1/*
2 * Copyright �� 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/dma-fence-array.h>
26#include <linux/dma-fence-chain.h>
27#include <linux/irq_work.h>
28#include <linux/prefetch.h>
29#include <linux/sched.h>
30#include <linux/sched/clock.h>
31#include <linux/sched/signal.h>
32#include <linux/sched/mm.h>
33
34#include "gem/i915_gem_context.h"
35#include "gt/intel_breadcrumbs.h"
36#include "gt/intel_context.h"
37#include "gt/intel_engine.h"
38#include "gt/intel_engine_heartbeat.h"
39#include "gt/intel_engine_regs.h"
40#include "gt/intel_gpu_commands.h"
41#include "gt/intel_reset.h"
42#include "gt/intel_ring.h"
43#include "gt/intel_rps.h"
44
45#include "i915_active.h"
46#include "i915_config.h"
47#include "i915_deps.h"
48#include "i915_driver.h"
49#include "i915_drv.h"
50#include "i915_trace.h"
51
52struct execute_cb {
53	struct irq_work work;
54	struct i915_sw_fence *fence;
55};
56
57static struct kmem_cache *slab_requests;
58static struct kmem_cache *slab_execute_cbs;
59
60static const char *i915_fence_get_driver_name(struct dma_fence *fence)
61{
62	return dev_name(to_request(fence)->i915->drm.dev);
63}
64
65static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
66{
67	const struct i915_gem_context *ctx;
68
69	/*
70	 * The timeline struct (as part of the ppgtt underneath a context)
71	 * may be freed when the request is no longer in use by the GPU.
72	 * We could extend the life of a context to beyond that of all
73	 * fences, possibly keeping the hw resource around indefinitely,
74	 * or we just give them a false name. Since
75	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
76	 * lie seems justifiable.
77	 */
78	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
79		return "signaled";
80
81	ctx = i915_request_gem_context(to_request(fence));
82	if (!ctx)
83		return "[" DRIVER_NAME "]";
84
85	return ctx->name;
86}
87
88static bool i915_fence_signaled(struct dma_fence *fence)
89{
90	return i915_request_completed(to_request(fence));
91}
92
93static bool i915_fence_enable_signaling(struct dma_fence *fence)
94{
95	return i915_request_enable_breadcrumb(to_request(fence));
96}
97
98static signed long i915_fence_wait(struct dma_fence *fence,
99				   bool interruptible,
100				   signed long timeout)
101{
102	return i915_request_wait_timeout(to_request(fence),
103					 interruptible | I915_WAIT_PRIORITY,
104					 timeout);
105}
106
107struct kmem_cache *i915_request_slab_cache(void)
108{
109	return slab_requests;
110}
111
112static void i915_fence_release(struct dma_fence *fence)
113{
114	struct i915_request *rq = to_request(fence);
115
116	GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
117		   rq->guc_prio != GUC_PRIO_FINI);
118
119	i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
120	if (rq->batch_res) {
121		i915_vma_resource_put(rq->batch_res);
122		rq->batch_res = NULL;
123	}
124
125	/*
126	 * The request is put onto a RCU freelist (i.e. the address
127	 * is immediately reused), mark the fences as being freed now.
128	 * Otherwise the debugobjects for the fences are only marked as
129	 * freed when the slab cache itself is freed, and so we would get
130	 * caught trying to reuse dead objects.
131	 */
132	i915_sw_fence_fini(&rq->submit);
133	i915_sw_fence_fini(&rq->semaphore);
134
135	/*
136	 * Keep one request on each engine for reserved use under mempressure.
137	 *
138	 * We do not hold a reference to the engine here and so have to be
139	 * very careful in what rq->engine we poke. The virtual engine is
140	 * referenced via the rq->context and we released that ref during
141	 * i915_request_retire(), ergo we must not dereference a virtual
142	 * engine here. Not that we would want to, as the only consumer of
143	 * the reserved engine->request_pool is the power management parking,
144	 * which must-not-fail, and that is only run on the physical engines.
145	 *
146	 * Since the request must have been executed to be have completed,
147	 * we know that it will have been processed by the HW and will
148	 * not be unsubmitted again, so rq->engine and rq->execution_mask
149	 * at this point is stable. rq->execution_mask will be a single
150	 * bit if the last and _only_ engine it could execution on was a
151	 * physical engine, if it's multiple bits then it started on and
152	 * could still be on a virtual engine. Thus if the mask is not a
153	 * power-of-two we assume that rq->engine may still be a virtual
154	 * engine and so a dangling invalid pointer that we cannot dereference
155	 *
156	 * For example, consider the flow of a bonded request through a virtual
157	 * engine. The request is created with a wide engine mask (all engines
158	 * that we might execute on). On processing the bond, the request mask
159	 * is reduced to one or more engines. If the request is subsequently
160	 * bound to a single engine, it will then be constrained to only
161	 * execute on that engine and never returned to the virtual engine
162	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
163	 * know that if the rq->execution_mask is a single bit, rq->engine
164	 * can be a physical engine with the exact corresponding mask.
165	 */
166	if (is_power_of_2(rq->execution_mask) &&
167	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
168		return;
169
170	kmem_cache_free(slab_requests, rq);
171}
172
173const struct dma_fence_ops i915_fence_ops = {
174	.get_driver_name = i915_fence_get_driver_name,
175	.get_timeline_name = i915_fence_get_timeline_name,
176	.enable_signaling = i915_fence_enable_signaling,
177	.signaled = i915_fence_signaled,
178	.wait = i915_fence_wait,
179	.release = i915_fence_release,
180};
181
182static void irq_execute_cb(struct irq_work *wrk)
183{
184	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
185
186	i915_sw_fence_complete(cb->fence);
187	kmem_cache_free(slab_execute_cbs, cb);
188}
189
190static __always_inline void
191__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
192{
193	struct execute_cb *cb, *cn;
194
195	if (llist_empty(&rq->execute_cb))
196		return;
197
198	llist_for_each_entry_safe(cb, cn,
199				  llist_del_all(&rq->execute_cb),
200				  work.node.llist)
201		fn(&cb->work);
202}
203
204static void __notify_execute_cb_irq(struct i915_request *rq)
205{
206	__notify_execute_cb(rq, irq_work_queue);
207}
208
209static bool irq_work_imm(struct irq_work *wrk)
210{
211	wrk->func(wrk);
212	return false;
213}
214
215void i915_request_notify_execute_cb_imm(struct i915_request *rq)
216{
217	__notify_execute_cb(rq, irq_work_imm);
218}
219
220static void __i915_request_fill(struct i915_request *rq, u8 val)
221{
222	void *vaddr = rq->ring->vaddr;
223	u32 head;
224
225	head = rq->infix;
226	if (rq->postfix < head) {
227		memset(vaddr + head, val, rq->ring->size - head);
228		head = 0;
229	}
230	memset(vaddr + head, val, rq->postfix - head);
231}
232
233/**
234 * i915_request_active_engine
235 * @rq: request to inspect
236 * @active: pointer in which to return the active engine
237 *
238 * Fills the currently active engine to the @active pointer if the request
239 * is active and still not completed.
240 *
241 * Returns true if request was active or false otherwise.
242 */
243bool
244i915_request_active_engine(struct i915_request *rq,
245			   struct intel_engine_cs **active)
246{
247	struct intel_engine_cs *engine, *locked;
248	bool ret = false;
249
250	/*
251	 * Serialise with __i915_request_submit() so that it sees
252	 * is-banned?, or we know the request is already inflight.
253	 *
254	 * Note that rq->engine is unstable, and so we double
255	 * check that we have acquired the lock on the final engine.
