		spin_unlock_irqrestore(&dmm->wa_lock, flags);
173	} else {
174		writel(val, dmm->base + reg);
175	}
176}
177
178static int dmm_workaround_init(struct dmm *dmm)
179{
180	dma_cap_mask_t mask;
181
182	spin_lock_init(&dmm->wa_lock);
183
184	dmm->wa_dma_data = dma_alloc_coherent(dmm->dev,  sizeof(u32),
185					      &dmm->wa_dma_handle, GFP_KERNEL);
186	if (!dmm->wa_dma_data)
187		return -ENOMEM;
188
189	dma_cap_zero(mask);
190	dma_cap_set(DMA_MEMCPY, mask);
191
192	dmm->wa_dma_chan = dma_request_channel(mask, NULL, NULL);
193	if (!dmm->wa_dma_chan) {
194		dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle);
195		return -ENODEV;
196	}
197
198	return 0;
199}
200
201static void dmm_workaround_uninit(struct dmm *dmm)
202{
203	dma_release_channel(dmm->wa_dma_chan);
204
205	dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle);
206}
207
208/* simple allocator to grab next 16 byte aligned memory from txn */
209static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa)
210{
211	void *ptr;
212	struct refill_engine *engine = txn->engine_handle;
213
214	/* dmm programming requires 16 byte aligned addresses */
215	txn->current_pa = round_up(txn->current_pa, 16);
216	txn->current_va = (void *)round_up((long)txn->current_va, 16);
217
218	ptr = txn->current_va;
219	*pa = txn->current_pa;
220
221	txn->current_pa += sz;
222	txn->current_va += sz;
223
224	BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE);
225
226	return ptr;
227}
228
229/* check status and spin until wait_mask comes true */
230static int wait_status(struct refill_engine *engine, u32 wait_mask)
231{
232	struct dmm *dmm = engine->dmm;
233	u32 r = 0, err, i;
234
235	i = DMM_FIXED_RETRY_COUNT;
236	while (true) {
237		r = dmm_read(dmm, reg[PAT_STATUS][engine->id]);
238		err = r & DMM_PATSTATUS_ERR;
239		if (err) {
240			dev_err(dmm->dev,
241				"%s: error (engine%d). PAT_STATUS: 0x%08x\n",
242				__func__, engine->id, r);
243			return -EFAULT;
244		}
245
246		if ((r & wait_mask) == wait_mask)
247			break;
248
249		if (--i == 0) {
250			dev_err(dmm->dev,
251				"%s: timeout (engine%d). PAT_STATUS: 0x%08x\n",
252				__func__, engine->id, r);
253			return -ETIMEDOUT;
254		}
255
256		udelay(1);
257	}
258
259	return 0;
260}
261
262static void release_engine(struct refill_engine *engine)
263{
264	unsigned long flags;
265
266	spin_lock_irqsave(&list_lock, flags);
267	list_add(&engine->idle_node, &omap_dmm->idle_head);
268	spin_unlock_irqrestore(&list_lock, flags);
269
270	atomic_inc(&omap_dmm->engine_counter);
271	wake_up_interruptible(&omap_dmm->engine_queue);
272}
273
274static irqreturn_t omap_dmm_irq_handler(int irq, void *arg)
275{
276	struct dmm *dmm = arg;
277	u32 status = dmm_read(dmm, DMM_PAT_IRQSTATUS);
278	int i;
279
280	/* ack IRQ */
281	dmm_write(dmm, status, DMM_PAT_IRQSTATUS);
282
283	for (i = 0; i < dmm->num_engines; i++) {
284		if (status & DMM_IRQSTAT_ERR_MASK)
285			dev_err(dmm->dev,
286				"irq error(engine%d): IRQSTAT 0x%02x\n",
287				i, status & 0xff);
288
289		if (status & DMM_IRQSTAT_LST) {
290			if (dmm->engines[i].async)
291				release_engine(&dmm->engines[i]);
