1// SPDX-License-Identifier: GPL-2.0-only OR MIT
2/* Copyright (c) 2023 Imagination Technologies Ltd. */
3
4#include "pvr_mmu.h"
5
6#include "pvr_ccb.h"
7#include "pvr_device.h"
8#include "pvr_fw.h"
9#include "pvr_gem.h"
10#include "pvr_power.h"
11#include "pvr_rogue_fwif.h"
12#include "pvr_rogue_mmu_defs.h"
13
14#include <drm/drm_drv.h>
15#include <linux/atomic.h>
16#include <linux/bitops.h>
17#include <linux/dma-mapping.h>
18#include <linux/kmemleak.h>
19#include <linux/minmax.h>
20#include <linux/sizes.h>
21
22#define PVR_SHIFT_FROM_SIZE(size_) (__builtin_ctzll(size_))
23#define PVR_MASK_FROM_SIZE(size_) (~((size_) - U64_C(1)))
24
25/*
26 * The value of the device page size (%PVR_DEVICE_PAGE_SIZE) is currently
27 * pegged to the host page size (%PAGE_SIZE). This chunk of macro goodness both
28 * ensures that the selected host page size corresponds to a valid device page
29 * size and sets up values needed by the MMU code below.
30 */
31#if (PVR_DEVICE_PAGE_SIZE == SZ_4K)
32# define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_4KB
33# define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_4KB_RANGE_SHIFT
34# define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_4KB_RANGE_CLRMSK
35#elif (PVR_DEVICE_PAGE_SIZE == SZ_16K)
36# define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_16KB
37# define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_16KB_RANGE_SHIFT
38# define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_16KB_RANGE_CLRMSK
39#elif (PVR_DEVICE_PAGE_SIZE == SZ_64K)
40# define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_64KB
41# define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_64KB_RANGE_SHIFT
42# define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_64KB_RANGE_CLRMSK
43#elif (PVR_DEVICE_PAGE_SIZE == SZ_256K)
44# define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_256KB
45# define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_256KB_RANGE_SHIFT
46# define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_256KB_RANGE_CLRMSK
47#elif (PVR_DEVICE_PAGE_SIZE == SZ_1M)
48# define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_1MB
49# define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_1MB_RANGE_SHIFT
50# define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_1MB_RANGE_CLRMSK
51#elif (PVR_DEVICE_PAGE_SIZE == SZ_2M)
52# define ROGUE_MMUCTRL_PAGE_SIZE_X ROGUE_MMUCTRL_PAGE_SIZE_2MB
53# define ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT ROGUE_MMUCTRL_PAGE_2MB_RANGE_SHIFT
54# define ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK ROGUE_MMUCTRL_PAGE_2MB_RANGE_CLRMSK
55#else
56# error Unsupported device page size PVR_DEVICE_PAGE_SIZE
57#endif
58
59#define ROGUE_MMUCTRL_ENTRIES_PT_VALUE_X   \
60	(ROGUE_MMUCTRL_ENTRIES_PT_VALUE >> \
61	 (PVR_DEVICE_PAGE_SHIFT - PVR_SHIFT_FROM_SIZE(SZ_4K)))
62
63enum pvr_mmu_sync_level {
64	PVR_MMU_SYNC_LEVEL_NONE = -1,
65	PVR_MMU_SYNC_LEVEL_0 = 0,
66	PVR_MMU_SYNC_LEVEL_1 = 1,
67	PVR_MMU_SYNC_LEVEL_2 = 2,
68};
69
70#define PVR_MMU_SYNC_LEVEL_0_FLAGS (ROGUE_FWIF_MMUCACHEDATA_FLAGS_PT | \
71				    ROGUE_FWIF_MMUCACHEDATA_FLAGS_INTERRUPT | \
72				    ROGUE_FWIF_MMUCACHEDATA_FLAGS_TLB)
73#define PVR_MMU_SYNC_LEVEL_1_FLAGS (PVR_MMU_SYNC_LEVEL_0_FLAGS | ROGUE_FWIF_MMUCACHEDATA_FLAGS_PD)
74#define PVR_MMU_SYNC_LEVEL_2_FLAGS (PVR_MMU_SYNC_LEVEL_1_FLAGS | ROGUE_FWIF_MMUCACHEDATA_FLAGS_PC)
75
76/**
77 * pvr_mmu_set_flush_flags() - Set MMU cache flush flags for next call to
78 *                             pvr_mmu_flush_exec().
79 * @pvr_dev: Target PowerVR device.
80 * @flags: MMU flush flags. Must be one of %PVR_MMU_SYNC_LEVEL_*_FLAGS.
81 *
82 * This function must be called following any possible change to the MMU page
83 * tables.
84 */
85static void pvr_mmu_set_flush_flags(struct pvr_device *pvr_dev, u32 flags)
86{
87	atomic_fetch_or(flags, &pvr_dev->mmu_flush_cache_flags);
88}
89
90/**
91 * pvr_mmu_flush_request_all() - Request flush of all MMU caches when
92 * subsequently calling pvr_mmu_flush_exec().
93 * @pvr_dev: Target PowerVR device.
94 *
95 * This function must be called following any possible change to the MMU page
96 * tables.
97 */
98void pvr_mmu_flush_request_all(struct pvr_device *pvr_dev)
99{
100	pvr_mmu_set_flush_flags(pvr_dev, PVR_MMU_SYNC_LEVEL_2_FLAGS);
101}
102
103/**
104 * pvr_mmu_flush_exec() - Execute a flush of all MMU caches previously
105 * requested.
106 * @pvr_dev: Target PowerVR device.
107 * @wait: Do not return until the flush is completed.
108 *
109 * This function must be called prior to submitting any new GPU job. The flush
110 * will complete before the jobs are scheduled, so this can be called once after
111 * a series of maps. However, a single unmap should always be immediately
112 * followed by a flush and it should be explicitly waited by setting @wait.
113 *
114 * As a failure to flush the MMU caches could risk memory corruption, if the
115 * flush fails (implying the firmware is not responding) then the GPU device is
116 * marked as lost.
117 *
118 * Returns:
119 *  * 0 on success when @wait is true, or
120 *  * -%EIO if the device is unavailable, or
121 *  * Any error encountered while submitting the flush command via the KCCB.
122 */
123int pvr_mmu_flush_exec(struct pvr_device *pvr_dev, bool wait)
124{
125	struct rogue_fwif_kccb_cmd cmd_mmu_cache = {};
126	struct rogue_fwif_mmucachedata *cmd_mmu_cache_data =
127		&cmd_mmu_cache.cmd_data.mmu_cache_data;
128	int err = 0;
129	u32 slot;
130	int idx;
131
132	if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx))
133		return -EIO;
134
135	/* Can't flush MMU if the firmware hasn't booted yet. */
136	if (!pvr_dev->fw_dev.booted)
137		goto err_drm_dev_exit;
138
139	cmd_mmu_cache_data->cache_flags =
140		atomic_xchg(&pvr_dev->mmu_flush_cache_flags, 0);
141
142	if (!cmd_mmu_cache_data->cache_flags)
143		goto err_drm_dev_exit;
144
145	cmd_mmu_cache.cmd_type = ROGUE_FWIF_KCCB_CMD_MMUCACHE;
146
147	pvr_fw_object_get_fw_addr(pvr_dev->fw_dev.mem.mmucache_sync_obj,
148				  &cmd_mmu_cache_data->mmu_cache_sync_fw_addr);
149	cmd_mmu_cache_data->mmu_cache_sync_update_value = 0;
150
151	err = pvr_kccb_send_cmd(pvr_dev, &cmd_mmu_cache, &slot);
152	if (err)
153		goto err_reset_and_retry;
154
155	err = pvr_kccb_wait_for_completion(pvr_dev, slot, HZ, NULL);
156	if (err)
157		goto err_reset_and_retry;
158
159	drm_dev_exit(idx);
160
161	return 0;
162
163err_reset_and_retry:
164	/*
165	 * Flush command failure is most likely the result of a firmware lockup. Hard
166	 * reset the GPU and retry.
167	 */
168	err = pvr_power_reset(pvr_dev, true);
169	if (err)
170		goto err_drm_dev_exit; /* Device is lost. */
171
172	/* Retry sending flush request. */
173	err = pvr_kccb_send_cmd(pvr_dev, &cmd_mmu_cache, &slot);
174	if (err) {
175		pvr_device_lost(pvr_dev);
176		goto err_drm_dev_exit;
177	}
178
179	if (wait) {
180		err = pvr_kccb_wait_for_completion(pvr_dev, slot, HZ, NULL);
181		if (err)
182			pvr_device_lost(pvr_dev);
183	}
184
185err_drm_dev_exit:
186	drm_dev_exit(idx);
187
188	return err;
189}
190
191/**
192 * DOC: PowerVR Virtual Memory Handling
193 */
194/**
195 * DOC: PowerVR Virtual Memory Handling (constants)
196 *
197 * .. c:macro:: PVR_IDX_INVALID
198 *
199 *    Default value for a u16-based index.
200 *
201 *    This value cannot be zero, since zero is a valid index value.
202 */
203#define PVR_IDX_INVALID ((u16)(-1))
204
205/**
206 * DOC: MMU backing pages
207 */
208/**
209 * DOC: MMU backing pages (constants)
210 *
211 * .. c:macro:: PVR_MMU_BACKING_PAGE_SIZE
212 *
213 *    Page size of a PowerVR device's integrated MMU. The CPU page size must be
214 *    at least as large as this value for the current implementation; this is
215 *    checked at compile-time.
216 */
217#define PVR_MMU_BACKING_PAGE_SIZE SZ_4K
218static_assert(PAGE_SIZE >= PVR_MMU_BACKING_PAGE_SIZE);
219
220/**
221 * struct pvr_mmu_backing_page - Represents a single page used to back a page
222 *                              table of any level.
223 * @dma_addr: DMA address of this page.
224 * @host_ptr: CPU address of this page.
225 * @pvr_dev: The PowerVR device to which this page is associated. **For
226 *           internal use only.**
227 */
228struct pvr_mmu_backing_page {
229	dma_addr_t dma_addr;
230	void *host_ptr;
231/* private: internal use only */
232	struct page *raw_page;
233	struct pvr_device *pvr_dev;
234};
235
236/**
237 * pvr_mmu_backing_page_init() - Initialize a MMU backing page.
238 * @page: Target backing page.
239 * @pvr_dev: Target PowerVR device.
240 *
241 * This function performs three distinct operations:
242 *
243 * 1. Allocate a single page,
244 * 2. Map the page to the CPU, and
245 * 3. Map the page to DMA-space.
246 *
247 * It is expected that @page be zeroed (e.g. from kzalloc()) before calling
248 * this function.
249 *
250 * Return:
251 *  * 0 on success, or
252 *  * -%ENOMEM if allocation of the backing page or mapping of the backing
253 *    page to DMA fails.
254 */
255static int
256pvr_mmu_backing_page_init(struct pvr_mmu_backing_page *page,
257			  struct pvr_device *pvr_dev)
258{
259	struct device *dev = from_pvr_device(pvr_dev)->dev;
260
261	struct page *raw_page;
262	int err;
263
264	dma_addr_t dma_addr;
265	void *host_ptr;
266
267	raw_page = alloc_page(__GFP_ZERO | GFP_KERNEL);
268	if (!raw_page)
269		return -ENOMEM;
270
271	host_ptr = vmap(&raw_page, 1, VM_MAP, pgprot_writecombine(PAGE_KERNEL));
272	if (!host_ptr) {
273		err = -ENOMEM;
274		goto err_free_page;
275	}
276
277	dma_addr = dma_map_page(dev, raw_page, 0, PVR_MMU_BACKING_PAGE_SIZE,
278				DMA_TO_DEVICE);
279	if (dma_mapping_error(dev, dma_addr)) {
280		err = -ENOMEM;
281		goto err_unmap_page;
282	}
283
284	page->dma_addr = dma_addr;
285	page->host_ptr = host_ptr;
286	page->pvr_dev = pvr_dev;
287	page->raw_page = raw_page;
288	kmemleak_alloc(page->host_ptr, PAGE_SIZE, 1, GFP_KERNEL);
289
290	return 0;
291
292err_unmap_page:
293	vunmap(host_ptr);
294
295err_free_page:
296	__free_page(raw_page);
297
298	return err;
299}
300
301/**
302 * pvr_mmu_backing_page_fini() - Teardown a MMU backing page.
303 * @page: Target backing page.
304 *
305 * This function performs the mirror operations to pvr_mmu_backing_page_init(),
306 * in reverse order:
307 *
308 * 1. Unmap the page from DMA-space,
309 * 2. Unmap the page from the CPU, and
310 * 3. Free the page.
311 *
312 * It also zeros @page.
313 *
314 * It is a no-op to call this function a second (or further) time on any @page.
315 */
316static void
317pvr_mmu_backing_page_fini(struct pvr_mmu_backing_page *page)
318{
319	struct device *dev;
320
321	/* Do nothing if no allocation is present. */
322	if (!page->pvr_dev)
323		return;
324
325	dev = from_pvr_device(page->pvr_dev)->dev;
326
327	dma_unmap_page(dev, page->dma_addr, PVR_MMU_BACKING_PAGE_SIZE,
328		       DMA_TO_DEVICE);
329
330	kmemleak_free(page->host_ptr);
331	vunmap(page->host_ptr);
332
333	__free_page(page->raw_page);
334
335	memset(page, 0, sizeof(*page));
336}
337
338/**
339 * pvr_mmu_backing_page_sync() - Flush a MMU backing page from the CPU to the
340 * device.
