1/*
2 * SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2018, The Linux Foundation
4 */
5
6#include <linux/clk.h>
7#include <linux/clk-provider.h>
8#include <linux/iopoll.h>
9
10#include "dsi_phy.h"
11#include "dsi.xml.h"
12#include "dsi_phy_7nm.xml.h"
13
14/*
15 * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
16 *
17 *           dsi0_pll_out_div_clk  dsi0_pll_bit_clk
18 *                              |                |
19 *                              |                |
20 *                 +---------+  |  +----------+  |  +----+
21 *  dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk
22 *                 +---------+  |  +----------+  |  +----+
23 *                              |                |
24 *                              |                |         dsi0_pll_by_2_bit_clk
25 *                              |                |          |
26 *                              |                |  +----+  |  |\  dsi0_pclk_mux
27 *                              |                |--| /2 |--o--| \   |
28 *                              |                |  +----+     |  \  |  +---------+
29 *                              |                --------------|  |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
30 *                              |------------------------------|  /     +---------+
31 *                              |          +-----+             | /
32 *                              -----------| /4? |--o----------|/
33 *                                         +-----+  |           |
34 *                                                  |           |dsiclk_sel
35 *                                                  |
36 *                                                  dsi0_pll_post_out_div_clk
37 */
38
39#define VCO_REF_CLK_RATE		19200000
40#define FRAC_BITS 18
41
42/* Hardware is pre V4.1 */
43#define DSI_PHY_7NM_QUIRK_PRE_V4_1	BIT(0)
44/* Hardware is V4.1 */
45#define DSI_PHY_7NM_QUIRK_V4_1		BIT(1)
46/* Hardware is V4.2 */
47#define DSI_PHY_7NM_QUIRK_V4_2		BIT(2)
48/* Hardware is V4.3 */
49#define DSI_PHY_7NM_QUIRK_V4_3		BIT(3)
50/* Hardware is V5.2 */
51#define DSI_PHY_7NM_QUIRK_V5_2		BIT(4)
52
53struct dsi_pll_config {
54	bool enable_ssc;
55	bool ssc_center;
56	u32 ssc_freq;
57	u32 ssc_offset;
58	u32 ssc_adj_per;
59
60	/* out */
61	u32 decimal_div_start;
62	u32 frac_div_start;
63	u32 pll_clock_inverters;
64	u32 ssc_stepsize;
65	u32 ssc_div_per;
66};
67
68struct pll_7nm_cached_state {
69	unsigned long vco_rate;
70	u8 bit_clk_div;
71	u8 pix_clk_div;
72	u8 pll_out_div;
73	u8 pll_mux;
74};
75
76struct dsi_pll_7nm {
77	struct clk_hw clk_hw;
78
79	struct msm_dsi_phy *phy;
80
81	u64 vco_current_rate;
82
83	/* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
84	spinlock_t postdiv_lock;
85
86	struct pll_7nm_cached_state cached_state;
87
88	struct dsi_pll_7nm *slave;
89};
90
91#define to_pll_7nm(x)	container_of(x, struct dsi_pll_7nm, clk_hw)
92
93/*
94 * Global list of private DSI PLL struct pointers. We need this for bonded DSI
95 * mode, where the master PLL's clk_ops needs access the slave's private data
96 */
97static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
98
99static void dsi_pll_setup_config(struct dsi_pll_config *config)
100{
101	config->ssc_freq = 31500;
102	config->ssc_offset = 4800;
103	config->ssc_adj_per = 2;
104
105	/* TODO: ssc enable */
106	config->enable_ssc = false;
107	config->ssc_center = 0;
108}
109
110static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
111{
112	u64 fref = VCO_REF_CLK_RATE;
113	u64 pll_freq;
114	u64 divider;
115	u64 dec, dec_multiple;
116	u32 frac;
117	u64 multiplier;
118
119	pll_freq = pll->vco_current_rate;
120
121	divider = fref * 2;
122
123	multiplier = 1 << FRAC_BITS;
124	dec_multiple = div_u64(pll_freq * multiplier, divider);
125	dec = div_u64_rem(dec_multiple, multiplier, &frac);
126
127	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)
128		config->pll_clock_inverters = 0x28;
129	else if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
130		if (pll_freq <= 1300000000ULL)
131			config->pll_clock_inverters = 0xa0;
132		else if (pll_freq <= 2500000000ULL)
133			config->pll_clock_inverters = 0x20;
134		else if (pll_freq <= 4000000000ULL)
135			config->pll_clock_inverters = 0x00;
136		else
137			config->pll_clock_inverters = 0x40;
138	} else {
139		if (pll_freq <= 1000000000ULL)
140			config->pll_clock_inverters = 0xa0;
141		else if (pll_freq <= 2500000000ULL)
142			config->pll_clock_inverters = 0x20;
143		else if (pll_freq <= 3020000000ULL)
144			config->pll_clock_inverters = 0x00;
145		else
146			config->pll_clock_inverters = 0x40;
147	}
148
149	config->decimal_div_start = dec;
150	config->frac_div_start = frac;
151}
152
153#define SSC_CENTER		BIT(0)
154#define SSC_EN			BIT(1)
155
156static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
157{
158	u32 ssc_per;
159	u32 ssc_mod;
160	u64 ssc_step_size;
161	u64 frac;
162
163	if (!config->enable_ssc) {
164		DBG("SSC not enabled\n");
165		return;
166	}
167
168	ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1;
169	ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
170	ssc_per -= ssc_mod;
171
172	frac = config->frac_div_start;
173	ssc_step_size = config->decimal_div_start;
174	ssc_step_size *= (1 << FRAC_BITS);
175	ssc_step_size += frac;
176	ssc_step_size *= config->ssc_offset;
177	ssc_step_size *= (config->ssc_adj_per + 1);
178	ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
179	ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
180
181	config->ssc_div_per = ssc_per;
182	config->ssc_stepsize = ssc_step_size;
183
184	pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
185		 config->decimal_div_start, frac, FRAC_BITS);
186	pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
187		 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
188}
189
190static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
191{
192	void __iomem *base = pll->phy->pll_base;
193
194	if (config->enable_ssc) {
195		pr_debug("SSC is enabled\n");
196
197		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
198			      config->ssc_stepsize & 0xff);
199		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
200			      config->ssc_stepsize >> 8);
201		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1,
202			      config->ssc_div_per & 0xff);
203		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
204			      config->ssc_div_per >> 8);
205		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1,
206			      config->ssc_adj_per & 0xff);
207		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1,
208			      config->ssc_adj_per >> 8);
209		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL,
210			      SSC_EN | (config->ssc_center ? SSC_CENTER : 0));
211	}
212}
213
214static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
215{
216	void __iomem *base = pll->phy->pll_base;