292
293			complete(&dmm->engines[i].compl);
294		}
295
296		status >>= 8;
297	}
298
299	return IRQ_HANDLED;
300}
301
302/*
303 * Get a handle for a DMM transaction
304 */
305static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm)
306{
307	struct dmm_txn *txn = NULL;
308	struct refill_engine *engine = NULL;
309	int ret;
310	unsigned long flags;
311
312
313	/* wait until an engine is available */
314	ret = wait_event_interruptible(omap_dmm->engine_queue,
315		atomic_add_unless(&omap_dmm->engine_counter, -1, 0));
316	if (ret)
317		return ERR_PTR(ret);
318
319	/* grab an idle engine */
320	spin_lock_irqsave(&list_lock, flags);
321	if (!list_empty(&dmm->idle_head)) {
322		engine = list_entry(dmm->idle_head.next, struct refill_engine,
323					idle_node);
324		list_del(&engine->idle_node);
325	}
326	spin_unlock_irqrestore(&list_lock, flags);
327
328	BUG_ON(!engine);
329
330	txn = &engine->txn;
331	engine->tcm = tcm;
332	txn->engine_handle = engine;
333	txn->last_pat = NULL;
334	txn->current_va = engine->refill_va;
335	txn->current_pa = engine->refill_pa;
336
337	return txn;
338}
339
340/*
341 * Add region to DMM transaction.  If pages or pages[i] is NULL, then the
342 * corresponding slot is cleared (ie. dummy_pa is programmed)
343 */
344static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area,
345		struct page **pages, u32 npages, u32 roll)
346{
347	dma_addr_t pat_pa = 0, data_pa = 0;
348	u32 *data;
349	struct pat *pat;
350	struct refill_engine *engine = txn->engine_handle;
351	int columns = (1 + area->x1 - area->x0);
352	int rows = (1 + area->y1 - area->y0);
353	int i = columns*rows;
354
355	pat = alloc_dma(txn, sizeof(*pat), &pat_pa);
356
357	if (txn->last_pat)
358		txn->last_pat->next_pa = (u32)pat_pa;
359
360	pat->area = *area;
361
362	/* adjust Y coordinates based off of container parameters */
363	pat->area.y0 += engine->tcm->y_offset;
364	pat->area.y1 += engine->tcm->y_offset;
365
366	pat->ctrl = (struct pat_ctrl){
367			.start = 1,
368			.lut_id = engine->tcm->lut_id,
369		};
370
371	data = alloc_dma(txn, 4*i, &data_pa);
372	/* FIXME: what if data_pa is more than 32-bit ? */
373	pat->data_pa = data_pa;
374
375	while (i--) {
376		int n = i + roll;
377		if (n >= npages)
378			n -= npages;
379		data[i] = (pages && pages[n]) ?
380			page_to_phys(pages[n]) : engine->dmm->dummy_pa;
381	}
382
383	txn->last_pat = pat;
384
385	return;
386}
387
388/*
389 * Commit the DMM transaction.
390 */
391static int dmm_txn_commit(struct dmm_txn *txn, bool wait)
392{
393	int ret = 0;
394	struct refill_engine *engine = txn->engine_handle;
395	struct dmm *dmm = engine->dmm;
396
397	if (!txn->last_pat) {
398		dev_err(engine->dmm->dev, "need at least one txn\n");
399		ret = -EINVAL;
400		goto cleanup;
401	}
402
403	txn->last_pat->next_pa = 0;
404	/* ensure that the written descriptors are visible to DMM */
405	wmb();
406
407	/*
408	 * NOTE: the wmb() above should be enough, but there seems to be a bug
409	 * in OMAP's memory barrier implementation, which in some rare cases may
410	 * cause the writes not to be observable after wmb().