341 * @page: Target backing page.
342 * @flags: MMU flush flags. Must be one of %PVR_MMU_SYNC_LEVEL_*_FLAGS.
343 *
344 * .. caution::
345 *
346 *    **This is potentially an expensive function call.** Only call
347 *    pvr_mmu_backing_page_sync() once you're sure you have no more changes to
348 *    make to the backing page in the immediate future.
349 */
350static void
351pvr_mmu_backing_page_sync(struct pvr_mmu_backing_page *page, u32 flags)
352{
353	struct pvr_device *pvr_dev = page->pvr_dev;
354	struct device *dev;
355
356	/*
357	 * Do nothing if no allocation is present. This may be the case if
358	 * we are unmapping pages.
359	 */
360	if (!pvr_dev)
361		return;
362
363	dev = from_pvr_device(pvr_dev)->dev;
364
365	dma_sync_single_for_device(dev, page->dma_addr,
366				   PVR_MMU_BACKING_PAGE_SIZE, DMA_TO_DEVICE);
367
368	pvr_mmu_set_flush_flags(pvr_dev, flags);
369}
370
371/**
372 * DOC: Raw page tables
373 */
374
375#define PVR_PAGE_TABLE_TYPEOF_ENTRY(level_) \
376	typeof_member(struct pvr_page_table_l##level_##_entry_raw, val)
377
378#define PVR_PAGE_TABLE_FIELD_GET(level_, name_, field_, entry_)           \
379	(((entry_).val &                                           \
380	  ~ROGUE_MMUCTRL_##name_##_DATA_##field_##_CLRMSK) >> \
381	 ROGUE_MMUCTRL_##name_##_DATA_##field_##_SHIFT)
382
383#define PVR_PAGE_TABLE_FIELD_PREP(level_, name_, field_, val_)            \
384	((((PVR_PAGE_TABLE_TYPEOF_ENTRY(level_))(val_))            \
385	  << ROGUE_MMUCTRL_##name_##_DATA_##field_##_SHIFT) & \
386	 ~ROGUE_MMUCTRL_##name_##_DATA_##field_##_CLRMSK)
387
388/**
389 * struct pvr_page_table_l2_entry_raw - A single entry in a level 2 page table.
390 * @val: The raw value of this entry.
391 *
392 * This type is a structure for type-checking purposes. At compile-time, its
393 * size is checked against %ROGUE_MMUCTRL_ENTRY_SIZE_PC_VALUE.
394 *
395 * The value stored in this structure can be decoded using the following bitmap:
396 *
397 * .. flat-table::
398 *    :widths: 1 5
399 *    :stub-columns: 1
400 *
401 *    * - 31..4
402 *      - **Level 1 Page Table Base Address:** Bits 39..12 of the L1
403 *        page table base address, which is 4KiB aligned.
404 *
405 *    * - 3..2
406 *      - *(reserved)*
407 *
408 *    * - 1
409 *      - **Pending:** When valid bit is not set, indicates that a valid
410 *        entry is pending and the MMU should wait for the driver to map
411 *        the entry. This is used to support page demand mapping of
412 *        memory.
413 *
414 *    * - 0
415 *      - **Valid:** Indicates that the entry contains a valid L1 page
416 *        table. If the valid bit is not set, then an attempted use of
417 *        the page would result in a page fault.
418 */
419struct pvr_page_table_l2_entry_raw {
420	u32 val;
421} __packed;
422static_assert(sizeof(struct pvr_page_table_l2_entry_raw) * 8 ==
423	      ROGUE_MMUCTRL_ENTRY_SIZE_PC_VALUE);
424
425static bool
426pvr_page_table_l2_entry_raw_is_valid(struct pvr_page_table_l2_entry_raw entry)
427{
428	return PVR_PAGE_TABLE_FIELD_GET(2, PC, VALID, entry);
429}
430
431/**
432 * pvr_page_table_l2_entry_raw_set() - Write a valid entry into a raw level 2
433 *                                     page table.
434 * @entry: Target raw level 2 page table entry.
435 * @child_table_dma_addr: DMA address of the level 1 page table to be
436 *                        associated with @entry.
437 *
438 * When calling this function, @child_table_dma_addr must be a valid DMA
439 * address and a multiple of %ROGUE_MMUCTRL_PC_DATA_PD_BASE_ALIGNSIZE.
440 */
441static void
442pvr_page_table_l2_entry_raw_set(struct pvr_page_table_l2_entry_raw *entry,
443				dma_addr_t child_table_dma_addr)
444{
445	child_table_dma_addr >>= ROGUE_MMUCTRL_PC_DATA_PD_BASE_ALIGNSHIFT;
446
447	WRITE_ONCE(entry->val,
448		   PVR_PAGE_TABLE_FIELD_PREP(2, PC, VALID, true) |
449		   PVR_PAGE_TABLE_FIELD_PREP(2, PC, ENTRY_PENDING, false) |
450		   PVR_PAGE_TABLE_FIELD_PREP(2, PC, PD_BASE, child_table_dma_addr));
451}
452
453static void
454pvr_page_table_l2_entry_raw_clear(struct pvr_page_table_l2_entry_raw *entry)
455{
456	WRITE_ONCE(entry->val, 0);
457}
458
459/**
460 * struct pvr_page_table_l1_entry_raw - A single entry in a level 1 page table.
461 * @val: The raw value of this entry.
462 *
463 * This type is a structure for type-checking purposes. At compile-time, its
464 * size is checked against %ROGUE_MMUCTRL_ENTRY_SIZE_PD_VALUE.
465 *
466 * The value stored in this structure can be decoded using the following bitmap:
467 *
468 * .. flat-table::
469 *    :widths: 1 5
470 *    :stub-columns: 1
471 *
472 *    * - 63..41
473 *      - *(reserved)*
474 *
475 *    * - 40
476 *      - **Pending:** When valid bit is not set, indicates that a valid entry
477 *        is pending and the MMU should wait for the driver to map the entry.
478 *        This is used to support page demand mapping of memory.
479 *
480 *    * - 39..5
481 *      - **Level 0 Page Table Base Address:** The way this value is
482 *        interpreted depends on the page size. Bits not specified in the
483 *        table below (e.g. bits 11..5 for page size 4KiB) should be
484 *        considered reserved.
485 *
486 *        This table shows the bits used in an L1 page table entry to
487 *        represent the Physical Table Base Address for a given Page Size.
488 *        Since each L1 page table entry covers 2MiB of address space, the
489 *        maximum page size is 2MiB.
490 *
491 *        .. flat-table::
492 *           :widths: 1 1 1 1
493 *           :header-rows: 1
494 *           :stub-columns: 1
495 *
496 *           * - Page size
497 *             - L0 page table base address bits
498 *             - Number of L0 page table entries
499 *             - Size of L0 page table
500 *
501 *           * - 4KiB
502 *             - 39..12
503 *             - 512
504 *             - 4KiB
505 *
506 *           * - 16KiB
507 *             - 39..10
508 *             - 128
509 *             - 1KiB
510 *
511 *           * - 64KiB
512 *             - 39..8
513 *             - 32
514 *             - 256B
515 *
516 *           * - 256KiB
517 *             - 39..6
518 *             - 8
519 *             - 64B
520 *
521 *           * - 1MiB
522 *             - 39..5 (4 = '0')
523 *             - 2
524 *             - 16B
525 *
526 *           * - 2MiB
527 *             - 39..5 (4..3 = '00')
528 *             - 1
529 *             - 8B
530 *
531 *    * - 4
532 *      - *(reserved)*
533 *
534 *    * - 3..1
535 *      - **Page Size:** Sets the page size, from 4KiB to 2MiB.
536 *
537 *    * - 0
538 *      - **Valid:** Indicates that the entry contains a valid L0 page table.
539 *        If the valid bit is not set, then an attempted use of the page would
540 *        result in a page fault.
541 */
542struct pvr_page_table_l1_entry_raw {
543	u64 val;
544} __packed;
545static_assert(sizeof(struct pvr_page_table_l1_entry_raw) * 8 ==
546	      ROGUE_MMUCTRL_ENTRY_SIZE_PD_VALUE);
547
548static bool
549pvr_page_table_l1_entry_raw_is_valid(struct pvr_page_table_l1_entry_raw entry)
550{
551	return PVR_PAGE_TABLE_FIELD_GET(1, PD, VALID, entry);
552}
553
554/**
555 * pvr_page_table_l1_entry_raw_set() - Write a valid entry into a raw level 1
556 *                                     page table.
557 * @entry: Target raw level 1 page table entry.
558 * @child_table_dma_addr: DMA address of the level 0 page table to be
559 *                        associated with @entry.
560 *
561 * When calling this function, @child_table_dma_addr must be a valid DMA
562 * address and a multiple of 4 KiB.
563 */
564static void
565pvr_page_table_l1_entry_raw_set(struct pvr_page_table_l1_entry_raw *entry,
566				dma_addr_t child_table_dma_addr)
567{
568	WRITE_ONCE(entry->val,
569		   PVR_PAGE_TABLE_FIELD_PREP(1, PD, VALID, true) |
570		   PVR_PAGE_TABLE_FIELD_PREP(1, PD, ENTRY_PENDING, false) |
571		   PVR_PAGE_TABLE_FIELD_PREP(1, PD, PAGE_SIZE, ROGUE_MMUCTRL_PAGE_SIZE_X) |
572		   /*
573		    * The use of a 4K-specific macro here is correct. It is
574		    * a future optimization to allocate sub-host-page-sized
575		    * blocks for individual tables, so the condition that any
576		    * page table address is aligned to the size of the
577		    * largest (a 4KB) table currently holds.
578		    */
579		   (child_table_dma_addr & ~ROGUE_MMUCTRL_PT_BASE_4KB_RANGE_CLRMSK));
580}
581
582static void
583pvr_page_table_l1_entry_raw_clear(struct pvr_page_table_l1_entry_raw *entry)
584{
585	WRITE_ONCE(entry->val, 0);
586}
587
588/**
589 * struct pvr_page_table_l0_entry_raw - A single entry in a level 0 page table.
590 * @val: The raw value of this entry.
591 *
592 * This type is a structure for type-checking purposes. At compile-time, its
593 * size is checked against %ROGUE_MMUCTRL_ENTRY_SIZE_PT_VALUE.
594 *
595 * The value stored in this structure can be decoded using the following bitmap:
596 *
597 * .. flat-table::
598 *    :widths: 1 5
599 *    :stub-columns: 1
600 *
601 *    * - 63
602 *      - *(reserved)*
603 *
604 *    * - 62
605 *      - **PM/FW Protect:** Indicates a protected region which only the
606 *        Parameter Manager (PM) or firmware processor can write to.
607 *
608 *    * - 61..40
609 *      - **VP Page (High):** Virtual-physical page used for Parameter Manager
610 *        (PM) memory. This field is only used if the additional level of PB
611 *        virtualization is enabled. The VP Page field is needed by the PM in
612 *        order to correctly reconstitute the free lists after render
613 *        completion. This (High) field holds bits 39..18 of the value; the
614 *        Low field holds bits 17..12. Bits 11..0 are always zero because the
615 *        value is always aligned to the 4KiB page size.
616 *
617 *    * - 39..12
618 *      - **Physical Page Address:** The way this value is interpreted depends
619 *        on the page size. Bits not specified in the table below (e.g. bits
620 *        20..12 for page size 2MiB) should be considered reserved.
621 *
622 *        This table shows the bits used in an L0 page table entry to represent
623 *        the Physical Page Address for a given page size (as defined in the
624 *        associated L1 page table entry).
625 *
626 *        .. flat-table::
627 *           :widths: 1 1
628 *           :header-rows: 1
629 *           :stub-columns: 1
630 *
631 *           * - Page size
632 *             - Physical address bits
633 *
634 *           * - 4KiB
635 *             - 39..12
636 *
637 *           * - 16KiB
638 *             - 39..14
639 *
640 *           * - 64KiB
641 *             - 39..16
642 *
643 *           * - 256KiB
644 *             - 39..18
645 *
646 *           * - 1MiB
647 *             - 39..20
648 *
649 *           * - 2MiB
650 *             - 39..21
651 *
652 *    * - 11..6
653 *      - **VP Page (Low):** Continuation of VP Page (High).
654 *
655 *    * - 5
656 *      - **Pending:** When valid bit is not set, indicates that a valid entry
657 *        is pending and the MMU should wait for the driver to map the entry.
658 *        This is used to support page demand mapping of memory.
659 *
660 *    * - 4
661 *      - **PM Src:** Set on Parameter Manager (PM) allocated page table
662 *        entries when indicated by the PM. Note that this bit will only be set
663 *        by the PM, not by the device driver.
664 *
665 *    * - 3
666 *      - **SLC Bypass Control:** Specifies requests to this page should bypass
667 *        the System Level Cache (SLC), if enabled in SLC configuration.