217	u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
218
219	if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1))
220		if (pll->vco_current_rate >= 3100000000ULL)
221			analog_controls_five_1 = 0x03;
222
223	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
224		if (pll->vco_current_rate < 1520000000ULL)
225			vco_config_1 = 0x08;
226		else if (pll->vco_current_rate < 2990000000ULL)
227			vco_config_1 = 0x01;
228	}
229
230	if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) ||
231	    (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) {
232		if (pll->vco_current_rate < 1520000000ULL)
233			vco_config_1 = 0x08;
234		else if (pll->vco_current_rate >= 2990000000ULL)
235			vco_config_1 = 0x01;
236	}
237
238	if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
239		if (pll->vco_current_rate < 1557000000ULL)
240			vco_config_1 = 0x08;
241		else
242			vco_config_1 = 0x01;
243	}
244
245	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1,
246		      analog_controls_five_1);
247	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1);
248	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01);
249	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
250	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
251	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00);
252	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
253	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
254	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
255	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
256	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00);
257	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00);
258	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
259	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
260	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0);
261	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
262	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
263	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
264	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
265	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29);
266	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f);
267	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a);
268	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT,
269		  !(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1) ? 0x3f : 0x22);
270
271	if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)) {
272		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
273		if (pll->slave)
274			dsi_phy_write(pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
275	}
276}
277
278static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
279{
280	void __iomem *base = pll->phy->pll_base;
281
282	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
283	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1,
284		      config->decimal_div_start);
285	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1,
286		      config->frac_div_start & 0xff);
287	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1,
288		      (config->frac_div_start & 0xff00) >> 8);
289	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
290		      (config->frac_div_start & 0x30000) >> 16);
291	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
292	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
293	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1,
294		      pll->phy->cphy_mode ? 0x00 : 0x10);
295	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS,
296		      config->pll_clock_inverters);
297}
298
299static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
300				     unsigned long parent_rate)
301{
302	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
303	struct dsi_pll_config config;
304
305	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate,
306	    parent_rate);
307
308	pll_7nm->vco_current_rate = rate;
309
310	dsi_pll_setup_config(&config);
311
312	dsi_pll_calc_dec_frac(pll_7nm, &config);
313
314	dsi_pll_calc_ssc(pll_7nm, &config);
315
316	dsi_pll_commit(pll_7nm, &config);
317
318	dsi_pll_config_hzindep_reg(pll_7nm);
319
320	dsi_pll_ssc_commit(pll_7nm, &config);
321
322	/* flush, ensure all register writes are done*/
323	wmb();
324
325	return 0;
326}
327
328static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
329{
330	int rc;
331	u32 status = 0;
332	u32 const delay_us = 100;
333	u32 const timeout_us = 5000;
334
335	rc = readl_poll_timeout_atomic(pll->phy->pll_base +
336				       REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
337				       status,
338				       ((status & BIT(0)) > 0),
339				       delay_us,
340				       timeout_us);
341	if (rc)
342		pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
343		       pll->phy->id, status);
344
345	return rc;
346}
347
348static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
349{
350	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
351
352	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0);
353	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data & ~BIT(5));
354	ndelay(250);
355}
356
357static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
358{
359	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
360
361	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data | BIT(5));
362	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
363	ndelay(250);
364}
365
366static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
367{
368	u32 data;
369
370	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
371	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & ~BIT(5));
372}
373
374static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
375{
376	u32 data;
377
378	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04);
379
380	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
381	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1,
382		      data | BIT(5) | BIT(4));
383}
384
385static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
386{
387	/*
388	 * Reset the PHY digital domain. This would be needed when
389	 * coming out of a CX or analog rail power collapse while
390	 * ensuring that the pads maintain LP00 or LP11 state
391	 */
392	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
393	wmb(); /* Ensure that the reset is deasserted */
394	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
395	wmb(); /* Ensure that the reset is deasserted */
396}
397
398static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
399{
400	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
401	int rc;
402
403	dsi_pll_enable_pll_bias(pll_7nm);
404	if (pll_7nm->slave)
405		dsi_pll_enable_pll_bias(pll_7nm->slave);
406
407	/* Start PLL */
408	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x01);
409
410	/*
411	 * ensure all PLL configurations are written prior to checking
412	 * for PLL lock.
