1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2013 Red Hat
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7#ifndef __MSM_GPU_H__
8#define __MSM_GPU_H__
9
10#include <linux/adreno-smmu-priv.h>
11#include <linux/clk.h>
12#include <linux/devfreq.h>
13#include <linux/interconnect.h>
14#include <linux/pm_opp.h>
15#include <linux/regulator/consumer.h>
16
17#include "msm_drv.h"
18#include "msm_fence.h"
19#include "msm_ringbuffer.h"
20#include "msm_gem.h"
21
22struct msm_gem_submit;
23struct msm_gpu_perfcntr;
24struct msm_gpu_state;
25struct msm_file_private;
26
27struct msm_gpu_config {
28	const char *ioname;
29	unsigned int nr_rings;
30};
31
32/* So far, with hardware that I've seen to date, we can have:
33 *  + zero, one, or two z180 2d cores
34 *  + a3xx or a2xx 3d core, which share a common CP (the firmware
35 *    for the CP seems to implement some different PM4 packet types
36 *    but the basics of cmdstream submission are the same)
37 *
38 * Which means that the eventual complete "class" hierarchy, once
39 * support for all past and present hw is in place, becomes:
40 *  + msm_gpu
41 *    + adreno_gpu
42 *      + a3xx_gpu
43 *      + a2xx_gpu
44 *    + z180_gpu
45 */
46struct msm_gpu_funcs {
47	int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
48			 uint32_t param, uint64_t *value, uint32_t *len);
49	int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
50			 uint32_t param, uint64_t value, uint32_t len);
51	int (*hw_init)(struct msm_gpu *gpu);
52
53	/**
54	 * @ucode_load: Optional hook to upload fw to GEM objs
55	 */
56	int (*ucode_load)(struct msm_gpu *gpu);
57
58	int (*pm_suspend)(struct msm_gpu *gpu);
59	int (*pm_resume)(struct msm_gpu *gpu);
60	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
61	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
62	irqreturn_t (*irq)(struct msm_gpu *irq);
63	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
64	void (*recover)(struct msm_gpu *gpu);
65	void (*destroy)(struct msm_gpu *gpu);
66#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
67	/* show GPU status in debugfs: */
68	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
69			struct drm_printer *p);
70	/* for generation specific debugfs: */
71	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
72#endif
73	/* note: gpu_busy() can assume that we have been pm_resumed */
74	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
75	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
76	int (*gpu_state_put)(struct msm_gpu_state *state);
77	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
78	/* note: gpu_set_freq() can assume that we have been pm_resumed */
79	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
80			     bool suspended);
81	struct msm_gem_address_space *(*create_address_space)
82		(struct msm_gpu *gpu, struct platform_device *pdev);
83	struct msm_gem_address_space *(*create_private_address_space)
84		(struct msm_gpu *gpu);
85	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
86
87	/**
88	 * progress: Has the GPU made progress?
89	 *
90	 * Return true if GPU position in cmdstream has advanced (or changed)
91	 * since the last call.  To avoid false negatives, this should account
92	 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
93	 */
94	bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
95};
96
97/* Additional state for iommu faults: */
98struct msm_gpu_fault_info {
99	u64 ttbr0;
100	unsigned long iova;
101	int flags;
102	const char *type;
103	const char *block;
104};
105
106/**
107 * struct msm_gpu_devfreq - devfreq related state
108 */
109struct msm_gpu_devfreq {
110	/** devfreq: devfreq instance */
111	struct devfreq *devfreq;
112
113	/** lock: lock for "suspended", "busy_cycles", and "time" */
114	struct mutex lock;
115
116	/**
117	 * idle_freq:
118	 *
119	 * Shadow frequency used while the GPU is idle.  From the PoV of
120	 * the devfreq governor, we are continuing to sample busyness and
121	 * adjust frequency while the GPU is idle, but we use this shadow
122	 * value as the GPU is actually clamped to minimum frequency while
123	 * it is inactive.
124	 */
125	unsigned long idle_freq;
126
127	/**
128	 * boost_constraint:
129	 *
130	 * A PM QoS constraint to boost min freq for a period of time
131	 * until the boost expires.