411	 */
412
413	/* read back to ensure the data is in RAM */
414	readl(&txn->last_pat->next_pa);
415
416	/* write to PAT_DESCR to clear out any pending transaction */
417	dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]);
418
419	/* wait for engine ready: */
420	ret = wait_status(engine, DMM_PATSTATUS_READY);
421	if (ret) {
422		ret = -EFAULT;
423		goto cleanup;
424	}
425
426	/* mark whether it is async to denote list management in IRQ handler */
427	engine->async = wait ? false : true;
428	reinit_completion(&engine->compl);
429	/* verify that the irq handler sees the 'async' and completion value */
430	smp_mb();
431
432	/* kick reload */
433	dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]);
434
435	if (wait) {
436		if (!wait_for_completion_timeout(&engine->compl,
437				msecs_to_jiffies(100))) {
438			dev_err(dmm->dev, "timed out waiting for done\n");
439			ret = -ETIMEDOUT;
440			goto cleanup;
441		}
442
443		/* Check the engine status before continue */
444		ret = wait_status(engine, DMM_PATSTATUS_READY |
445				  DMM_PATSTATUS_VALID | DMM_PATSTATUS_DONE);
446	}
447
448cleanup:
449	/* only place engine back on list if we are done with it */
450	if (ret || wait)
451		release_engine(engine);
452
453	return ret;
454}
455
456/*
457 * DMM programming
458 */
459static int fill(struct tcm_area *area, struct page **pages,
460		u32 npages, u32 roll, bool wait)
461{
462	int ret = 0;
463	struct tcm_area slice, area_s;
464	struct dmm_txn *txn;
465
466	/*
467	 * FIXME
468	 *
469	 * Asynchronous fill does not work reliably, as the driver does not
470	 * handle errors in the async code paths. The fill operation may
471	 * silently fail, leading to leaking DMM engines, which may eventually
472	 * lead to deadlock if we run out of DMM engines.
473	 *
474	 * For now, always set 'wait' so that we only use sync fills. Async
475	 * fills should be fixed, or alternatively we could decide to only
476	 * support sync fills and so the whole async code path could be removed.
477	 */
478
479	wait = true;
480
481	txn = dmm_txn_init(omap_dmm, area->tcm);
482	if (IS_ERR_OR_NULL(txn))
483		return -ENOMEM;
484
485	tcm_for_each_slice(slice, *area, area_s) {
486		struct pat_area p_area = {
487				.x0 = slice.p0.x,  .y0 = slice.p0.y,
488				.x1 = slice.p1.x,  .y1 = slice.p1.y,
489		};
490
491		dmm_txn_append(txn, &p_area, pages, npages, roll);
492
493		roll += tcm_sizeof(slice);
494	}
495
496	ret = dmm_txn_commit(txn, wait);
497
498	return ret;
499}
500
501/*
502 * Pin/unpin
503 */
504
505/* note: slots for which pages[i] == NULL are filled w/ dummy page
506 */
507int tiler_pin(struct tiler_block *block, struct page **pages,
508		u32 npages, u32 roll, bool wait)
509{
510	int ret;
511
512	ret = fill(&block->area, pages, npages, roll, wait);
513
514	if (ret)
515		tiler_unpin(block);
516
517	return ret;
518}
519
520int tiler_unpin(struct tiler_block *block)
521{
522	return fill(&block->area, NULL, 0, 0, false);
523}
524
525/*
526 * Reserve/release
527 */
528struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, u16 w,
529		u16 h, u16 align)
530{
531	struct tiler_block *block;
532	u32 min_align = 128;
533	int ret;
534	unsigned long flags;
535	u32 slot_bytes;
536
537	block = kzalloc(sizeof(*block), GFP_KERNEL);
538	if (!block)
539		return ERR_PTR(-ENOMEM);
540
541	BUG_ON(!validfmt(fmt));
542
543	/* convert width/height to slots */
544	w = DIV_ROUND_UP(w, geom[fmt].slot_w);
545	h = DIV_ROUND_UP(h, geom[fmt].slot_h);
546
547	/* convert alignment to slots */
548	slot_bytes = geom[fmt].slot_w * geom[fmt].cpp;
549	min_align = max(min_align, slot_bytes);
550	align = (align > min_align) ? ALIGN(align, min_align) : min_align;
551	align /= slot_bytes;
552
553	block->fmt = fmt;
554
555	ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes,
556			&block->area);
557	if (ret) {
558		kfree(block);
559		return ERR_PTR(-ENOMEM);
560	}
561
562	/* add to allocation list */
563	spin_lock_irqsave(&list_lock, flags);
564	list_add(&block->alloc_node, &omap_dmm->alloc_head);
565	spin_unlock_irqrestore(&list_lock, flags);
566
567	return block;
568}
569
570struct tiler_block *tiler_reserve_1d(size_t size)
571{
572	struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL);
573	int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
574	unsigned long flags;
575
576	if (!block)
577		return ERR_PTR(-ENOMEM);
578
579	block->fmt = TILFMT_PAGE;
580
581	if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages,
582				&block->area)) {
583		kfree(block);
584		return ERR_PTR(-ENOMEM);
585	}
586
587	spin_lock_irqsave(&list_lock, flags);
588	list_add(&block->alloc_node, &omap_dmm->alloc_head);
589	spin_unlock_irqrestore(&list_lock, flags);
590
591	return block;
592}
593
594/* note: if you have pin'd pages, you should have already unpin'd first! */
595int tiler_release(struct tiler_block *block)
596{
597	int ret = tcm_free(&block->area);
598	unsigned long flags;
599
600	if (block->area.tcm)
601		dev_err(omap_dmm->dev, "failed to release block\n");
602
603	spin_lock_irqsave(&list_lock, flags);
604	list_del(&block->alloc_node);
605	spin_unlock_irqrestore(&list_lock, flags);
606
607	kfree(block);
608	return ret;
609}
610
611/*
612 * Utils
613 */
614
615/* calculate the tiler space address of a pixel in a view orientation...
