1/*
2 * Copyright �� 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <linux/dma-fence-array.h>
29#include <linux/kthread.h>
30#include <linux/dma-resv.h>
31#include <linux/shmem_fs.h>
32#include <linux/slab.h>
33#include <linux/stop_machine.h>
34#include <linux/swap.h>
35#include <linux/pci.h>
36#include <linux/dma-buf.h>
37#include <linux/mman.h>
38
39#include <drm/drm_cache.h>
40#include <drm/drm_vma_manager.h>
41
42#include "display/intel_display.h"
43
44#include "gem/i915_gem_clflush.h"
45#include "gem/i915_gem_context.h"
46#include "gem/i915_gem_ioctls.h"
47#include "gem/i915_gem_mman.h"
48#include "gem/i915_gem_object_frontbuffer.h"
49#include "gem/i915_gem_pm.h"
50#include "gem/i915_gem_region.h"
51#include "gt/intel_engine_user.h"
52#include "gt/intel_gt.h"
53#include "gt/intel_gt_pm.h"
54#include "gt/intel_workarounds.h"
55
56#include "i915_drv.h"
57#include "i915_file_private.h"
58#include "i915_trace.h"
59#include "i915_vgpu.h"
60#include "intel_clock_gating.h"
61
62static int
63insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
64{
65	int err;
66
67	err = mutex_lock_interruptible(&ggtt->vm.mutex);
68	if (err)
69		return err;
70
71	memset(node, 0, sizeof(*node));
72	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
73					  size, 0, I915_COLOR_UNEVICTABLE,
74					  0, ggtt->mappable_end,
75					  DRM_MM_INSERT_LOW);
76
77	mutex_unlock(&ggtt->vm.mutex);
78
79	return err;
80}
81
82static void
83remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
84{
85	mutex_lock(&ggtt->vm.mutex);
86	drm_mm_remove_node(node);
87	mutex_unlock(&ggtt->vm.mutex);
88}
89
90int
91i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
92			    struct drm_file *file)
93{
94	struct drm_i915_private *i915 = to_i915(dev);
95	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
96	struct drm_i915_gem_get_aperture *args = data;
97	struct i915_vma *vma;
98	u64 pinned;
99
100	if (mutex_lock_interruptible(&ggtt->vm.mutex))
101		return -EINTR;
102
103	pinned = ggtt->vm.reserved;
104	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
105		if (i915_vma_is_pinned(vma))
106			pinned += vma->node.size;
107
108	mutex_unlock(&ggtt->vm.mutex);
109
110	args->aper_size = ggtt->vm.total;
111	args->aper_available_size = args->aper_size - pinned;
112
113	return 0;
114}
115
116int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
117			   unsigned long flags)
118{
119	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
120	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
121	LIST_HEAD(still_in_list);
122	intel_wakeref_t wakeref;
123	struct i915_vma *vma;
124	int ret;
125
126	assert_object_held(obj);
127
128	if (list_empty(&obj->vma.list))
129		return 0;
130
131	/*
132	 * As some machines use ACPI to handle runtime-resume callbacks, and
133	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
134	 * as they are required by the shrinker. Ergo, we wake the device up
135	 * first just in case.
136	 */
137	wakeref = intel_runtime_pm_get(rpm);
138
139try_again:
140	ret = 0;
141	spin_lock(&obj->vma.lock);
142	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
143						       struct i915_vma,
144						       obj_link))) {
145		list_move_tail(&vma->obj_link, &still_in_list);
146		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
147			continue;
148
149		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
150			ret = -EBUSY;
151			break;
152		}
153
154		/*
155		 * Requiring the vm destructor to take the object lock
156		 * before destroying a vma would help us eliminate the
157		 * i915_vm_tryget() here, AND thus also the barrier stuff
158		 * at the end. That's an easy fix, but sleeping locks in
159		 * a kthread should generally be avoided.
160		 */
161		ret = -EAGAIN;
162		if (!i915_vm_tryget(vma->vm))
163			break;
164
165		spin_unlock(&obj->vma.lock);
166
167		/*
168		 * Since i915_vma_parked() takes the object lock
169		 * before vma destruction, it won't race us here,
170		 * and destroy the vma from under us.
