1/*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24#define gf100_ram(p) container_of((p), struct gf100_ram, base)
25#include "ram.h"
26#include "ramfuc.h"
27
28#include <core/option.h>
29#include <subdev/bios.h>
30#include <subdev/bios/pll.h>
31#include <subdev/bios/rammap.h>
32#include <subdev/bios/timing.h>
33#include <subdev/clk.h>
34#include <subdev/clk/pll.h>
35
36struct gf100_ramfuc {
37	struct ramfuc base;
38
39	struct ramfuc_reg r_0x10fe20;
40	struct ramfuc_reg r_0x10fe24;
41	struct ramfuc_reg r_0x137320;
42	struct ramfuc_reg r_0x137330;
43
44	struct ramfuc_reg r_0x132000;
45	struct ramfuc_reg r_0x132004;
46	struct ramfuc_reg r_0x132100;
47
48	struct ramfuc_reg r_0x137390;
49
50	struct ramfuc_reg r_0x10f290;
51	struct ramfuc_reg r_0x10f294;
52	struct ramfuc_reg r_0x10f298;
53	struct ramfuc_reg r_0x10f29c;
54	struct ramfuc_reg r_0x10f2a0;
55
56	struct ramfuc_reg r_0x10f300;
57	struct ramfuc_reg r_0x10f338;
58	struct ramfuc_reg r_0x10f340;
59	struct ramfuc_reg r_0x10f344;
60	struct ramfuc_reg r_0x10f348;
61
62	struct ramfuc_reg r_0x10f910;
63	struct ramfuc_reg r_0x10f914;
64
65	struct ramfuc_reg r_0x100b0c;
66	struct ramfuc_reg r_0x10f050;
67	struct ramfuc_reg r_0x10f090;
68	struct ramfuc_reg r_0x10f200;
69	struct ramfuc_reg r_0x10f210;
70	struct ramfuc_reg r_0x10f310;
71	struct ramfuc_reg r_0x10f314;
72	struct ramfuc_reg r_0x10f610;
73	struct ramfuc_reg r_0x10f614;
74	struct ramfuc_reg r_0x10f800;
75	struct ramfuc_reg r_0x10f808;
76	struct ramfuc_reg r_0x10f824;
77	struct ramfuc_reg r_0x10f830;
78	struct ramfuc_reg r_0x10f988;
79	struct ramfuc_reg r_0x10f98c;
80	struct ramfuc_reg r_0x10f990;
81	struct ramfuc_reg r_0x10f998;
82	struct ramfuc_reg r_0x10f9b0;
83	struct ramfuc_reg r_0x10f9b4;
84	struct ramfuc_reg r_0x10fb04;
85	struct ramfuc_reg r_0x10fb08;
86	struct ramfuc_reg r_0x137300;
87	struct ramfuc_reg r_0x137310;
88	struct ramfuc_reg r_0x137360;
89	struct ramfuc_reg r_0x1373ec;
90	struct ramfuc_reg r_0x1373f0;
91	struct ramfuc_reg r_0x1373f8;
92
93	struct ramfuc_reg r_0x61c140;
94	struct ramfuc_reg r_0x611200;
95
96	struct ramfuc_reg r_0x13d8f4;
97};
98
99struct gf100_ram {
100	struct nvkm_ram base;
101	struct gf100_ramfuc fuc;
102	struct nvbios_pll refpll;
103	struct nvbios_pll mempll;
104};
105
106static void
107gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic)
108{
109	struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc);
110	struct nvkm_fb *fb = ram->base.fb;
111	struct nvkm_device *device = fb->subdev.device;
112	u32 part = nvkm_rd32(device, 0x022438), i;
113	u32 mask = nvkm_rd32(device, 0x022554);
114	u32 addr = 0x110974;
115
116	ram_wr32(fuc, 0x10f910, magic);
117	ram_wr32(fuc, 0x10f914, magic);
118
119	for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) {
120		if (mask & (1 << i))
121			continue;
122		ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
123	}
124}
125
126int
127gf100_ram_calc(struct nvkm_ram *base, u32 freq)
128{
129	struct gf100_ram *ram = gf100_ram(base);
130	struct gf100_ramfuc *fuc = &ram->fuc;
131	struct nvkm_subdev *subdev = &ram->base.fb->subdev;
132	struct nvkm_device *device = subdev->device;
133	struct nvkm_clk *clk = device->clk;
134	struct nvkm_bios *bios = device->bios;
135	struct nvbios_ramcfg cfg;
136	u8  ver, cnt, len, strap;
137	struct {