616 * below description copied from the display subsystem section of TRM:
617 *
618 * When the TILER is addressed, the bits:
619 *   [28:27] = 0x0 for 8-bit tiled
620 *             0x1 for 16-bit tiled
621 *             0x2 for 32-bit tiled
622 *             0x3 for page mode
623 *   [31:29] = 0x0 for 0-degree view
624 *             0x1 for 180-degree view + mirroring
625 *             0x2 for 0-degree view + mirroring
626 *             0x3 for 180-degree view
627 *             0x4 for 270-degree view + mirroring
628 *             0x5 for 270-degree view
629 *             0x6 for 90-degree view
630 *             0x7 for 90-degree view + mirroring
631 * Otherwise the bits indicated the corresponding bit address to access
632 * the SDRAM.
633 */
634static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y)
635{
636	u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment;
637
638	x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft;
639	y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft;
640	alignment = geom[fmt].x_shft + geom[fmt].y_shft;
641
642	/* validate coordinate */
643	x_mask = MASK(x_bits);
644	y_mask = MASK(y_bits);
645
646	if (x < 0 || x > x_mask || y < 0 || y > y_mask) {
647		DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u",
648				x, x, x_mask, y, y, y_mask);
649		return 0;
650	}
651
652	/* account for mirroring */
653	if (orient & MASK_X_INVERT)
654		x ^= x_mask;
655	if (orient & MASK_Y_INVERT)
656		y ^= y_mask;
657
658	/* get coordinate address */
659	if (orient & MASK_XY_FLIP)
660		tmp = ((x << y_bits) + y);
661	else
662		tmp = ((y << x_bits) + x);
663
664	return TIL_ADDR((tmp << alignment), orient, fmt);
665}
666
667dma_addr_t tiler_ssptr(struct tiler_block *block)
668{
669	BUG_ON(!validfmt(block->fmt));
670
671	return TILVIEW_8BIT + tiler_get_address(block->fmt, 0,
672			block->area.p0.x * geom[block->fmt].slot_w,
673			block->area.p0.y * geom[block->fmt].slot_h);
674}
675
676dma_addr_t tiler_tsptr(struct tiler_block *block, u32 orient,
677		u32 x, u32 y)
678{
679	struct tcm_pt *p = &block->area.p0;
680	BUG_ON(!validfmt(block->fmt));
681
682	return tiler_get_address(block->fmt, orient,
683			(p->x * geom[block->fmt].slot_w) + x,
684			(p->y * geom[block->fmt].slot_h) + y);
685}
686
687void tiler_align(enum tiler_fmt fmt, u16 *w, u16 *h)
688{
689	BUG_ON(!validfmt(fmt));
690	*w = round_up(*w, geom[fmt].slot_w);
691	*h = round_up(*h, geom[fmt].slot_h);
692}
693
694u32 tiler_stride(enum tiler_fmt fmt, u32 orient)
695{
696	BUG_ON(!validfmt(fmt));
697
698	if (orient & MASK_XY_FLIP)
699		return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft);
700	else
701		return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft);
702}
703
704size_t tiler_size(enum tiler_fmt fmt, u16 w, u16 h)
705{
706	tiler_align(fmt, &w, &h);
707	return geom[fmt].cpp * w * h;
708}
709
710size_t tiler_vsize(enum tiler_fmt fmt, u16 w, u16 h)
711{
712	BUG_ON(!validfmt(fmt));
713	return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h;