256	 */
257	locked = READ_ONCE(rq->engine);
258	spin_lock_irq(&locked->sched_engine->lock);
259	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
260		spin_unlock(&locked->sched_engine->lock);
261		locked = engine;
262		spin_lock(&locked->sched_engine->lock);
263	}
264
265	if (i915_request_is_active(rq)) {
266		if (!__i915_request_is_complete(rq))
267			*active = locked;
268		ret = true;
269	}
270
271	spin_unlock_irq(&locked->sched_engine->lock);
272
273	return ret;
274}
275
276static void __rq_init_watchdog(struct i915_request *rq)
277{
278	rq->watchdog.timer.function = NULL;
279}
280
281static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
282{
283	struct i915_request *rq =
284		container_of(hrtimer, struct i915_request, watchdog.timer);
285	struct intel_gt *gt = rq->engine->gt;
286
287	if (!i915_request_completed(rq)) {
288		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
289			queue_work(gt->i915->unordered_wq, &gt->watchdog.work);
290	} else {
291		i915_request_put(rq);
292	}
293
294	return HRTIMER_NORESTART;
295}
296
297static void __rq_arm_watchdog(struct i915_request *rq)
298{
299	struct i915_request_watchdog *wdg = &rq->watchdog;
300	struct intel_context *ce = rq->context;
301
302	if (!ce->watchdog.timeout_us)
303		return;
304
305	i915_request_get(rq);
306
307	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308	wdg->timer.function = __rq_watchdog_expired;
309	hrtimer_start_range_ns(&wdg->timer,
310			       ns_to_ktime(ce->watchdog.timeout_us *
311					   NSEC_PER_USEC),
312			       NSEC_PER_MSEC,
313			       HRTIMER_MODE_REL);
314}
315
316static void __rq_cancel_watchdog(struct i915_request *rq)
317{
318	struct i915_request_watchdog *wdg = &rq->watchdog;
319
320	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
321		i915_request_put(rq);
322}
323
324#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
325
326/**
327 * i915_request_free_capture_list - Free a capture list
328 * @capture: Pointer to the first list item or NULL
329 *
330 */
331void i915_request_free_capture_list(struct i915_capture_list *capture)
332{
333	while (capture) {
334		struct i915_capture_list *next = capture->next;
335
336		i915_vma_resource_put(capture->vma_res);
337		kfree(capture);
338		capture = next;
339	}
340}
341
342#define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
343
344#define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
345
346#else
347
348#define i915_request_free_capture_list(_a) do {} while (0)
349
350#define assert_capture_list_is_null(_a) do {} while (0)
351
352#define clear_capture_list(_rq) do {} while (0)
353
354#endif
355
356bool i915_request_retire(struct i915_request *rq)
357{
358	if (!__i915_request_is_complete(rq))
359		return false;
360
361	RQ_TRACE(rq, "\n");
362
363	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
364	trace_i915_request_retire(rq);
365	i915_request_mark_complete(rq);
366
367	__rq_cancel_watchdog(rq);
368
369	/*
370	 * We know the GPU must have read the request to have
371	 * sent us the seqno + interrupt, so use the position
372	 * of tail of the request to update the last known position
373	 * of the GPU head.
374	 *
375	 * Note this requires that we are always called in request
376	 * completion order.
377	 */
378	GEM_BUG_ON(!list_is_first(&rq->link,
379				  &i915_request_timeline(rq)->requests));
380	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
381		/* Poison before we release our space in the ring */
382		__i915_request_fill(rq, POISON_FREE);
383	rq->ring->head = rq->postfix;
384
385	if (!i915_request_signaled(rq)) {
386		spin_lock_irq(&rq->lock);
387		dma_fence_signal_locked(&rq->fence);
388		spin_unlock_irq(&rq->lock);
389	}
390
391	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
392		intel_rps_dec_waiters(&rq->engine->gt->rps);
393
394	/*
395	 * We only loosely track inflight requests across preemption,
396	 * and so we may find ourselves attempting to retire a _completed_
397	 * request that we have removed from the HW and put back on a run
398	 * queue.
399	 *
400	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
401	 * after removing the breadcrumb and signaling it, so that we do not
402	 * inadvertently attach the breadcrumb to a completed request.
403	 */
404	rq->engine->remove_active_request(rq);
405	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
406
407	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
408
409	intel_context_exit(rq->context);
410	intel_context_unpin(rq->context);
411
412	i915_sched_node_fini(&rq->sched);
413	i915_request_put(rq);
414
415	return true;
416}
417
418void i915_request_retire_upto(struct i915_request *rq)
419{
420	struct intel_timeline * const tl = i915_request_timeline(rq);
421	struct i915_request *tmp;
422
423	RQ_TRACE(rq, "\n");
424	GEM_BUG_ON(!__i915_request_is_complete(rq));
425
426	do {
427		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
428		GEM_BUG_ON(!i915_request_completed(tmp));
429	} while (i915_request_retire(tmp) && tmp != rq);
430}
431
432static struct i915_request * const *
433__engine_active(struct intel_engine_cs *engine)
434{
435	return READ_ONCE(engine->execlists.active);
436}
437
438static bool __request_in_flight(const struct i915_request *signal)
439{
440	struct i915_request * const *port, *rq;
441	bool inflight = false;
442
443	if (!i915_request_is_ready(signal))
444		return false;
445
446	/*
447	 * Even if we have unwound the request, it may still be on
448	 * the GPU (preempt-to-busy). If that request is inside an
449	 * unpreemptible critical section, it will not be removed. Some
450	 * GPU functions may even be stuck waiting for the paired request
451	 * (__await_execution) to be submitted and cannot be preempted
452	 * until the bond is executing.
453	 *
454	 * As we know that there are always preemption points between
455	 * requests, we know that only the currently executing request
456	 * may be still active even though we have cleared the flag.
457	 * However, we can't rely on our tracking of ELSP[0] to know
458	 * which request is currently active and so maybe stuck, as
459	 * the tracking maybe an event behind. Instead assume that
460	 * if the context is still inflight, then it is still active
461	 * even if the active flag has been cleared.
462	 *
463	 * To further complicate matters, if there a pending promotion, the HW
464	 * may either perform a context switch to the second inflight execlists,
465	 * or it may switch to the pending set of execlists. In the case of the
466	 * latter, it may send the ACK and we process the event copying the
467	 * pending[] over top of inflight[], _overwriting_ our *active. Since
468	 * this implies the HW is arbitrating and not struck in *active, we do
469	 * not worry about complete accuracy, but we do require no read/write
470	 * tearing of the pointer [the read of the pointer must be valid, even
471	 * as the array is being overwritten, for which we require the writes
472	 * to avoid tearing.]
473	 *
474	 * Note that the read of *execlists->active may race with the promotion
475	 * of execlists->pending[] to execlists->inflight[], overwritting
476	 * the value at *execlists->active. This is fine. The promotion implies
477	 * that we received an ACK from the HW, and so the context is not
478	 * stuck -- if we do not see ourselves in *active, the inflight status
479	 * is valid. If instead we see ourselves being copied into *active,
480	 * we are inflight and may signal the callback.
481	 */
482	if (!intel_context_inflight(signal->context))
483		return false;
484
485	rcu_read_lock();
486	for (port = __engine_active(signal->engine);
487	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
488	     port++) {
489		if (rq->context == signal->context) {
490			inflight = i915_seqno_passed(rq->fence.seqno,
491						     signal->fence.seqno);
492			break;
493		}
494	}
495	rcu_read_unlock();
496
497	return inflight;
498}
499
500static int
501__await_execution(struct i915_request *rq,
502		  struct i915_request *signal,
503		  gfp_t gfp)
504{
505	struct execute_cb *cb;
506
507	if (i915_request_is_active(signal))
508		return 0;
509
510	cb = kmem_cache_alloc(slab_execute_cbs, gfp);
511	if (!cb)
512		return -ENOMEM;
513
514	cb->fence = &rq->submit;
515	i915_sw_fence_await(cb->fence);
516	init_irq_work(&cb->work, irq_execute_cb);
517
518	/*
519	 * Register the callback first, then see if the signaler is already
520	 * active. This ensures that if we race with the
521	 * __notify_execute_cb from i915_request_submit() and we are not
522	 * included in that list, we get a second bite of the cherry and
523	 * execute it ourselves. After this point, a future
524	 * i915_request_submit() will notify us.
525	 *
526	 * In i915_request_retire() we set the ACTIVE bit on a completed
527	 * request (then flush the execute_cb). So by registering the
528	 * callback first, then checking the ACTIVE bit, we serialise with
529	 * the completed/retired request.
530	 */
531	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
532		if (i915_request_is_active(signal) ||
533		    __request_in_flight(signal))
534			i915_request_notify_execute_cb_imm(signal);
535	}
536
537	return 0;
538}
539
540static bool fatal_error(int error)
541{
542	switch (error) {
543	case 0: /* not an error! */
544	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
545	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
546		return false;
547	default:
548		return true;
549	}
550}
551
552void __i915_request_skip(struct i915_request *rq)
553{
554	GEM_BUG_ON(!fatal_error(rq->fence.error));
555
556	if (rq->infix == rq->postfix)
557		return;
558
559	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
560
561	/*
562	 * As this request likely depends on state from the lost
563	 * context, clear out all the user operations leaving the
564	 * breadcrumb at the end (so we get the fence notifications).
565	 */
566	__i915_request_fill(rq, 0);
567	rq->infix = rq->postfix;
568}
569
570bool i915_request_set_error_once(struct i915_request *rq, int error)
571{
572	int old;
573
574	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
575
576	if (i915_request_signaled(rq))
577		return false;
578
579	old = READ_ONCE(rq->fence.error);
580	do {
581		if (fatal_error(old))
582			return false;
583	} while (!try_cmpxchg(&rq->fence.error, &old, error));
584
585	return true;
586}
587
588struct i915_request *i915_request_mark_eio(struct i915_request *rq)
589{
590	if (__i915_request_is_complete(rq))
591		return NULL;
592
593	GEM_BUG_ON(i915_request_signaled(rq));
594
595	/* As soon as the request is completed, it may be retired */
596	rq = i915_request_get(rq);
597
598	i915_request_set_error_once(rq, -EIO);
599	i915_request_mark_complete(rq);
600
601	return rq;
602}
603
604bool __i915_request_submit(struct i915_request *request)
605{
606	struct intel_engine_cs *engine = request->engine;
607	bool result = false;
608
609	RQ_TRACE(request, "\n");
610
611	GEM_BUG_ON(!irqs_disabled());
612	lockdep_assert_held(&engine->sched_engine->lock);
613
614	/*
615	 * With the advent of preempt-to-busy, we frequently encounter
616	 * requests that we have unsubmitted from HW, but left running
617	 * until the next ack and so have completed in the meantime. On
618	 * resubmission of that completed request, we can skip
619	 * updating the payload, and execlists can even skip submitting
620	 * the request.