668 *
669 *    * - 2
670 *      - **Cache Coherency:** Indicates that the page is coherent (i.e. it
671 *        does not require a cache flush between operations on the CPU and the
672 *        device).
673 *
674 *    * - 1
675 *      - **Read Only:** If set, this bit indicates that the page is read only.
676 *        An attempted write to this page would result in a write-protection
677 *        fault.
678 *
679 *    * - 0
680 *      - **Valid:** Indicates that the entry contains a valid page. If the
681 *        valid bit is not set, then an attempted use of the page would result
682 *        in a page fault.
683 */
684struct pvr_page_table_l0_entry_raw {
685	u64 val;
686} __packed;
687static_assert(sizeof(struct pvr_page_table_l0_entry_raw) * 8 ==
688	      ROGUE_MMUCTRL_ENTRY_SIZE_PT_VALUE);
689
690/**
691 * struct pvr_page_flags_raw - The configurable flags from a single entry in a
692 *                             level 0 page table.
693 * @val: The raw value of these flags. Since these are a strict subset of
694 *       &struct pvr_page_table_l0_entry_raw; use that type for our member here.
695 *
696 * The flags stored in this type are: PM/FW Protect; SLC Bypass Control; Cache
697 * Coherency, and Read Only (bits 62, 3, 2 and 1 respectively).
698 *
699 * This type should never be instantiated directly; instead use
700 * pvr_page_flags_raw_create() to ensure only valid bits of @val are set.
701 */
702struct pvr_page_flags_raw {
703	struct pvr_page_table_l0_entry_raw val;
704} __packed;
705static_assert(sizeof(struct pvr_page_flags_raw) ==
706	      sizeof(struct pvr_page_table_l0_entry_raw));
707
708static bool
709pvr_page_table_l0_entry_raw_is_valid(struct pvr_page_table_l0_entry_raw entry)
710{
711	return PVR_PAGE_TABLE_FIELD_GET(0, PT, VALID, entry);
712}
713
714/**
715 * pvr_page_table_l0_entry_raw_set() - Write a valid entry into a raw level 0
716 *                                     page table.
717 * @entry: Target raw level 0 page table entry.
718 * @dma_addr: DMA address of the physical page to be associated with @entry.
719 * @flags: Options to be set on @entry.
720 *
721 * When calling this function, @child_table_dma_addr must be a valid DMA
722 * address and a multiple of %PVR_DEVICE_PAGE_SIZE.
723 *
724 * The @flags parameter is directly assigned into @entry. It is the callers
725 * responsibility to ensure that only bits specified in
726 * &struct pvr_page_flags_raw are set in @flags.
727 */
728static void
729pvr_page_table_l0_entry_raw_set(struct pvr_page_table_l0_entry_raw *entry,
730				dma_addr_t dma_addr,
731				struct pvr_page_flags_raw flags)
732{
733	WRITE_ONCE(entry->val, PVR_PAGE_TABLE_FIELD_PREP(0, PT, VALID, true) |
734			       PVR_PAGE_TABLE_FIELD_PREP(0, PT, ENTRY_PENDING, false) |
735			       (dma_addr & ~ROGUE_MMUCTRL_PAGE_X_RANGE_CLRMSK) |
736			       flags.val.val);
737}
738
739static void
740pvr_page_table_l0_entry_raw_clear(struct pvr_page_table_l0_entry_raw *entry)
741{
742	WRITE_ONCE(entry->val, 0);
743}
744
745/**
746 * pvr_page_flags_raw_create() - Initialize the flag bits of a raw level 0 page
747 *                               table entry.
748 * @read_only: This page is read-only (see: Read Only).
749 * @cache_coherent: This page does not require cache flushes (see: Cache
750 *                  Coherency).
751 * @slc_bypass: This page bypasses the device cache (see: SLC Bypass Control).
752 * @pm_fw_protect: This page is only for use by the firmware or Parameter
753 *                 Manager (see PM/FW Protect).
754 *
755 * For more details on the use of these four options, see their respective
756 * entries in the table under &struct pvr_page_table_l0_entry_raw.
757 *
758 * Return:
759 * A new &struct pvr_page_flags_raw instance which can be passed directly to
760 * pvr_page_table_l0_entry_raw_set() or pvr_page_table_l0_insert().
761 */
762static struct pvr_page_flags_raw
763pvr_page_flags_raw_create(bool read_only, bool cache_coherent, bool slc_bypass,
764			  bool pm_fw_protect)
765{
766	struct pvr_page_flags_raw flags;
767
768	flags.val.val =
769		PVR_PAGE_TABLE_FIELD_PREP(0, PT, READ_ONLY, read_only) |
770		PVR_PAGE_TABLE_FIELD_PREP(0, PT, CC, cache_coherent) |
771		PVR_PAGE_TABLE_FIELD_PREP(0, PT, SLC_BYPASS_CTRL, slc_bypass) |
772		PVR_PAGE_TABLE_FIELD_PREP(0, PT, PM_META_PROTECT, pm_fw_protect);
773
774	return flags;
775}
776
777/**
778 * struct pvr_page_table_l2_raw - The raw data of a level 2 page table.
779 *
780 * This type is a structure for type-checking purposes. At compile-time, its
781 * size is checked against %PVR_MMU_BACKING_PAGE_SIZE.
782 */
783struct pvr_page_table_l2_raw {
784	/** @entries: The raw values of this table. */
785	struct pvr_page_table_l2_entry_raw
786		entries[ROGUE_MMUCTRL_ENTRIES_PC_VALUE];
787} __packed;
788static_assert(sizeof(struct pvr_page_table_l2_raw) == PVR_MMU_BACKING_PAGE_SIZE);
789
790/**
791 * struct pvr_page_table_l1_raw - The raw data of a level 1 page table.
792 *
793 * This type is a structure for type-checking purposes. At compile-time, its
794 * size is checked against %PVR_MMU_BACKING_PAGE_SIZE.
795 */
796struct pvr_page_table_l1_raw {
797	/** @entries: The raw values of this table. */
798	struct pvr_page_table_l1_entry_raw
799		entries[ROGUE_MMUCTRL_ENTRIES_PD_VALUE];
800} __packed;
801static_assert(sizeof(struct pvr_page_table_l1_raw) == PVR_MMU_BACKING_PAGE_SIZE);
802
803/**
804 * struct pvr_page_table_l0_raw - The raw data of a level 0 page table.
805 *
806 * This type is a structure for type-checking purposes. At compile-time, its
807 * size is checked against %PVR_MMU_BACKING_PAGE_SIZE.
808 *
809 * .. caution::
810 *
811 *    The size of level 0 page tables is variable depending on the page size
812 *    specified in the associated level 1 page table entry. Since the device
813 *    page size in use is pegged to the host page size, it cannot vary at
814 *    runtime. This structure is therefore only defined to contain the required
815 *    number of entries for the current device page size. **You should never
816 *    read or write beyond the last supported entry.**
817 */
818struct pvr_page_table_l0_raw {
819	/** @entries: The raw values of this table. */
820	struct pvr_page_table_l0_entry_raw
821		entries[ROGUE_MMUCTRL_ENTRIES_PT_VALUE_X];
822} __packed;
823static_assert(sizeof(struct pvr_page_table_l0_raw) <= PVR_MMU_BACKING_PAGE_SIZE);
824
825/**
826 * DOC: Mirror page tables
827 */
828
829/*
830 * We pre-declare these types because they cross-depend on pointers to each
831 * other.
832 */
833struct pvr_page_table_l1;
834struct pvr_page_table_l0;
835
836/**
837 * struct pvr_page_table_l2 - A wrapped level 2 page table.
838 *
839 * To access the raw part of this table, use pvr_page_table_l2_get_raw().
840 * Alternatively to access a raw entry directly, use
841 * pvr_page_table_l2_get_entry_raw().
842 *
843 * A level 2 page table forms the root of the page table tree structure, so
844 * this type has no &parent or &parent_idx members.
845 */
846struct pvr_page_table_l2 {
847	/**
848	 * @entries: The children of this node in the page table tree
849	 * structure. These are also mirror tables. The indexing of this array
850	 * is identical to that of the raw equivalent
851	 * (&pvr_page_table_l1_raw.entries).
852	 */
853	struct pvr_page_table_l1 *entries[ROGUE_MMUCTRL_ENTRIES_PC_VALUE];
854
855	/**
856	 * @backing_page: A handle to the memory which holds the raw
857	 * equivalent of this table. **For internal use only.**
858	 */
859	struct pvr_mmu_backing_page backing_page;
860
861	/**
862	 * @entry_count: The current number of valid entries (that we know of)
863	 * in this table. This value is essentially a refcount - the table is
864	 * destroyed when this value is decremented to zero by
865	 * pvr_page_table_l2_remove().
866	 */
867	u16 entry_count;
868};
869
870/**
871 * pvr_page_table_l2_init() - Initialize a level 2 page table.
872 * @table: Target level 2 page table.
873 * @pvr_dev: Target PowerVR device
874 *
875 * It is expected that @table be zeroed (e.g. from kzalloc()) before calling
876 * this function.
877 *
878 * Return:
879 *  * 0 on success, or
880 *  * Any error encountered while intializing &table->backing_page using
881 *    pvr_mmu_backing_page_init().
882 */
883static int
884pvr_page_table_l2_init(struct pvr_page_table_l2 *table,
885		       struct pvr_device *pvr_dev)
886{
887	return pvr_mmu_backing_page_init(&table->backing_page, pvr_dev);
888}
889
890/**
891 * pvr_page_table_l2_fini() - Teardown a level 2 page table.
892 * @table: Target level 2 page table.
893 *
894 * It is an error to attempt to use @table after calling this function.
895 */
896static void
897pvr_page_table_l2_fini(struct pvr_page_table_l2 *table)
898{
899	pvr_mmu_backing_page_fini(&table->backing_page);
900}
901
902/**
903 * pvr_page_table_l2_sync() - Flush a level 2 page table from the CPU to the
904 *                            device.
905 * @table: Target level 2 page table.
906 *
907 * This is just a thin wrapper around pvr_mmu_backing_page_sync(), so the
908 * warning there applies here too: **Only call pvr_page_table_l2_sync() once
909 * you're sure you have no more changes to make to** @table **in the immediate
910 * future.**
911 *
912 * If child level 1 page tables of @table also need to be flushed, this should
913 * be done first using pvr_page_table_l1_sync() *before* calling this function.
914 */
915static void
916pvr_page_table_l2_sync(struct pvr_page_table_l2 *table)
917{
918	pvr_mmu_backing_page_sync(&table->backing_page, PVR_MMU_SYNC_LEVEL_2_FLAGS);
919}
920
921/**
922 * pvr_page_table_l2_get_raw() - Access the raw equivalent of a mirror level 2
923 *                               page table.
924 * @table: Target level 2 page table.
925 *
926 * Essentially returns the CPU address of the raw equivalent of @table, cast to
927 * a &struct pvr_page_table_l2_raw pointer.
928 *
929 * You probably want to call pvr_page_table_l2_get_entry_raw() instead.
930 *
931 * Return:
932 * The raw equivalent of @table.
933 */
934static struct pvr_page_table_l2_raw *
935pvr_page_table_l2_get_raw(struct pvr_page_table_l2 *table)
936{
937	return table->backing_page.host_ptr;
938}
939
940/**
941 * pvr_page_table_l2_get_entry_raw() - Access an entry from the raw equivalent
942 *                                     of a mirror level 2 page table.
943 * @table: Target level 2 page table.
944 * @idx: Index of the entry to access.
945 *
946 * Technically this function returns a pointer to a slot in a raw level 2 page
947 * table, since the returned "entry" is not guaranteed to be valid. The caller
948 * must verify the validity of the entry at the returned address (perhaps using
949 * pvr_page_table_l2_entry_raw_is_valid()) before reading or overwriting it.
950 *
951 * The value of @idx is not checked here; it is the callers responsibility to
952 * ensure @idx refers to a valid index within @table before dereferencing the
953 * returned pointer.
954 *
955 * Return:
956 * A pointer to the requested raw level 2 page table entry.
957 */
958static struct pvr_page_table_l2_entry_raw *
959pvr_page_table_l2_get_entry_raw(struct pvr_page_table_l2 *table, u16 idx)
960{
961	return &pvr_page_table_l2_get_raw(table)->entries[idx];
962}
963
964/**
965 * pvr_page_table_l2_entry_is_valid() - Check if a level 2 page table entry is
966 *                                      marked as valid.
967 * @table: Target level 2 page table.
968 * @idx: Index of the entry to check.
969 *
970 * The value of @idx is not checked here; it is the callers responsibility to
971 * ensure @idx refers to a valid index within @table before calling this
972 * function.
973 */
974static bool
975pvr_page_table_l2_entry_is_valid(struct pvr_page_table_l2 *table, u16 idx)
976{
977	struct pvr_page_table_l2_entry_raw entry_raw =
978		*pvr_page_table_l2_get_entry_raw(table, idx);
979
980	return pvr_page_table_l2_entry_raw_is_valid(entry_raw);
981}
982
983/**
984 * struct pvr_page_table_l1 - A wrapped level 1 page table.
985 *
986 * To access the raw part of this table, use pvr_page_table_l1_get_raw().