171		 */
172
173		ret = -EBUSY;
174		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
175			assert_object_held(vma->obj);
176			ret = i915_vma_unbind_async(vma, vm_trylock);
177		}
178
179		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
180				      !i915_vma_is_active(vma))) {
181			if (vm_trylock) {
182				if (mutex_trylock(&vma->vm->mutex)) {
183					ret = __i915_vma_unbind(vma);
184					mutex_unlock(&vma->vm->mutex);
185				}
186			} else {
187				ret = i915_vma_unbind(vma);
188			}
189		}
190
191		i915_vm_put(vma->vm);
192		spin_lock(&obj->vma.lock);
193	}
194	list_splice_init(&still_in_list, &obj->vma.list);
195	spin_unlock(&obj->vma.lock);
196
197	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
198		rcu_barrier(); /* flush the i915_vm_release() */
199		goto try_again;
200	}
201
202	intel_runtime_pm_put(rpm, wakeref);
203
204	return ret;
205}
206
207static int
208shmem_pread(struct page *page, int offset, int len, char __user *user_data,
209	    bool needs_clflush)
210{
211	char *vaddr;
212	int ret;
213
214	vaddr = kmap(page);
215
216	if (needs_clflush)
217		drm_clflush_virt_range(vaddr + offset, len);
218
219	ret = __copy_to_user(user_data, vaddr + offset, len);
220
221	kunmap(page);
222
223	return ret ? -EFAULT : 0;
224}
225
226static int
227i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
228		     struct drm_i915_gem_pread *args)
229{
230	unsigned int needs_clflush;
231	char __user *user_data;
232	unsigned long offset;
233	pgoff_t idx;
234	u64 remain;
235	int ret;
236
237	ret = i915_gem_object_lock_interruptible(obj, NULL);
238	if (ret)
239		return ret;
240
241	ret = i915_gem_object_pin_pages(obj);
242	if (ret)
243		goto err_unlock;
244
245	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
246	if (ret)
247		goto err_unpin;
248
249	i915_gem_object_finish_access(obj);
250	i915_gem_object_unlock(obj);
251
252	remain = args->size;
253	user_data = u64_to_user_ptr(args->data_ptr);
254	offset = offset_in_page(args->offset);
255	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
256		struct page *page = i915_gem_object_get_page(obj, idx);
257		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
258
259		ret = shmem_pread(page, offset, length, user_data,
260				  needs_clflush);
261		if (ret)
262			break;
263
264		remain -= length;
265		user_data += length;
266		offset = 0;
267	}
268
269	i915_gem_object_unpin_pages(obj);
270	return ret;
271
272err_unpin:
273	i915_gem_object_unpin_pages(obj);
274err_unlock:
275	i915_gem_object_unlock(obj);
276	return ret;
277}
278
279static inline bool
280gtt_user_read(struct io_mapping *mapping,
281	      loff_t base, int offset,
282	      char __user *user_data, int length)
283{
284	void __iomem *vaddr;
285	unsigned long unwritten;
286
287	/* We can use the cpu mem copy function because this is X86. */
288	vaddr = io_mapping_map_atomic_wc(mapping, base);
289	unwritten = __copy_to_user_inatomic(user_data,
290					    (void __force *)vaddr + offset,
291					    length);
292	io_mapping_unmap_atomic(vaddr);
293	if (unwritten) {
294		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
295		unwritten = copy_to_user(user_data,
296					 (void __force *)vaddr + offset,
297					 length);
298		io_mapping_unmap(vaddr);
299	}
300	return unwritten;
301}
302
303static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
304					     struct drm_mm_node *node,
305					     bool write)
306{
307	struct drm_i915_private *i915 = to_i915(obj->base.dev);
308	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
309	struct i915_vma *vma;
310	struct i915_gem_ww_ctx ww;
311	int ret;
312
313	i915_gem_ww_ctx_init(&ww, true);
314retry:
315	vma = ERR_PTR(-ENODEV);
316	ret = i915_gem_object_lock(obj, &ww);
317	if (ret)
318		goto err_ww;
319
320	ret = i915_gem_object_set_to_gtt_domain(obj, write);
321	if (ret)
322		goto err_ww;
323
324	if (!i915_gem_object_is_tiled(obj))
325		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
326						  PIN_MAPPABLE |
327						  PIN_NONBLOCK /* NOWARN */ |
328						  PIN_NOEVICT);
329	if (vma == ERR_PTR(-EDEADLK)) {
330		ret = -EDEADLK;
331		goto err_ww;
332	} else if (!IS_ERR(vma)) {
333		node->start = i915_ggtt_offset(vma);
334		node->flags = 0;
335	} else {
336		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
337		if (ret)
338			goto err_ww;
339		GEM_BUG_ON(!drm_mm_node_allocated(node));
340		vma = NULL;
341	}
342
343	ret = i915_gem_object_pin_pages(obj);
344	if (ret) {
345		if (drm_mm_node_allocated(node)) {
346			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
347			remove_mappable_node(ggtt, node);
348		} else {
349			i915_vma_unpin(vma);
350		}
351	}
352
353err_ww:
354	if (ret == -EDEADLK) {
355		ret = i915_gem_ww_ctx_backoff(&ww);
356		if (!ret)
357			goto retry;
358	}
359	i915_gem_ww_ctx_fini(&ww);
360
361	return ret ? ERR_PTR(ret) : vma;
362}
363
364static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
365				 struct drm_mm_node *node,
366				 struct i915_vma *vma)
367{
368	struct drm_i915_private *i915 = to_i915(obj->base.dev);
369	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
370
371	i915_gem_object_unpin_pages(obj);
372	if (drm_mm_node_allocated(node)) {
373		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
374		remove_mappable_node(ggtt, node);
375	} else {
376		i915_vma_unpin(vma);
377	}
378}
379