132	 */
133	struct dev_pm_qos_request boost_freq;
134
135	/**
136	 * busy_cycles: Last busy counter value, for calculating elapsed busy
137	 * cycles since last sampling period.
138	 */
139	u64 busy_cycles;
140
141	/** time: Time of last sampling period. */
142	ktime_t time;
143
144	/** idle_time: Time of last transition to idle: */
145	ktime_t idle_time;
146
147	/**
148	 * idle_work:
149	 *
150	 * Used to delay clamping to idle freq on active->idle transition.
151	 */
152	struct msm_hrtimer_work idle_work;
153
154	/**
155	 * boost_work:
156	 *
157	 * Used to reset the boost_constraint after the boost period has
158	 * elapsed
159	 */
160	struct msm_hrtimer_work boost_work;
161
162	/** suspended: tracks if we're suspended */
163	bool suspended;
164};
165
166struct msm_gpu {
167	const char *name;
168	struct drm_device *dev;
169	struct platform_device *pdev;
170	const struct msm_gpu_funcs *funcs;
171
172	struct adreno_smmu_priv adreno_smmu;
173
174	/* performance counters (hw & sw): */
175	spinlock_t perf_lock;
176	bool perfcntr_active;
177	struct {
178		bool active;
179		ktime_t time;
180	} last_sample;
181	uint32_t totaltime, activetime;    /* sw counters */
182	uint32_t last_cntrs[5];            /* hw counters */
183	const struct msm_gpu_perfcntr *perfcntrs;
184	uint32_t num_perfcntrs;
185
186	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
187	int nr_rings;
188
189	/**
190	 * sysprof_active:
191	 *
192	 * The count of contexts that have enabled system profiling.
193	 */
194	refcount_t sysprof_active;
195
196	/**
197	 * cur_ctx_seqno:
198	 *
199	 * The ctx->seqno value of the last context to submit rendering,
200	 * and the one with current pgtables installed (for generations
201	 * that support per-context pgtables).  Tracked by seqno rather
202	 * than pointer value to avoid dangling pointers, and cases where
203	 * a ctx can be freed and a new one created with the same address.
204	 */
205	int cur_ctx_seqno;
206
207	/**
208	 * lock:
209	 *
210	 * General lock for serializing all the gpu things.
211	 *
212	 * TODO move to per-ring locking where feasible (ie. submit/retire
213	 * path, etc)
214	 */
215	struct mutex lock;
216
217	/**
218	 * active_submits:
219	 *
220	 * The number of submitted but not yet retired submits, used to
221	 * determine transitions between active and idle.
222	 *
223	 * Protected by active_lock
224	 */
225	int active_submits;
226
227	/** lock: protects active_submits and idle/active transitions */
228	struct mutex active_lock;
229
230	/* does gpu need hw_init? */
231	bool needs_hw_init;
232
233	/**
234	 * global_faults: number of GPU hangs not attributed to a particular
235	 * address space
236	 */
237	int global_faults;
238
239	void __iomem *mmio;
240	int irq;
241
242	struct msm_gem_address_space *aspace;
243
244	/* Power Control: */
245	struct regulator *gpu_reg, *gpu_cx;
246	struct clk_bulk_data *grp_clks;
247	int nr_clocks;
248	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
249	uint32_t fast_rate;
250
251	/* Hang and Inactivity Detection:
252	 */
253#define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
254
255#define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
256#define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
257	struct timer_list hangcheck_timer;
258
259	/* Fault info for most recent iova fault: */
260	struct msm_gpu_fault_info fault_info;
261
262	/* work for handling GPU ioval faults: */
263	struct kthread_work fault_work;
264
265	/* work for handling GPU recovery: */
266	struct kthread_work recover_work;
267
268	/** retire_event: notified when submits are retired: */
269	wait_queue_head_t retire_event;
270
271	/* work for handling active-list retiring: */
272	struct kthread_work retire_work;
273
274	/* worker for retire/recover: */
275	struct kthread_worker *worker;
276
277	struct drm_gem_object *memptrs_bo;
278
279	struct msm_gpu_devfreq devfreq;
280
281	uint32_t suspend_count;
282
283	struct msm_gpu_state *crashstate;
284
285	/* True if the hardware supports expanded apriv (a650 and newer) */
286	bool hw_apriv;
287
288	/**
289	 * @allow_relocs: allow relocs in SUBMIT ioctl
290	 *
291	 * Mesa won't use relocs for driver version 1.4.0 and later.  This
292	 * switch-over happened early enough in mesa a6xx bringup that we
293	 * can disallow relocs for a6xx and newer.