138		u32 data;
139		u8  size;
140	} rammap, ramcfg, timing;
141	int ref, div, out;
142	int from, mode;
143	int N1, M1, P;
144	int ret;
145
146	/* lookup memory config data relevant to the target frequency */
147	rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size,
148				      &cnt, &ramcfg.size, &cfg);
149	if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
150		nvkm_error(subdev, "invalid/missing rammap entry\n");
151		return -EINVAL;
152	}
153
154	/* locate specific data set for the attached memory */
155	strap = nvbios_ramcfg_index(subdev);
156	if (strap >= cnt) {
157		nvkm_error(subdev, "invalid ramcfg strap\n");
158		return -EINVAL;
159	}
160
161	ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
162	if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
163		nvkm_error(subdev, "invalid/missing ramcfg entry\n");
164		return -EINVAL;
165	}
166
167	/* lookup memory timings, if bios says they're present */
168	strap = nvbios_rd08(bios, ramcfg.data + 0x01);
169	if (strap != 0xff) {
170		timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size,
171					      &cnt, &len);
172		if (!timing.data || ver != 0x10 || timing.size < 0x19) {
173			nvkm_error(subdev, "invalid/missing timing entry\n");
174			return -EINVAL;
175		}
176	} else {
177		timing.data = 0;
178	}
179
180	ret = ram_init(fuc, ram->base.fb);
181	if (ret)
182		return ret;
183
184	/* determine current mclk configuration */
185	from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */
186
187	/* determine target mclk configuration */
188	if (!(ram_rd32(fuc, 0x137300) & 0x00000100))
189		ref = nvkm_clk_read(clk, nv_clk_src_sppll0);
190	else
191		ref = nvkm_clk_read(clk, nv_clk_src_sppll1);
192	div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2;
193	out = (ref * 2) / (div + 2);
194	mode = freq != out;
195
196	ram_mask(fuc, 0x137360, 0x00000002, 0x00000000);
197
198	if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) {
199		ram_nuke(fuc, 0x132000);
200		ram_mask(fuc, 0x132000, 0x00000002, 0x00000002);
201		ram_mask(fuc, 0x132000, 0x00000002, 0x00000000);
202	}
203
204	if (mode == 1) {
205		ram_nuke(fuc, 0x10fe20);
206		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002);
207		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000);
208	}
209
210// 0x00020034 // 0x0000000a
211	ram_wr32(fuc, 0x132100, 0x00000001);
212
213	if (mode == 1 && from == 0) {
214		/* calculate refpll */
215		ret = gt215_pll_calc(subdev, &ram->refpll, ram->mempll.refclk,
216				     &N1, NULL, &M1, &P);
217		if (ret <= 0) {
218			nvkm_error(subdev, "unable to calc refpll\n");
219			return ret ? ret : -ERANGE;
220		}
221
222		ram_wr32(fuc, 0x10fe20, 0x20010000);
223		ram_wr32(fuc, 0x137320, 0x00000003);
224		ram_wr32(fuc, 0x137330, 0x81200006);
225		ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1);
226		ram_wr32(fuc, 0x10fe20, 0x20010001);
227		ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
228
229		/* calculate mempll */
230		ret = gt215_pll_calc(subdev, &ram->mempll, freq,
231				     &N1, NULL, &M1, &P);
232		if (ret <= 0) {
233			nvkm_error(subdev, "unable to calc refpll\n");
234			return ret ? ret : -ERANGE;
235		}
236
237		ram_wr32(fuc, 0x10fe20, 0x20010005);
238		ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1);