380static int
381i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
382		   const struct drm_i915_gem_pread *args)
383{
384	struct drm_i915_private *i915 = to_i915(obj->base.dev);
385	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
386	unsigned long remain, offset;
387	intel_wakeref_t wakeref;
388	struct drm_mm_node node;
389	void __user *user_data;
390	struct i915_vma *vma;
391	int ret = 0;
392
393	if (overflows_type(args->size, remain) ||
394	    overflows_type(args->offset, offset))
395		return -EINVAL;
396
397	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
398
399	vma = i915_gem_gtt_prepare(obj, &node, false);
400	if (IS_ERR(vma)) {
401		ret = PTR_ERR(vma);
402		goto out_rpm;
403	}
404
405	user_data = u64_to_user_ptr(args->data_ptr);
406	remain = args->size;
407	offset = args->offset;
408
409	while (remain > 0) {
410		/* Operation in this page
411		 *
412		 * page_base = page offset within aperture
413		 * page_offset = offset within page
414		 * page_length = bytes to copy for this page
415		 */
416		u32 page_base = node.start;
417		unsigned page_offset = offset_in_page(offset);
418		unsigned page_length = PAGE_SIZE - page_offset;
419		page_length = remain < page_length ? remain : page_length;
420		if (drm_mm_node_allocated(&node)) {
421			ggtt->vm.insert_page(&ggtt->vm,
422					     i915_gem_object_get_dma_address(obj,
423									     offset >> PAGE_SHIFT),
424					     node.start,
425					     i915_gem_get_pat_index(i915,
426								    I915_CACHE_NONE), 0);
427		} else {
428			page_base += offset & PAGE_MASK;
429		}
430
431		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
432				  user_data, page_length)) {
433			ret = -EFAULT;
434			break;
435		}
436
437		remain -= page_length;
438		user_data += page_length;
439		offset += page_length;
440	}
441
442	i915_gem_gtt_cleanup(obj, &node, vma);
443out_rpm:
444	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
445	return ret;
446}
447
448/**
449 * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
450 * @dev: drm device pointer
451 * @data: ioctl data blob
452 * @file: drm file pointer
453 *
454 * On error, the contents of *data are undefined.
455 */
456int
457i915_gem_pread_ioctl(struct drm_device *dev, void *data,
458		     struct drm_file *file)
459{
460	struct drm_i915_private *i915 = to_i915(dev);
461	struct drm_i915_gem_pread *args = data;
462	struct drm_i915_gem_object *obj;
463	int ret;
464
465	/* PREAD is disallowed for all platforms after TGL-LP.  This also
466	 * covers all platforms with local memory.
467	 */
468	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
469		return -EOPNOTSUPP;
470
471	if (args->size == 0)
472		return 0;
473
474	if (!access_ok(u64_to_user_ptr(args->data_ptr),
475		       args->size))
476		return -EFAULT;
477
478	obj = i915_gem_object_lookup(file, args->handle);
479	if (!obj)
480		return -ENOENT;
481
482	/* Bounds check source.  */
483	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
484		ret = -EINVAL;
485		goto out;
486	}
487
488	trace_i915_gem_object_pread(obj, args->offset, args->size);
489	ret = -ENODEV;
490	if (obj->ops->pread)
491		ret = obj->ops->pread(obj, args);
492	if (ret != -ENODEV)
493		goto out;
494
495	ret = i915_gem_object_wait(obj,
496				   I915_WAIT_INTERRUPTIBLE,
497				   MAX_SCHEDULE_TIMEOUT);
498	if (ret)
499		goto out;
500
501	ret = i915_gem_shmem_pread(obj, args);
502	if (ret == -EFAULT || ret == -ENODEV)
503		ret = i915_gem_gtt_pread(obj, args);
504
505out:
506	i915_gem_object_put(obj);
507	return ret;
508}
509
510/* This is the fast write path which cannot handle
511 * page faults in the source data
512 */
513
514static inline bool
515ggtt_write(struct io_mapping *mapping,
516	   loff_t base, int offset,
517	   char __user *user_data, int length)
518{
519	void __iomem *vaddr;
520	unsigned long unwritten;
521
522	/* We can use the cpu mem copy function because this is X86. */
523	vaddr = io_mapping_map_atomic_wc(mapping, base);
524	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
525						      user_data, length);
526	io_mapping_unmap_atomic(vaddr);
527	if (unwritten) {
528		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
529		unwritten = copy_from_user((void __force *)vaddr + offset,
530					   user_data, length);
531		io_mapping_unmap(vaddr);
532	}
533
534	return unwritten;
535}
536
537/**
538 * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
539 * user into the GTT, uncached.
540 * @obj: i915 GEM object
541 * @args: pwrite arguments structure
542 */
543static int
544i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
545			 const struct drm_i915_gem_pwrite *args)
546{
547	struct drm_i915_private *i915 = to_i915(obj->base.dev);
548	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
549	struct intel_runtime_pm *rpm = &i915->runtime_pm;
550	unsigned long remain, offset;
551	intel_wakeref_t wakeref;
552	struct drm_mm_node node;
553	struct i915_vma *vma;
554	void __user *user_data;
555	int ret = 0;
556
557	if (overflows_type(args->size, remain) ||
558	    overflows_type(args->offset, offset))
559		return -EINVAL;
560
561	if (i915_gem_object_has_struct_page(obj)) {
562		/*
563		 * Avoid waking the device up if we can fallback, as
564		 * waking/resuming is very slow (worst-case 10-100 ms
565		 * depending on PCI sleeps and our own resume time).