987 * Alternatively to access a raw entry directly, use
988 * pvr_page_table_l1_get_entry_raw().
989 */
990struct pvr_page_table_l1 {
991	/**
992	 * @entries: The children of this node in the page table tree
993	 * structure. These are also mirror tables. The indexing of this array
994	 * is identical to that of the raw equivalent
995	 * (&pvr_page_table_l0_raw.entries).
996	 */
997	struct pvr_page_table_l0 *entries[ROGUE_MMUCTRL_ENTRIES_PD_VALUE];
998
999	/**
1000	 * @backing_page: A handle to the memory which holds the raw
1001	 * equivalent of this table. **For internal use only.**
1002	 */
1003	struct pvr_mmu_backing_page backing_page;
1004
1005	union {
1006		/**
1007		 * @parent: The parent of this node in the page table tree structure.
1008		 *
1009		 * This is also a mirror table.
1010		 *
1011		 * Only valid when the L1 page table is active. When the L1 page table
1012		 * has been removed and queued for destruction, the next_free field
1013		 * should be used instead.
1014		 */
1015		struct pvr_page_table_l2 *parent;
1016
1017		/**
1018		 * @next_free: Pointer to the next L1 page table to take/free.
1019		 *
1020		 * Used to form a linked list of L1 page tables. This is used
1021		 * when preallocating tables and when the page table has been
1022		 * removed and queued for destruction.
1023		 */
1024		struct pvr_page_table_l1 *next_free;
1025	};
1026
1027	/**
1028	 * @parent_idx: The index of the entry in the parent table (see
1029	 * @parent) which corresponds to this table.
1030	 */
1031	u16 parent_idx;
1032
1033	/**
1034	 * @entry_count: The current number of valid entries (that we know of)
1035	 * in this table. This value is essentially a refcount - the table is
1036	 * destroyed when this value is decremented to zero by
1037	 * pvr_page_table_l1_remove().
1038	 */
1039	u16 entry_count;
1040};
1041
1042/**
1043 * pvr_page_table_l1_init() - Initialize a level 1 page table.
1044 * @table: Target level 1 page table.
1045 * @pvr_dev: Target PowerVR device
1046 *
1047 * When this function returns successfully, @table is still not considered
1048 * valid. It must be inserted into the page table tree structure with
1049 * pvr_page_table_l2_insert() before it is ready for use.
1050 *
1051 * It is expected that @table be zeroed (e.g. from kzalloc()) before calling
1052 * this function.
1053 *
1054 * Return:
1055 *  * 0 on success, or
1056 *  * Any error encountered while intializing &table->backing_page using
1057 *    pvr_mmu_backing_page_init().
1058 */
1059static int
1060pvr_page_table_l1_init(struct pvr_page_table_l1 *table,
1061		       struct pvr_device *pvr_dev)
1062{
1063	table->parent_idx = PVR_IDX_INVALID;
1064
1065	return pvr_mmu_backing_page_init(&table->backing_page, pvr_dev);
1066}
1067
1068/**
1069 * pvr_page_table_l1_free() - Teardown a level 1 page table.
1070 * @table: Target level 1 page table.
1071 *
1072 * It is an error to attempt to use @table after calling this function, even
1073 * indirectly. This includes calling pvr_page_table_l2_remove(), which must
1074 * be called *before* pvr_page_table_l1_free().
1075 */
1076static void
1077pvr_page_table_l1_free(struct pvr_page_table_l1 *table)
1078{
1079	pvr_mmu_backing_page_fini(&table->backing_page);
1080	kfree(table);
1081}
1082
1083/**
1084 * pvr_page_table_l1_sync() - Flush a level 1 page table from the CPU to the
1085 *                            device.
1086 * @table: Target level 1 page table.
1087 *
1088 * This is just a thin wrapper around pvr_mmu_backing_page_sync(), so the
1089 * warning there applies here too: **Only call pvr_page_table_l1_sync() once
1090 * you're sure you have no more changes to make to** @table **in the immediate
1091 * future.**
1092 *
1093 * If child level 0 page tables of @table also need to be flushed, this should
1094 * be done first using pvr_page_table_l0_sync() *before* calling this function.
1095 */
1096static void
1097pvr_page_table_l1_sync(struct pvr_page_table_l1 *table)
1098{
1099	pvr_mmu_backing_page_sync(&table->backing_page, PVR_MMU_SYNC_LEVEL_1_FLAGS);
1100}
1101
1102/**
1103 * pvr_page_table_l1_get_raw() - Access the raw equivalent of a mirror level 1
1104 *                               page table.
1105 * @table: Target level 1 page table.
1106 *
1107 * Essentially returns the CPU address of the raw equivalent of @table, cast to
1108 * a &struct pvr_page_table_l1_raw pointer.
1109 *
1110 * You probably want to call pvr_page_table_l1_get_entry_raw() instead.
1111 *
1112 * Return:
1113 * The raw equivalent of @table.
1114 */
1115static struct pvr_page_table_l1_raw *
1116pvr_page_table_l1_get_raw(struct pvr_page_table_l1 *table)
1117{
1118	return table->backing_page.host_ptr;
1119}
1120
1121/**
1122 * pvr_page_table_l1_get_entry_raw() - Access an entry from the raw equivalent
1123 *                                     of a mirror level 1 page table.
1124 * @table: Target level 1 page table.
1125 * @idx: Index of the entry to access.
1126 *
1127 * Technically this function returns a pointer to a slot in a raw level 1 page
1128 * table, since the returned "entry" is not guaranteed to be valid. The caller
1129 * must verify the validity of the entry at the returned address (perhaps using
1130 * pvr_page_table_l1_entry_raw_is_valid()) before reading or overwriting it.
1131 *
1132 * The value of @idx is not checked here; it is the callers responsibility to
1133 * ensure @idx refers to a valid index within @table before dereferencing the
1134 * returned pointer.
1135 *
1136 * Return:
1137 * A pointer to the requested raw level 1 page table entry.
1138 */
1139static struct pvr_page_table_l1_entry_raw *
1140pvr_page_table_l1_get_entry_raw(struct pvr_page_table_l1 *table, u16 idx)
1141{
1142	return &pvr_page_table_l1_get_raw(table)->entries[idx];
1143}
1144
1145/**
1146 * pvr_page_table_l1_entry_is_valid() - Check if a level 1 page table entry is
1147 *                                      marked as valid.
1148 * @table: Target level 1 page table.
1149 * @idx: Index of the entry to check.
1150 *
1151 * The value of @idx is not checked here; it is the callers responsibility to
1152 * ensure @idx refers to a valid index within @table before calling this
1153 * function.
1154 */
1155static bool
1156pvr_page_table_l1_entry_is_valid(struct pvr_page_table_l1 *table, u16 idx)
1157{
1158	struct pvr_page_table_l1_entry_raw entry_raw =
1159		*pvr_page_table_l1_get_entry_raw(table, idx);
1160
1161	return pvr_page_table_l1_entry_raw_is_valid(entry_raw);
1162}
1163
1164/**
1165 * struct pvr_page_table_l0 - A wrapped level 0 page table.
1166 *
1167 * To access the raw part of this table, use pvr_page_table_l0_get_raw().
1168 * Alternatively to access a raw entry directly, use
1169 * pvr_page_table_l0_get_entry_raw().
1170 *
1171 * There is no mirror representation of an individual page, so this type has no
1172 * &entries member.
1173 */
1174struct pvr_page_table_l0 {
1175	/**
1176	 * @backing_page: A handle to the memory which holds the raw
1177	 * equivalent of this table. **For internal use only.**
1178	 */
1179	struct pvr_mmu_backing_page backing_page;
1180
1181	union {
1182		/**
1183		 * @parent: The parent of this node in the page table tree structure.
1184		 *
1185		 * This is also a mirror table.
1186		 *
1187		 * Only valid when the L0 page table is active. When the L0 page table
1188		 * has been removed and queued for destruction, the next_free field
1189		 * should be used instead.
1190		 */
1191		struct pvr_page_table_l1 *parent;
1192
1193		/**
1194		 * @next_free: Pointer to the next L0 page table to take/free.
1195		 *
1196		 * Used to form a linked list of L0 page tables. This is used
1197		 * when preallocating tables and when the page table has been
1198		 * removed and queued for destruction.
1199		 */
1200		struct pvr_page_table_l0 *next_free;
1201	};
1202
1203	/**
1204	 * @parent_idx: The index of the entry in the parent table (see
1205	 * @parent) which corresponds to this table.
1206	 */
1207	u16 parent_idx;
1208
1209	/**
1210	 * @entry_count: The current number of valid entries (that we know of)
1211	 * in this table. This value is essentially a refcount - the table is
1212	 * destroyed when this value is decremented to zero by
1213	 * pvr_page_table_l0_remove().
1214	 */
1215	u16 entry_count;
1216};
1217
1218/**
1219 * pvr_page_table_l0_init() - Initialize a level 0 page table.
1220 * @table: Target level 0 page table.
1221 * @pvr_dev: Target PowerVR device
1222 *
1223 * When this function returns successfully, @table is still not considered
1224 * valid. It must be inserted into the page table tree structure with
1225 * pvr_page_table_l1_insert() before it is ready for use.
1226 *
1227 * It is expected that @table be zeroed (e.g. from kzalloc()) before calling
1228 * this function.
1229 *
1230 * Return:
1231 *  * 0 on success, or
1232 *  * Any error encountered while intializing &table->backing_page using
1233 *    pvr_mmu_backing_page_init().
1234 */
1235static int
1236pvr_page_table_l0_init(struct pvr_page_table_l0 *table,
1237		       struct pvr_device *pvr_dev)
1238{
1239	table->parent_idx = PVR_IDX_INVALID;
1240
1241	return pvr_mmu_backing_page_init(&table->backing_page, pvr_dev);
1242}
1243
1244/**
1245 * pvr_page_table_l0_free() - Teardown a level 0 page table.
1246 * @table: Target level 0 page table.
1247 *
1248 * It is an error to attempt to use @table after calling this function, even
1249 * indirectly. This includes calling pvr_page_table_l1_remove(), which must
1250 * be called *before* pvr_page_table_l0_free().
1251 */
1252static void
1253pvr_page_table_l0_free(struct pvr_page_table_l0 *table)
1254{
1255	pvr_mmu_backing_page_fini(&table->backing_page);
1256	kfree(table);
1257}
1258
1259/**
1260 * pvr_page_table_l0_sync() - Flush a level 0 page table from the CPU to the
1261 *                            device.
1262 * @table: Target level 0 page table.
1263 *
1264 * This is just a thin wrapper around pvr_mmu_backing_page_sync(), so the
1265 * warning there applies here too: **Only call pvr_page_table_l0_sync() once
1266 * you're sure you have no more changes to make to** @table **in the immediate
1267 * future.**
1268 *
1269 * If child pages of @table also need to be flushed, this should be done first
1270 * using a DMA sync function (e.g. dma_sync_sg_for_device()) *before* calling
1271 * this function.
1272 */
1273static void
1274pvr_page_table_l0_sync(struct pvr_page_table_l0 *table)
1275{
1276	pvr_mmu_backing_page_sync(&table->backing_page, PVR_MMU_SYNC_LEVEL_0_FLAGS);
1277}
1278
1279/**
1280 * pvr_page_table_l0_get_raw() - Access the raw equivalent of a mirror level 0
1281 *                               page table.
1282 * @table: Target level 0 page table.
1283 *
1284 * Essentially returns the CPU address of the raw equivalent of @table, cast to
1285 * a &struct pvr_page_table_l0_raw pointer.
1286 *
1287 * You probably want to call pvr_page_table_l0_get_entry_raw() instead.
1288 *
1289 * Return:
1290 * The raw equivalent of @table.
1291 */
1292static struct pvr_page_table_l0_raw *
1293pvr_page_table_l0_get_raw(struct pvr_page_table_l0 *table)
1294{
1295	return table->backing_page.host_ptr;
1296}
1297
1298/**
1299 * pvr_page_table_l0_get_entry_raw() - Access an entry from the raw equivalent
1300 *                                     of a mirror level 0 page table.
1301 * @table: Target level 0 page table.
1302 * @idx: Index of the entry to access.
1303 *
1304 * Technically this function returns a pointer to a slot in a raw level 0 page
1305 * table, since the returned "entry" is not guaranteed to be valid. The caller
1306 * must verify the validity of the entry at the returned address (perhaps using
1307 * pvr_page_table_l0_entry_raw_is_valid()) before reading or overwriting it.
1308 *
1309 * The value of @idx is not checked here; it is the callers responsibility to
1310 * ensure @idx refers to a valid index within @table before dereferencing the
1311 * returned pointer. This is espcially important for level 0 page tables, which
1312 * can have a variable number of entries.
1313 *
1314 * Return:
1315 * A pointer to the requested raw level 0 page table entry.
1316 */
1317static struct pvr_page_table_l0_entry_raw *
1318pvr_page_table_l0_get_entry_raw(struct pvr_page_table_l0 *table, u16 idx)
1319{
1320	return &pvr_page_table_l0_get_raw(table)->entries[idx];
1321}
1322
1323/**
1324 * pvr_page_table_l0_entry_is_valid() - Check if a level 0 page table entry is
1325 *                                      marked as valid.