239		ram_wr32(fuc, 0x132000, 0x18010101);
240		ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
241	} else
242	if (mode == 0) {
243		ram_wr32(fuc, 0x137300, 0x00000003);
244	}
245
246	if (from == 0) {
247		ram_nuke(fuc, 0x10fb04);
248		ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000);
249		ram_nuke(fuc, 0x10fb08);
250		ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000);
251		ram_wr32(fuc, 0x10f988, 0x2004ff00);
252		ram_wr32(fuc, 0x10f98c, 0x003fc040);
253		ram_wr32(fuc, 0x10f990, 0x20012001);
254		ram_wr32(fuc, 0x10f998, 0x00011a00);
255		ram_wr32(fuc, 0x13d8f4, 0x00000000);
256	} else {
257		ram_wr32(fuc, 0x10f988, 0x20010000);
258		ram_wr32(fuc, 0x10f98c, 0x00000000);
259		ram_wr32(fuc, 0x10f990, 0x20012001);
260		ram_wr32(fuc, 0x10f998, 0x00010a00);
261	}
262
263	if (from == 0) {
264// 0x00020039 // 0x000000ba
265	}
266
267// 0x0002003a // 0x00000002
268	ram_wr32(fuc, 0x100b0c, 0x00080012);
269// 0x00030014 // 0x00000000 // 0x02b5f070
270// 0x00030014 // 0x00010000 // 0x02b5f070
271	ram_wr32(fuc, 0x611200, 0x00003300);
272// 0x00020034 // 0x0000000a
273// 0x00030020 // 0x00000001 // 0x00000000
274
275	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
276	ram_wr32(fuc, 0x10f210, 0x00000000);
277	ram_nsec(fuc, 1000);
278	if (mode == 0)
279		gf100_ram_train(fuc, 0x000c1001);
280	ram_wr32(fuc, 0x10f310, 0x00000001);
281	ram_nsec(fuc, 1000);
282	ram_wr32(fuc, 0x10f090, 0x00000061);
283	ram_wr32(fuc, 0x10f090, 0xc000007f);
284	ram_nsec(fuc, 1000);
285
286	if (from == 0) {
287		ram_wr32(fuc, 0x10f824, 0x00007fd4);
288	} else {
289		ram_wr32(fuc, 0x1373ec, 0x00020404);
290	}
291
292	if (mode == 0) {
293		ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
294		ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
295		ram_wr32(fuc, 0x10f830, 0x41500010);
296		ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
297		ram_mask(fuc, 0x132100, 0x00000100, 0x00000100);
298		ram_wr32(fuc, 0x10f050, 0xff000090);
299		ram_wr32(fuc, 0x1373ec, 0x00020f0f);
300		ram_wr32(fuc, 0x1373f0, 0x00000003);
301		ram_wr32(fuc, 0x137310, 0x81201616);
302		ram_wr32(fuc, 0x132100, 0x00000001);
303// 0x00020039 // 0x000000ba
304		ram_wr32(fuc, 0x10f830, 0x00300017);
305		ram_wr32(fuc, 0x1373f0, 0x00000001);
306		ram_wr32(fuc, 0x10f824, 0x00007e77);
307		ram_wr32(fuc, 0x132000, 0x18030001);
308		ram_wr32(fuc, 0x10f090, 0x4000007e);
309		ram_nsec(fuc, 2000);
310		ram_wr32(fuc, 0x10f314, 0x00000001);
311		ram_wr32(fuc, 0x10f210, 0x80000000);
312		ram_wr32(fuc, 0x10f338, 0x00300220);
313		ram_wr32(fuc, 0x10f300, 0x0000011d);
314		ram_nsec(fuc, 1000);
315		ram_wr32(fuc, 0x10f290, 0x02060505);
316		ram_wr32(fuc, 0x10f294, 0x34208288);
317		ram_wr32(fuc, 0x10f298, 0x44050411);
318		ram_wr32(fuc, 0x10f29c, 0x0000114c);
319		ram_wr32(fuc, 0x10f2a0, 0x42e10069);
320		ram_wr32(fuc, 0x10f614, 0x40044f77);
321		ram_wr32(fuc, 0x10f610, 0x40044f77);
322		ram_wr32(fuc, 0x10f344, 0x00600009);
323		ram_nsec(fuc, 1000);
324		ram_wr32(fuc, 0x10f348, 0x00700008);
325		ram_wr32(fuc, 0x61c140, 0x19240000);
326		ram_wr32(fuc, 0x10f830, 0x00300017);
327		gf100_ram_train(fuc, 0x80021001);
328		gf100_ram_train(fuc, 0x80081001);
329		ram_wr32(fuc, 0x10f340, 0x00500004);
330		ram_nsec(fuc, 1000);
331		ram_wr32(fuc, 0x10f830, 0x01300017);