413	 */
414	wmb();
415
416	/* Check for PLL lock */
417	rc = dsi_pll_7nm_lock_status(pll_7nm);
418	if (rc) {
419		pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id);
420		goto error;
421	}
422
423	pll_7nm->phy->pll_on = true;
424
425	/*
426	 * assert power on reset for PHY digital in case the PLL is
427	 * enabled after CX of analog domain power collapse. This needs
428	 * to be done before enabling the global clk.
429	 */
430	dsi_pll_phy_dig_reset(pll_7nm);
431	if (pll_7nm->slave)
432		dsi_pll_phy_dig_reset(pll_7nm->slave);
433
434	dsi_pll_enable_global_clk(pll_7nm);
435	if (pll_7nm->slave)
436		dsi_pll_enable_global_clk(pll_7nm->slave);
437
438error:
439	return rc;
440}
441
442static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
443{
444	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0);
445	dsi_pll_disable_pll_bias(pll);
446}
447
448static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
449{
450	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
451
452	/*
453	 * To avoid any stray glitches while abruptly powering down the PLL
454	 * make sure to gate the clock using the clock enable bit before
455	 * powering down the PLL
456	 */
457	dsi_pll_disable_global_clk(pll_7nm);
458	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0);
459	dsi_pll_disable_sub(pll_7nm);
460	if (pll_7nm->slave) {
461		dsi_pll_disable_global_clk(pll_7nm->slave);
462		dsi_pll_disable_sub(pll_7nm->slave);
463	}
464	/* flush, ensure all register writes are done */
465	wmb();
466	pll_7nm->phy->pll_on = false;
467}
468
469static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
470						  unsigned long parent_rate)
471{
472	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
473	void __iomem *base = pll_7nm->phy->pll_base;
474	u64 ref_clk = VCO_REF_CLK_RATE;
475	u64 vco_rate = 0x0;
476	u64 multiplier;
477	u32 frac;
478	u32 dec;
479	u64 pll_freq, tmp64;
480
481	dec = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
482	dec &= 0xff;
483
484	frac = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
485	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
486		  0xff) << 8);
487	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
488		  0x3) << 16);
489
490	/*
491	 * TODO:
492	 *	1. Assumes prescaler is disabled
493	 */
494	multiplier = 1 << FRAC_BITS;
495	pll_freq = dec * (ref_clk * 2);
496	tmp64 = (ref_clk * 2 * frac);
497	pll_freq += div_u64(tmp64, multiplier);
498
499	vco_rate = pll_freq;
500	pll_7nm->vco_current_rate = vco_rate;
501
502	DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
503	    pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac);
504
505	return (unsigned long)vco_rate;
506}
507
508static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw,
509		unsigned long rate, unsigned long *parent_rate)
510{
511	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
512
513	if      (rate < pll_7nm->phy->cfg->min_pll_rate)
514		return  pll_7nm->phy->cfg->min_pll_rate;
515	else if (rate > pll_7nm->phy->cfg->max_pll_rate)
516		return  pll_7nm->phy->cfg->max_pll_rate;
517	else
518		return rate;
519}
520
521static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
522	.round_rate = dsi_pll_7nm_clk_round_rate,
523	.set_rate = dsi_pll_7nm_vco_set_rate,
524	.recalc_rate = dsi_pll_7nm_vco_recalc_rate,
525	.prepare = dsi_pll_7nm_vco_prepare,
526	.unprepare = dsi_pll_7nm_vco_unprepare,
527};
528
529/*
530 * PLL Callbacks
531 */
532
533static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy)
534{
535	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
536	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
537	void __iomem *phy_base = pll_7nm->phy->base;
538	u32 cmn_clk_cfg0, cmn_clk_cfg1;
539
540	cached->pll_out_div = dsi_phy_read(pll_7nm->phy->pll_base +
541			REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
542	cached->pll_out_div &= 0x3;
543
544	cmn_clk_cfg0 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
545	cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
546	cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
547
548	cmn_clk_cfg1 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
549	cached->pll_mux = cmn_clk_cfg1 & 0x3;
550
551	DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
552	    pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div,
553	    cached->pix_clk_div, cached->pll_mux);
554}
555
556static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy)
557{
558	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
559	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
560	void __iomem *phy_base = pll_7nm->phy->base;
561	u32 val;
562	int ret;
563
564	val = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
565	val &= ~0x3;
566	val |= cached->pll_out_div;
567	dsi_phy_write(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val);
568
569	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
570		      cached->bit_clk_div | (cached->pix_clk_div << 4));
571