566		 * This easily dwarfs any performance advantage from
567		 * using the cache bypass of indirect GGTT access.
568		 */
569		wakeref = intel_runtime_pm_get_if_in_use(rpm);
570		if (!wakeref)
571			return -EFAULT;
572	} else {
573		/* No backing pages, no fallback, we must force GGTT access */
574		wakeref = intel_runtime_pm_get(rpm);
575	}
576
577	vma = i915_gem_gtt_prepare(obj, &node, true);
578	if (IS_ERR(vma)) {
579		ret = PTR_ERR(vma);
580		goto out_rpm;
581	}
582
583	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
584
585	user_data = u64_to_user_ptr(args->data_ptr);
586	offset = args->offset;
587	remain = args->size;
588	while (remain) {
589		/* Operation in this page
590		 *
591		 * page_base = page offset within aperture
592		 * page_offset = offset within page
593		 * page_length = bytes to copy for this page
594		 */
595		u32 page_base = node.start;
596		unsigned int page_offset = offset_in_page(offset);
597		unsigned int page_length = PAGE_SIZE - page_offset;
598		page_length = remain < page_length ? remain : page_length;
599		if (drm_mm_node_allocated(&node)) {
600			/* flush the write before we modify the GGTT */
601			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
602			ggtt->vm.insert_page(&ggtt->vm,
603					     i915_gem_object_get_dma_address(obj,
604									     offset >> PAGE_SHIFT),
605					     node.start,
606					     i915_gem_get_pat_index(i915,
607								    I915_CACHE_NONE), 0);
608			wmb(); /* flush modifications to the GGTT (insert_page) */
609		} else {
610			page_base += offset & PAGE_MASK;
611		}
612		/* If we get a fault while copying data, then (presumably) our
613		 * source page isn't available.  Return the error and we'll
614		 * retry in the slow path.
615		 * If the object is non-shmem backed, we retry again with the
616		 * path that handles page fault.
617		 */
618		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
619			       user_data, page_length)) {
620			ret = -EFAULT;
621			break;
622		}
623
624		remain -= page_length;
625		user_data += page_length;
626		offset += page_length;
627	}
628
629	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
630	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
631
632	i915_gem_gtt_cleanup(obj, &node, vma);
633out_rpm:
634	intel_runtime_pm_put(rpm, wakeref);
635	return ret;
636}
637
638/* Per-page copy function for the shmem pwrite fastpath.
639 * Flushes invalid cachelines before writing to the target if
640 * needs_clflush_before is set and flushes out any written cachelines after
641 * writing if needs_clflush is set.
642 */
643static int
644shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
645	     bool needs_clflush_before,
646	     bool needs_clflush_after)
647{
648	char *vaddr;
649	int ret;
650
651	vaddr = kmap(page);
652
653	if (needs_clflush_before)
654		drm_clflush_virt_range(vaddr + offset, len);
655
656	ret = __copy_from_user(vaddr + offset, user_data, len);
657	if (!ret && needs_clflush_after)
658		drm_clflush_virt_range(vaddr + offset, len);
659
660	kunmap(page);
661
662	return ret ? -EFAULT : 0;
663}
664
665static int
666i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
667		      const struct drm_i915_gem_pwrite *args)
668{
669	unsigned int partial_cacheline_write;
670	unsigned int needs_clflush;
671	void __user *user_data;
672	unsigned long offset;
673	pgoff_t idx;
674	u64 remain;
675	int ret;
676
677	ret = i915_gem_object_lock_interruptible(obj, NULL);
678	if (ret)
679		return ret;
680
681	ret = i915_gem_object_pin_pages(obj);
682	if (ret)
683		goto err_unlock;
684
685	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
686	if (ret)
687		goto err_unpin;
688
689	i915_gem_object_finish_access(obj);
690	i915_gem_object_unlock(obj);
691
692	/* If we don't overwrite a cacheline completely we need to be
693	 * careful to have up-to-date data by first clflushing. Don't
694	 * overcomplicate things and flush the entire patch.
695	 */
696	partial_cacheline_write = 0;
697	if (needs_clflush & CLFLUSH_BEFORE)
698		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
699
700	user_data = u64_to_user_ptr(args->data_ptr);
701	remain = args->size;
702	offset = offset_in_page(args->offset);
703	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
704		struct page *page = i915_gem_object_get_page(obj, idx);
705		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
706
707		ret = shmem_pwrite(page, offset, length, user_data,
708				   (offset | length) & partial_cacheline_write,
709				   needs_clflush & CLFLUSH_AFTER);
710		if (ret)
711			break;
712
713		remain -= length;
714		user_data += length;
715		offset = 0;
716	}
717
718	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
719
720	i915_gem_object_unpin_pages(obj);
721	return ret;
722
723err_unpin:
724	i915_gem_object_unpin_pages(obj);
725err_unlock:
726	i915_gem_object_unlock(obj);
727	return ret;
728}
729
730/**
731 * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
732 * @dev: drm device
733 * @data: ioctl data blob
734 * @file: drm file
735 *
736 * On error, the contents of the buffer that were to be modified are undefined.