621	 *
622	 * We must remove the request from the caller's priority queue,
623	 * and the caller must only call us when the request is in their
624	 * priority queue, under the sched_engine->lock. This ensures that the
625	 * request has *not* yet been retired and we can safely move
626	 * the request into the engine->active.list where it will be
627	 * dropped upon retiring. (Otherwise if resubmit a *retired*
628	 * request, this would be a horrible use-after-free.)
629	 */
630	if (__i915_request_is_complete(request)) {
631		list_del_init(&request->sched.link);
632		goto active;
633	}
634
635	if (unlikely(!intel_context_is_schedulable(request->context)))
636		i915_request_set_error_once(request, -EIO);
637
638	if (unlikely(fatal_error(request->fence.error)))
639		__i915_request_skip(request);
640
641	/*
642	 * Are we using semaphores when the gpu is already saturated?
643	 *
644	 * Using semaphores incurs a cost in having the GPU poll a
645	 * memory location, busywaiting for it to change. The continual
646	 * memory reads can have a noticeable impact on the rest of the
647	 * system with the extra bus traffic, stalling the cpu as it too
648	 * tries to access memory across the bus (perf stat -e bus-cycles).
649	 *
650	 * If we installed a semaphore on this request and we only submit
651	 * the request after the signaler completed, that indicates the
652	 * system is overloaded and using semaphores at this time only
653	 * increases the amount of work we are doing. If so, we disable
654	 * further use of semaphores until we are idle again, whence we
655	 * optimistically try again.
656	 */
657	if (request->sched.semaphores &&
658	    i915_sw_fence_signaled(&request->semaphore))
659		engine->saturated |= request->sched.semaphores;
660
661	engine->emit_fini_breadcrumb(request,
662				     request->ring->vaddr + request->postfix);
663
664	trace_i915_request_execute(request);
665	if (engine->bump_serial)
666		engine->bump_serial(engine);
667	else
668		engine->serial++;
669
670	result = true;
671
672	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
673	engine->add_active_request(request);
674active:
675	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
676	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
677
678	/*
679	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
680	 *
681	 * In the future, perhaps when we have an active time-slicing scheduler,
682	 * it will be interesting to unsubmit parallel execution and remove
683	 * busywaits from the GPU until their master is restarted. This is
684	 * quite hairy, we have to carefully rollback the fence and do a
685	 * preempt-to-idle cycle on the target engine, all the while the
686	 * master execute_cb may refire.
687	 */
688	__notify_execute_cb_irq(request);
689
690	/* We may be recursing from the signal callback of another i915 fence */
691	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
692		i915_request_enable_breadcrumb(request);
693
694	return result;
695}
696
697void i915_request_submit(struct i915_request *request)
698{
699	struct intel_engine_cs *engine = request->engine;
700	unsigned long flags;
701
702	/* Will be called from irq-context when using foreign fences. */
703	spin_lock_irqsave(&engine->sched_engine->lock, flags);
704
705	__i915_request_submit(request);
706
707	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
708}
709
710void __i915_request_unsubmit(struct i915_request *request)
711{
712	struct intel_engine_cs *engine = request->engine;
713
714	/*
715	 * Only unwind in reverse order, required so that the per-context list
716	 * is kept in seqno/ring order.
717	 */
718	RQ_TRACE(request, "\n");
719
720	GEM_BUG_ON(!irqs_disabled());
721	lockdep_assert_held(&engine->sched_engine->lock);
722
723	/*
724	 * Before we remove this breadcrumb from the signal list, we have
725	 * to ensure that a concurrent dma_fence_enable_signaling() does not
726	 * attach itself. We first mark the request as no longer active and
727	 * make sure that is visible to other cores, and then remove the
728	 * breadcrumb if attached.
729	 */
730	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
731	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
732	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
733		i915_request_cancel_breadcrumb(request);
734
735	/* We've already spun, don't charge on resubmitting. */
736	if (request->sched.semaphores && __i915_request_has_started(request))
737		request->sched.semaphores = 0;
738
739	/*
740	 * We don't need to wake_up any waiters on request->execute, they
741	 * will get woken by any other event or us re-adding this request
742	 * to the engine timeline (__i915_request_submit()). The waiters
743	 * should be quite adapt at finding that the request now has a new
744	 * global_seqno to the one they went to sleep on.
745	 */
746}
747
748void i915_request_unsubmit(struct i915_request *request)
749{
750	struct intel_engine_cs *engine = request->engine;
751	unsigned long flags;
752
753	/* Will be called from irq-context when using foreign fences. */
754	spin_lock_irqsave(&engine->sched_engine->lock, flags);
755
756	__i915_request_unsubmit(request);
757
758	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
759}
760
761void i915_request_cancel(struct i915_request *rq, int error)
762{
763	if (!i915_request_set_error_once(rq, error))
764		return;
765
766	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
767
768	intel_context_cancel_request(rq->context, rq);
769}
770
771static int
772submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
773{
774	struct i915_request *request =
775		container_of(fence, typeof(*request), submit);
776
777	switch (state) {
778	case FENCE_COMPLETE:
779		trace_i915_request_submit(request);
780
781		if (unlikely(fence->error))
782			i915_request_set_error_once(request, fence->error);
783		else
784			__rq_arm_watchdog(request);
785
786		/*
787		 * We need to serialize use of the submit_request() callback
788		 * with its hotplugging performed during an emergency
789		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
790		 * critical section in order to force i915_gem_set_wedged() to
791		 * wait until the submit_request() is completed before
792		 * proceeding.
793		 */
794		rcu_read_lock();
795		request->engine->submit_request(request);
796		rcu_read_unlock();
797		break;
798
799	case FENCE_FREE:
800		i915_request_put(request);
801		break;
802	}
803
804	return NOTIFY_DONE;
805}
806
807static int
808semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
809{
810	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
811
812	switch (state) {
813	case FENCE_COMPLETE:
814		break;
815
816	case FENCE_FREE:
817		i915_request_put(rq);
818		break;
819	}
820
821	return NOTIFY_DONE;
822}
823
824static void retire_requests(struct intel_timeline *tl)
825{
826	struct i915_request *rq, *rn;
827
828	list_for_each_entry_safe(rq, rn, &tl->requests, link)
829		if (!i915_request_retire(rq))
830			break;
831}
832
833static noinline struct i915_request *
834request_alloc_slow(struct intel_timeline *tl,
835		   struct i915_request **rsvd,
836		   gfp_t gfp)
837{
838	struct i915_request *rq;
839
840	/* If we cannot wait, dip into our reserves */
841	if (!gfpflags_allow_blocking(gfp)) {
842		rq = xchg(rsvd, NULL);
843		if (!rq) /* Use the normal failure path for one final WARN */
844			goto out;
845
846		return rq;
847	}
848
849	if (list_empty(&tl->requests))
850		goto out;
851
852	/* Move our oldest request to the slab-cache (if not in use!) */
853	rq = list_first_entry(&tl->requests, typeof(*rq), link);
854	i915_request_retire(rq);
855
856	rq = kmem_cache_alloc(slab_requests,
857			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
858	if (rq)
859		return rq;
860
861	/* Ratelimit ourselves to prevent oom from malicious clients */
862	rq = list_last_entry(&tl->requests, typeof(*rq), link);
863	cond_synchronize_rcu(rq->rcustate);
864
865	/* Retire our old requests in the hope that we free some */
866	retire_requests(tl);
867
868out:
869	return kmem_cache_alloc(slab_requests, gfp);
870}
871
872static void __i915_request_ctor(void *arg)
873{
874	struct i915_request *rq = arg;
875
876	spin_lock_init(&rq->lock);
877	i915_sched_node_init(&rq->sched);
878	i915_sw_fence_init(&rq->submit, submit_notify);
879	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
880
881	clear_capture_list(rq);
882	rq->batch_res = NULL;
883
884	init_llist_head(&rq->execute_cb);
885}
886
887#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
888#define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
889#else
890#define clear_batch_ptr(_a) do {} while (0)
891#endif
892
893struct i915_request *
894__i915_request_create(struct intel_context *ce, gfp_t gfp)
895{
896	struct intel_timeline *tl = ce->timeline;
897	struct i915_request *rq;
898	u32 seqno;
899	int ret;
900
901	might_alloc(gfp);
902
903	/* Check that the caller provided an already pinned context */
904	__intel_context_pin(ce);
905
906	/*
907	 * Beware: Dragons be flying overhead.
908	 *
909	 * We use RCU to look up requests in flight. The lookups may
910	 * race with the request being allocated from the slab freelist.
911	 * That is the request we are writing to here, may be in the process
912	 * of being read by __i915_active_request_get_rcu(). As such,
913	 * we have to be very careful when overwriting the contents. During
914	 * the RCU lookup, we change chase the request->engine pointer,
915	 * read the request->global_seqno and increment the reference count.
