1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2016-2019 Intel Corporation
4 */
5
6#include <linux/types.h>
7
8#include "gt/intel_gt.h"
9#include "gt/intel_rps.h"
10#include "intel_guc_reg.h"
11#include "intel_huc.h"
12#include "intel_huc_print.h"
13#include "i915_drv.h"
14#include "i915_reg.h"
15#include "pxp/intel_pxp_cmd_interface_43.h"
16
17#include <linux/device/bus.h>
18#include <linux/mei_aux.h>
19
20/**
21 * DOC: HuC
22 *
23 * The HuC is a dedicated microcontroller for usage in media HEVC (High
24 * Efficiency Video Coding) operations. Userspace can directly use the firmware
25 * capabilities by adding HuC specific commands to batch buffers.
26 *
27 * The kernel driver is only responsible for loading the HuC firmware and
28 * triggering its security authentication. This is done differently depending
29 * on the platform:
30 *
31 * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA
32 *   and the authentication via GuC
33 * - DG2: load and authentication are both performed via GSC.
34 * - MTL and newer platforms: the load is performed via DMA (same as with
35 *   not-DG2 older platforms), while the authentication is done in 2-steps,
36 *   a first auth for clear-media workloads via GuC and a second one for all
37 *   workloads via GSC.
38 *
39 * On platforms where the GuC does the authentication, to correctly do so the
40 * HuC binary must be loaded before the GuC one.
41 * Loading the HuC is optional; however, not using the HuC might negatively
42 * impact power usage and/or performance of media workloads, depending on the
43 * use-cases.
44 * HuC must be reloaded on events that cause the WOPCM to lose its contents
45 * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT
46 * reset, while on newer ones it will survive that.
47 *
48 * See https://github.com/intel/media-driver for the latest details on HuC
49 * functionality.
50 */
51
52/**
53 * DOC: HuC Memory Management
54 *
55 * Similarly to the GuC, the HuC can't do any memory allocations on its own,
56 * with the difference being that the allocations for HuC usage are handled by
57 * the userspace driver instead of the kernel one. The HuC accesses the memory
58 * via the PPGTT belonging to the context loaded on the VCS executing the
59 * HuC-specific commands.
60 */
61
62/*
63 * MEI-GSC load is an async process. The probing of the exposed aux device
64 * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
65 * on when the kernel schedules it. Unless something goes terribly wrong, we're
66 * guaranteed for this to happen during boot, so the big timeout is a safety net
67 * that we never expect to need.
68 * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
69 * and/or reset, this can take longer. Note that the kernel might schedule
70 * other work between the i915 init/resume and the MEI one, which can add to
71 * the delay.
72 */
73#define GSC_INIT_TIMEOUT_MS 10000
74#define PXP_INIT_TIMEOUT_MS 5000
75
76static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
77				 enum i915_sw_fence_notify state)
78{
79	return NOTIFY_DONE;
80}
81
82static void __delayed_huc_load_complete(struct intel_huc *huc)
83{
84	if (!i915_sw_fence_done(&huc->delayed_load.fence))
85		i915_sw_fence_complete(&huc->delayed_load.fence);
86}
87
88static void delayed_huc_load_complete(struct intel_huc *huc)
89{
90	hrtimer_cancel(&huc->delayed_load.timer);
91	__delayed_huc_load_complete(huc);
92}
93
94static void __gsc_init_error(struct intel_huc *huc)
95{
96	huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
97	__delayed_huc_load_complete(huc);
98}
99
100static void gsc_init_error(struct intel_huc *huc)
101{
102	hrtimer_cancel(&huc->delayed_load.timer);
103	__gsc_init_error(huc);
104}
105
106static void gsc_init_done(struct intel_huc *huc)
107{
108	hrtimer_cancel(&huc->delayed_load.timer);
109
110	/* MEI-GSC init is done, now we wait for MEI-PXP to bind */
111	huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
112	if (!i915_sw_fence_done(&huc->delayed_load.fence))
113		hrtimer_start(&huc->delayed_load.timer,
114			      ms_to_ktime(PXP_INIT_TIMEOUT_MS),
115			      HRTIMER_MODE_REL);
116}
117
118static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
119{
120	struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);
121
122	if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) {