714}
715
716u32 tiler_get_cpu_cache_flags(void)
717{
718	return omap_dmm->plat_data->cpu_cache_flags;
719}
720
721bool dmm_is_available(void)
722{
723	return omap_dmm ? true : false;
724}
725
726static void omap_dmm_remove(struct platform_device *dev)
727{
728	struct tiler_block *block, *_block;
729	int i;
730	unsigned long flags;
731
732	if (omap_dmm) {
733		/* Disable all enabled interrupts */
734		dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_CLR);
735		free_irq(omap_dmm->irq, omap_dmm);
736
737		/* free all area regions */
738		spin_lock_irqsave(&list_lock, flags);
739		list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head,
740					alloc_node) {
741			list_del(&block->alloc_node);
742			kfree(block);
743		}
744		spin_unlock_irqrestore(&list_lock, flags);
745
746		for (i = 0; i < omap_dmm->num_lut; i++)
747			if (omap_dmm->tcm && omap_dmm->tcm[i])
748				omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]);
749		kfree(omap_dmm->tcm);
750
751		kfree(omap_dmm->engines);
752		if (omap_dmm->refill_va)
753			dma_free_wc(omap_dmm->dev,
754				    REFILL_BUFFER_SIZE * omap_dmm->num_engines,
755				    omap_dmm->refill_va, omap_dmm->refill_pa);
756		if (omap_dmm->dummy_page)
757			__free_page(omap_dmm->dummy_page);
758
759		if (omap_dmm->dmm_workaround)
760			dmm_workaround_uninit(omap_dmm);
761
762		iounmap(omap_dmm->base);
763		kfree(omap_dmm);
764		omap_dmm = NULL;
765	}
766}
767
768static int omap_dmm_probe(struct platform_device *dev)
769{
770	int ret = -EFAULT, i;
771	struct tcm_area area = {0};
772	u32 hwinfo, pat_geom;
773	struct resource *mem;
774
775	omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL);
776	if (!omap_dmm)
777		goto fail;
778
779	/* initialize lists */
780	INIT_LIST_HEAD(&omap_dmm->alloc_head);
781	INIT_LIST_HEAD(&omap_dmm->idle_head);
782
783	init_waitqueue_head(&omap_dmm->engine_queue);
784
785	if (dev->dev.of_node) {
786		const struct of_device_id *match;
787
788		match = of_match_node(dmm_of_match, dev->dev.of_node);
789		if (!match) {
790			dev_err(&dev->dev, "failed to find matching device node\n");
791			ret = -ENODEV;
792			goto fail;
793		}
794
795		omap_dmm->plat_data = match->data;
796	}
797
798	/* lookup hwmod data - base address and irq */
799	mem = platform_get_resource(dev, IORESOURCE_MEM, 0);
800	if (!mem) {
801		dev_err(&dev->dev, "failed to get base address resource\n");
802		goto fail;
803	}
804
805	omap_dmm->phys_base = mem->start;
806	omap_dmm->base = ioremap(mem->start, SZ_2K);
807
808	if (!omap_dmm->base) {
809		dev_err(&dev->dev, "failed to get dmm base address\n");
810		goto fail;
811	}
812
813	omap_dmm->irq = platform_get_irq(dev, 0);
814	if (omap_dmm->irq < 0)
815		goto fail;
816
817	omap_dmm->dev = &dev->dev;
818
819	if (of_machine_is_compatible("ti,dra7")) {
820		/*
821		 * DRA7 Errata i878 says that MPU should not be used to access
822		 * RAM and DMM at the same time. As it's not possible to prevent
823		 * MPU accessing RAM, we need to access DMM via a proxy.