916	 *
917	 * The reference count is incremented atomically. If it is zero,
918	 * the lookup knows the request is unallocated and complete. Otherwise,
919	 * it is either still in use, or has been reallocated and reset
920	 * with dma_fence_init(). This increment is safe for release as we
921	 * check that the request we have a reference to and matches the active
922	 * request.
923	 *
924	 * Before we increment the refcount, we chase the request->engine
925	 * pointer. We must not call kmem_cache_zalloc() or else we set
926	 * that pointer to NULL and cause a crash during the lookup. If
927	 * we see the request is completed (based on the value of the
928	 * old engine and seqno), the lookup is complete and reports NULL.
929	 * If we decide the request is not completed (new engine or seqno),
930	 * then we grab a reference and double check that it is still the
931	 * active request - which it won't be and restart the lookup.
932	 *
933	 * Do not use kmem_cache_zalloc() here!
934	 */
935	rq = kmem_cache_alloc(slab_requests,
936			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
937	if (unlikely(!rq)) {
938		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
939		if (!rq) {
940			ret = -ENOMEM;
941			goto err_unreserve;
942		}
943	}
944
945	rq->context = ce;
946	rq->engine = ce->engine;
947	rq->ring = ce->ring;
948	rq->execution_mask = ce->engine->mask;
949	rq->i915 = ce->engine->i915;
950
951	ret = intel_timeline_get_seqno(tl, rq, &seqno);
952	if (ret)
953		goto err_free;
954
955	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
956		       tl->fence_context, seqno);
957
958	RCU_INIT_POINTER(rq->timeline, tl);
959	rq->hwsp_seqno = tl->hwsp_seqno;
960	GEM_BUG_ON(__i915_request_is_complete(rq));
961
962	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
963
964	rq->guc_prio = GUC_PRIO_INIT;
965
966	/* We bump the ref for the fence chain */
967	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
968	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
969
970	i915_sched_node_reinit(&rq->sched);
971
972	/* No zalloc, everything must be cleared after use */
973	clear_batch_ptr(rq);
974	__rq_init_watchdog(rq);
975	assert_capture_list_is_null(rq);
976	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
977	GEM_BUG_ON(rq->batch_res);
978
979	/*
980	 * Reserve space in the ring buffer for all the commands required to
981	 * eventually emit this request. This is to guarantee that the
982	 * i915_request_add() call can't fail. Note that the reserve may need
983	 * to be redone if the request is not actually submitted straight
984	 * away, e.g. because a GPU scheduler has deferred it.
985	 *
986	 * Note that due to how we add reserved_space to intel_ring_begin()
987	 * we need to double our request to ensure that if we need to wrap
988	 * around inside i915_request_add() there is sufficient space at
989	 * the beginning of the ring as well.
990	 */
991	rq->reserved_space =
992		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
993
994	/*
995	 * Record the position of the start of the request so that
996	 * should we detect the updated seqno part-way through the
997	 * GPU processing the request, we never over-estimate the
998	 * position of the head.
999	 */
1000	rq->head = rq->ring->emit;
1001
1002	ret = rq->engine->request_alloc(rq);
1003	if (ret)
1004		goto err_unwind;
1005
1006	rq->infix = rq->ring->emit; /* end of header; start of user payload */
1007
1008	intel_context_mark_active(ce);
1009	list_add_tail_rcu(&rq->link, &tl->requests);
1010
1011	return rq;
1012
1013err_unwind:
1014	ce->ring->emit = rq->head;
1015
1016	/* Make sure we didn't add ourselves to external state before freeing */
1017	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1018	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1019
1020err_free:
1021	kmem_cache_free(slab_requests, rq);
1022err_unreserve:
1023	intel_context_unpin(ce);
1024	return ERR_PTR(ret);
1025}
1026
1027struct i915_request *
1028i915_request_create(struct intel_context *ce)
1029{
1030	struct i915_request *rq;
1031	struct intel_timeline *tl;
1032
1033	tl = intel_context_timeline_lock(ce);
1034	if (IS_ERR(tl))
1035		return ERR_CAST(tl);
1036
1037	/* Move our oldest request to the slab-cache (if not in use!) */
1038	rq = list_first_entry(&tl->requests, typeof(*rq), link);
1039	if (!list_is_last(&rq->link, &tl->requests))
1040		i915_request_retire(rq);
1041
1042	intel_context_enter(ce);
1043	rq = __i915_request_create(ce, GFP_KERNEL);
1044	intel_context_exit(ce); /* active reference transferred to request */
1045	if (IS_ERR(rq))
1046		goto err_unlock;
1047
1048	/* Check that we do not interrupt ourselves with a new request */
1049	rq->cookie = lockdep_pin_lock(&tl->mutex);
1050
1051	return rq;
1052
1053err_unlock:
1054	intel_context_timeline_unlock(tl);
1055	return rq;
1056}
1057
1058static int
1059i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1060{
1061	struct dma_fence *fence;
1062	int err;
1063
1064	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1065		return 0;
1066
1067	if (i915_request_started(signal))
1068		return 0;
1069
1070	/*
1071	 * The caller holds a reference on @signal, but we do not serialise
1072	 * against it being retired and removed from the lists.
1073	 *
1074	 * We do not hold a reference to the request before @signal, and
1075	 * so must be very careful to ensure that it is not _recycled_ as
1076	 * we follow the link backwards.
1077	 */
1078	fence = NULL;
1079	rcu_read_lock();
1080	do {
1081		struct list_head *pos = READ_ONCE(signal->link.prev);
1082		struct i915_request *prev;
1083
1084		/* Confirm signal has not been retired, the link is valid */
1085		if (unlikely(__i915_request_has_started(signal)))
1086			break;
1087
1088		/* Is signal the earliest request on its timeline? */
1089		if (pos == &rcu_dereference(signal->timeline)->requests)
1090			break;
1091
1092		/*
1093		 * Peek at the request before us in the timeline. That
1094		 * request will only be valid before it is retired, so
1095		 * after acquiring a reference to it, confirm that it is
1096		 * still part of the signaler's timeline.
1097		 */
1098		prev = list_entry(pos, typeof(*prev), link);
1099		if (!i915_request_get_rcu(prev))
1100			break;
1101
1102		/* After the strong barrier, confirm prev is still attached */
1103		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1104			i915_request_put(prev);
1105			break;
1106		}
1107
1108		fence = &prev->fence;
1109	} while (0);
1110	rcu_read_unlock();
1111	if (!fence)
1112		return 0;
1113
1114	err = 0;
1115	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1116		err = i915_sw_fence_await_dma_fence(&rq->submit,
1117						    fence, 0,
1118						    I915_FENCE_GFP);
1119	dma_fence_put(fence);
1120
1121	return err;
1122}
1123
1124static intel_engine_mask_t
1125already_busywaiting(struct i915_request *rq)
1126{
1127	/*
1128	 * Polling a semaphore causes bus traffic, delaying other users of
1129	 * both the GPU and CPU. We want to limit the impact on others,
1130	 * while taking advantage of early submission to reduce GPU
1131	 * latency. Therefore we restrict ourselves to not using more
1132	 * than one semaphore from each source, and not using a semaphore
1133	 * if we have detected the engine is saturated (i.e. would not be
1134	 * submitted early and cause bus traffic reading an already passed
1135	 * semaphore).
1136	 *
1137	 * See the are-we-too-late? check in __i915_request_submit().
1138	 */
1139	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1140}
1141
1142static int
1143__emit_semaphore_wait(struct i915_request *to,
1144		      struct i915_request *from,
1145		      u32 seqno)
1146{
1147	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1148	u32 hwsp_offset;
1149	int len, err;
1150	u32 *cs;
1151
1152	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1153	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1154
1155	/* We need to pin the signaler's HWSP until we are finished reading. */
1156	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1157	if (err)
1158		return err;
1159
1160	len = 4;
1161	if (has_token)
1162		len += 2;
1163
1164	cs = intel_ring_begin(to, len);
1165	if (IS_ERR(cs))
1166		return PTR_ERR(cs);
1167
1168	/*
1169	 * Using greater-than-or-equal here means we have to worry
1170	 * about seqno wraparound. To side step that issue, we swap
1171	 * the timeline HWSP upon wrapping, so that everyone listening
1172	 * for the old (pre-wrap) values do not see the much smaller
1173	 * (post-wrap) values than they were expecting (and so wait
1174	 * forever).