1326 * @table: Target level 0 page table.
1327 * @idx: Index of the entry to check.
1328 *
1329 * The value of @idx is not checked here; it is the callers responsibility to
1330 * ensure @idx refers to a valid index within @table before calling this
1331 * function.
1332 */
1333static bool
1334pvr_page_table_l0_entry_is_valid(struct pvr_page_table_l0 *table, u16 idx)
1335{
1336	struct pvr_page_table_l0_entry_raw entry_raw =
1337		*pvr_page_table_l0_get_entry_raw(table, idx);
1338
1339	return pvr_page_table_l0_entry_raw_is_valid(entry_raw);
1340}
1341
1342/**
1343 * struct pvr_mmu_context - context holding data for operations at page
1344 * catalogue level, intended for use with a VM context.
1345 */
1346struct pvr_mmu_context {
1347	/** @pvr_dev: The PVR device associated with the owning VM context. */
1348	struct pvr_device *pvr_dev;
1349
1350	/** @page_table_l2: The MMU table root. */
1351	struct pvr_page_table_l2 page_table_l2;
1352};
1353
1354/**
1355 * struct pvr_page_table_ptr - A reference to a single physical page as indexed
1356 * by the page table structure.
1357 *
1358 * Intended for embedding in a &struct pvr_mmu_op_context.
1359 */
1360struct pvr_page_table_ptr {
1361	/**
1362	 * @l1_table: A cached handle to the level 1 page table the
1363	 * context is currently traversing.
1364	 */
1365	struct pvr_page_table_l1 *l1_table;
1366
1367	/**
1368	 * @l0_table: A cached handle to the level 0 page table the
1369	 * context is currently traversing.
1370	 */
1371	struct pvr_page_table_l0 *l0_table;
1372
1373	/**
1374	 * @l2_idx: Index into the level 2 page table the context is
1375	 * currently referencing.
1376	 */
1377	u16 l2_idx;
1378
1379	/**
1380	 * @l1_idx: Index into the level 1 page table the context is
1381	 * currently referencing.
1382	 */
1383	u16 l1_idx;
1384
1385	/**
1386	 * @l0_idx: Index into the level 0 page table the context is
1387	 * currently referencing.
1388	 */
1389	u16 l0_idx;
1390};
1391
1392/**
1393 * struct pvr_mmu_op_context - context holding data for individual
1394 * device-virtual mapping operations. Intended for use with a VM bind operation.
1395 */
1396struct pvr_mmu_op_context {
1397	/** @mmu_ctx: The MMU context associated with the owning VM context. */
1398	struct pvr_mmu_context *mmu_ctx;
1399
1400	/** @map: Data specifically for map operations. */
1401	struct {
1402		/**
1403		 * @sgt: Scatter gather table containing pages pinned for use by
1404		 * this context - these are currently pinned when initialising
1405		 * the VM bind operation.
1406		 */
1407		struct sg_table *sgt;
1408
1409		/** @sgt_offset: Start address of the device-virtual mapping. */
1410		u64 sgt_offset;
1411
1412		/**
1413		 * @l1_prealloc_tables: Preallocated l1 page table objects
1414		 * use by this context when creating a page mapping. Linked list
1415		 * fully created during initialisation.
1416		 */
1417		struct pvr_page_table_l1 *l1_prealloc_tables;
1418
1419		/**
1420		 * @l0_prealloc_tables: Preallocated l0 page table objects
1421		 * use by this context when creating a page mapping. Linked list
1422		 * fully created during initialisation.
1423		 */
1424		struct pvr_page_table_l0 *l0_prealloc_tables;
1425	} map;
1426
1427	/** @unmap: Data specifically for unmap operations. */
1428	struct {
1429		/**
1430		 * @l1_free_tables: Collects page table objects freed by unmap
1431		 * ops. Linked list empty at creation.
1432		 */
1433		struct pvr_page_table_l1 *l1_free_tables;
1434
1435		/**
1436		 * @l0_free_tables: Collects page table objects freed by unmap
1437		 * ops. Linked list empty at creation.
1438		 */
1439		struct pvr_page_table_l0 *l0_free_tables;
1440	} unmap;
1441
1442	/**
1443	 * @curr_page: A reference to a single physical page as indexed by the
1444	 * page table structure.
1445	 */
1446	struct pvr_page_table_ptr curr_page;
1447
1448	/**
1449	 * @sync_level_required: The maximum level of the page table tree
1450	 * structure which has (possibly) been modified since it was last
1451	 * flushed to the device.
1452	 *
1453	 * This field should only be set with pvr_mmu_op_context_require_sync()
1454	 * or indirectly by pvr_mmu_op_context_sync_partial().
1455	 */
1456	enum pvr_mmu_sync_level sync_level_required;
1457};
1458
1459/**
1460 * pvr_page_table_l2_insert() - Insert an entry referring to a level 1 page
1461 * table into a level 2 page table.
1462 * @op_ctx: Target MMU op context pointing at the entry to insert the L1 page
1463 * table into.
1464 * @child_table: Target level 1 page table to be referenced by the new entry.
1465 *
1466 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1467 * valid L2 entry.
1468 *
1469 * It is the caller's responsibility to execute any memory barries to ensure
1470 * that the creation of @child_table is ordered before the L2 entry is inserted.
1471 */
1472static void
1473pvr_page_table_l2_insert(struct pvr_mmu_op_context *op_ctx,
1474			 struct pvr_page_table_l1 *child_table)
1475{
1476	struct pvr_page_table_l2 *l2_table =
1477		&op_ctx->mmu_ctx->page_table_l2;
1478	struct pvr_page_table_l2_entry_raw *entry_raw =
1479		pvr_page_table_l2_get_entry_raw(l2_table,
1480						op_ctx->curr_page.l2_idx);
1481
1482	pvr_page_table_l2_entry_raw_set(entry_raw,
1483					child_table->backing_page.dma_addr);
1484
1485	child_table->parent = l2_table;
1486	child_table->parent_idx = op_ctx->curr_page.l2_idx;
1487	l2_table->entries[op_ctx->curr_page.l2_idx] = child_table;
1488	++l2_table->entry_count;
1489	op_ctx->curr_page.l1_table = child_table;
1490}
1491
1492/**
1493 * pvr_page_table_l2_remove() - Remove a level 1 page table from a level 2 page
1494 * table.
1495 * @op_ctx: Target MMU op context pointing at the L2 entry to remove.
1496 *
1497 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1498 * valid L2 entry.
1499 */
1500static void
1501pvr_page_table_l2_remove(struct pvr_mmu_op_context *op_ctx)
1502{
1503	struct pvr_page_table_l2 *l2_table =
1504		&op_ctx->mmu_ctx->page_table_l2;
1505	struct pvr_page_table_l2_entry_raw *entry_raw =
1506		pvr_page_table_l2_get_entry_raw(l2_table,
1507						op_ctx->curr_page.l1_table->parent_idx);
1508
1509	WARN_ON(op_ctx->curr_page.l1_table->parent != l2_table);
1510
1511	pvr_page_table_l2_entry_raw_clear(entry_raw);
1512
1513	l2_table->entries[op_ctx->curr_page.l1_table->parent_idx] = NULL;
1514	op_ctx->curr_page.l1_table->parent_idx = PVR_IDX_INVALID;
1515	op_ctx->curr_page.l1_table->next_free = op_ctx->unmap.l1_free_tables;
1516	op_ctx->unmap.l1_free_tables = op_ctx->curr_page.l1_table;
1517	op_ctx->curr_page.l1_table = NULL;
1518
1519	--l2_table->entry_count;
1520}
1521
1522/**
1523 * pvr_page_table_l1_insert() - Insert an entry referring to a level 0 page
1524 * table into a level 1 page table.
1525 * @op_ctx: Target MMU op context pointing at the entry to insert the L0 page
1526 * table into.
1527 * @child_table: L0 page table to insert.
1528 *
1529 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1530 * valid L1 entry.
1531 *
1532 * It is the caller's responsibility to execute any memory barries to ensure
1533 * that the creation of @child_table is ordered before the L1 entry is inserted.
1534 */
1535static void
1536pvr_page_table_l1_insert(struct pvr_mmu_op_context *op_ctx,
1537			 struct pvr_page_table_l0 *child_table)
1538{
1539	struct pvr_page_table_l1_entry_raw *entry_raw =
1540		pvr_page_table_l1_get_entry_raw(op_ctx->curr_page.l1_table,
1541						op_ctx->curr_page.l1_idx);
1542
1543	pvr_page_table_l1_entry_raw_set(entry_raw,
1544					child_table->backing_page.dma_addr);
1545
1546	child_table->parent = op_ctx->curr_page.l1_table;
1547	child_table->parent_idx = op_ctx->curr_page.l1_idx;
1548	op_ctx->curr_page.l1_table->entries[op_ctx->curr_page.l1_idx] = child_table;
1549	++op_ctx->curr_page.l1_table->entry_count;
1550	op_ctx->curr_page.l0_table = child_table;
1551}
1552
1553/**
1554 * pvr_page_table_l1_remove() - Remove a level 0 page table from a level 1 page
1555 *                              table.
1556 * @op_ctx: Target MMU op context pointing at the L1 entry to remove.
1557 *
1558 * If this function results in the L1 table becoming empty, it will be removed
1559 * from its parent level 2 page table and destroyed.
1560 *
1561 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1562 * valid L1 entry.
1563 */
1564static void
1565pvr_page_table_l1_remove(struct pvr_mmu_op_context *op_ctx)
1566{
1567	struct pvr_page_table_l1_entry_raw *entry_raw =
1568		pvr_page_table_l1_get_entry_raw(op_ctx->curr_page.l0_table->parent,
1569						op_ctx->curr_page.l0_table->parent_idx);
1570
1571	WARN_ON(op_ctx->curr_page.l0_table->parent !=
1572		op_ctx->curr_page.l1_table);
1573
1574	pvr_page_table_l1_entry_raw_clear(entry_raw);
1575
1576	op_ctx->curr_page.l1_table->entries[op_ctx->curr_page.l0_table->parent_idx] = NULL;
1577	op_ctx->curr_page.l0_table->parent_idx = PVR_IDX_INVALID;
1578	op_ctx->curr_page.l0_table->next_free = op_ctx->unmap.l0_free_tables;
1579	op_ctx->unmap.l0_free_tables = op_ctx->curr_page.l0_table;
1580	op_ctx->curr_page.l0_table = NULL;
1581
1582	if (--op_ctx->curr_page.l1_table->entry_count == 0) {
1583		/* Clear the parent L2 page table entry. */
1584		if (op_ctx->curr_page.l1_table->parent_idx != PVR_IDX_INVALID)
1585			pvr_page_table_l2_remove(op_ctx);
1586	}
1587}
1588
1589/**
1590 * pvr_page_table_l0_insert() - Insert an entry referring to a physical page
1591 * into a level 0 page table.
1592 * @op_ctx: Target MMU op context pointing at the L0 entry to insert.
1593 * @dma_addr: Target DMA address to be referenced by the new entry.
1594 * @flags: Page options to be stored in the new entry.
1595 *
1596 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1597 * valid L0 entry.
1598 */
1599static void
1600pvr_page_table_l0_insert(struct pvr_mmu_op_context *op_ctx,
1601			 dma_addr_t dma_addr, struct pvr_page_flags_raw flags)
1602{
1603	struct pvr_page_table_l0_entry_raw *entry_raw =
1604		pvr_page_table_l0_get_entry_raw(op_ctx->curr_page.l0_table,
1605						op_ctx->curr_page.l0_idx);
1606
1607	pvr_page_table_l0_entry_raw_set(entry_raw, dma_addr, flags);
1608
1609	/*
1610	 * There is no entry to set here - we don't keep a mirror of
1611	 * individual pages.
1612	 */
1613
1614	++op_ctx->curr_page.l0_table->entry_count;
1615}
1616
1617/**
1618 * pvr_page_table_l0_remove() - Remove a physical page from a level 0 page
1619 * table.
1620 * @op_ctx: Target MMU op context pointing at the L0 entry to remove.
1621 *
1622 * If this function results in the L0 table becoming empty, it will be removed
1623 * from its parent L1 page table and destroyed.
1624 *
1625 * It is the caller's responsibility to ensure @op_ctx.curr_page points to a
1626 * valid L0 entry.
1627 */
1628static void
1629pvr_page_table_l0_remove(struct pvr_mmu_op_context *op_ctx)
1630{
1631	struct pvr_page_table_l0_entry_raw *entry_raw =
1632		pvr_page_table_l0_get_entry_raw(op_ctx->curr_page.l0_table,
1633						op_ctx->curr_page.l0_idx);
1634
1635	pvr_page_table_l0_entry_raw_clear(entry_raw);
1636
1637	/*
1638	 * There is no entry to clear here - we don't keep a mirror of
1639	 * individual pages.
1640	 */
1641
1642	if (--op_ctx->curr_page.l0_table->entry_count == 0) {
1643		/* Clear the parent L1 page table entry. */
1644		if (op_ctx->curr_page.l0_table->parent_idx != PVR_IDX_INVALID)
1645			pvr_page_table_l1_remove(op_ctx);
1646	}
1647}
1648
1649/**
1650 * DOC: Page table index utilities
1651 */
1652
1653/**
1654 * pvr_page_table_l2_idx() - Calculate the level 2 page table index for a
1655 *                           device-virtual address.