824		 */
825		if (!dmm_workaround_init(omap_dmm)) {
826			omap_dmm->dmm_workaround = true;
827			dev_info(&dev->dev,
828				"workaround for errata i878 in use\n");
829		} else {
830			dev_warn(&dev->dev,
831				 "failed to initialize work-around for i878\n");
832		}
833	}
834
835	hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO);
836	omap_dmm->num_engines = (hwinfo >> 24) & 0x1F;
837	omap_dmm->num_lut = (hwinfo >> 16) & 0x1F;
838	omap_dmm->container_width = 256;
839	omap_dmm->container_height = 128;
840
841	atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines);
842
843	/* read out actual LUT width and height */
844	pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY);
845	omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5;
846	omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5;
847
848	/* increment LUT by one if on OMAP5 */
849	/* LUT has twice the height, and is split into a separate container */
850	if (omap_dmm->lut_height != omap_dmm->container_height)
851		omap_dmm->num_lut++;
852
853	/* initialize DMM registers */
854	dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0);
855	dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1);
856	dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0);
857	dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE);
858	dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0);
859	dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1);
860
861	omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32);
862	if (!omap_dmm->dummy_page) {
863		dev_err(&dev->dev, "could not allocate dummy page\n");
864		ret = -ENOMEM;
865		goto fail;
866	}
867
868	/* set dma mask for device */
869	ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32));
870	if (ret)
871		goto fail;
872
873	omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page);
874
875	/* alloc refill memory */
876	omap_dmm->refill_va = dma_alloc_wc(&dev->dev,
877					   REFILL_BUFFER_SIZE * omap_dmm->num_engines,
878					   &omap_dmm->refill_pa, GFP_KERNEL);
879	if (!omap_dmm->refill_va) {
880		dev_err(&dev->dev, "could not allocate refill memory\n");
881		ret = -ENOMEM;
882		goto fail;
883	}
884
885	/* alloc engines */
886	omap_dmm->engines = kcalloc(omap_dmm->num_engines,
887				    sizeof(*omap_dmm->engines), GFP_KERNEL);
888	if (!omap_dmm->engines) {
889		ret = -ENOMEM;
890		goto fail;
891	}
892
893	for (i = 0; i < omap_dmm->num_engines; i++) {
894		omap_dmm->engines[i].id = i;
895		omap_dmm->engines[i].dmm = omap_dmm;
896		omap_dmm->engines[i].refill_va = omap_dmm->refill_va +
897						(REFILL_BUFFER_SIZE * i);
898		omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa +
899						(REFILL_BUFFER_SIZE * i);
900		init_completion(&omap_dmm->engines[i].compl);
901
902		list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head);
903	}
904
905	omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm),
906				GFP_KERNEL);
907	if (!omap_dmm->tcm) {
908		ret = -ENOMEM;
909		goto fail;
910	}
911
912	/* init containers */
913	/* Each LUT is associated with a TCM (container manager).  We use the
914	   lut_id to denote the lut_id used to identify the correct LUT for
915	   programming during reill operations */
916	for (i = 0; i < omap_dmm->num_lut; i++) {
917		omap_dmm->tcm[i] = sita_init(omap_dmm->container_width,
918						omap_dmm->container_height);
919
920		if (!omap_dmm->tcm[i]) {
921			dev_err(&dev->dev, "failed to allocate container\n");
922			ret = -ENOMEM;
923			goto fail;
924		}
925
926		omap_dmm->tcm[i]->lut_id = i;
927	}
928
929	/* assign access mode containers to applicable tcm container */
930	/* OMAP 4 has 1 container for all 4 views */
931	/* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */
932	containers[TILFMT_8BIT] = omap_dmm->tcm[0];
933	containers[TILFMT_16BIT] = omap_dmm->tcm[0];
934	containers[TILFMT_32BIT] = omap_dmm->tcm[0];
935
936	if (omap_dmm->container_height != omap_dmm->lut_height) {
937		/* second LUT is used for PAGE mode.  Programming must use
938		   y offset that is added to all y coordinates.  LUT id is still
939		   0, because it is the same LUT, just the upper 128 lines */
940		containers[TILFMT_PAGE] = omap_dmm->tcm[1];
941		omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET;
942		omap_dmm->tcm[1]->lut_id = 0;
943	} else {
944		containers[TILFMT_PAGE] = omap_dmm->tcm[0];
945	}
946
947	area = (struct tcm_area) {
948		.tcm = NULL,
949		.p1.x = omap_dmm->container_width - 1,
950		.p1.y = omap_dmm->container_height - 1,
951	};
952
953	ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED,
954				"omap_dmm_irq_handler", omap_dmm);
955
956	if (ret) {
957		dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n",
958			omap_dmm->irq, ret);
959		omap_dmm->irq = -1;
960		goto fail;
961	}
962
963	/* Enable all interrupts for each refill engine except
964	 * ERR_LUT_MISS<n> (which is just advisory, and we don't care
965	 * about because we want to be able to refill live scanout
966	 * buffers for accelerated pan/scroll) and FILL_DSC<n> which
967	 * we just generally don't care about.