1175	 */
1176	*cs++ = (MI_SEMAPHORE_WAIT |
1177		 MI_SEMAPHORE_GLOBAL_GTT |
1178		 MI_SEMAPHORE_POLL |
1179		 MI_SEMAPHORE_SAD_GTE_SDD) +
1180		has_token;
1181	*cs++ = seqno;
1182	*cs++ = hwsp_offset;
1183	*cs++ = 0;
1184	if (has_token) {
1185		*cs++ = 0;
1186		*cs++ = MI_NOOP;
1187	}
1188
1189	intel_ring_advance(to, cs);
1190	return 0;
1191}
1192
1193static bool
1194can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1195{
1196	return to->engine->gt->ggtt == from->engine->gt->ggtt;
1197}
1198
1199static int
1200emit_semaphore_wait(struct i915_request *to,
1201		    struct i915_request *from,
1202		    gfp_t gfp)
1203{
1204	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1205	struct i915_sw_fence *wait = &to->submit;
1206
1207	if (!can_use_semaphore_wait(to, from))
1208		goto await_fence;
1209
1210	if (!intel_context_use_semaphores(to->context))
1211		goto await_fence;
1212
1213	if (i915_request_has_initial_breadcrumb(to))
1214		goto await_fence;
1215
1216	/*
1217	 * If this or its dependents are waiting on an external fence
1218	 * that may fail catastrophically, then we want to avoid using
1219	 * semaphores as they bypass the fence signaling metadata, and we
1220	 * lose the fence->error propagation.
1221	 */
1222	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1223		goto await_fence;
1224
1225	/* Just emit the first semaphore we see as request space is limited. */
1226	if (already_busywaiting(to) & mask)
1227		goto await_fence;
1228
1229	if (i915_request_await_start(to, from) < 0)
1230		goto await_fence;
1231
1232	/* Only submit our spinner after the signaler is running! */
1233	if (__await_execution(to, from, gfp))
1234		goto await_fence;
1235
1236	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1237		goto await_fence;
1238
1239	to->sched.semaphores |= mask;
1240	wait = &to->semaphore;
1241
1242await_fence:
1243	return i915_sw_fence_await_dma_fence(wait,
1244					     &from->fence, 0,
1245					     I915_FENCE_GFP);
1246}
1247
1248static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1249					  struct dma_fence *fence)
1250{
1251	return __intel_timeline_sync_is_later(tl,
1252					      fence->context,
1253					      fence->seqno - 1);
1254}
1255
1256static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1257					 const struct dma_fence *fence)
1258{
1259	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1260}
1261
1262static int
1263__i915_request_await_execution(struct i915_request *to,
1264			       struct i915_request *from)
1265{
1266	int err;
1267
1268	GEM_BUG_ON(intel_context_is_barrier(from->context));
1269
1270	/* Submit both requests at the same time */
1271	err = __await_execution(to, from, I915_FENCE_GFP);
1272	if (err)
1273		return err;
1274
1275	/* Squash repeated depenendices to the same timelines */
1276	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1277					  &from->fence))
1278		return 0;
1279
1280	/*
1281	 * Wait until the start of this request.
1282	 *
1283	 * The execution cb fires when we submit the request to HW. But in
1284	 * many cases this may be long before the request itself is ready to
1285	 * run (consider that we submit 2 requests for the same context, where
1286	 * the request of interest is behind an indefinite spinner). So we hook
1287	 * up to both to reduce our queues and keep the execution lag minimised
1288	 * in the worst case, though we hope that the await_start is elided.
1289	 */
1290	err = i915_request_await_start(to, from);
1291	if (err < 0)
1292		return err;
1293
1294	/*
1295	 * Ensure both start together [after all semaphores in signal]
1296	 *
1297	 * Now that we are queued to the HW at roughly the same time (thanks
1298	 * to the execute cb) and are ready to run at roughly the same time
1299	 * (thanks to the await start), our signaler may still be indefinitely
1300	 * delayed by waiting on a semaphore from a remote engine. If our
1301	 * signaler depends on a semaphore, so indirectly do we, and we do not
1302	 * want to start our payload until our signaler also starts theirs.
1303	 * So we wait.
1304	 *
1305	 * However, there is also a second condition for which we need to wait
1306	 * for the precise start of the signaler. Consider that the signaler
1307	 * was submitted in a chain of requests following another context
1308	 * (with just an ordinary intra-engine fence dependency between the
1309	 * two). In this case the signaler is queued to HW, but not for
1310	 * immediate execution, and so we must wait until it reaches the
1311	 * active slot.
1312	 */
1313	if (can_use_semaphore_wait(to, from) &&
1314	    intel_engine_has_semaphores(to->engine) &&
1315	    !i915_request_has_initial_breadcrumb(to)) {
1316		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1317		if (err < 0)
1318			return err;
1319	}
1320
1321	/* Couple the dependency tree for PI on this exposed to->fence */
1322	if (to->engine->sched_engine->schedule) {
1323		err = i915_sched_node_add_dependency(&to->sched,
1324						     &from->sched,
1325						     I915_DEPENDENCY_WEAK);
1326		if (err < 0)
1327			return err;
1328	}
1329
1330	return intel_timeline_sync_set_start(i915_request_timeline(to),
1331					     &from->fence);
1332}
1333
1334static void mark_external(struct i915_request *rq)
1335{
1336	/*
1337	 * The downside of using semaphores is that we lose metadata passing
1338	 * along the signaling chain. This is particularly nasty when we
1339	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1340	 * fatal errors we want to scrub the request before it is executed,
1341	 * which means that we cannot preload the request onto HW and have
1342	 * it wait upon a semaphore.
1343	 */
1344	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1345}
1346
1347static int
1348__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1349{
1350	mark_external(rq);
1351	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1352					     i915_fence_context_timeout(rq->i915,
1353									fence->context),
1354					     I915_FENCE_GFP);
1355}
1356
1357static int
1358i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1359{
1360	struct dma_fence *iter;
1361	int err = 0;
1362
1363	if (!to_dma_fence_chain(fence))
1364		return __i915_request_await_external(rq, fence);
1365
1366	dma_fence_chain_for_each(iter, fence) {
1367		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1368
1369		if (!dma_fence_is_i915(chain->fence)) {
1370			err = __i915_request_await_external(rq, iter);
1371			break;
1372		}
1373
1374		err = i915_request_await_dma_fence(rq, chain->fence);
1375		if (err < 0)
1376			break;
1377	}
1378
1379	dma_fence_put(iter);
1380	return err;
1381}
1382
1383static inline bool is_parallel_rq(struct i915_request *rq)
1384{
1385	return intel_context_is_parallel(rq->context);
1386}
1387
1388static inline struct intel_context *request_to_parent(struct i915_request *rq)
1389{
1390	return intel_context_to_parent(rq->context);
1391}
1392
1393static bool is_same_parallel_context(struct i915_request *to,
1394				     struct i915_request *from)
1395{
1396	if (is_parallel_rq(to))
1397		return request_to_parent(to) == request_to_parent(from);
1398
1399	return false;
1400}
1401
1402int
1403i915_request_await_execution(struct i915_request *rq,
1404			     struct dma_fence *fence)
1405{
1406	struct dma_fence **child = &fence;
1407	unsigned int nchild = 1;
1408	int ret;
1409
1410	if (dma_fence_is_array(fence)) {
1411		struct dma_fence_array *array = to_dma_fence_array(fence);
1412
1413		/* XXX Error for signal-on-any fence arrays */
1414
1415		child = array->fences;
1416		nchild = array->num_fences;
1417		GEM_BUG_ON(!nchild);
1418	}
1419
1420	do {
1421		fence = *child++;
1422		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1423			continue;
1424
1425		if (fence->context == rq->fence.context)
1426			continue;
1427
1428		/*
1429		 * We don't squash repeated fence dependencies here as we
1430		 * want to run our callback in all cases.
1431		 */
1432
1433		if (dma_fence_is_i915(fence)) {
1434			if (is_same_parallel_context(rq, to_request(fence)))
1435				continue;
1436			ret = __i915_request_await_execution(rq,
1437							     to_request(fence));
1438		} else {
1439			ret = i915_request_await_external(rq, fence);
1440		}
1441		if (ret < 0)
1442			return ret;
1443	} while (--nchild);
1444
1445	return 0;
1446}
1447
1448static int
1449await_request_submit(struct i915_request *to, struct i915_request *from)
1450{
1451	/*
1452	 * If we are waiting on a virtual engine, then it may be
1453	 * constrained to execute on a single engine *prior* to submission.
1454	 * When it is submitted, it will be first submitted to the virtual
1455	 * engine and then passed to the physical engine. We cannot allow
1456	 * the waiter to be submitted immediately to the physical engine
1457	 * as it may then bypass the virtual request.
1458	 */
1459	if (to->engine == READ_ONCE(from->engine))
1460		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1461							&from->submit,
1462							I915_FENCE_GFP);
1463	else
1464		return __i915_request_await_execution(to, from);
1465}
1466
1467static int
1468i915_request_await_request(struct i915_request *to, struct i915_request *from)
1469{
1470	int ret;
1471
1472	GEM_BUG_ON(to == from);
1473	GEM_BUG_ON(to->timeline == from->timeline);
1474
1475	if (i915_request_completed(from)) {
1476		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1477		return 0;
1478	}
1479
1480	if (to->engine->sched_engine->schedule) {
1481		ret = i915_sched_node_add_dependency(&to->sched,
1482						     &from->sched,
1483						     I915_DEPENDENCY_EXTERNAL);
1484		if (ret < 0)
1485			return ret;
1486	}
1487
1488	if (!intel_engine_uses_guc(to->engine) &&
1489	    is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1490		ret = await_request_submit(to, from);
1491	else
1492		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1493	if (ret < 0)
1494		return ret;
1495
1496	return 0;
1497}
1498
1499int
1500i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1501{
1502	struct dma_fence **child = &fence;
1503	unsigned int nchild = 1;
1504	int ret;
1505
1506	/*
1507	 * Note that if the fence-array was created in signal-on-any mode,
1508	 * we should *not* decompose it into its individual fences. However,
1509	 * we don't currently store which mode the fence-array is operating
1510	 * in. Fortunately, the only user of signal-on-any is private to
1511	 * amdgpu and we should not see any incoming fence-array from
1512	 * sync-file being in signal-on-any mode.