737 */
738int
739i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
740		      struct drm_file *file)
741{
742	struct drm_i915_private *i915 = to_i915(dev);
743	struct drm_i915_gem_pwrite *args = data;
744	struct drm_i915_gem_object *obj;
745	int ret;
746
747	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
748	 * covers all platforms with local memory.
749	 */
750	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
751		return -EOPNOTSUPP;
752
753	if (args->size == 0)
754		return 0;
755
756	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
757		return -EFAULT;
758
759	obj = i915_gem_object_lookup(file, args->handle);
760	if (!obj)
761		return -ENOENT;
762
763	/* Bounds check destination. */
764	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
765		ret = -EINVAL;
766		goto err;
767	}
768
769	/* Writes not allowed into this read-only object */
770	if (i915_gem_object_is_readonly(obj)) {
771		ret = -EINVAL;
772		goto err;
773	}
774
775	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
776
777	ret = -ENODEV;
778	if (obj->ops->pwrite)
779		ret = obj->ops->pwrite(obj, args);
780	if (ret != -ENODEV)
781		goto err;
782
783	ret = i915_gem_object_wait(obj,
784				   I915_WAIT_INTERRUPTIBLE |
785				   I915_WAIT_ALL,
786				   MAX_SCHEDULE_TIMEOUT);
787	if (ret)
788		goto err;
789
790	ret = -EFAULT;
791	/* We can only do the GTT pwrite on untiled buffers, as otherwise
792	 * it would end up going through the fenced access, and we'll get
793	 * different detiling behavior between reading and writing.
794	 * pread/pwrite currently are reading and writing from the CPU
795	 * perspective, requiring manual detiling by the client.
796	 */
797	if (!i915_gem_object_has_struct_page(obj) ||
798	    i915_gem_cpu_write_needs_clflush(obj))
799		/* Note that the gtt paths might fail with non-page-backed user
800		 * pointers (e.g. gtt mappings when moving data between
801		 * textures). Fallback to the shmem path in that case.
802		 */
803		ret = i915_gem_gtt_pwrite_fast(obj, args);
804
805	if (ret == -EFAULT || ret == -ENOSPC) {
806		if (i915_gem_object_has_struct_page(obj))
807			ret = i915_gem_shmem_pwrite(obj, args);
808	}
809
810err:
811	i915_gem_object_put(obj);
812	return ret;
813}
814
815/**
816 * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
817 * @dev: drm device
818 * @data: ioctl data blob
819 * @file: drm file
820 */
821int
822i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
823			 struct drm_file *file)
824{
825	struct drm_i915_gem_sw_finish *args = data;
826	struct drm_i915_gem_object *obj;
827
828	obj = i915_gem_object_lookup(file, args->handle);
829	if (!obj)
830		return -ENOENT;
831
832	/*
833	 * Proxy objects are barred from CPU access, so there is no
834	 * need to ban sw_finish as it is a nop.
835	 */
836
837	/* Pinned buffers may be scanout, so flush the cache */
838	i915_gem_object_flush_if_display(obj);
839	i915_gem_object_put(obj);
840
841	return 0;
842}
843
844void i915_gem_runtime_suspend(struct drm_i915_private *i915)
845{
846	struct drm_i915_gem_object *obj, *on;
847	int i;
848
849	/*
850	 * Only called during RPM suspend. All users of the userfault_list
851	 * must be holding an RPM wakeref to ensure that this can not
852	 * run concurrently with themselves (and use the struct_mutex for
853	 * protection between themselves).
854	 */
855
856	list_for_each_entry_safe(obj, on,
857				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
858		__i915_gem_object_release_mmap_gtt(obj);
859
860	list_for_each_entry_safe(obj, on,
861				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
862		i915_gem_object_runtime_pm_release_mmap_offset(obj);
863
864	/*
865	 * The fence will be lost when the device powers down. If any were
866	 * in use by hardware (i.e. they are pinned), we should not be powering
867	 * down! All other fences will be reacquired by the user upon waking.
868	 */
869	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
870		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
871
872		/*
873		 * Ideally we want to assert that the fence register is not
874		 * live at this point (i.e. that no piece of code will be
875		 * trying to write through fence + GTT, as that both violates
876		 * our tracking of activity and associated locking/barriers,
877		 * but also is illegal given that the hw is powered down).
878		 *
879		 * Previously we used reg->pin_count as a "liveness" indicator.
880		 * That is not sufficient, and we need a more fine-grained
881		 * tool if we want to have a sanity check here.