968	 */
969	dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET);
970
971	/* initialize all LUTs to dummy page entries */
972	for (i = 0; i < omap_dmm->num_lut; i++) {
973		area.tcm = omap_dmm->tcm[i];
974		if (fill(&area, NULL, 0, 0, true))
975			dev_err(omap_dmm->dev, "refill failed");
976	}
977
978	dev_info(omap_dmm->dev, "initialized all PAT entries\n");
979
980	return 0;
981
982fail:
983	omap_dmm_remove(dev);
984	return ret;
985}
986
987/*
988 * debugfs support
989 */
990
991#ifdef CONFIG_DEBUG_FS
992
993static const char *alphabet = "abcdefghijklmnopqrstuvwxyz"
994				"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
995static const char *special = ".,:;'\"`~!^-+";
996
997static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a,
998							char c, bool ovw)
999{
1000	int x, y;
1001	for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++)
1002		for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++)
1003			if (map[y][x] == ' ' || ovw)
1004				map[y][x] = c;
1005}
1006
1007static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p,
1008									char c)
1009{
1010	map[p->y / ydiv][p->x / xdiv] = c;
1011}
1012
1013static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p)
1014{
1015	return map[p->y / ydiv][p->x / xdiv];
1016}
1017
1018static int map_width(int xdiv, int x0, int x1)
1019{
1020	return (x1 / xdiv) - (x0 / xdiv) + 1;
1021}
1022
1023static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1)
1024{
1025	char *p = map[yd] + (x0 / xdiv);
1026	int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2;
1027	if (w >= 0) {
1028		p += w;
1029		while (*nice)
1030			*p++ = *nice++;
1031	}
1032}
1033
1034static void map_1d_info(char **map, int xdiv, int ydiv, char *nice,
1035							struct tcm_area *a)
1036{
1037	sprintf(nice, "%dK", tcm_sizeof(*a) * 4);
1038	if (a->p0.y + 1 < a->p1.y) {
1039		text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0,
1040							256 - 1);
1041	} else if (a->p0.y < a->p1.y) {
1042		if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1))
1043			text_map(map, xdiv, nice, a->p0.y / ydiv,
1044					a->p0.x + xdiv,	256 - 1);
1045		else if (strlen(nice) < map_width(xdiv, 0, a->p1.x))
1046			text_map(map, xdiv, nice, a->p1.y / ydiv,
1047					0, a->p1.y - xdiv);
1048	} else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) {
1049		text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x);
1050	}
1051}
1052
1053static void map_2d_info(char **map, int xdiv, int ydiv, char *nice,
1054							struct tcm_area *a)
1055{
1056	sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a));
1057	if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x))
1058		text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv,
1059							a->p0.x, a->p1.x);
1060}
1061
1062int tiler_map_show(struct seq_file *s, void *arg)
1063{
1064	int xdiv = 2, ydiv = 1;
1065	char **map = NULL, *global_map;
1066	struct tiler_block *block;
1067	struct tcm_area a, p;
1068	int i;
1069	const char *m2d = alphabet;
1070	const char *a2d = special;
1071	const char *m2dp = m2d, *a2dp = a2d;
1072	char nice[128];
1073	int h_adj;
1074	int w_adj;
1075	unsigned long flags;
1076	int lut_idx;
1077
1078
1079	if (!omap_dmm) {
1080		/* early return if dmm/tiler device is not initialized */
1081		return 0;
1082	}
1083
1084	h_adj = omap_dmm->container_height / ydiv;
1085	w_adj = omap_dmm->container_width / xdiv;
1086
1087	map = kmalloc_array(h_adj, sizeof(*map), GFP_KERNEL);
1088	global_map = kmalloc_array(w_adj + 1, h_adj, GFP_KERNEL);
1089
1090	if (!map || !global_map)
1091		goto error;
1092
1093	for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) {