572	val = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
573	val &= ~0x3;
574	val |= cached->pll_mux;
575	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val);
576
577	ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw,
578			pll_7nm->vco_current_rate,
579			VCO_REF_CLK_RATE);
580	if (ret) {
581		DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev,
582			"restore vco rate failed. ret=%d\n", ret);
583		return ret;
584	}
585
586	DBG("DSI PLL%d", pll_7nm->phy->id);
587
588	return 0;
589}
590
591static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy)
592{
593	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
594	void __iomem *base = phy->base;
595	u32 data = 0x0;	/* internal PLL */
596
597	DBG("DSI PLL%d", pll_7nm->phy->id);
598
599	switch (phy->usecase) {
600	case MSM_DSI_PHY_STANDALONE:
601		break;
602	case MSM_DSI_PHY_MASTER:
603		pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX];
604		break;
605	case MSM_DSI_PHY_SLAVE:
606		data = 0x1; /* external PLL */
607		break;
608	default:
609		return -EINVAL;
610	}
611
612	/* set PLL src */
613	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2));
614
615	return 0;
616}
617
618/*
619 * The post dividers and mux clocks are created using the standard divider and
620 * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
621 * state to follow the master PLL's divider/mux state. Therefore, we don't
622 * require special clock ops that also configure the slave PLL registers
623 */
624static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks)
625{
626	char clk_name[32];
627	struct clk_init_data vco_init = {
628		.parent_data = &(const struct clk_parent_data) {
629			.fw_name = "ref",
630		},
631		.num_parents = 1,
632		.name = clk_name,
633		.flags = CLK_IGNORE_UNUSED,
634		.ops = &clk_ops_dsi_pll_7nm_vco,
635	};
636	struct device *dev = &pll_7nm->phy->pdev->dev;
637	struct clk_hw *hw, *pll_out_div, *pll_bit, *pll_by_2_bit;
638	struct clk_hw *pll_post_out_div, *phy_pll_out_dsi_parent;
639	int ret;
640
641	DBG("DSI%d", pll_7nm->phy->id);
642
643	snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_7nm->phy->id);
644	pll_7nm->clk_hw.init = &vco_init;
645
646	ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw);
647	if (ret)
648		return ret;
649
650	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
651
652	pll_out_div = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
653			&pll_7nm->clk_hw, CLK_SET_RATE_PARENT,
654			pll_7nm->phy->pll_base +
655				REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
656			0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
657	if (IS_ERR(pll_out_div)) {
658		ret = PTR_ERR(pll_out_div);
659		goto fail;
660	}
661
662	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_bit_clk", pll_7nm->phy->id);
663
664	/* BIT CLK: DIV_CTRL_3_0 */
665	pll_bit = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
666			pll_out_div, CLK_SET_RATE_PARENT,
667			pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
668			0, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
669	if (IS_ERR(pll_bit)) {
670		ret = PTR_ERR(pll_bit);
671		goto fail;
672	}
673
674	snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id);
675
676	/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
677	hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
678			pll_bit, CLK_SET_RATE_PARENT, 1,
679			pll_7nm->phy->cphy_mode ? 7 : 8);
680	if (IS_ERR(hw)) {
681		ret = PTR_ERR(hw);
682		goto fail;
683	}
684
685	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
686
687	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
688
689	pll_by_2_bit = devm_clk_hw_register_fixed_factor_parent_hw(dev,
690			clk_name, pll_bit, 0, 1, 2);
691	if (IS_ERR(pll_by_2_bit)) {
692		ret = PTR_ERR(pll_by_2_bit);
693		goto fail;
694	}
695
696	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
697
698	if (pll_7nm->phy->cphy_mode)
699		pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
700				dev, clk_name, pll_out_div, 0, 2, 7);
701	else
702		pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
703				dev, clk_name, pll_out_div, 0, 1, 4);
704	if (IS_ERR(pll_post_out_div)) {
705		ret = PTR_ERR(pll_post_out_div);
706		goto fail;
707	}
708
709	/* in CPHY mode, pclk_mux will always have post_out_div as parent
710	 * don't register a pclk_mux clock and just use post_out_div instead
711	 */
712	if (pll_7nm->phy->cphy_mode) {
713		u32 data;
714
715		data = dsi_phy_read(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
716		dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data | 3);
717
718		phy_pll_out_dsi_parent = pll_post_out_div;
719	} else {
720		snprintf(clk_name, sizeof(clk_name), "dsi%d_pclk_mux", pll_7nm->phy->id);
721
722		hw = devm_clk_hw_register_mux_parent_hws(dev, clk_name,
723				((const struct clk_hw *[]){
724					pll_bit,
725					pll_by_2_bit,
726				}), 2, 0, pll_7nm->phy->base +
727					REG_DSI_7nm_PHY_CMN_CLK_CFG1,
728				0, 1, 0, NULL);