332		ram_wr32(fuc, 0x10f830, 0x00300017);
333// 0x00030020 // 0x00000000 // 0x00000000
334// 0x00020034 // 0x0000000b
335		ram_wr32(fuc, 0x100b0c, 0x00080028);
336		ram_wr32(fuc, 0x611200, 0x00003330);
337	} else {
338		ram_wr32(fuc, 0x10f800, 0x00001800);
339		ram_wr32(fuc, 0x13d8f4, 0x00000000);
340		ram_wr32(fuc, 0x1373ec, 0x00020404);
341		ram_wr32(fuc, 0x1373f0, 0x00000003);
342		ram_wr32(fuc, 0x10f830, 0x40700010);
343		ram_wr32(fuc, 0x10f830, 0x40500010);
344		ram_wr32(fuc, 0x13d8f4, 0x00000000);
345		ram_wr32(fuc, 0x1373f8, 0x00000000);
346		ram_wr32(fuc, 0x132100, 0x00000101);
347		ram_wr32(fuc, 0x137310, 0x89201616);
348		ram_wr32(fuc, 0x10f050, 0xff000090);
349		ram_wr32(fuc, 0x1373ec, 0x00030404);
350		ram_wr32(fuc, 0x1373f0, 0x00000002);
351	// 0x00020039 // 0x00000011
352		ram_wr32(fuc, 0x132100, 0x00000001);
353		ram_wr32(fuc, 0x1373f8, 0x00002000);
354		ram_nsec(fuc, 2000);
355		ram_wr32(fuc, 0x10f808, 0x7aaa0050);
356		ram_wr32(fuc, 0x10f830, 0x00500010);
357		ram_wr32(fuc, 0x10f200, 0x00ce1000);
358		ram_wr32(fuc, 0x10f090, 0x4000007e);
359		ram_nsec(fuc, 2000);
360		ram_wr32(fuc, 0x10f314, 0x00000001);
361		ram_wr32(fuc, 0x10f210, 0x80000000);
362		ram_wr32(fuc, 0x10f338, 0x00300200);
363		ram_wr32(fuc, 0x10f300, 0x0000084d);
364		ram_nsec(fuc, 1000);
365		ram_wr32(fuc, 0x10f290, 0x0b343825);
366		ram_wr32(fuc, 0x10f294, 0x3483028e);
367		ram_wr32(fuc, 0x10f298, 0x440c0600);
368		ram_wr32(fuc, 0x10f29c, 0x0000214c);
369		ram_wr32(fuc, 0x10f2a0, 0x42e20069);
370		ram_wr32(fuc, 0x10f200, 0x00ce0000);
371		ram_wr32(fuc, 0x10f614, 0x60044e77);
372		ram_wr32(fuc, 0x10f610, 0x60044e77);
373		ram_wr32(fuc, 0x10f340, 0x00500000);
374		ram_nsec(fuc, 1000);
375		ram_wr32(fuc, 0x10f344, 0x00600228);
376		ram_nsec(fuc, 1000);
377		ram_wr32(fuc, 0x10f348, 0x00700000);
378		ram_wr32(fuc, 0x13d8f4, 0x00000000);
379		ram_wr32(fuc, 0x61c140, 0x09a40000);
380
381		gf100_ram_train(fuc, 0x800e1008);
382
383		ram_nsec(fuc, 1000);
384		ram_wr32(fuc, 0x10f800, 0x00001804);
385	// 0x00030020 // 0x00000000 // 0x00000000
386	// 0x00020034 // 0x0000000b
387		ram_wr32(fuc, 0x13d8f4, 0x00000000);
388		ram_wr32(fuc, 0x100b0c, 0x00080028);
389		ram_wr32(fuc, 0x611200, 0x00003330);
390		ram_nsec(fuc, 100000);
391		ram_wr32(fuc, 0x10f9b0, 0x05313f41);
392		ram_wr32(fuc, 0x10f9b4, 0x00002f50);
393
394		gf100_ram_train(fuc, 0x010c1001);
395	}
396
397	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800);
398// 0x00020016 // 0x00000000
399
400	if (mode == 0)
401		ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
402
403	return 0;
404}
405
406int
407gf100_ram_prog(struct nvkm_ram *base)
408{
409	struct gf100_ram *ram = gf100_ram(base);
410	struct nvkm_device *device = ram->base.fb->subdev.device;
411	ram_exec(&ram->fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
412	return 0;
413}
414
415void
416gf100_ram_tidy(struct nvkm_ram *base)
417{
418	struct gf100_ram *ram = gf100_ram(base);
419	ram_exec(&ram->fuc, false);
420}
421
422int
423gf100_ram_init(struct nvkm_ram *base)
424{
425	static const u8  train0[] = {
426		0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc,
427		0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
428	};
429	static const u32 train1[] = {
430		0x00000000, 0xffffffff,
431		0x55555555, 0xaaaaaaaa,