1656 * @device_addr: Target device-virtual address.
1657 *
1658 * This function does not perform any bounds checking - it is the caller's
1659 * responsibility to ensure that @device_addr is valid before interpreting
1660 * the result.
1661 *
1662 * Return:
1663 * The index into a level 2 page table corresponding to @device_addr.
1664 */
1665static u16
1666pvr_page_table_l2_idx(u64 device_addr)
1667{
1668	return (device_addr & ~ROGUE_MMUCTRL_VADDR_PC_INDEX_CLRMSK) >>
1669	       ROGUE_MMUCTRL_VADDR_PC_INDEX_SHIFT;
1670}
1671
1672/**
1673 * pvr_page_table_l1_idx() - Calculate the level 1 page table index for a
1674 *                           device-virtual address.
1675 * @device_addr: Target device-virtual address.
1676 *
1677 * This function does not perform any bounds checking - it is the caller's
1678 * responsibility to ensure that @device_addr is valid before interpreting
1679 * the result.
1680 *
1681 * Return:
1682 * The index into a level 1 page table corresponding to @device_addr.
1683 */
1684static u16
1685pvr_page_table_l1_idx(u64 device_addr)
1686{
1687	return (device_addr & ~ROGUE_MMUCTRL_VADDR_PD_INDEX_CLRMSK) >>
1688	       ROGUE_MMUCTRL_VADDR_PD_INDEX_SHIFT;
1689}
1690
1691/**
1692 * pvr_page_table_l0_idx() - Calculate the level 0 page table index for a
1693 *                           device-virtual address.
1694 * @device_addr: Target device-virtual address.
1695 *
1696 * This function does not perform any bounds checking - it is the caller's
1697 * responsibility to ensure that @device_addr is valid before interpreting
1698 * the result.
1699 *
1700 * Return:
1701 * The index into a level 0 page table corresponding to @device_addr.
1702 */
1703static u16
1704pvr_page_table_l0_idx(u64 device_addr)
1705{
1706	return (device_addr & ~ROGUE_MMUCTRL_VADDR_PT_INDEX_CLRMSK) >>
1707	       ROGUE_MMUCTRL_PAGE_X_RANGE_SHIFT;
1708}
1709
1710/**
1711 * DOC: High-level page table operations
1712 */
1713
1714/**
1715 * pvr_page_table_l1_get_or_insert() - Retrieves (optionally inserting if
1716 * necessary) a level 1 page table from the specified level 2 page table entry.
1717 * @op_ctx: Target MMU op context.
1718 * @should_insert: [IN] Specifies whether new page tables should be inserted
1719 * when empty page table entries are encountered during traversal.
1720 *
1721 * Return:
1722 *  * 0 on success, or
1723 *
1724 *    If @should_insert is %false:
1725 *     * -%ENXIO if a level 1 page table would have been inserted.
1726 *
1727 *    If @should_insert is %true:
1728 *     * Any error encountered while inserting the level 1 page table.
1729 */
1730static int
1731pvr_page_table_l1_get_or_insert(struct pvr_mmu_op_context *op_ctx,
1732				bool should_insert)
1733{
1734	struct pvr_page_table_l2 *l2_table =
1735		&op_ctx->mmu_ctx->page_table_l2;
1736	struct pvr_page_table_l1 *table;
1737
1738	if (pvr_page_table_l2_entry_is_valid(l2_table,
1739					     op_ctx->curr_page.l2_idx)) {
1740		op_ctx->curr_page.l1_table =
1741			l2_table->entries[op_ctx->curr_page.l2_idx];
1742		return 0;
1743	}
1744
1745	if (!should_insert)
1746		return -ENXIO;
1747
1748	/* Take a prealloced table. */
1749	table = op_ctx->map.l1_prealloc_tables;
1750	if (!table)
1751		return -ENOMEM;
1752
1753	/* Pop */
1754	op_ctx->map.l1_prealloc_tables = table->next_free;
1755	table->next_free = NULL;
1756
1757	/* Ensure new table is fully written out before adding to L2 page table. */
1758	wmb();
1759
1760	pvr_page_table_l2_insert(op_ctx, table);
1761
1762	return 0;
1763}
1764
1765/**
1766 * pvr_page_table_l0_get_or_insert() - Retrieves (optionally inserting if
1767 * necessary) a level 0 page table from the specified level 1 page table entry.
1768 * @op_ctx: Target MMU op context.
1769 * @should_insert: [IN] Specifies whether new page tables should be inserted
1770 * when empty page table entries are encountered during traversal.
1771 *
1772 * Return:
1773 *  * 0 on success,
1774 *
1775 *    If @should_insert is %false:
1776 *     * -%ENXIO if a level 0 page table would have been inserted.
1777 *
1778 *    If @should_insert is %true:
1779 *     * Any error encountered while inserting the level 0 page table.
1780 */
1781static int
1782pvr_page_table_l0_get_or_insert(struct pvr_mmu_op_context *op_ctx,
1783				bool should_insert)
1784{
1785	struct pvr_page_table_l0 *table;
1786
1787	if (pvr_page_table_l1_entry_is_valid(op_ctx->curr_page.l1_table,
1788					     op_ctx->curr_page.l1_idx)) {
1789		op_ctx->curr_page.l0_table =
1790			op_ctx->curr_page.l1_table->entries[op_ctx->curr_page.l1_idx];
1791		return 0;
1792	}
1793
1794	if (!should_insert)
1795		return -ENXIO;
1796
1797	/* Take a prealloced table. */
1798	table = op_ctx->map.l0_prealloc_tables;
1799	if (!table)
1800		return -ENOMEM;
1801
1802	/* Pop */
1803	op_ctx->map.l0_prealloc_tables = table->next_free;
1804	table->next_free = NULL;
1805
1806	/* Ensure new table is fully written out before adding to L1 page table. */
1807	wmb();
1808
1809	pvr_page_table_l1_insert(op_ctx, table);
1810
1811	return 0;
1812}
1813
1814/**
1815 * pvr_mmu_context_create() - Create an MMU context.
1816 * @pvr_dev: PVR device associated with owning VM context.
1817 *
1818 * Returns:
1819 *  * Newly created MMU context object on success, or
1820 *  * -%ENOMEM if no memory is available,
1821 *  * Any error code returned by pvr_page_table_l2_init().
1822 */
1823struct pvr_mmu_context *pvr_mmu_context_create(struct pvr_device *pvr_dev)
1824{
1825	struct pvr_mmu_context *ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1826	int err;
1827
1828	if (!ctx)
1829		return ERR_PTR(-ENOMEM);
1830
1831	err = pvr_page_table_l2_init(&ctx->page_table_l2, pvr_dev);
1832	if (err)
1833		return ERR_PTR(err);
1834
1835	ctx->pvr_dev = pvr_dev;
1836
1837	return ctx;
1838}
1839
1840/**
1841 * pvr_mmu_context_destroy() - Destroy an MMU context.
1842 * @ctx: Target MMU context.
1843 */
1844void pvr_mmu_context_destroy(struct pvr_mmu_context *ctx)
1845{
1846	pvr_page_table_l2_fini(&ctx->page_table_l2);
1847	kfree(ctx);
1848}
1849
1850/**
1851 * pvr_mmu_get_root_table_dma_addr() - Get the DMA address of the root of the
1852 * page table structure behind a VM context.
1853 * @ctx: Target MMU context.
1854 */
1855dma_addr_t pvr_mmu_get_root_table_dma_addr(struct pvr_mmu_context *ctx)
1856{
1857	return ctx->page_table_l2.backing_page.dma_addr;
1858}
1859
1860/**
1861 * pvr_page_table_l1_alloc() - Allocate a l1 page_table object.
1862 * @ctx: MMU context of owning VM context.
1863 *
1864 * Returns:
1865 *  * Newly created page table object on success, or
1866 *  * -%ENOMEM if no memory is available,
1867 *  * Any error code returned by pvr_page_table_l1_init().
1868 */
1869static struct pvr_page_table_l1 *
1870pvr_page_table_l1_alloc(struct pvr_mmu_context *ctx)
1871{
1872	int err;
1873
1874	struct pvr_page_table_l1 *table =
1875		kzalloc(sizeof(*table), GFP_KERNEL);
1876
1877	if (!table)
1878		return ERR_PTR(-ENOMEM);
1879
1880	err = pvr_page_table_l1_init(table, ctx->pvr_dev);
1881	if (err) {
1882		kfree(table);
1883		return ERR_PTR(err);
1884	}
1885
1886	return table;
1887}
1888
1889/**
1890 * pvr_page_table_l0_alloc() - Allocate a l0 page_table object.
1891 * @ctx: MMU context of owning VM context.
1892 *
1893 * Returns:
1894 *  * Newly created page table object on success, or
1895 *  * -%ENOMEM if no memory is available,
1896 *  * Any error code returned by pvr_page_table_l0_init().
1897 */
1898static struct pvr_page_table_l0 *
1899pvr_page_table_l0_alloc(struct pvr_mmu_context *ctx)
1900{
1901	int err;
1902
1903	struct pvr_page_table_l0 *table =
1904		kzalloc(sizeof(*table), GFP_KERNEL);
1905
1906	if (!table)
1907		return ERR_PTR(-ENOMEM);
1908
1909	err = pvr_page_table_l0_init(table, ctx->pvr_dev);
1910	if (err) {
1911		kfree(table);
1912		return ERR_PTR(err);
1913	}
1914
1915	return table;
1916}
1917
1918/**
1919 * pvr_mmu_op_context_require_sync() - Mark an MMU op context as requiring a
1920 * sync operation for the referenced page tables up to a specified level.
1921 * @op_ctx: Target MMU op context.
1922 * @level: Maximum page table level for which a sync is required.
1923 */
1924static void
1925pvr_mmu_op_context_require_sync(struct pvr_mmu_op_context *op_ctx,
1926				enum pvr_mmu_sync_level level)
1927{
1928	if (op_ctx->sync_level_required < level)
1929		op_ctx->sync_level_required = level;
1930}
1931
1932/**
1933 * pvr_mmu_op_context_sync_manual() - Trigger a sync of some or all of the
1934 * page tables referenced by a MMU op context.
1935 * @op_ctx: Target MMU op context.
1936 * @level: Maximum page table level to sync.
1937 *
1938 * Do not call this function directly. Instead use
1939 * pvr_mmu_op_context_sync_partial() which is checked against the current
1940 * value of &op_ctx->sync_level_required as set by
1941 * pvr_mmu_op_context_require_sync().
1942 */
1943static void
1944pvr_mmu_op_context_sync_manual(struct pvr_mmu_op_context *op_ctx,
1945			       enum pvr_mmu_sync_level level)
1946{
1947	/*
1948	 * We sync the page table levels in ascending order (starting from the
1949	 * leaf node) to ensure consistency.
1950	 */
1951
1952	WARN_ON(level < PVR_MMU_SYNC_LEVEL_NONE);
1953
1954	if (level <= PVR_MMU_SYNC_LEVEL_NONE)
1955		return;
1956
1957	if (op_ctx->curr_page.l0_table)
1958		pvr_page_table_l0_sync(op_ctx->curr_page.l0_table);
1959
1960	if (level < PVR_MMU_SYNC_LEVEL_1)
1961		return;
1962
1963	if (op_ctx->curr_page.l1_table)
1964		pvr_page_table_l1_sync(op_ctx->curr_page.l1_table);
1965
1966	if (level < PVR_MMU_SYNC_LEVEL_2)
1967		return;
1968
1969	pvr_page_table_l2_sync(&op_ctx->mmu_ctx->page_table_l2);
1970}
1971
1972/**
1973 * pvr_mmu_op_context_sync_partial() - Trigger a sync of some or all of the
1974 * page tables referenced by a MMU op context.
1975 * @op_ctx: Target MMU op context.
1976 * @level: Requested page table level to sync up to (inclusive).
1977 *
1978 * If @level is greater than the maximum level recorded by @op_ctx as requiring
1979 * a sync operation, only the previously recorded maximum will be used.
1980 *
1981 * Additionally, if @level is greater than or equal to the maximum level
1982 * recorded by @op_ctx as requiring a sync operation, that maximum level will be
1983 * reset as a full sync will be performed. This is equivalent to calling
1984 * pvr_mmu_op_context_sync().
1985 */
1986static void
1987pvr_mmu_op_context_sync_partial(struct pvr_mmu_op_context *op_ctx,
1988				enum pvr_mmu_sync_level level)
1989{
1990	/*
1991	 * If the requested sync level is greater than or equal to the
1992	 * currently required sync level, we do two things:
1993	 *  * Don't waste time syncing levels we haven't previously marked as
1994	 *    requiring a sync, and
1995	 *  * Reset the required sync level since we are about to sync
1996	 *    everything that was previously marked as requiring a sync.
1997	 */
1998	if (level >= op_ctx->sync_level_required) {
1999		level = op_ctx->sync_level_required;
2000		op_ctx->sync_level_required = PVR_MMU_SYNC_LEVEL_NONE;
2001	}
2002
2003	pvr_mmu_op_context_sync_manual(op_ctx, level);
2004}
2005
2006/**
2007 * pvr_mmu_op_context_sync() - Trigger a sync of every page table referenced by
2008 * a MMU op context.