294	 */
295	bool allow_relocs;
296
297	struct thermal_cooling_device *cooling;
298};
299
300static inline struct msm_gpu *dev_to_gpu(struct device *dev)
301{
302	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
303
304	if (!adreno_smmu)
305		return NULL;
306
307	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
308}
309
310/* It turns out that all targets use the same ringbuffer size */
311#define MSM_GPU_RINGBUFFER_SZ SZ_32K
312#define MSM_GPU_RINGBUFFER_BLKSIZE 32
313
314#define MSM_GPU_RB_CNTL_DEFAULT \
315		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
316		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
317
318static inline bool msm_gpu_active(struct msm_gpu *gpu)
319{
320	int i;
321
322	for (i = 0; i < gpu->nr_rings; i++) {
323		struct msm_ringbuffer *ring = gpu->rb[i];
324
325		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
326			return true;
327	}
328
329	return false;
330}
331
332/* Perf-Counters:
333 * The select_reg and select_val are just there for the benefit of the child
334 * class that actually enables the perf counter..  but msm_gpu base class
335 * will handle sampling/displaying the counters.
336 */
337
338struct msm_gpu_perfcntr {
339	uint32_t select_reg;
340	uint32_t sample_reg;
341	uint32_t select_val;
342	const char *name;
343};
344
345/*
346 * The number of priority levels provided by drm gpu scheduler.  The
347 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
348 * cases, so we don't use it (no need for kernel generated jobs).
349 */
350#define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
351
352/**
353 * struct msm_file_private - per-drm_file context
354 *
355 * @queuelock:    synchronizes access to submitqueues list
356 * @submitqueues: list of &msm_gpu_submitqueue created by userspace
357 * @queueid:      counter incremented each time a submitqueue is created,
358 *                used to assign &msm_gpu_submitqueue.id
359 * @aspace:       the per-process GPU address-space
360 * @ref:          reference count
361 * @seqno:        unique per process seqno
362 */
363struct msm_file_private {
364	rwlock_t queuelock;
365	struct list_head submitqueues;
366	int queueid;
367	struct msm_gem_address_space *aspace;
368	struct kref ref;
369	int seqno;
370
371	/**
372	 * sysprof:
373	 *
374	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
375	 * intended to be used by system profiling tools like Mesa's
376	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
377	 *
378	 * Setting a value of 1 will preserve performance counters across
379	 * context switches.  Setting a value of 2 will in addition
380	 * suppress suspend.  (Performance counters lose state across
381	 * power collapse, which is undesirable for profiling in some
382	 * cases.)
383	 *
384	 * The value automatically reverts to zero when the drm device
385	 * file is closed.
386	 */
387	int sysprof;
388
389	/**
390	 * comm: Overridden task comm, see MSM_PARAM_COMM
391	 *
392	 * Accessed under msm_gpu::lock
393	 */
394	char *comm;
395
396	/**
397	 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
398	 *
399	 * Accessed under msm_gpu::lock
400	 */
401	char *cmdline;
402
403	/**
404	 * elapsed:
405	 *
406	 * The total (cumulative) elapsed time GPU was busy with rendering
407	 * from this context in ns.
408	 */
409	uint64_t elapsed_ns;
410
411	/**
412	 * cycles:
413	 *
414	 * The total (cumulative) GPU cycles elapsed attributed to this
415	 * context.
416	 */
417	uint64_t cycles;
418
419	/**
420	 * entities:
421	 *
422	 * Table of per-priority-level sched entities used by submitqueues
423	 * associated with this &drm_file.  Because some userspace apps
424	 * make assumptions about rendering from multiple gl contexts
425	 * (of the same priority) within the process happening in FIFO
426	 * order without requiring any fencing beyond MakeCurrent(), we
427	 * create at most one &drm_sched_entity per-process per-priority-
428	 * level.