729		if (IS_ERR(hw)) {
730			ret = PTR_ERR(hw);
731			goto fail;
732		}
733
734		phy_pll_out_dsi_parent = hw;
735	}
736
737	snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id);
738
739	/* PIX CLK DIV : DIV_CTRL_7_4*/
740	hw = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
741			phy_pll_out_dsi_parent, 0,
742			pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
743			4, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
744	if (IS_ERR(hw)) {
745		ret = PTR_ERR(hw);
746		goto fail;
747	}
748
749	provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
750
751	return 0;
752
753fail:
754
755	return ret;
756}
757
758static int dsi_pll_7nm_init(struct msm_dsi_phy *phy)
759{
760	struct platform_device *pdev = phy->pdev;
761	struct dsi_pll_7nm *pll_7nm;
762	int ret;
763
764	pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
765	if (!pll_7nm)
766		return -ENOMEM;
767
768	DBG("DSI PLL%d", phy->id);
769
770	pll_7nm_list[phy->id] = pll_7nm;
771
772	spin_lock_init(&pll_7nm->postdiv_lock);
773
774	pll_7nm->phy = phy;
775
776	ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws);
777	if (ret) {
778		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
779		return ret;
780	}
781
782	phy->vco_hw = &pll_7nm->clk_hw;
783
784	/* TODO: Remove this when we have proper display handover support */
785	msm_dsi_phy_pll_save_state(phy);
786
787	return 0;
788}
789
790static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy)
791{
792	void __iomem *base = phy->base;
793	u32 data = 0;
794
795	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
796	mb(); /* make sure read happened */
797
798	return (data & BIT(0));
799}
800
801static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable)
802{
803	void __iomem *lane_base = phy->lane_base;
804	int phy_lane_0 = 0;	/* TODO: Support all lane swap configs */
805
806	/*
807	 * LPRX and CDRX need to enabled only for physical data lane
808	 * corresponding to the logical data lane 0
809	 */
810	if (enable)
811		dsi_phy_write(lane_base +
812			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0x3);
813	else
814		dsi_phy_write(lane_base +
815			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0);
816}
817
818static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy)
819{
820	int i;
821	const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 };
822	const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 };
823	const u8 *tx_dctrl = tx_dctrl_0;
824	void __iomem *lane_base = phy->lane_base;
825
826	if (!(phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1))
827		tx_dctrl = tx_dctrl_1;
828
829	/* Strength ctrl settings */
830	for (i = 0; i < 5; i++) {
831		/*
832		 * Disable LPRX and CDRX for all lanes. And later on, it will
833		 * be only enabled for the physical data lane corresponding
834		 * to the logical data lane 0
835		 */
836		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i), 0);
837		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i), 0x0);
838	}
839
840	dsi_phy_hw_v4_0_config_lpcdrx(phy, true);
841
842	/* other settings */
843	for (i = 0; i < 5; i++) {
844		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG0(i), 0x0);
845		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG1(i), 0x0);
846		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG2(i), i == 4 ? 0x8a : 0xa);
847		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i), tx_dctrl[i]);
848	}
849}
850
851static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy,
852			      struct msm_dsi_phy_clk_request *clk_req)
853{
854	int ret;
855	u32 status;
856	u32 const delay_us = 5;
857	u32 const timeout_us = 1000;
858	struct msm_dsi_dphy_timing *timing = &phy->timing;
859	void __iomem *base = phy->base;
860	bool less_than_1500_mhz;
861	u32 vreg_ctrl_0, vreg_ctrl_1, lane_ctrl0;
862	u32 glbl_pemph_ctrl_0;
863	u32 glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0;
864	u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl;
865	u32 data;
866
867	DBG("");
868
869	if (phy->cphy_mode)
870		ret = msm_dsi_cphy_timing_calc_v4(timing, clk_req);
871	else
872		ret = msm_dsi_dphy_timing_calc_v4(timing, clk_req);
873	if (ret) {
874		DRM_DEV_ERROR(&phy->pdev->dev,
875			      "%s: PHY timing calculation failed\n", __func__);
876		return -EINVAL;
877	}
878
879	if (dsi_phy_hw_v4_0_is_pll_on(phy))
880		pr_warn("PLL turned on before configuring PHY\n");
881
882	/* Request for REFGEN READY */
883	if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) ||
884	    (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
885		dsi_phy_write(phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10, 0x1);
886		udelay(500);
887	}
888
889	/* wait for REFGEN READY */
890	ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS,
891					status, (status & BIT(0)),
892					delay_us, timeout_us);
893	if (ret) {
894		pr_err("Ref gen not ready. Aborting\n");
895		return -EINVAL;
896	}
897
898	/* TODO: CPHY enable path (this is for DPHY only) */