2009 * @op_ctx: Target MMU op context.
2010 *
2011 * The maximum level marked internally as requiring a sync will be reset so
2012 * that subsequent calls to this function will be no-ops unless @op_ctx is
2013 * otherwise updated.
2014 */
2015static void
2016pvr_mmu_op_context_sync(struct pvr_mmu_op_context *op_ctx)
2017{
2018	pvr_mmu_op_context_sync_manual(op_ctx, op_ctx->sync_level_required);
2019
2020	op_ctx->sync_level_required = PVR_MMU_SYNC_LEVEL_NONE;
2021}
2022
2023/**
2024 * pvr_mmu_op_context_load_tables() - Load pointers to tables in each level of
2025 * the page table tree structure needed to reference the physical page
2026 * referenced by a MMU op context.
2027 * @op_ctx: Target MMU op context.
2028 * @should_create: Specifies whether new page tables should be created when
2029 * empty page table entries are encountered during traversal.
2030 * @load_level_required: Maximum page table level to load.
2031 *
2032 * If @should_create is %true, this function may modify the stored required
2033 * sync level of @op_ctx as new page tables are created and inserted into their
2034 * respective parents.
2035 *
2036 * Since there is only one root page table, it is technically incorrect to call
2037 * this function with a value of @load_level_required greater than or equal to
2038 * the root level number. However, this is not explicitly disallowed here.
2039 *
2040 * Return:
2041 *  * 0 on success,
2042 *  * Any error returned by pvr_page_table_l1_get_or_create() if
2043 *    @load_level_required >= 1 except -%ENXIO, or
2044 *  * Any error returned by pvr_page_table_l0_get_or_create() if
2045 *    @load_level_required >= 0 except -%ENXIO.
2046 */
2047static int
2048pvr_mmu_op_context_load_tables(struct pvr_mmu_op_context *op_ctx,
2049			       bool should_create,
2050			       enum pvr_mmu_sync_level load_level_required)
2051{
2052	const struct pvr_page_table_l1 *l1_head_before =
2053		op_ctx->map.l1_prealloc_tables;
2054	const struct pvr_page_table_l0 *l0_head_before =
2055		op_ctx->map.l0_prealloc_tables;
2056	int err;
2057
2058	/* Clear tables we're about to fetch in case of error states. */
2059	if (load_level_required >= PVR_MMU_SYNC_LEVEL_1)
2060		op_ctx->curr_page.l1_table = NULL;
2061
2062	if (load_level_required >= PVR_MMU_SYNC_LEVEL_0)
2063		op_ctx->curr_page.l0_table = NULL;
2064
2065	/* Get or create L1 page table. */
2066	if (load_level_required >= PVR_MMU_SYNC_LEVEL_1) {
2067		err = pvr_page_table_l1_get_or_insert(op_ctx, should_create);
2068		if (err) {
2069			/*
2070			 * If @should_create is %false and no L1 page table was
2071			 * found, return early but without an error. Since
2072			 * pvr_page_table_l1_get_or_create() can only return
2073			 * -%ENXIO if @should_create is %false, there is no
2074			 * need to check it here.
2075			 */
2076			if (err == -ENXIO)
2077				err = 0;
2078
2079			return err;
2080		}
2081	}
2082
2083	/* Get or create L0 page table. */
2084	if (load_level_required >= PVR_MMU_SYNC_LEVEL_0) {
2085		err = pvr_page_table_l0_get_or_insert(op_ctx, should_create);
2086		if (err) {
2087			/*
2088			 * If @should_create is %false and no L0 page table was
2089			 * found, return early but without an error. Since
2090			 * pvr_page_table_l0_get_or_insert() can only return
2091			 * -%ENXIO if @should_create is %false, there is no
2092			 * need to check it here.
2093			 */
2094			if (err == -ENXIO)
2095				err = 0;
2096
2097			/*
2098			 * At this point, an L1 page table could have been
2099			 * inserted but is now empty due to the failed attempt
2100			 * at inserting an L0 page table. In this instance, we
2101			 * must remove the empty L1 page table ourselves as
2102			 * pvr_page_table_l1_remove() is never called as part
2103			 * of the error path in
2104			 * pvr_page_table_l0_get_or_insert().
2105			 */
2106			if (l1_head_before != op_ctx->map.l1_prealloc_tables) {
2107				pvr_page_table_l2_remove(op_ctx);
2108				pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_2);
2109			}
2110
2111			return err;
2112		}
2113	}
2114
2115	/*
2116	 * A sync is only needed if table objects were inserted. This can be
2117	 * inferred by checking if the pointer at the head of the linked list
2118	 * has changed.
2119	 */
2120	if (l1_head_before != op_ctx->map.l1_prealloc_tables)
2121		pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_2);
2122	else if (l0_head_before != op_ctx->map.l0_prealloc_tables)
2123		pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_1);
2124
2125	return 0;
2126}
2127
2128/**
2129 * pvr_mmu_op_context_set_curr_page() - Reassign the current page of an MMU op
2130 * context, syncing any page tables previously assigned to it which are no
2131 * longer relevant.
2132 * @op_ctx: Target MMU op context.
2133 * @device_addr: New pointer target.
2134 * @should_create: Specify whether new page tables should be created when
2135 * empty page table entries are encountered during traversal.
2136 *
2137 * This function performs a full sync on the pointer, regardless of which
2138 * levels are modified.
2139 *
2140 * Return:
2141 *  * 0 on success, or
2142 *  * Any error returned by pvr_mmu_op_context_load_tables().
2143 */
2144static int
2145pvr_mmu_op_context_set_curr_page(struct pvr_mmu_op_context *op_ctx,
2146				 u64 device_addr, bool should_create)
2147{
2148	pvr_mmu_op_context_sync(op_ctx);
2149
2150	op_ctx->curr_page.l2_idx = pvr_page_table_l2_idx(device_addr);
2151	op_ctx->curr_page.l1_idx = pvr_page_table_l1_idx(device_addr);
2152	op_ctx->curr_page.l0_idx = pvr_page_table_l0_idx(device_addr);
2153	op_ctx->curr_page.l1_table = NULL;
2154	op_ctx->curr_page.l0_table = NULL;
2155
2156	return pvr_mmu_op_context_load_tables(op_ctx, should_create,
2157					      PVR_MMU_SYNC_LEVEL_1);
2158}
2159
2160/**
2161 * pvr_mmu_op_context_next_page() - Advance the current page of an MMU op
2162 * context.
2163 * @op_ctx: Target MMU op context.
2164 * @should_create: Specify whether new page tables should be created when
2165 * empty page table entries are encountered during traversal.
2166 *
2167 * If @should_create is %false, it is the caller's responsibility to verify that
2168 * the state of the table references in @op_ctx is valid on return. If -%ENXIO
2169 * is returned, at least one of the table references is invalid. It should be
2170 * noted that @op_ctx as a whole will be left in a valid state if -%ENXIO is
2171 * returned, unlike other error codes. The caller should check which references
2172 * are invalid by comparing them to %NULL. Only &@ptr->l2_table is guaranteed
2173 * to be valid, since it represents the root of the page table tree structure.
2174 *
2175 * Return:
2176 *  * 0 on success,
2177 *  * -%EPERM if the operation would wrap at the top of the page table
2178 *    hierarchy,
2179 *  * -%ENXIO if @should_create is %false and a page table of any level would
2180 *    have otherwise been created, or
2181 *  * Any error returned while attempting to create missing page tables if
2182 *    @should_create is %true.
2183 */
2184static int
2185pvr_mmu_op_context_next_page(struct pvr_mmu_op_context *op_ctx,
2186			     bool should_create)
2187{
2188	s8 load_level_required = PVR_MMU_SYNC_LEVEL_NONE;
2189
2190	if (++op_ctx->curr_page.l0_idx != ROGUE_MMUCTRL_ENTRIES_PT_VALUE_X)
2191		goto load_tables;
2192
2193	op_ctx->curr_page.l0_idx = 0;
2194	load_level_required = PVR_MMU_SYNC_LEVEL_0;
2195
2196	if (++op_ctx->curr_page.l1_idx != ROGUE_MMUCTRL_ENTRIES_PD_VALUE)
2197		goto load_tables;
2198
2199	op_ctx->curr_page.l1_idx = 0;
2200	load_level_required = PVR_MMU_SYNC_LEVEL_1;
2201
2202	if (++op_ctx->curr_page.l2_idx != ROGUE_MMUCTRL_ENTRIES_PC_VALUE)
2203		goto load_tables;
2204
2205	/*
2206	 * If the pattern continued, we would set &op_ctx->curr_page.l2_idx to
2207	 * zero here. However, that would wrap the top layer of the page table
2208	 * hierarchy which is not a valid operation. Instead, we warn and return
2209	 * an error.
2210	 */
2211	WARN(true,
2212	     "%s(%p) attempted to loop the top of the page table hierarchy",
2213	     __func__, op_ctx);
2214	return -EPERM;
2215
2216	/* If indices have wrapped, we need to load new tables. */
2217load_tables:
2218	/* First, flush tables which will be unloaded. */
2219	pvr_mmu_op_context_sync_partial(op_ctx, load_level_required);
2220
2221	/* Then load tables from the required level down. */
2222	return pvr_mmu_op_context_load_tables(op_ctx, should_create,
2223					      load_level_required);
2224}
2225
2226/**
2227 * DOC: Single page operations
2228 */
2229
2230/**
2231 * pvr_page_create() - Create a device-virtual memory page and insert it into
2232 * a level 0 page table.
2233 * @op_ctx: Target MMU op context pointing at the device-virtual address of the
2234 * target page.
2235 * @dma_addr: DMA address of the physical page backing the created page.
2236 * @flags: Page options saved on the level 0 page table entry for reading by
2237 *         the device.
2238 *
2239 * Return:
2240 *  * 0 on success, or
2241 *  * -%EEXIST if the requested page already exists.
2242 */
2243static int
2244pvr_page_create(struct pvr_mmu_op_context *op_ctx, dma_addr_t dma_addr,
2245		struct pvr_page_flags_raw flags)
2246{
2247	/* Do not create a new page if one already exists. */
2248	if (pvr_page_table_l0_entry_is_valid(op_ctx->curr_page.l0_table,
2249					     op_ctx->curr_page.l0_idx)) {
2250		return -EEXIST;
2251	}
2252
2253	pvr_page_table_l0_insert(op_ctx, dma_addr, flags);
2254
2255	pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_0);
2256
2257	return 0;
2258}
2259
2260/**
2261 * pvr_page_destroy() - Destroy a device page after removing it from its
2262 * parent level 0 page table.
2263 * @op_ctx: Target MMU op context.
2264 */
2265static void
2266pvr_page_destroy(struct pvr_mmu_op_context *op_ctx)
2267{
2268	/* Do nothing if the page does not exist. */
2269	if (!pvr_page_table_l0_entry_is_valid(op_ctx->curr_page.l0_table,
2270					      op_ctx->curr_page.l0_idx)) {
2271		return;
2272	}
2273
2274	/* Clear the parent L0 page table entry. */
2275	pvr_page_table_l0_remove(op_ctx);
2276
2277	pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_0);
2278}
2279
2280/**
2281 * pvr_mmu_op_context_destroy() - Destroy an MMU op context.
2282 * @op_ctx: Target MMU op context.
2283 */
2284void pvr_mmu_op_context_destroy(struct pvr_mmu_op_context *op_ctx)
2285{
2286	const bool flush_caches =
2287		op_ctx->sync_level_required != PVR_MMU_SYNC_LEVEL_NONE;
2288
2289	pvr_mmu_op_context_sync(op_ctx);
2290
2291	/* Unmaps should be flushed immediately. Map flushes can be deferred. */
2292	if (flush_caches && !op_ctx->map.sgt)
2293		pvr_mmu_flush_exec(op_ctx->mmu_ctx->pvr_dev, true);
2294
2295	while (op_ctx->map.l0_prealloc_tables) {
2296		struct pvr_page_table_l0 *tmp = op_ctx->map.l0_prealloc_tables;
2297
2298		op_ctx->map.l0_prealloc_tables =
2299			op_ctx->map.l0_prealloc_tables->next_free;
2300		pvr_page_table_l0_free(tmp);
2301	}
2302
2303	while (op_ctx->map.l1_prealloc_tables) {
2304		struct pvr_page_table_l1 *tmp = op_ctx->map.l1_prealloc_tables;
2305
2306		op_ctx->map.l1_prealloc_tables =
2307			op_ctx->map.l1_prealloc_tables->next_free;
2308		pvr_page_table_l1_free(tmp);
2309	}
2310
2311	while (op_ctx->unmap.l0_free_tables) {
2312		struct pvr_page_table_l0 *tmp = op_ctx->unmap.l0_free_tables;
2313
2314		op_ctx->unmap.l0_free_tables =
2315			op_ctx->unmap.l0_free_tables->next_free;
2316		pvr_page_table_l0_free(tmp);
2317	}
2318
2319	while (op_ctx->unmap.l1_free_tables) {
2320		struct pvr_page_table_l1 *tmp = op_ctx->unmap.l1_free_tables;
2321
2322		op_ctx->unmap.l1_free_tables =
2323			op_ctx->unmap.l1_free_tables->next_free;
2324		pvr_page_table_l1_free(tmp);
2325	}
2326
2327	kfree(op_ctx);
2328}
2329
2330/**
2331 * pvr_mmu_op_context_create() - Create an MMU op context.