123		if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
124			huc_notice(huc, "timed out waiting for MEI GSC\n");
125		else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
126			huc_notice(huc, "timed out waiting for MEI PXP\n");
127		else
128			MISSING_CASE(huc->delayed_load.status);
129
130		__gsc_init_error(huc);
131	}
132
133	return HRTIMER_NORESTART;
134}
135
136static void huc_delayed_load_start(struct intel_huc *huc)
137{
138	ktime_t delay;
139
140	GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC));
141
142	/*
143	 * On resume we don't have to wait for MEI-GSC to be re-probed, but we
144	 * do need to wait for MEI-PXP to reset & re-bind
145	 */
146	switch (huc->delayed_load.status) {
147	case INTEL_HUC_WAITING_ON_GSC:
148		delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
149		break;
150	case INTEL_HUC_WAITING_ON_PXP:
151		delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
152		break;
153	default:
154		gsc_init_error(huc);
155		return;
156	}
157
158	/*
159	 * This fence is always complete unless we're waiting for the
160	 * GSC device to come up to load the HuC. We arm the fence here
161	 * and complete it when we confirm that the HuC is loaded from
162	 * the PXP bind callback.
163	 */
164	GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
165	i915_sw_fence_fini(&huc->delayed_load.fence);
166	i915_sw_fence_reinit(&huc->delayed_load.fence);
167	i915_sw_fence_await(&huc->delayed_load.fence);
168	i915_sw_fence_commit(&huc->delayed_load.fence);
169
170	hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
171}
172
173static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
174{
175	struct device *dev = data;
176	struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
177	struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
178
179	if (!intf->adev || &intf->adev->aux_dev.dev != dev)
180		return 0;
181
182	switch (action) {
183	case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
184		gsc_init_done(huc);
185		break;
186
187	case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
188	case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
189		huc_info(huc, "MEI driver not bound, disabling load\n");
190		gsc_init_error(huc);
191		break;
192	}
193
194	return 0;
195}
196
197void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
198{
199	int ret;
200
201	if (!intel_huc_is_loaded_by_gsc(huc))
202		return;
203
204	huc->delayed_load.nb.notifier_call = gsc_notifier;
205	ret = bus_register_notifier(bus, &huc->delayed_load.nb);
206	if (ret) {
207		huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret));
208		huc->delayed_load.nb.notifier_call = NULL;
209		gsc_init_error(huc);
210	}
211}
212
213void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
214{
215	if (!huc->delayed_load.nb.notifier_call)
216		return;
217
218	delayed_huc_load_complete(huc);
219
220	bus_unregister_notifier(bus, &huc->delayed_load.nb);
221	huc->delayed_load.nb.notifier_call = NULL;
222}
223
224static void delayed_huc_load_init(struct intel_huc *huc)
225{
226	/*
227	 * Initialize fence to be complete as this is expected to be complete
228	 * unless there is a delayed HuC load in progress.
229	 */
230	i915_sw_fence_init(&huc->delayed_load.fence,
231			   sw_fence_dummy_notify);
232	i915_sw_fence_commit(&huc->delayed_load.fence);
233
234	hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
235	huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
236}
237
238static void delayed_huc_load_fini(struct intel_huc *huc)
239{
240	/*
241	 * the fence is initialized in init_early, so we need to clean it up
242	 * even if HuC loading is off.
243	 */
244	delayed_huc_load_complete(huc);
245	i915_sw_fence_fini(&huc->delayed_load.fence);
246}
247
248int intel_huc_sanitize(struct intel_huc *huc)
249{
250	delayed_huc_load_complete(huc);
251	intel_uc_fw_sanitize(&huc->fw);
252	return 0;
253}
254
255static bool vcs_supported(struct intel_gt *gt)
256{
257	intel_engine_mask_t mask = gt->info.engine_mask;
258
259	/*
260	 * We reach here from i915_driver_early_probe for the primary GT before
261	 * its engine mask is set, so we use the device info engine mask for it;
262	 * this means we're not taking VCS fusing into account, but if the
263	 * primary GT supports VCS engines we expect at least one of them to
264	 * remain unfused so we're fine.