1513	 */
1514	if (dma_fence_is_array(fence)) {
1515		struct dma_fence_array *array = to_dma_fence_array(fence);
1516
1517		child = array->fences;
1518		nchild = array->num_fences;
1519		GEM_BUG_ON(!nchild);
1520	}
1521
1522	do {
1523		fence = *child++;
1524		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1525			continue;
1526
1527		/*
1528		 * Requests on the same timeline are explicitly ordered, along
1529		 * with their dependencies, by i915_request_add() which ensures
1530		 * that requests are submitted in-order through each ring.
1531		 */
1532		if (fence->context == rq->fence.context)
1533			continue;
1534
1535		/* Squash repeated waits to the same timelines */
1536		if (fence->context &&
1537		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1538						 fence))
1539			continue;
1540
1541		if (dma_fence_is_i915(fence)) {
1542			if (is_same_parallel_context(rq, to_request(fence)))
1543				continue;
1544			ret = i915_request_await_request(rq, to_request(fence));
1545		} else {
1546			ret = i915_request_await_external(rq, fence);
1547		}
1548		if (ret < 0)
1549			return ret;
1550
1551		/* Record the latest fence used against each timeline */
1552		if (fence->context)
1553			intel_timeline_sync_set(i915_request_timeline(rq),
1554						fence);
1555	} while (--nchild);
1556
1557	return 0;
1558}
1559
1560/**
1561 * i915_request_await_deps - set this request to (async) wait upon a struct
1562 * i915_deps dma_fence collection
1563 * @rq: request we are wishing to use
1564 * @deps: The struct i915_deps containing the dependencies.
1565 *
1566 * Returns 0 if successful, negative error code on error.
1567 */
1568int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1569{
1570	int i, err;
1571
1572	for (i = 0; i < deps->num_deps; ++i) {
1573		err = i915_request_await_dma_fence(rq, deps->fences[i]);
1574		if (err)
1575			return err;
1576	}
1577
1578	return 0;
1579}
1580
1581/**
1582 * i915_request_await_object - set this request to (async) wait upon a bo
1583 * @to: request we are wishing to use
1584 * @obj: object which may be in use on another ring.
1585 * @write: whether the wait is on behalf of a writer
1586 *
1587 * This code is meant to abstract object synchronization with the GPU.
1588 * Conceptually we serialise writes between engines inside the GPU.
1589 * We only allow one engine to write into a buffer at any time, but
1590 * multiple readers. To ensure each has a coherent view of memory, we must:
1591 *
1592 * - If there is an outstanding write request to the object, the new
1593 *   request must wait for it to complete (either CPU or in hw, requests
1594 *   on the same ring will be naturally ordered).
1595 *
1596 * - If we are a write request (pending_write_domain is set), the new
1597 *   request must wait for outstanding read requests to complete.
1598 *
1599 * Returns 0 if successful, else propagates up the lower layer error.
1600 */
1601int
1602i915_request_await_object(struct i915_request *to,
1603			  struct drm_i915_gem_object *obj,
1604			  bool write)
1605{
1606	struct dma_resv_iter cursor;
1607	struct dma_fence *fence;
1608	int ret = 0;
1609
1610	dma_resv_for_each_fence(&cursor, obj->base.resv,
1611				dma_resv_usage_rw(write), fence) {
1612		ret = i915_request_await_dma_fence(to, fence);
1613		if (ret)
1614			break;
1615	}
1616
1617	return ret;
1618}
1619
1620static void i915_request_await_huc(struct i915_request *rq)
1621{
1622	struct intel_huc *huc = &rq->context->engine->gt->uc.huc;
1623
1624	/* don't stall kernel submissions! */
1625	if (!rcu_access_pointer(rq->context->gem_context))
1626		return;
1627
1628	if (intel_huc_wait_required(huc))
1629		i915_sw_fence_await_sw_fence(&rq->submit,
1630					     &huc->delayed_load.fence,
1631					     &rq->hucq);
1632}
1633
1634static struct i915_request *
1635__i915_request_ensure_parallel_ordering(struct i915_request *rq,
1636					struct intel_timeline *timeline)
1637{
1638	struct i915_request *prev;
1639
1640	GEM_BUG_ON(!is_parallel_rq(rq));
1641
1642	prev = request_to_parent(rq)->parallel.last_rq;
1643	if (prev) {
1644		if (!__i915_request_is_complete(prev)) {
1645			i915_sw_fence_await_sw_fence(&rq->submit,
1646						     &prev->submit,
1647						     &rq->submitq);
1648
1649			if (rq->engine->sched_engine->schedule)
1650				__i915_sched_node_add_dependency(&rq->sched,
1651								 &prev->sched,
1652								 &rq->dep,
1653								 0);
1654		}
1655		i915_request_put(prev);
1656	}
1657
1658	request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1659
1660	/*
1661	 * Users have to put a reference potentially got by
1662	 * __i915_active_fence_set() to the returned request
1663	 * when no longer needed
1664	 */
1665	return to_request(__i915_active_fence_set(&timeline->last_request,
1666						  &rq->fence));
1667}
1668
1669static struct i915_request *
1670__i915_request_ensure_ordering(struct i915_request *rq,
1671			       struct intel_timeline *timeline)
1672{
1673	struct i915_request *prev;
1674
1675	GEM_BUG_ON(is_parallel_rq(rq));
1676
1677	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1678						  &rq->fence));
1679
1680	if (prev && !__i915_request_is_complete(prev)) {
1681		bool uses_guc = intel_engine_uses_guc(rq->engine);
1682		bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1683					  rq->engine->mask);
1684		bool same_context = prev->context == rq->context;
1685
1686		/*
1687		 * The requests are supposed to be kept in order. However,
1688		 * we need to be wary in case the timeline->last_request
1689		 * is used as a barrier for external modification to this
1690		 * context.
1691		 */
1692		GEM_BUG_ON(same_context &&
1693			   i915_seqno_passed(prev->fence.seqno,
1694					     rq->fence.seqno));
1695
1696		if ((same_context && uses_guc) || (!uses_guc && pow2))
1697			i915_sw_fence_await_sw_fence(&rq->submit,
1698						     &prev->submit,
1699						     &rq->submitq);
1700		else
1701			__i915_sw_fence_await_dma_fence(&rq->submit,
1702							&prev->fence,
1703							&rq->dmaq);
1704		if (rq->engine->sched_engine->schedule)
1705			__i915_sched_node_add_dependency(&rq->sched,
1706							 &prev->sched,
1707							 &rq->dep,
1708							 0);
1709	}
1710
1711	/*
1712	 * Users have to put the reference to prev potentially got
1713	 * by __i915_active_fence_set() when no longer needed
1714	 */
1715	return prev;
1716}
1717
1718static struct i915_request *
1719__i915_request_add_to_timeline(struct i915_request *rq)
1720{
1721	struct intel_timeline *timeline = i915_request_timeline(rq);
1722	struct i915_request *prev;
1723
1724	/*
1725	 * Media workloads may require HuC, so stall them until HuC loading is
1726	 * complete. Note that HuC not being loaded when a user submission
1727	 * arrives can only happen when HuC is loaded via GSC and in that case
1728	 * we still expect the window between us starting to accept submissions
1729	 * and HuC loading completion to be small (a few hundred ms).
1730	 */
1731	if (rq->engine->class == VIDEO_DECODE_CLASS)
1732		i915_request_await_huc(rq);
1733
1734	/*
1735	 * Dependency tracking and request ordering along the timeline
1736	 * is special cased so that we can eliminate redundant ordering
1737	 * operations while building the request (we know that the timeline
1738	 * itself is ordered, and here we guarantee it).
1739	 *
1740	 * As we know we will need to emit tracking along the timeline,
1741	 * we embed the hooks into our request struct -- at the cost of
1742	 * having to have specialised no-allocation interfaces (which will
1743	 * be beneficial elsewhere).
1744	 *
1745	 * A second benefit to open-coding i915_request_await_request is
1746	 * that we can apply a slight variant of the rules specialised
1747	 * for timelines that jump between engines (such as virtual engines).
1748	 * If we consider the case of virtual engine, we must emit a dma-fence
1749	 * to prevent scheduling of the second request until the first is
1750	 * complete (to maximise our greedy late load balancing) and this
1751	 * precludes optimising to use semaphores serialisation of a single
1752	 * timeline across engines.