429	 */
430	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
431};
432
433/**
434 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
435 *
436 * @gpu:        the gpu instance
437 * @prio:       the userspace priority level
438 * @ring_nr:    [out] the ringbuffer the userspace priority maps to
439 * @sched_prio: [out] the gpu scheduler priority level which the userspace
440 *              priority maps to
441 *
442 * With drm/scheduler providing it's own level of prioritization, our total
443 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
444 * Each ring is associated with it's own scheduler instance.  However, our
445 * UABI is that lower numerical values are higher priority.  So mapping the
446 * single userspace priority level into ring_nr and sched_prio takes some
447 * care.  The userspace provided priority (when a submitqueue is created)
448 * is mapped to ring nr and scheduler priority as such:
449 *
450 *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
451 *   sched_prio = NR_SCHED_PRIORITIES -
452 *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
453 *
454 * This allows generations without preemption (nr_rings==1) to have some
455 * amount of prioritization, and provides more priority levels for gens
456 * that do have preemption.
457 */
458static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
459		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
460{
461	unsigned rn, sp;
462
463	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
464
465	/* invert sched priority to map to higher-numeric-is-higher-
466	 * priority convention
467	 */
468	sp = NR_SCHED_PRIORITIES - sp - 1;
469
470	if (rn >= gpu->nr_rings)
471		return -EINVAL;
472
473	*ring_nr = rn;
474	*sched_prio = sp;
475
476	return 0;
477}
478
479/**
480 * struct msm_gpu_submitqueues - Userspace created context.
481 *
482 * A submitqueue is associated with a gl context or vk queue (or equiv)
483 * in userspace.
484 *
485 * @id:        userspace id for the submitqueue, unique within the drm_file
486 * @flags:     userspace flags for the submitqueue, specified at creation
487 *             (currently unusued)
488 * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
489 *             by the submitqueue's priority
490 * @faults:    the number of GPU hangs associated with this submitqueue
491 * @last_fence: the sequence number of the last allocated fence (for error
492 *             checking)
493 * @ctx:       the per-drm_file context associated with the submitqueue (ie.
494 *             which set of pgtables do submits jobs associated with the
495 *             submitqueue use)
496 * @node:      node in the context's list of submitqueues
497 * @fence_idr: maps fence-id to dma_fence for userspace visible fence
498 *             seqno, protected by submitqueue lock
499 * @idr_lock:  for serializing access to fence_idr
500 * @lock:      submitqueue lock for serializing submits on a queue
501 * @ref:       reference count
502 * @entity:    the submit job-queue
503 */
504struct msm_gpu_submitqueue {
505	int id;
506	u32 flags;
507	u32 ring_nr;
508	int faults;
509	uint32_t last_fence;
510	struct msm_file_private *ctx;
511	struct list_head node;
512	struct idr fence_idr;
513	struct spinlock idr_lock;
514	struct mutex lock;
515	struct kref ref;
516	struct drm_sched_entity *entity;
517};
518
519struct msm_gpu_state_bo {
520	u64 iova;
521	size_t size;
522	void *data;
523	bool encoded;
524	char name[32];
525};
526
527struct msm_gpu_state {
528	struct kref ref;
529	struct timespec64 time;
530
531	struct {
532		u64 iova;
533		u32 fence;
534		u32 seqno;
535		u32 rptr;
536		u32 wptr;
537		void *data;
538		int data_size;
539		bool encoded;
540	} ring[MSM_GPU_MAX_RINGS];
541
542	int nr_registers;
543	u32 *registers;
544
545	u32 rbbm_status;
546
547	char *comm;
548	char *cmd;
549
550	struct msm_gpu_fault_info fault_info;
551
552	int nr_bos;
553	struct msm_gpu_state_bo *bos;
554};
555
556static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
557{
558	msm_writel(data, gpu->mmio + (reg << 2));
559}
560
561static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
562{
563	return msm_readl(gpu->mmio + (reg << 2));
564}
565
566static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
567{
568	msm_rmw(gpu->mmio + (reg << 2), mask, or);
569}
570
571static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
572{
573	u64 val;
574
575	/*
576	 * Why not a readq here? Two reasons: 1) many of the LO registers are
577	 * not quad word aligned and 2) the GPU hardware designers have a bit
578	 * of a history of putting registers where they fit, especially in
579	 * spins. The longer a GPU family goes the higher the chance that
580	 * we'll get burned.  We could do a series of validity checks if we
581	 * wanted to, but really is a readq() that much better? Nah.