899
900	/* Alter PHY configurations if data rate less than 1.5GHZ*/
901	less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000);
902
903	glbl_str_swi_cal_sel_ctrl = 0x00;
904	if (phy->cphy_mode) {
905		vreg_ctrl_0 = 0x51;
906		vreg_ctrl_1 = 0x55;
907		glbl_hstx_str_ctrl_0 = 0x00;
908		glbl_pemph_ctrl_0 = 0x11;
909		lane_ctrl0 = 0x17;
910	} else {
911		vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
912		vreg_ctrl_1 = 0x5c;
913		glbl_hstx_str_ctrl_0 = 0x88;
914		glbl_pemph_ctrl_0 = 0x00;
915		lane_ctrl0 = 0x1f;
916	}
917
918	if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
919		if (phy->cphy_mode) {
920			vreg_ctrl_0 = 0x45;
921			vreg_ctrl_1 = 0x41;
922			glbl_rescode_top_ctrl = 0x00;
923			glbl_rescode_bot_ctrl = 0x00;
924		} else {
925			vreg_ctrl_0 = 0x44;
926			vreg_ctrl_1 = 0x19;
927			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c :  0x03;
928			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 :  0x3c;
929		}
930	} else if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) {
931		if (phy->cphy_mode) {
932			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x01;
933			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 :  0x3b;
934		} else {
935			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x01;
936			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 :  0x39;
937		}
938	} else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) {
939		if (phy->cphy_mode) {
940			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x01;
941			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 :  0x3b;
942		} else {
943			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c :  0x00;
944			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 :  0x39;
945		}
946	} else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
947		if (phy->cphy_mode) {
948			glbl_hstx_str_ctrl_0 = 0x88;
949			glbl_rescode_top_ctrl = 0x00;
950			glbl_rescode_bot_ctrl = 0x3c;
951		} else {
952			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x00;
953			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 :  0x3c;
954		}
955	} else {
956		if (phy->cphy_mode) {
957			glbl_str_swi_cal_sel_ctrl = 0x03;
958			glbl_hstx_str_ctrl_0 = 0x66;
959		} else {
960			vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59;
961			glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00;
962			glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88;
963		}
964		glbl_rescode_top_ctrl = 0x03;
965		glbl_rescode_bot_ctrl = 0x3c;
966	}
967
968	/* de-assert digital and pll power down */
969	data = BIT(6) | BIT(5);
970	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
971
972	/* Assert PLL core reset */
973	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x00);
974
975	/* turn off resync FIFO */
976	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0x00);
977
978	/* program CMN_CTRL_4 for minor_ver 2 chipsets*/
979	if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2) ||
980	    (dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0) & (0xf0)) == 0x20)
981		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_4, 0x04);
982
983	/* Configure PHY lane swap (TODO: we need to calculate this) */
984	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG0, 0x21);
985	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG1, 0x84);
986
987	if (phy->cphy_mode)
988		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_CTRL, BIT(6));
989
990	/* Enable LDO */
991	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
992	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1, vreg_ctrl_1);
993
994	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x00);
995	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
996		      glbl_str_swi_cal_sel_ctrl);
997	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0,
998		      glbl_hstx_str_ctrl_0);
999	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0,
1000		      glbl_pemph_ctrl_0);
1001	if (phy->cphy_mode)
1002		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_1, 0x01);
1003	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
1004		      glbl_rescode_top_ctrl);
1005	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
1006		      glbl_rescode_bot_ctrl);
1007	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
1008
1009	/* Remove power down from all blocks */
1010	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x7f);
1011
1012	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, lane_ctrl0);
1013
1014	/* Select full-rate mode */
1015	if (!phy->cphy_mode)
1016		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_2, 0x40);
1017
1018	ret = dsi_7nm_set_usecase(phy);
1019	if (ret) {
1020		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1021			__func__, ret);
1022		return ret;
1023	}
1024
1025	/* DSI PHY timings */
1026	if (phy->cphy_mode) {
1027		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