1753	 *
1754	 * We do not order parallel submission requests on the timeline as each
1755	 * parallel submission context has its own timeline and the ordering
1756	 * rules for parallel requests are that they must be submitted in the
1757	 * order received from the execbuf IOCTL. So rather than using the
1758	 * timeline we store a pointer to last request submitted in the
1759	 * relationship in the gem context and insert a submission fence
1760	 * between that request and request passed into this function or
1761	 * alternatively we use completion fence if gem context has a single
1762	 * timeline and this is the first submission of an execbuf IOCTL.
1763	 */
1764	if (likely(!is_parallel_rq(rq)))
1765		prev = __i915_request_ensure_ordering(rq, timeline);
1766	else
1767		prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1768	if (prev)
1769		i915_request_put(prev);
1770
1771	/*
1772	 * Make sure that no request gazumped us - if it was allocated after
1773	 * our i915_request_alloc() and called __i915_request_add() before
1774	 * us, the timeline will hold its seqno which is later than ours.
1775	 */
1776	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1777
1778	return prev;
1779}
1780
1781/*
1782 * NB: This function is not allowed to fail. Doing so would mean the the
1783 * request is not being tracked for completion but the work itself is
1784 * going to happen on the hardware. This would be a Bad Thing(tm).
1785 */
1786struct i915_request *__i915_request_commit(struct i915_request *rq)
1787{
1788	struct intel_engine_cs *engine = rq->engine;
1789	struct intel_ring *ring = rq->ring;
1790	u32 *cs;
1791
1792	RQ_TRACE(rq, "\n");
1793
1794	/*
1795	 * To ensure that this call will not fail, space for its emissions
1796	 * should already have been reserved in the ring buffer. Let the ring
1797	 * know that it is time to use that space up.
1798	 */
1799	GEM_BUG_ON(rq->reserved_space > ring->space);
1800	rq->reserved_space = 0;
1801	rq->emitted_jiffies = jiffies;
1802
1803	/*
1804	 * Record the position of the start of the breadcrumb so that
1805	 * should we detect the updated seqno part-way through the
1806	 * GPU processing the request, we never over-estimate the
1807	 * position of the ring's HEAD.
1808	 */
1809	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1810	GEM_BUG_ON(IS_ERR(cs));
1811	rq->postfix = intel_ring_offset(rq, cs);
1812
1813	return __i915_request_add_to_timeline(rq);
1814}
1815
1816void __i915_request_queue_bh(struct i915_request *rq)
1817{
1818	i915_sw_fence_commit(&rq->semaphore);
1819	i915_sw_fence_commit(&rq->submit);
1820}
1821
1822void __i915_request_queue(struct i915_request *rq,
1823			  const struct i915_sched_attr *attr)
1824{
1825	/*
1826	 * Let the backend know a new request has arrived that may need
1827	 * to adjust the existing execution schedule due to a high priority
1828	 * request - i.e. we may want to preempt the current request in order
1829	 * to run a high priority dependency chain *before* we can execute this
1830	 * request.
1831	 *
1832	 * This is called before the request is ready to run so that we can
1833	 * decide whether to preempt the entire chain so that it is ready to
1834	 * run at the earliest possible convenience.
1835	 */
1836	if (attr && rq->engine->sched_engine->schedule)
1837		rq->engine->sched_engine->schedule(rq, attr);
1838
1839	local_bh_disable();
1840	__i915_request_queue_bh(rq);
1841	local_bh_enable(); /* kick tasklets */
1842}
1843
1844void i915_request_add(struct i915_request *rq)
1845{
1846	struct intel_timeline * const tl = i915_request_timeline(rq);
1847	struct i915_sched_attr attr = {};
1848	struct i915_gem_context *ctx;
1849
1850	lockdep_assert_held(&tl->mutex);
1851	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1852
1853	trace_i915_request_add(rq);
1854	__i915_request_commit(rq);
1855
1856	/* XXX placeholder for selftests */
1857	rcu_read_lock();
1858	ctx = rcu_dereference(rq->context->gem_context);
1859	if (ctx)
1860		attr = ctx->sched;
1861	rcu_read_unlock();
1862
1863	__i915_request_queue(rq, &attr);
1864
1865	mutex_unlock(&tl->mutex);
1866}
1867
1868static unsigned long local_clock_ns(unsigned int *cpu)
1869{
1870	unsigned long t;
1871
1872	/*
1873	 * Cheaply and approximately convert from nanoseconds to microseconds.
1874	 * The result and subsequent calculations are also defined in the same
1875	 * approximate microseconds units. The principal source of timing
1876	 * error here is from the simple truncation.
1877	 *
1878	 * Note that local_clock() is only defined wrt to the current CPU;
1879	 * the comparisons are no longer valid if we switch CPUs. Instead of
1880	 * blocking preemption for the entire busywait, we can detect the CPU
1881	 * switch and use that as indicator of system load and a reason to
1882	 * stop busywaiting, see busywait_stop().
1883	 */
1884	*cpu = get_cpu();
1885	t = local_clock();
1886	put_cpu();
1887
1888	return t;
1889}
1890
1891static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1892{
1893	unsigned int this_cpu;
1894
1895	if (time_after(local_clock_ns(&this_cpu), timeout))
1896		return true;
1897
1898	return this_cpu != cpu;
1899}
1900
1901static bool __i915_spin_request(struct i915_request * const rq, int state)
1902{
1903	unsigned long timeout_ns;
1904	unsigned int cpu;
1905
1906	/*
1907	 * Only wait for the request if we know it is likely to complete.
1908	 *
1909	 * We don't track the timestamps around requests, nor the average
1910	 * request length, so we do not have a good indicator that this
1911	 * request will complete within the timeout. What we do know is the
1912	 * order in which requests are executed by the context and so we can
1913	 * tell if the request has been started. If the request is not even
1914	 * running yet, it is a fair assumption that it will not complete
1915	 * within our relatively short timeout.
1916	 */
1917	if (!i915_request_is_running(rq))
1918		return false;
1919
1920	/*
1921	 * When waiting for high frequency requests, e.g. during synchronous
1922	 * rendering split between the CPU and GPU, the finite amount of time
1923	 * required to set up the irq and wait upon it limits the response
1924	 * rate. By busywaiting on the request completion for a short while we
1925	 * can service the high frequency waits as quick as possible. However,
1926	 * if it is a slow request, we want to sleep as quickly as possible.
1927	 * The tradeoff between waiting and sleeping is roughly the time it
1928	 * takes to sleep on a request, on the order of a microsecond.
1929	 */
1930
1931	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1932	timeout_ns += local_clock_ns(&cpu);
1933	do {
1934		if (dma_fence_is_signaled(&rq->fence))
1935			return true;
1936
1937		if (signal_pending_state(state, current))
1938			break;
1939
1940		if (busywait_stop(timeout_ns, cpu))
1941			break;
1942
1943		cpu_relax();
1944	} while (!need_resched());
1945
1946	return false;
1947}
1948
1949struct request_wait {
1950	struct dma_fence_cb cb;
1951	struct task_struct *tsk;
1952};
1953
1954static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1955{
1956	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1957
1958	wake_up_process(fetch_and_zero(&wait->tsk));
1959}
1960
1961/**
1962 * i915_request_wait_timeout - wait until execution of request has finished
1963 * @rq: the request to wait upon
1964 * @flags: how to wait
1965 * @timeout: how long to wait in jiffies
1966 *
1967 * i915_request_wait_timeout() waits for the request to be completed, for a
1968 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1969 * unbounded wait).
1970 *
1971 * Returns the remaining time (in jiffies) if the request completed, which may
1972 * be zero if the request is unfinished after the timeout expires.
1973 * If the timeout is 0, it will return 1 if the fence is signaled.
1974 *
1975 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1976 * pending before the request completes.
1977 *
1978 * NOTE: This function has the same wait semantics as dma-fence.
1979 */
1980long i915_request_wait_timeout(struct i915_request *rq,
1981			       unsigned int flags,
1982			       long timeout)
1983{
1984	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1985		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1986	struct request_wait wait;
1987
1988	might_sleep();
1989	GEM_BUG_ON(timeout < 0);
1990
1991	if (dma_fence_is_signaled(&rq->fence))
1992		return timeout ?: 1;
1993
1994	if (!timeout)
1995		return -ETIME;
1996
1997	trace_i915_request_wait_begin(rq, flags);
1998
1999	/*
2000	 * We must never wait on the GPU while holding a lock as we
2001	 * may need to perform a GPU reset. So while we don't need to
2002	 * serialise wait/reset with an explicit lock, we do want
2003	 * lockdep to detect potential dependency cycles.
2004	 */
2005	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
2006
2007	/*
2008	 * Optimistic spin before touching IRQs.
2009	 *
2010	 * We may use a rather large value here to offset the penalty of
2011	 * switching away from the active task. Frequently, the client will
2012	 * wait upon an old swapbuffer to throttle itself to remain within a
2013	 * frame of the gpu. If the client is running in lockstep with the gpu,
2014	 * then it should not be waiting long at all, and a sleep now will incur
2015	 * extra scheduler latency in producing the next frame. To try to
2016	 * avoid adding the cost of enabling/disabling the interrupt to the
2017	 * short wait, we first spin to see if the request would have completed
2018	 * in the time taken to setup the interrupt.