582	 */
583
584	/*
585	 * For some lo/hi registers (like perfcounters), the hi value is latched
586	 * when the lo is read, so make sure to read the lo first to trigger
587	 * that
588	 */
589	val = (u64) msm_readl(gpu->mmio + (reg << 2));
590	val |= ((u64) msm_readl(gpu->mmio + ((reg + 1) << 2)) << 32);
591
592	return val;
593}
594
595static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
596{
597	/* Why not a writeq here? Read the screed above */
598	msm_writel(lower_32_bits(val), gpu->mmio + (reg << 2));
599	msm_writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
600}
601
602int msm_gpu_pm_suspend(struct msm_gpu *gpu);
603int msm_gpu_pm_resume(struct msm_gpu *gpu);
604
605void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
606			 struct drm_printer *p);
607
608int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
609struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
610		u32 id);
611int msm_submitqueue_create(struct drm_device *drm,
612		struct msm_file_private *ctx,
613		u32 prio, u32 flags, u32 *id);
614int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
615		struct drm_msm_submitqueue_query *args);
616int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
617void msm_submitqueue_close(struct msm_file_private *ctx);
618
619void msm_submitqueue_destroy(struct kref *kref);
620
621int msm_file_private_set_sysprof(struct msm_file_private *ctx,
622				 struct msm_gpu *gpu, int sysprof);
623void __msm_file_private_destroy(struct kref *kref);
624
625static inline void msm_file_private_put(struct msm_file_private *ctx)
626{
627	kref_put(&ctx->ref, __msm_file_private_destroy);
628}
629
630static inline struct msm_file_private *msm_file_private_get(
631	struct msm_file_private *ctx)
632{
633	kref_get(&ctx->ref);
634	return ctx;
635}
636
637void msm_devfreq_init(struct msm_gpu *gpu);
638void msm_devfreq_cleanup(struct msm_gpu *gpu);
639void msm_devfreq_resume(struct msm_gpu *gpu);
640void msm_devfreq_suspend(struct msm_gpu *gpu);
641void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
642void msm_devfreq_active(struct msm_gpu *gpu);
643void msm_devfreq_idle(struct msm_gpu *gpu);
644
645int msm_gpu_hw_init(struct msm_gpu *gpu);
646
647void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
648void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
649int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
650		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
651
652void msm_gpu_retire(struct msm_gpu *gpu);
653void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
654
655int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
656		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
657		const char *name, struct msm_gpu_config *config);
658
659struct msm_gem_address_space *
660msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
661
662void msm_gpu_cleanup(struct msm_gpu *gpu);
663
664struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
665void __init adreno_register(void);
666void __exit adreno_unregister(void);
667
668static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
669{
670	if (queue)
671		kref_put(&queue->ref, msm_submitqueue_destroy);
672}
673
674static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
675{
676	struct msm_gpu_state *state = NULL;
677
678	mutex_lock(&gpu->lock);
679
680	if (gpu->crashstate) {
681		kref_get(&gpu->crashstate->ref);
682		state = gpu->crashstate;
683	}
684
685	mutex_unlock(&gpu->lock);
686
687	return state;
688}
689
690static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
691{
692	mutex_lock(&gpu->lock);
693
694	if (gpu->crashstate) {
695		if (gpu->funcs->gpu_state_put(gpu->crashstate))
696			gpu->crashstate = NULL;
697	}
698
699	mutex_unlock(&gpu->lock);
700}
701
702/*
703 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
704 * support expanded privileges
705 */
706#define check_apriv(gpu, flags) \
707	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
708
709
710#endif /* __MSM_GPU_H__ */
711