882		 */
883
884		if (!reg->vma)
885			continue;
886
887		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
888		reg->dirty = true;
889	}
890}
891
892static void discard_ggtt_vma(struct i915_vma *vma)
893{
894	struct drm_i915_gem_object *obj = vma->obj;
895
896	spin_lock(&obj->vma.lock);
897	if (!RB_EMPTY_NODE(&vma->obj_node)) {
898		rb_erase(&vma->obj_node, &obj->vma.tree);
899		RB_CLEAR_NODE(&vma->obj_node);
900	}
901	spin_unlock(&obj->vma.lock);
902}
903
904struct i915_vma *
905i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
906			    struct i915_gem_ww_ctx *ww,
907			    const struct i915_gtt_view *view,
908			    u64 size, u64 alignment, u64 flags)
909{
910	struct drm_i915_private *i915 = to_i915(obj->base.dev);
911	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
912	struct i915_vma *vma;
913	int ret;
914
915	GEM_WARN_ON(!ww);
916
917	if (flags & PIN_MAPPABLE &&
918	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
919		/*
920		 * If the required space is larger than the available
921		 * aperture, we will not able to find a slot for the
922		 * object and unbinding the object now will be in
923		 * vain. Worse, doing so may cause us to ping-pong
924		 * the object in and out of the Global GTT and
925		 * waste a lot of cycles under the mutex.
926		 */
927		if (obj->base.size > ggtt->mappable_end)
928			return ERR_PTR(-E2BIG);
929
930		/*
931		 * If NONBLOCK is set the caller is optimistically
932		 * trying to cache the full object within the mappable
933		 * aperture, and *must* have a fallback in place for
934		 * situations where we cannot bind the object. We
935		 * can be a little more lax here and use the fallback
936		 * more often to avoid costly migrations of ourselves
937		 * and other objects within the aperture.
938		 *
939		 * Half-the-aperture is used as a simple heuristic.
940		 * More interesting would to do search for a free
941		 * block prior to making the commitment to unbind.
942		 * That caters for the self-harm case, and with a
943		 * little more heuristics (e.g. NOFAULT, NOEVICT)
944		 * we could try to minimise harm to others.
945		 */
946		if (flags & PIN_NONBLOCK &&
947		    obj->base.size > ggtt->mappable_end / 2)
948			return ERR_PTR(-ENOSPC);
949	}
950
951new_vma:
952	vma = i915_vma_instance(obj, &ggtt->vm, view);
953	if (IS_ERR(vma))
954		return vma;
955
956	if (i915_vma_misplaced(vma, size, alignment, flags)) {
957		if (flags & PIN_NONBLOCK) {
958			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
959				return ERR_PTR(-ENOSPC);
960
961			/*
962			 * If this misplaced vma is too big (i.e, at-least
963			 * half the size of aperture) or hasn't been pinned
964			 * mappable before, we ignore the misplacement when
965			 * PIN_NONBLOCK is set in order to avoid the ping-pong
966			 * issue described above. In other words, we try to
967			 * avoid the costly operation of unbinding this vma
968			 * from the GGTT and rebinding it back because there
969			 * may not be enough space for this vma in the aperture.
970			 */
971			if (flags & PIN_MAPPABLE &&
972			    (vma->fence_size > ggtt->mappable_end / 2 ||
973			    !i915_vma_is_map_and_fenceable(vma)))
974				return ERR_PTR(-ENOSPC);
975		}
976
977		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
978			discard_ggtt_vma(vma);
979			goto new_vma;
980		}
981
982		ret = i915_vma_unbind(vma);
983		if (ret)
984			return ERR_PTR(ret);
985	}
986
987	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
988
989	if (ret)
990		return ERR_PTR(ret);
991
992	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
993		mutex_lock(&ggtt->vm.mutex);
994		i915_vma_revoke_fence(vma);
995		mutex_unlock(&ggtt->vm.mutex);
996	}
997
998	ret = i915_vma_wait_for_bind(vma);
999	if (ret) {
1000		i915_vma_unpin(vma);
1001		return ERR_PTR(ret);
1002	}
1003
1004	return vma;
1005}
1006
1007struct i915_vma * __must_check
1008i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1009			 const struct i915_gtt_view *view,
1010			 u64 size, u64 alignment, u64 flags)
1011{
1012	struct i915_gem_ww_ctx ww;
1013	struct i915_vma *ret;
1014	int err;
1015
1016	for_i915_gem_ww(&ww, err, true) {
1017		err = i915_gem_object_lock(obj, &ww);
1018		if (err)
1019			continue;
1020
1021		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1022						  alignment, flags);
1023		if (IS_ERR(ret))
1024			err = PTR_ERR(ret);
1025	}
1026
1027	return err ? ERR_PTR(err) : ret;
1028}
1029
1030int
1031i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1032		       struct drm_file *file_priv)
1033{
1034	struct drm_i915_private *i915 = to_i915(dev);
1035	struct drm_i915_gem_madvise *args = data;
1036	struct drm_i915_gem_object *obj;
1037	int err;
1038
1039	switch (args->madv) {
1040	case I915_MADV_DONTNEED:
1041	case I915_MADV_WILLNEED:
1042	    break;
1043	default:
1044	    return -EINVAL;
1045	}
1046
1047	obj = i915_gem_object_lookup(file_priv, args->handle);
1048	if (!obj)
1049		return -ENOENT;
1050
1051	err = i915_gem_object_lock_interruptible(obj, NULL);
1052	if (err)
1053		goto out;
1054
1055	if (i915_gem_object_has_pages(obj) &&
1056	    i915_gem_object_is_tiled(obj) &&
1057	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1058		if (obj->mm.madv == I915_MADV_WILLNEED) {
1059			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1060			i915_gem_object_clear_tiling_quirk(obj);
1061			i915_gem_object_make_shrinkable(obj);
1062		}
1063		if (args->madv == I915_MADV_WILLNEED) {
1064			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1065			i915_gem_object_make_unshrinkable(obj);
1066			i915_gem_object_set_tiling_quirk(obj);
1067		}
1068	}
1069
1070	if (obj->mm.madv != __I915_MADV_PURGED) {
1071		obj->mm.madv = args->madv;
1072		if (obj->ops->adjust_lru)
1073			obj->ops->adjust_lru(obj);
1074	}
1075
1076	if (i915_gem_object_has_pages(obj) ||
1077	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1078		unsigned long flags;
1079
1080		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1081		if (!list_empty(&obj->mm.link)) {
1082			struct list_head *list;
1083
1084			if (obj->mm.madv != I915_MADV_WILLNEED)
1085				list = &i915->mm.purge_list;
1086			else
1087				list = &i915->mm.shrink_list;
1088			list_move_tail(&obj->mm.link, list);
1089
1090		}
1091		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1092	}
1093
1094	/* if the object is no longer attached, discard its backing storage */
1095	if (obj->mm.madv == I915_MADV_DONTNEED &&
1096	    !i915_gem_object_has_pages(obj))
1097		i915_gem_object_truncate(obj);
1098
1099	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1100
1101	i915_gem_object_unlock(obj);
1102out:
1103	i915_gem_object_put(obj);
1104	return err;
1105}
1106
1107/*
1108 * A single pass should suffice to release all the freed objects (along most
1109 * call paths), but be a little more paranoid in that freeing the objects does
1110 * take a little amount of time, during which the rcu callbacks could have added
1111 * new objects into the freed list, and armed the work again.
1112 */
1113void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1114{
1115	while (atomic_read(&i915->mm.free_count)) {
1116		flush_work(&i915->mm.free_work);
1117		drain_workqueue(i915->bdev.wq);
1118		rcu_barrier();
1119	}
1120}
1121
1122/*
1123 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1124 * have workers that are armed by RCU and then rearm themselves in their
1125 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1126 * waiting for the RCU grace period so that we catch work queued via RCU from
1127 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1128 * result, we make an assumption that we only don't require more than 3 passes
1129 * to catch all _recursive_ RCU delayed work.
1130 */
1131void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1132{
1133	int i;
1134
1135	for (i = 0; i < 3; i++) {
1136		flush_workqueue(i915->wq);
1137		rcu_barrier();
1138		i915_gem_drain_freed_objects(i915);
1139	}
1140
1141	drain_workqueue(i915->wq);
1142}
1143
1144int i915_gem_init(struct drm_i915_private *dev_priv)
1145{
1146	struct intel_gt *gt;
1147	unsigned int i;
1148	int ret;
1149
1150	/*
1151	 * In the proccess of replacing cache_level with pat_index a tricky
1152	 * dependency is created on the definition of the enum i915_cache_level.
1153	 * in case this enum is changed, PTE encode would be broken.
1154	 * Add a WARNING here. And remove when we completely quit using this
1155	 * enum
1156	 */
1157	BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1158		     I915_CACHE_LLC != 1 ||
1159		     I915_CACHE_L3_LLC != 2 ||
1160		     I915_CACHE_WT != 3 ||
1161		     I915_MAX_CACHE_LEVEL != 4);
1162
1163	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1164	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1165		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1166
1167	for_each_gt(gt, dev_priv, i) {
1168		intel_uc_fetch_firmwares(&gt->uc);
1169		intel_wopcm_init(&gt->wopcm);
1170		if (GRAPHICS_VER(dev_priv) >= 8)
1171			setup_private_pat(gt);
1172	}
1173
1174	ret = i915_init_ggtt(dev_priv);
1175	if (ret) {
1176		GEM_BUG_ON(ret == -EIO);
1177		goto err_unlock;
1178	}
1179
1180	/*
1181	 * Despite its name intel_clock_gating_init applies both display
1182	 * clock gating workarounds; GT mmio workarounds and the occasional
1183	 * GT power context workaround. Worse, sometimes it includes a context
1184	 * register workaround which we need to apply before we record the
1185	 * default HW state for all contexts.
1186	 *
1187	 * FIXME: break up the workarounds and apply them at the right time!