2019	 *
2020	 * We need upto 5us to enable the irq, and upto 20us to hide the
2021	 * scheduler latency of a context switch, ignoring the secondary
2022	 * impacts from a context switch such as cache eviction.
2023	 *
2024	 * The scheme used for low-latency IO is called "hybrid interrupt
2025	 * polling". The suggestion there is to sleep until just before you
2026	 * expect to be woken by the device interrupt and then poll for its
2027	 * completion. That requires having a good predictor for the request
2028	 * duration, which we currently lack.
2029	 */
2030	if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2031	    __i915_spin_request(rq, state))
2032		goto out;
2033
2034	/*
2035	 * This client is about to stall waiting for the GPU. In many cases
2036	 * this is undesirable and limits the throughput of the system, as
2037	 * many clients cannot continue processing user input/output whilst
2038	 * blocked. RPS autotuning may take tens of milliseconds to respond
2039	 * to the GPU load and thus incurs additional latency for the client.
2040	 * We can circumvent that by promoting the GPU frequency to maximum
2041	 * before we sleep. This makes the GPU throttle up much more quickly
2042	 * (good for benchmarks and user experience, e.g. window animations),
2043	 * but at a cost of spending more power processing the workload
2044	 * (bad for battery).
2045	 */
2046	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2047		intel_rps_boost(rq);
2048
2049	wait.tsk = current;
2050	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2051		goto out;
2052
2053	/*
2054	 * Flush the submission tasklet, but only if it may help this request.
2055	 *
2056	 * We sometimes experience some latency between the HW interrupts and
2057	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2058	 * be due to lazy CS events), so lets run the tasklet manually if there
2059	 * is a chance it may submit this request. If the request is not ready
2060	 * to run, as it is waiting for other fences to be signaled, flushing
2061	 * the tasklet is busy work without any advantage for this client.
2062	 *
2063	 * If the HW is being lazy, this is the last chance before we go to
2064	 * sleep to catch any pending events. We will check periodically in
2065	 * the heartbeat to flush the submission tasklets as a last resort
2066	 * for unhappy HW.
2067	 */
2068	if (i915_request_is_ready(rq))
2069		__intel_engine_flush_submission(rq->engine, false);
2070
2071	for (;;) {
2072		set_current_state(state);
2073
2074		if (dma_fence_is_signaled(&rq->fence))
2075			break;
2076
2077		if (signal_pending_state(state, current)) {
2078			timeout = -ERESTARTSYS;
2079			break;
2080		}
2081
2082		if (!timeout) {
2083			timeout = -ETIME;
2084			break;
2085		}
2086
2087		timeout = io_schedule_timeout(timeout);
2088	}
2089	__set_current_state(TASK_RUNNING);
2090
2091	if (READ_ONCE(wait.tsk))
2092		dma_fence_remove_callback(&rq->fence, &wait.cb);
2093	GEM_BUG_ON(!list_empty(&wait.cb.node));
2094
2095out:
2096	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2097	trace_i915_request_wait_end(rq);
2098	return timeout;
2099}
2100
2101/**
2102 * i915_request_wait - wait until execution of request has finished
2103 * @rq: the request to wait upon
2104 * @flags: how to wait
2105 * @timeout: how long to wait in jiffies
2106 *
2107 * i915_request_wait() waits for the request to be completed, for a
2108 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2109 * unbounded wait).
2110 *
2111 * Returns the remaining time (in jiffies) if the request completed, which may
2112 * be zero or -ETIME if the request is unfinished after the timeout expires.
2113 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2114 * pending before the request completes.
2115 *
2116 * NOTE: This function behaves differently from dma-fence wait semantics for
2117 * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2118 */
2119long i915_request_wait(struct i915_request *rq,
2120		       unsigned int flags,
2121		       long timeout)
2122{
2123	long ret = i915_request_wait_timeout(rq, flags, timeout);
2124
2125	if (!ret)
2126		return -ETIME;
2127
2128	if (ret > 0 && !timeout)
2129		return 0;
2130
2131	return ret;
2132}
2133
2134static int print_sched_attr(const struct i915_sched_attr *attr,
2135			    char *buf, int x, int len)
2136{
2137	if (attr->priority == I915_PRIORITY_INVALID)
2138		return x;
2139
2140	x += snprintf(buf + x, len - x,
2141		      " prio=%d", attr->priority);
2142
2143	return x;
2144}
2145
2146static char queue_status(const struct i915_request *rq)
2147{
2148	if (i915_request_is_active(rq))
2149		return 'E';
2150
2151	if (i915_request_is_ready(rq))
2152		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2153
2154	return 'U';
2155}
2156
2157static const char *run_status(const struct i915_request *rq)
2158{
2159	if (__i915_request_is_complete(rq))
2160		return "!";
2161
2162	if (__i915_request_has_started(rq))
2163		return "*";
2164
2165	if (!i915_sw_fence_signaled(&rq->semaphore))
2166		return "&";
2167
2168	return "";
2169}
2170
2171static const char *fence_status(const struct i915_request *rq)
2172{
2173	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2174		return "+";
2175
2176	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2177		return "-";
2178
2179	return "";
2180}
2181
2182void i915_request_show(struct drm_printer *m,
2183		       const struct i915_request *rq,
2184		       const char *prefix,
2185		       int indent)
2186{
2187	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2188	char buf[80] = "";
2189	int x = 0;
2190
2191	/*
2192	 * The prefix is used to show the queue status, for which we use
2193	 * the following flags:
2194	 *
2195	 *  U [Unready]
2196	 *    - initial status upon being submitted by the user
2197	 *
2198	 *    - the request is not ready for execution as it is waiting
2199	 *      for external fences
2200	 *
2201	 *  R [Ready]
2202	 *    - all fences the request was waiting on have been signaled,
2203	 *      and the request is now ready for execution and will be
2204	 *      in a backend queue
2205	 *
2206	 *    - a ready request may still need to wait on semaphores
2207	 *      [internal fences]
2208	 *
2209	 *  V [Ready/virtual]
2210	 *    - same as ready, but queued over multiple backends
2211	 *
2212	 *  E [Executing]
2213	 *    - the request has been transferred from the backend queue and
2214	 *      submitted for execution on HW
2215	 *
2216	 *    - a completed request may still be regarded as executing, its
2217	 *      status may not be updated until it is retired and removed
2218	 *      from the lists
2219	 */
2220
2221	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2222
2223	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2224		   prefix, indent, "                ",
2225		   queue_status(rq),
2226		   rq->fence.context, rq->fence.seqno,
2227		   run_status(rq),
2228		   fence_status(rq),
2229		   buf,
2230		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2231		   name);
2232}
2233
2234static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2235{
2236	u32 ring = ENGINE_READ(engine, RING_START);
2237
2238	return ring == i915_ggtt_offset(rq->ring->vma);
2239}
2240
2241static bool match_ring(struct i915_request *rq)
2242{
2243	struct intel_engine_cs *engine;
2244	bool found;
2245	int i;
2246
2247	if (!intel_engine_is_virtual(rq->engine))
2248		return engine_match_ring(rq->engine, rq);
2249
2250	found = false;
2251	i = 0;
2252	while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2253		found = engine_match_ring(engine, rq);
2254		if (found)
2255			break;
2256	}
2257
2258	return found;
2259}
2260
2261enum i915_request_state i915_test_request_state(struct i915_request *rq)
2262{
2263	if (i915_request_completed(rq))
2264		return I915_REQUEST_COMPLETE;
2265
2266	if (!i915_request_started(rq))
2267		return I915_REQUEST_PENDING;
2268
2269	if (match_ring(rq))
2270		return I915_REQUEST_ACTIVE;
2271
2272	return I915_REQUEST_QUEUED;
2273}
2274
2275#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2276#include "selftests/mock_request.c"
2277#include "selftests/i915_request.c"
2278#endif
2279
2280void i915_request_module_exit(void)
2281{
2282	kmem_cache_destroy(slab_execute_cbs);
2283	kmem_cache_destroy(slab_requests);
2284}
2285
2286int __init i915_request_module_init(void)
2287{
2288	slab_requests =
2289		kmem_cache_create("i915_request",
2290				  sizeof(struct i915_request),
2291				  __alignof__(struct i915_request),
2292				  SLAB_HWCACHE_ALIGN |
2293				  SLAB_RECLAIM_ACCOUNT |
2294				  SLAB_TYPESAFE_BY_RCU,
2295				  __i915_request_ctor);
2296	if (!slab_requests)
2297		return -ENOMEM;
2298
2299	slab_execute_cbs = KMEM_CACHE(execute_cb,
2300					     SLAB_HWCACHE_ALIGN |
2301					     SLAB_RECLAIM_ACCOUNT |
2302					     SLAB_TYPESAFE_BY_RCU);
2303	if (!slab_execute_cbs)
2304		goto err_requests;
2305
2306	return 0;
2307
2308err_requests:
2309	kmem_cache_destroy(slab_requests);
2310	return -ENOMEM;
2311}
2312