2332 * @ctx: MMU context associated with owning VM context.
2333 * @sgt: Scatter gather table containing pages pinned for use by this context.
2334 * @sgt_offset: Start offset of the requested device-virtual memory mapping.
2335 * @size: Size in bytes of the requested device-virtual memory mapping. For an
2336 * unmapping, this should be zero so that no page tables are allocated.
2337 *
2338 * Returns:
2339 *  * Newly created MMU op context object on success, or
2340 *  * -%ENOMEM if no memory is available,
2341 *  * Any error code returned by pvr_page_table_l2_init().
2342 */
2343struct pvr_mmu_op_context *
2344pvr_mmu_op_context_create(struct pvr_mmu_context *ctx, struct sg_table *sgt,
2345			  u64 sgt_offset, u64 size)
2346{
2347	int err;
2348
2349	struct pvr_mmu_op_context *op_ctx =
2350		kzalloc(sizeof(*op_ctx), GFP_KERNEL);
2351
2352	if (!op_ctx)
2353		return ERR_PTR(-ENOMEM);
2354
2355	op_ctx->mmu_ctx = ctx;
2356	op_ctx->map.sgt = sgt;
2357	op_ctx->map.sgt_offset = sgt_offset;
2358	op_ctx->sync_level_required = PVR_MMU_SYNC_LEVEL_NONE;
2359
2360	if (size) {
2361		/*
2362		 * The number of page table objects we need to prealloc is
2363		 * indicated by the mapping size, start offset and the sizes
2364		 * of the areas mapped per PT or PD. The range calculation is
2365		 * identical to that for the index into a table for a device
2366		 * address, so we reuse those functions here.
2367		 */
2368		const u32 l1_start_idx = pvr_page_table_l2_idx(sgt_offset);
2369		const u32 l1_end_idx = pvr_page_table_l2_idx(sgt_offset + size);
2370		const u32 l1_count = l1_end_idx - l1_start_idx + 1;
2371		const u32 l0_start_idx = pvr_page_table_l1_idx(sgt_offset);
2372		const u32 l0_end_idx = pvr_page_table_l1_idx(sgt_offset + size);
2373		const u32 l0_count = l0_end_idx - l0_start_idx + 1;
2374
2375		/*
2376		 * Alloc and push page table entries until we have enough of
2377		 * each type, ending with linked lists of l0 and l1 entries in
2378		 * reverse order.
2379		 */
2380		for (int i = 0; i < l1_count; i++) {
2381			struct pvr_page_table_l1 *l1_tmp =
2382				pvr_page_table_l1_alloc(ctx);
2383
2384			err = PTR_ERR_OR_ZERO(l1_tmp);
2385			if (err)
2386				goto err_cleanup;
2387
2388			l1_tmp->next_free = op_ctx->map.l1_prealloc_tables;
2389			op_ctx->map.l1_prealloc_tables = l1_tmp;
2390		}
2391
2392		for (int i = 0; i < l0_count; i++) {
2393			struct pvr_page_table_l0 *l0_tmp =
2394				pvr_page_table_l0_alloc(ctx);
2395
2396			err = PTR_ERR_OR_ZERO(l0_tmp);
2397			if (err)
2398				goto err_cleanup;
2399
2400			l0_tmp->next_free = op_ctx->map.l0_prealloc_tables;
2401			op_ctx->map.l0_prealloc_tables = l0_tmp;
2402		}
2403	}
2404
2405	return op_ctx;
2406
2407err_cleanup:
2408	pvr_mmu_op_context_destroy(op_ctx);
2409
2410	return ERR_PTR(err);
2411}
2412
2413/**
2414 * pvr_mmu_op_context_unmap_curr_page() - Unmap pages from a memory context
2415 * starting from the current page of an MMU op context.
2416 * @op_ctx: Target MMU op context pointing at the first page to unmap.
2417 * @nr_pages: Number of pages to unmap.
2418 *
2419 * Return:
2420 *  * 0 on success, or
2421 *  * Any error encountered while advancing @op_ctx.curr_page with
2422 *    pvr_mmu_op_context_next_page() (except -%ENXIO).
2423 */
2424static int
2425pvr_mmu_op_context_unmap_curr_page(struct pvr_mmu_op_context *op_ctx,
2426				   u64 nr_pages)
2427{
2428	int err;
2429
2430	if (nr_pages == 0)
2431		return 0;
2432
2433	/*
2434	 * Destroy first page outside loop, as it doesn't require a page
2435	 * advance beforehand. If the L0 page table reference in
2436	 * @op_ctx.curr_page is %NULL, there cannot be a mapped page at
2437	 * @op_ctx.curr_page (so skip ahead).
2438	 */
2439	if (op_ctx->curr_page.l0_table)
2440		pvr_page_destroy(op_ctx);
2441
2442	for (u64 page = 1; page < nr_pages; ++page) {
2443		err = pvr_mmu_op_context_next_page(op_ctx, false);
2444		/*
2445		 * If the page table tree structure at @op_ctx.curr_page is
2446		 * incomplete, skip ahead. We don't care about unmapping pages
2447		 * that cannot exist.
2448		 *
2449		 * FIXME: This could be made more efficient by jumping ahead
2450		 * using pvr_mmu_op_context_set_curr_page().
2451		 */
2452		if (err == -ENXIO)
2453			continue;
2454		else if (err)
2455			return err;
2456
2457		pvr_page_destroy(op_ctx);
2458	}
2459
2460	return 0;
2461}
2462
2463/**
2464 * pvr_mmu_unmap() - Unmap pages from a memory context.
2465 * @op_ctx: Target MMU op context.
2466 * @device_addr: First device-virtual address to unmap.
2467 * @size: Size in bytes to unmap.
2468 *
2469 * The total amount of device-virtual memory unmapped is
2470 * @nr_pages * %PVR_DEVICE_PAGE_SIZE.
2471 *
2472 * Returns:
2473 *  * 0 on success, or
2474 *  * Any error code returned by pvr_page_table_ptr_init(), or
2475 *  * Any error code returned by pvr_page_table_ptr_unmap().
2476 */
2477int pvr_mmu_unmap(struct pvr_mmu_op_context *op_ctx, u64 device_addr, u64 size)
2478{
2479	int err = pvr_mmu_op_context_set_curr_page(op_ctx, device_addr, false);
2480
2481	if (err)
2482		return err;
2483
2484	return pvr_mmu_op_context_unmap_curr_page(op_ctx,
2485						  size >> PVR_DEVICE_PAGE_SHIFT);
2486}
2487
2488/**
2489 * pvr_mmu_map_sgl() - Map part of a scatter-gather table entry to
2490 * device-virtual memory.
2491 * @op_ctx: Target MMU op context pointing to the first page that should be
2492 * mapped.
2493 * @sgl: Target scatter-gather table entry.
2494 * @offset: Offset into @sgl to map from. Must result in a starting address
2495 * from @sgl which is CPU page-aligned.
2496 * @size: Size of the memory to be mapped in bytes. Must be a non-zero multiple
2497 * of the device page size.
2498 * @page_flags: Page options to be applied to every device-virtual memory page
2499 * in the created mapping.
2500 *
2501 * Return:
2502 *  * 0 on success,
2503 *  * -%EINVAL if the range specified by @offset and @size is not completely
2504 *    within @sgl, or
2505 *  * Any error encountered while creating a page with pvr_page_create(), or
2506 *  * Any error encountered while advancing @op_ctx.curr_page with
2507 *    pvr_mmu_op_context_next_page().
2508 */
2509static int
2510pvr_mmu_map_sgl(struct pvr_mmu_op_context *op_ctx, struct scatterlist *sgl,
2511		u64 offset, u64 size, struct pvr_page_flags_raw page_flags)
2512{
2513	const unsigned int pages = size >> PVR_DEVICE_PAGE_SHIFT;
2514	dma_addr_t dma_addr = sg_dma_address(sgl) + offset;
2515	const unsigned int dma_len = sg_dma_len(sgl);
2516	struct pvr_page_table_ptr ptr_copy;
2517	unsigned int page;
2518	int err;
2519
2520	if (size > dma_len || offset > dma_len - size)
2521		return -EINVAL;
2522
2523	/*
2524	 * Before progressing, save a copy of the start pointer so we can use
2525	 * it again if we enter an error state and have to destroy pages.
2526	 */
2527	memcpy(&ptr_copy, &op_ctx->curr_page, sizeof(ptr_copy));
2528
2529	/*
2530	 * Create first page outside loop, as it doesn't require a page advance
2531	 * beforehand.
2532	 */
2533	err = pvr_page_create(op_ctx, dma_addr, page_flags);
2534	if (err)
2535		return err;
2536
2537	for (page = 1; page < pages; ++page) {
2538		err = pvr_mmu_op_context_next_page(op_ctx, true);
2539		if (err)
2540			goto err_destroy_pages;
2541
2542		dma_addr += PVR_DEVICE_PAGE_SIZE;
2543
2544		err = pvr_page_create(op_ctx, dma_addr, page_flags);
2545		if (err)
2546			goto err_destroy_pages;
2547	}
2548
2549	return 0;
2550
2551err_destroy_pages:
2552	memcpy(&op_ctx->curr_page, &ptr_copy, sizeof(op_ctx->curr_page));
2553	err = pvr_mmu_op_context_unmap_curr_page(op_ctx, page);
2554
2555	return err;
2556}
2557
2558/**
2559 * pvr_mmu_map() - Map an object's virtual memory to physical memory.
2560 * @op_ctx: Target MMU op context.
2561 * @size: Size of memory to be mapped in bytes. Must be a non-zero multiple
2562 * of the device page size.
2563 * @flags: Flags from pvr_gem_object associated with the mapping.
2564 * @device_addr: Virtual device address to map to. Must be device page-aligned.
2565 *
2566 * Returns:
2567 *  * 0 on success, or
2568 *  * Any error code returned by pvr_page_table_ptr_init(), or
2569 *  * Any error code returned by pvr_mmu_map_sgl(), or
2570 *  * Any error code returned by pvr_page_table_ptr_next_page().
2571 */
2572int pvr_mmu_map(struct pvr_mmu_op_context *op_ctx, u64 size, u64 flags,
2573		u64 device_addr)
2574{
2575	struct pvr_page_table_ptr ptr_copy;
2576	struct pvr_page_flags_raw flags_raw;
2577	struct scatterlist *sgl;
2578	u64 mapped_size = 0;
2579	unsigned int count;
2580	int err;
2581
2582	if (!size)
2583		return 0;
2584
2585	if ((op_ctx->map.sgt_offset | size) & ~PVR_DEVICE_PAGE_MASK)
2586		return -EINVAL;
2587
2588	err = pvr_mmu_op_context_set_curr_page(op_ctx, device_addr, true);
2589	if (err)
2590		return -EINVAL;
2591
2592	memcpy(&ptr_copy, &op_ctx->curr_page, sizeof(ptr_copy));
2593
2594	flags_raw = pvr_page_flags_raw_create(false, false,
2595					      flags & DRM_PVR_BO_BYPASS_DEVICE_CACHE,
2596					      flags & DRM_PVR_BO_PM_FW_PROTECT);
2597
2598	/* Map scatter gather table */
2599	for_each_sgtable_dma_sg(op_ctx->map.sgt, sgl, count) {
2600		const size_t sgl_len = sg_dma_len(sgl);
2601		u64 sgl_offset, map_sgl_len;
2602
2603		if (sgl_len <= op_ctx->map.sgt_offset) {
2604			op_ctx->map.sgt_offset -= sgl_len;
2605			continue;
2606		}
2607
2608		sgl_offset = op_ctx->map.sgt_offset;
2609		map_sgl_len = min_t(u64, sgl_len - sgl_offset, size - mapped_size);
2610
2611		err = pvr_mmu_map_sgl(op_ctx, sgl, sgl_offset, map_sgl_len,
2612				      flags_raw);
2613		if (err)
2614			break;
2615
2616		/*
2617		 * Flag the L0 page table as requiring a flush when the MMU op
2618		 * context is destroyed.
2619		 */
2620		pvr_mmu_op_context_require_sync(op_ctx, PVR_MMU_SYNC_LEVEL_0);
2621
2622		op_ctx->map.sgt_offset = 0;
2623		mapped_size += map_sgl_len;
2624
2625		if (mapped_size >= size)
2626			break;
2627
2628		err = pvr_mmu_op_context_next_page(op_ctx, true);
2629		if (err)
2630			break;
2631	}
2632
2633	if (err && mapped_size) {
2634		memcpy(&op_ctx->curr_page, &ptr_copy, sizeof(op_ctx->curr_page));
2635		pvr_mmu_op_context_unmap_curr_page(op_ctx,
2636						   mapped_size >> PVR_DEVICE_PAGE_SHIFT);
2637	}
2638
2639	return err;
2640}
2641