1028		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
1029		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5,
1030			      timing->shared_timings.clk_pre);
1031		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->clk_prepare);
1032		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7,
1033			      timing->shared_timings.clk_post);
1034		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
1035		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
1036		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
1037		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
1038	} else {
1039		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
1040		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1, timing->clk_zero);
1041		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2, timing->clk_prepare);
1042		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3, timing->clk_trail);
1043		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
1044		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->hs_zero);
1045		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->hs_prepare);
1046		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->hs_trail);
1047		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
1048		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
1049		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
1050		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
1051		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12,
1052			      timing->shared_timings.clk_pre);
1053		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13,
1054			      timing->shared_timings.clk_post);
1055	}
1056
1057	/* DSI lane settings */
1058	dsi_phy_hw_v4_0_lane_settings(phy);
1059
1060	DBG("DSI%d PHY enabled", phy->id);
1061
1062	return 0;
1063}
1064
1065static bool dsi_7nm_set_continuous_clock(struct msm_dsi_phy *phy, bool enable)
1066{
1067	void __iomem *base = phy->base;
1068	u32 data;
1069
1070	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1);
1071	if (enable)
1072		data |= BIT(5) | BIT(6);
1073	else
1074		data &= ~(BIT(5) | BIT(6));
1075	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1, data);
1076
1077	return enable;
1078}
1079
1080static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy)
1081{
1082	void __iomem *base = phy->base;
1083	u32 data;
1084
1085	DBG("");
1086
1087	if (dsi_phy_hw_v4_0_is_pll_on(phy))
1088		pr_warn("Turning OFF PHY while PLL is on\n");
1089
1090	dsi_phy_hw_v4_0_config_lpcdrx(phy, false);
1091
1092	/* Turn off REFGEN Vote */
1093	if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) ||
1094	    (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
1095		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10, 0x0);
1096		wmb();
1097		/* Delay to ensure HW removes vote before PHY shut down */
1098		udelay(2);
1099	}
1100
1101	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_CTRL_0);
1102
1103	/* disable all lanes */
1104	data &= ~0x1F;
1105	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
1106	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0);
1107
1108	/* Turn off all PHY blocks */
1109	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x00);
1110	/* make sure phy is turned off */
1111	wmb();
1112
1113	DBG("DSI%d PHY disabled", phy->id);
1114}
1115
1116static const struct regulator_bulk_data dsi_phy_7nm_36mA_regulators[] = {
1117	{ .supply = "vdds", .init_load_uA = 36000 },
1118};
1119
1120static const struct regulator_bulk_data dsi_phy_7nm_37750uA_regulators[] = {
1121	{ .supply = "vdds", .init_load_uA = 37550 },
1122};
1123
1124static const struct regulator_bulk_data dsi_phy_7nm_98000uA_regulators[] = {
1125	{ .supply = "vdds", .init_load_uA = 98000 },
1126};
1127
1128static const struct regulator_bulk_data dsi_phy_7nm_97800uA_regulators[] = {
1129	{ .supply = "vdds", .init_load_uA = 97800 },
1130};
1131
1132static const struct regulator_bulk_data dsi_phy_7nm_98400uA_regulators[] = {
1133	{ .supply = "vdds", .init_load_uA = 98400 },
1134};
1135
1136const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = {
1137	.has_phy_lane = true,
1138	.regulator_data = dsi_phy_7nm_36mA_regulators,
1139	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
1140	.ops = {
1141		.enable = dsi_7nm_phy_enable,
1142		.disable = dsi_7nm_phy_disable,
1143		.pll_init = dsi_pll_7nm_init,
1144		.save_pll_state = dsi_7nm_pll_save_state,
1145		.restore_pll_state = dsi_7nm_pll_restore_state,
1146		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1147	},
1148	.min_pll_rate = 600000000UL,
1149#ifdef CONFIG_64BIT
1150	.max_pll_rate = 5000000000UL,
1151#else
1152	.max_pll_rate = ULONG_MAX,
1153#endif
1154	.io_start = { 0xae94400, 0xae96400 },
1155	.num_dsi_phy = 2,
1156	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
1157};
1158
1159const struct msm_dsi_phy_cfg dsi_phy_7nm_6375_cfgs = {
1160	.has_phy_lane = true,
1161	.ops = {
1162		.enable = dsi_7nm_phy_enable,
1163		.disable = dsi_7nm_phy_disable,