1094		memset(map, 0, h_adj * sizeof(*map));
1095		memset(global_map, ' ', (w_adj + 1) * h_adj);
1096
1097		for (i = 0; i < omap_dmm->container_height; i++) {
1098			map[i] = global_map + i * (w_adj + 1);
1099			map[i][w_adj] = 0;
1100		}
1101
1102		spin_lock_irqsave(&list_lock, flags);
1103
1104		list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) {
1105			if (block->area.tcm == omap_dmm->tcm[lut_idx]) {
1106				if (block->fmt != TILFMT_PAGE) {
1107					fill_map(map, xdiv, ydiv, &block->area,
1108						*m2dp, true);
1109					if (!*++a2dp)
1110						a2dp = a2d;
1111					if (!*++m2dp)
1112						m2dp = m2d;
1113					map_2d_info(map, xdiv, ydiv, nice,
1114							&block->area);
1115				} else {
1116					bool start = read_map_pt(map, xdiv,
1117						ydiv, &block->area.p0) == ' ';
1118					bool end = read_map_pt(map, xdiv, ydiv,
1119							&block->area.p1) == ' ';
1120
1121					tcm_for_each_slice(a, block->area, p)
1122						fill_map(map, xdiv, ydiv, &a,
1123							'=', true);
1124					fill_map_pt(map, xdiv, ydiv,
1125							&block->area.p0,
1126							start ? '<' : 'X');
1127					fill_map_pt(map, xdiv, ydiv,
1128							&block->area.p1,
1129							end ? '>' : 'X');
1130					map_1d_info(map, xdiv, ydiv, nice,
1131							&block->area);
1132				}
1133			}
1134		}
1135
1136		spin_unlock_irqrestore(&list_lock, flags);
1137
1138		if (s) {
1139			seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx);
1140			for (i = 0; i < 128; i++)
1141				seq_printf(s, "%03d:%s\n", i, map[i]);
1142			seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx);
1143		} else {
1144			dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n",
1145				lut_idx);
1146			for (i = 0; i < 128; i++)
1147				dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]);
1148			dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n",
1149				lut_idx);
1150		}
1151	}
1152
1153error:
1154	kfree(map);
1155	kfree(global_map);
1156
1157	return 0;
1158}
1159#endif
1160
1161#ifdef CONFIG_PM_SLEEP
1162static int omap_dmm_resume(struct device *dev)
1163{
1164	struct tcm_area area;
1165	int i;
1166
1167	if (!omap_dmm)
1168		return -ENODEV;
1169
1170	area = (struct tcm_area) {
1171		.tcm = NULL,
1172		.p1.x = omap_dmm->container_width - 1,
1173		.p1.y = omap_dmm->container_height - 1,
1174	};
1175
1176	/* initialize all LUTs to dummy page entries */
1177	for (i = 0; i < omap_dmm->num_lut; i++) {
1178		area.tcm = omap_dmm->tcm[i];
1179		if (fill(&area, NULL, 0, 0, true))
1180			dev_err(dev, "refill failed");
1181	}
1182
1183	return 0;
1184}
1185#endif
1186
1187static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume);
1188
1189#if defined(CONFIG_OF)
1190static const struct dmm_platform_data dmm_omap4_platform_data = {
1191	.cpu_cache_flags = OMAP_BO_WC,
1192};
1193
1194static const struct dmm_platform_data dmm_omap5_platform_data = {
1195	.cpu_cache_flags = OMAP_BO_UNCACHED,
1196};
1197
1198static const struct of_device_id dmm_of_match[] = {
1199	{
1200		.compatible = "ti,omap4-dmm",
1201		.data = &dmm_omap4_platform_data,
1202	},
1203	{
1204		.compatible = "ti,omap5-dmm",
1205		.data = &dmm_omap5_platform_data,
1206	},
1207	{},
1208};
1209#endif
1210
1211struct platform_driver omap_dmm_driver = {
1212	.probe = omap_dmm_probe,
1213	.remove_new = omap_dmm_remove,
1214	.driver = {
1215		.owner = THIS_MODULE,
1216		.name = DMM_DRIVER_NAME,
1217		.of_match_table = of_match_ptr(dmm_of_match),
1218		.pm = &omap_dmm_pm_ops,
1219	},
1220};
1221
1222MODULE_LICENSE("GPL v2");
1223MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>");
1224MODULE_DESCRIPTION("OMAP DMM/Tiler Driver");
1225