432		0x33333333, 0xcccccccc,
433		0xf0f0f0f0, 0x0f0f0f0f,
434		0x00ff00ff, 0xff00ff00,
435		0x0000ffff, 0xffff0000,
436	};
437	struct gf100_ram *ram = gf100_ram(base);
438	struct nvkm_device *device = ram->base.fb->subdev.device;
439	int i;
440
441	switch (ram->base.type) {
442	case NVKM_RAM_TYPE_GDDR5:
443		break;
444	default:
445		return 0;
446	}
447
448	/* prepare for ddr link training, and load training patterns */
449	for (i = 0; i < 0x30; i++) {
450		nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8));
451		nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8));
452		nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]);
453		nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]);
454		nvkm_wr32(device, 0x10f918,              train1[i % 12]);
455		nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
456		nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]);
457		nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]);
458		nvkm_wr32(device, 0x10f918,              train1[i % 12]);
459		nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
460	}
461
462	return 0;
463}
464
465u32
466gf100_ram_probe_fbpa_amount(struct nvkm_device *device, int fbpa)
467{
468	return nvkm_rd32(device, 0x11020c + (fbpa * 0x1000));
469}
470
471u32
472gf100_ram_probe_fbp_amount(const struct nvkm_ram_func *func, u32 fbpao,
473			   struct nvkm_device *device, int fbp, int *pltcs)
474{
475	if (!(fbpao & BIT(fbp))) {
476		*pltcs = 1;
477		return func->probe_fbpa_amount(device, fbp);
478	}
479	return 0;
480}
481
482u32
483gf100_ram_probe_fbp(const struct nvkm_ram_func *func,
484		    struct nvkm_device *device, int fbp, int *pltcs)
485{
486	u32 fbpao = nvkm_rd32(device, 0x022554);
487	return func->probe_fbp_amount(func, fbpao, device, fbp, pltcs);
488}
489
490int
491gf100_ram_ctor(const struct nvkm_ram_func *func, struct nvkm_fb *fb,
492	       struct nvkm_ram *ram)
493{
494	struct nvkm_subdev *subdev = &fb->subdev;
495	struct nvkm_device *device = subdev->device;
496	struct nvkm_bios *bios = device->bios;
497	const u32 rsvd_head = ( 256 * 1024); /* vga memory */
498	const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
499	enum nvkm_ram_type type = nvkm_fb_bios_memtype(bios);
500	u32 fbps = nvkm_rd32(device, 0x022438);
501	u64 total = 0, lcomm = ~0, lower, ubase, usize;
502	int ret, fbp, ltcs, ltcn = 0;
503
504	nvkm_debug(subdev, "%d FBP(s)\n", fbps);
505	for (fbp = 0; fbp < fbps; fbp++) {
506		u32 size = func->probe_fbp(func, device, fbp, &ltcs);
507		if (size) {
508			nvkm_debug(subdev, "FBP %d: %4d MiB, %d LTC(s)\n",
509				   fbp, size, ltcs);
510			lcomm  = min(lcomm, (u64)(size / ltcs) << 20);
511			total += (u64) size << 20;
512			ltcn  += ltcs;
513		} else {
514			nvkm_debug(subdev, "FBP %d: disabled\n", fbp);
515		}
516	}
517
518	lower = lcomm * ltcn;
519	ubase = lcomm + func->upper;
520	usize = total - lower;
521
522	nvkm_debug(subdev, "Lower: %4lld MiB @ %010llx\n", lower >> 20, 0ULL);
523	nvkm_debug(subdev, "Upper: %4lld MiB @ %010llx\n", usize >> 20, ubase);
524	nvkm_debug(subdev, "Total: %4lld MiB\n", total >> 20);
525
526	ret = nvkm_ram_ctor(func, fb, type, total, ram);
527	if (ret)
528		return ret;
529
530	nvkm_mm_fini(&ram->vram);
531
532	/* Some GPUs are in what's known as a "mixed memory" configuration.