1164		.pll_init = dsi_pll_7nm_init,
1165		.save_pll_state = dsi_7nm_pll_save_state,
1166		.restore_pll_state = dsi_7nm_pll_restore_state,
1167	},
1168	.min_pll_rate = 600000000UL,
1169#ifdef CONFIG_64BIT
1170	.max_pll_rate = 5000000000ULL,
1171#else
1172	.max_pll_rate = ULONG_MAX,
1173#endif
1174	.io_start = { 0x5e94400 },
1175	.num_dsi_phy = 1,
1176	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
1177};
1178
1179const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = {
1180	.has_phy_lane = true,
1181	.regulator_data = dsi_phy_7nm_36mA_regulators,
1182	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
1183	.ops = {
1184		.enable = dsi_7nm_phy_enable,
1185		.disable = dsi_7nm_phy_disable,
1186		.pll_init = dsi_pll_7nm_init,
1187		.save_pll_state = dsi_7nm_pll_save_state,
1188		.restore_pll_state = dsi_7nm_pll_restore_state,
1189		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1190	},
1191	.min_pll_rate = 1000000000UL,
1192	.max_pll_rate = 3500000000UL,
1193	.io_start = { 0xae94400, 0xae96400 },
1194	.num_dsi_phy = 2,
1195	.quirks = DSI_PHY_7NM_QUIRK_PRE_V4_1,
1196};
1197
1198const struct msm_dsi_phy_cfg dsi_phy_7nm_7280_cfgs = {
1199	.has_phy_lane = true,
1200	.regulator_data = dsi_phy_7nm_37750uA_regulators,
1201	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators),
1202	.ops = {
1203		.enable = dsi_7nm_phy_enable,
1204		.disable = dsi_7nm_phy_disable,
1205		.pll_init = dsi_pll_7nm_init,
1206		.save_pll_state = dsi_7nm_pll_save_state,
1207		.restore_pll_state = dsi_7nm_pll_restore_state,
1208	},
1209	.min_pll_rate = 600000000UL,
1210#ifdef CONFIG_64BIT
1211	.max_pll_rate = 5000000000ULL,
1212#else
1213	.max_pll_rate = ULONG_MAX,
1214#endif
1215	.io_start = { 0xae94400 },
1216	.num_dsi_phy = 1,
1217	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
1218};
1219
1220const struct msm_dsi_phy_cfg dsi_phy_5nm_8350_cfgs = {
1221	.has_phy_lane = true,
1222	.regulator_data = dsi_phy_7nm_37750uA_regulators,
1223	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators),
1224	.ops = {
1225		.enable = dsi_7nm_phy_enable,
1226		.disable = dsi_7nm_phy_disable,
1227		.pll_init = dsi_pll_7nm_init,
1228		.save_pll_state = dsi_7nm_pll_save_state,
1229		.restore_pll_state = dsi_7nm_pll_restore_state,
1230		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1231	},
1232	.min_pll_rate = 600000000UL,
1233#ifdef CONFIG_64BIT
1234	.max_pll_rate = 5000000000UL,
1235#else
1236	.max_pll_rate = ULONG_MAX,
1237#endif
1238	.io_start = { 0xae94400, 0xae96400 },
1239	.num_dsi_phy = 2,
1240	.quirks = DSI_PHY_7NM_QUIRK_V4_2,
1241};
1242
1243const struct msm_dsi_phy_cfg dsi_phy_5nm_8450_cfgs = {
1244	.has_phy_lane = true,
1245	.regulator_data = dsi_phy_7nm_97800uA_regulators,
1246	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_97800uA_regulators),
1247	.ops = {
1248		.enable = dsi_7nm_phy_enable,
1249		.disable = dsi_7nm_phy_disable,
1250		.pll_init = dsi_pll_7nm_init,
1251		.save_pll_state = dsi_7nm_pll_save_state,
1252		.restore_pll_state = dsi_7nm_pll_restore_state,
1253		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1254	},
1255	.min_pll_rate = 600000000UL,
1256#ifdef CONFIG_64BIT
1257	.max_pll_rate = 5000000000UL,
1258#else
1259	.max_pll_rate = ULONG_MAX,
1260#endif
1261	.io_start = { 0xae94400, 0xae96400 },
1262	.num_dsi_phy = 2,
1263	.quirks = DSI_PHY_7NM_QUIRK_V4_3,
1264};
1265
1266const struct msm_dsi_phy_cfg dsi_phy_4nm_8550_cfgs = {
1267	.has_phy_lane = true,
1268	.regulator_data = dsi_phy_7nm_98400uA_regulators,
1269	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_98400uA_regulators),
1270	.ops = {
1271		.enable = dsi_7nm_phy_enable,
1272		.disable = dsi_7nm_phy_disable,
1273		.pll_init = dsi_pll_7nm_init,
1274		.save_pll_state = dsi_7nm_pll_save_state,
1275		.restore_pll_state = dsi_7nm_pll_restore_state,
1276		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1277	},
1278	.min_pll_rate = 600000000UL,
1279#ifdef CONFIG_64BIT
1280	.max_pll_rate = 5000000000UL,
1281#else
1282	.max_pll_rate = ULONG_MAX,
1283#endif
1284	.io_start = { 0xae95000, 0xae97000 },
1285	.num_dsi_phy = 2,
1286	.quirks = DSI_PHY_7NM_QUIRK_V5_2,
1287};
1288
1289const struct msm_dsi_phy_cfg dsi_phy_4nm_8650_cfgs = {
1290	.has_phy_lane = true,
1291	.regulator_data = dsi_phy_7nm_98000uA_regulators,
1292	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_98000uA_regulators),
1293	.ops = {
1294		.enable = dsi_7nm_phy_enable,
1295		.disable = dsi_7nm_phy_disable,
1296		.pll_init = dsi_pll_7nm_init,
1297		.save_pll_state = dsi_7nm_pll_save_state,
1298		.restore_pll_state = dsi_7nm_pll_restore_state,
1299		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1300	},
1301	.min_pll_rate = 600000000UL,
1302#ifdef CONFIG_64BIT
1303	.max_pll_rate = 5000000000UL,
1304#else
1305	.max_pll_rate = ULONG_MAX,
1306#endif
1307	.io_start = { 0xae95000, 0xae97000 },
1308	.num_dsi_phy = 2,
1309	.quirks = DSI_PHY_7NM_QUIRK_V5_2,
1310};
1311