265	 * For other GTs we expect the GT-specific mask to be set before we
266	 * call this function.
267	 */
268	GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
269
270	if (gt_is_root(gt))
271		mask = INTEL_INFO(gt->i915)->platform_engine_mask;
272	else
273		mask = gt->info.engine_mask;
274
275	return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
276}
277
278void intel_huc_init_early(struct intel_huc *huc)
279{
280	struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
281	struct intel_gt *gt = huc_to_gt(huc);
282
283	intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true);
284
285	/*
286	 * we always init the fence as already completed, even if HuC is not
287	 * supported. This way we don't have to distinguish between HuC not
288	 * supported/disabled or already loaded, and can focus on if the load
289	 * is currently in progress (fence not complete) or not, which is what
290	 * we care about for stalling userspace submissions.
291	 */
292	delayed_huc_load_init(huc);
293
294	if (!vcs_supported(gt)) {
295		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
296		return;
297	}
298
299	if (GRAPHICS_VER(i915) >= 11) {
300		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
301		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL;
302		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL;
303	} else {
304		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2;
305		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED;
306		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED;
307	}
308
309	if (IS_DG2(i915)) {
310		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
311		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL;
312		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL;
313	} else {
314		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5);
315		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE;
316		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE;
317	}
318}
319
320#define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
321static int check_huc_loading_mode(struct intel_huc *huc)
322{
323	struct intel_gt *gt = huc_to_gt(huc);
324	bool gsc_enabled = huc->fw.has_gsc_headers;
325
326	/*
327	 * The fuse for HuC load via GSC is only valid on platforms that have
328	 * GuC deprivilege.
329	 */
330	if (HAS_GUC_DEPRIVILEGE(gt->i915))
331		huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
332				      GSC_LOADS_HUC;
333
334	if (huc->loaded_via_gsc && !gsc_enabled) {
335		huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n");
336		return -ENOEXEC;
337	}
338
339	/*
340	 * On newer platforms we have GSC-enabled binaries but we load the HuC
341	 * via DMA. To do so we need to find the location of the legacy-style
342	 * binary inside the GSC-enabled one, which we do at fetch time. Make
343	 * sure that we were able to do so if the fuse says we need to load via
344	 * DMA and the binary is GSC-enabled.
345	 */
346	if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) {
347		huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n");
348		return -ENOEXEC;
349	}
350
351	/*
352	 * If the HuC is loaded via GSC, we need to be able to access the GSC.
353	 * On DG2 this is done via the mei components, while on newer platforms
354	 * it is done via the GSCCS,
355	 */
356	if (huc->loaded_via_gsc) {
357		if (IS_DG2(gt->i915)) {
358			if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) ||
359			    !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) {
360				huc_info(huc, "can't load due to missing mei modules\n");
361				return -EIO;
362			}
363		} else {
364			if (!HAS_ENGINE(gt, GSC0)) {
365				huc_info(huc, "can't load due to missing GSCCS\n");
366				return -EIO;
367			}
368		}
369	}
370
371	huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc));
372
373	return 0;
374}
375
376int intel_huc_init(struct intel_huc *huc)
377{
378	struct intel_gt *gt = huc_to_gt(huc);
379	int err;
380
381	err = check_huc_loading_mode(huc);
382	if (err)
383		goto out;
384
385	if (HAS_ENGINE(gt, GSC0)) {
386		struct i915_vma *vma;
387
388		vma = intel_guc_allocate_vma(&gt->uc.guc, PXP43_HUC_AUTH_INOUT_SIZE * 2);
389		if (IS_ERR(vma)) {
390			err = PTR_ERR(vma);
391			huc_info(huc, "Failed to allocate heci pkt\n");
392			goto out;
393		}
394
395		huc->heci_pkt = vma;
396	}
397
398	err = intel_uc_fw_init(&huc->fw);
399	if (err)
400		goto out_pkt;
401
402	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
403
404	return 0;
405
406out_pkt:
407	if (huc->heci_pkt)
408		i915_vma_unpin_and_release(&huc->heci_pkt, 0);
409out:
410	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
411	huc_info(huc, "initialization failed %pe\n", ERR_PTR(err));
412	return err;
413}
414
415void intel_huc_fini(struct intel_huc *huc)
416{
417	/*
418	 * the fence is initialized in init_early, so we need to clean it up
419	 * even if HuC loading is off.