1188	 */
1189	intel_clock_gating_init(dev_priv);
1190
1191	for_each_gt(gt, dev_priv, i) {
1192		ret = intel_gt_init(gt);
1193		if (ret)
1194			goto err_unlock;
1195	}
1196
1197	/*
1198	 * Register engines early to ensure the engine list is in its final
1199	 * rb-tree form, lowering the amount of code that has to deal with
1200	 * the intermediate llist state.
1201	 */
1202	intel_engines_driver_register(dev_priv);
1203
1204	return 0;
1205
1206	/*
1207	 * Unwinding is complicated by that we want to handle -EIO to mean
1208	 * disable GPU submission but keep KMS alive. We want to mark the
1209	 * HW as irrevisibly wedged, but keep enough state around that the
1210	 * driver doesn't explode during runtime.
1211	 */
1212err_unlock:
1213	i915_gem_drain_workqueue(dev_priv);
1214
1215	if (ret != -EIO) {
1216		for_each_gt(gt, dev_priv, i) {
1217			intel_gt_driver_remove(gt);
1218			intel_gt_driver_release(gt);
1219			intel_uc_cleanup_firmwares(&gt->uc);
1220		}
1221	}
1222
1223	if (ret == -EIO) {
1224		/*
1225		 * Allow engines or uC initialisation to fail by marking the GPU
1226		 * as wedged. But we only want to do this when the GPU is angry,
1227		 * for all other failure, such as an allocation failure, bail.
1228		 */
1229		for_each_gt(gt, dev_priv, i) {
1230			if (!intel_gt_is_wedged(gt)) {
1231				i915_probe_error(dev_priv,
1232						 "Failed to initialize GPU, declaring it wedged!\n");
1233				intel_gt_set_wedged(gt);
1234			}
1235		}
1236
1237		/* Minimal basic recovery for KMS */
1238		ret = i915_ggtt_enable_hw(dev_priv);
1239		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1240		intel_clock_gating_init(dev_priv);
1241	}
1242
1243	i915_gem_drain_freed_objects(dev_priv);
1244
1245	return ret;
1246}
1247
1248void i915_gem_driver_register(struct drm_i915_private *i915)
1249{
1250	i915_gem_driver_register__shrinker(i915);
1251}
1252
1253void i915_gem_driver_unregister(struct drm_i915_private *i915)
1254{
1255	i915_gem_driver_unregister__shrinker(i915);
1256}
1257
1258void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1259{
1260	struct intel_gt *gt;
1261	unsigned int i;
1262
1263	i915_gem_suspend_late(dev_priv);
1264	for_each_gt(gt, dev_priv, i)
1265		intel_gt_driver_remove(gt);
1266	dev_priv->uabi_engines = RB_ROOT;
1267
1268	/* Flush any outstanding unpin_work. */
1269	i915_gem_drain_workqueue(dev_priv);
1270}
1271
1272void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1273{
1274	struct intel_gt *gt;
1275	unsigned int i;
1276
1277	for_each_gt(gt, dev_priv, i) {
1278		intel_gt_driver_release(gt);
1279		intel_uc_cleanup_firmwares(&gt->uc);
1280	}
1281
1282	/* Flush any outstanding work, including i915_gem_context.release_work. */
1283	i915_gem_drain_workqueue(dev_priv);
1284
1285	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1286}
1287
1288static void i915_gem_init__mm(struct drm_i915_private *i915)
1289{
1290	spin_lock_init(&i915->mm.obj_lock);
1291
1292	init_llist_head(&i915->mm.free_list);
1293
1294	INIT_LIST_HEAD(&i915->mm.purge_list);
1295	INIT_LIST_HEAD(&i915->mm.shrink_list);
1296
1297	i915_gem_init__objects(i915);
1298}
1299
1300void i915_gem_init_early(struct drm_i915_private *dev_priv)
1301{
1302	i915_gem_init__mm(dev_priv);
1303	i915_gem_init__contexts(dev_priv);
1304}
1305
1306void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1307{
1308	i915_gem_drain_workqueue(dev_priv);
1309	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1310	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1311	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1312}
1313
1314int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1315{
1316	struct drm_i915_file_private *file_priv;
1317	struct i915_drm_client *client;
1318	int ret = -ENOMEM;
1319
1320	drm_dbg(&i915->drm, "\n");
1321
1322	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1323	if (!file_priv)
1324		goto err_alloc;
1325
1326	client = i915_drm_client_alloc();
1327	if (!client)
1328		goto err_client;
1329
1330	file->driver_priv = file_priv;
1331	file_priv->i915 = i915;
1332	file_priv->file = file;
1333	file_priv->client = client;
1334
1335	file_priv->bsd_engine = -1;
1336	file_priv->hang_timestamp = jiffies;
1337
1338	ret = i915_gem_context_open(i915, file);
1339	if (ret)
1340		goto err_context;
1341
1342	return 0;
1343
1344err_context:
1345	i915_drm_client_put(client);
1346err_client:
1347	kfree(file_priv);
1348err_alloc:
1349	return ret;
1350}
1351
1352#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1353#include "selftests/mock_gem_device.c"
1354#include "selftests/i915_gem.c"
1355#endif
1356