533	 *
534	 * This is either where some FBPs have more memory than the others,
535	 * or where LTCs have been disabled on a FBP.
536	 */
537	if (lower != total) {
538		/* The common memory amount is addressed normally. */
539		ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL,
540				   rsvd_head >> NVKM_RAM_MM_SHIFT,
541				   (lower - rsvd_head) >> NVKM_RAM_MM_SHIFT, 1);
542		if (ret)
543			return ret;
544
545		/* And the rest is much higher in the physical address
546		 * space, and may not be usable for certain operations.
547		 */
548		ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_MIXED,
549				   ubase >> NVKM_RAM_MM_SHIFT,
550				   (usize - rsvd_tail) >> NVKM_RAM_MM_SHIFT, 1);
551		if (ret)
552			return ret;
553	} else {
554		/* GPUs without mixed-memory are a lot nicer... */
555		ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL,
556				   rsvd_head >> NVKM_RAM_MM_SHIFT,
557				   (total - rsvd_head - rsvd_tail) >>
558				   NVKM_RAM_MM_SHIFT, 1);
559		if (ret)
560			return ret;
561	}
562
563	return 0;
564}
565
566int
567gf100_ram_new_(const struct nvkm_ram_func *func,
568	       struct nvkm_fb *fb, struct nvkm_ram **pram)
569{
570	struct nvkm_subdev *subdev = &fb->subdev;
571	struct nvkm_bios *bios = subdev->device->bios;
572	struct gf100_ram *ram;
573	int ret;
574
575	if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
576		return -ENOMEM;
577	*pram = &ram->base;
578
579	ret = gf100_ram_ctor(func, fb, &ram->base);
580	if (ret)
581		return ret;
582
583	ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll);
584	if (ret) {
585		nvkm_error(subdev, "mclk refpll data not found\n");
586		return ret;
587	}
588
589	ret = nvbios_pll_parse(bios, 0x04, &ram->mempll);
590	if (ret) {
591		nvkm_error(subdev, "mclk pll data not found\n");
592		return ret;
593	}
594
595	ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20);
596	ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24);
597	ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
598	ram->fuc.r_0x137330 = ramfuc_reg(0x137330);
599
600	ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
601	ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
602	ram->fuc.r_0x132100 = ramfuc_reg(0x132100);
603
604	ram->fuc.r_0x137390 = ramfuc_reg(0x137390);
605
606	ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
607	ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
608	ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
609	ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
610	ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
611
612	ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300);
613	ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338);
614	ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340);
615	ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344);
616	ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348);
617
618	ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
619	ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
620
621	ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c);
622	ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050);
623	ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
624	ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
625	ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
626	ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
627	ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
628	ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
629	ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
630	ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
631	ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
632	ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
633	ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
634	ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988);
635	ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c);
636	ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990);
637	ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998);
638	ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0);
639	ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4);
640	ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04);
641	ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08);
642	ram->fuc.r_0x137310 = ramfuc_reg(0x137300);
643	ram->fuc.r_0x137310 = ramfuc_reg(0x137310);
644	ram->fuc.r_0x137360 = ramfuc_reg(0x137360);
645	ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
646	ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
647	ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8);
648
649	ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140);
650	ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
651
652	ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4);
653	return 0;
654}
655
656static const struct nvkm_ram_func
657gf100_ram = {
658	.upper = 0x0200000000ULL,
659	.probe_fbp = gf100_ram_probe_fbp,
660	.probe_fbp_amount = gf100_ram_probe_fbp_amount,
661	.probe_fbpa_amount = gf100_ram_probe_fbpa_amount,
662	.init = gf100_ram_init,
663	.calc = gf100_ram_calc,
664	.prog = gf100_ram_prog,
665	.tidy = gf100_ram_tidy,
666};
667
668int
669gf100_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
670{
671	return gf100_ram_new_(&gf100_ram, fb, pram);
672}
673