420	 */
421	delayed_huc_load_fini(huc);
422
423	if (huc->heci_pkt)
424		i915_vma_unpin_and_release(&huc->heci_pkt, 0);
425
426	if (intel_uc_fw_is_loadable(&huc->fw))
427		intel_uc_fw_fini(&huc->fw);
428}
429
430void intel_huc_suspend(struct intel_huc *huc)
431{
432	if (!intel_uc_fw_is_loadable(&huc->fw))
433		return;
434
435	/*
436	 * in the unlikely case that we're suspending before the GSC has
437	 * completed its loading sequence, just stop waiting. We'll restart
438	 * on resume.
439	 */
440	delayed_huc_load_complete(huc);
441}
442
443static const char *auth_mode_string(struct intel_huc *huc,
444				    enum intel_huc_authentication_type type)
445{
446	bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC;
447
448	return partial ? "clear media" : "all workloads";
449}
450
451/*
452 * Use a longer timeout for debug builds so that problems can be detected
453 * and analysed. But a shorter timeout for releases so that user's don't
454 * wait forever to find out there is a problem. Note that the only reason
455 * an end user should hit the timeout is in case of extreme thermal throttling.
456 * And a system that is that hot during boot is probably dead anyway!
457 */
458#if defined(CONFIG_DRM_I915_DEBUG_GEM)
459#define HUC_LOAD_RETRY_LIMIT   20
460#else
461#define HUC_LOAD_RETRY_LIMIT   3
462#endif
463
464int intel_huc_wait_for_auth_complete(struct intel_huc *huc,
465				     enum intel_huc_authentication_type type)
466{
467	struct intel_gt *gt = huc_to_gt(huc);
468	struct intel_uncore *uncore = gt->uncore;
469	ktime_t before, after, delta;
470	int ret, count;
471	u64 delta_ms;
472	u32 before_freq;
473
474	/*
475	 * The KMD requests maximum frequency during driver load, however thermal
476	 * throttling can force the frequency down to minimum (although the board
477	 * really should never get that hot in real life!). IFWI  issues have been
478	 * seen to cause sporadic failures to grant the higher frequency. And at
479	 * minimum frequency, the authentication time can be in the seconds range.
480	 * Note that there is a limit on how long an individual wait_for() can wait.
481	 * So wrap it in a loop.
482	 */
483	before_freq = intel_rps_read_actual_frequency(&gt->rps);
484	before = ktime_get();
485	for (count = 0; count < HUC_LOAD_RETRY_LIMIT; count++) {
486		ret = __intel_wait_for_register(gt->uncore,
487						huc->status[type].reg,
488						huc->status[type].mask,
489						huc->status[type].value,
490						2, 1000, NULL);
491		if (!ret)
492			break;
493
494		huc_dbg(huc, "auth still in progress, count = %d, freq = %dMHz, status = 0x%08X\n",
495			count, intel_rps_read_actual_frequency(&gt->rps),
496			huc->status[type].reg.reg);
497	}
498	after = ktime_get();
499	delta = ktime_sub(after, before);
500	delta_ms = ktime_to_ms(delta);
501
502	if (delta_ms > 50) {
503		huc_warn(huc, "excessive auth time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n",
504			 delta_ms, huc->status[type].reg.reg, count, ret);
505		huc_warn(huc, "excessive auth time: [freq = %dMHz, before = %dMHz, perf_limit_reasons = 0x%08X]\n",
506			 intel_rps_read_actual_frequency(&gt->rps), before_freq,
507			 intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt)));
508	} else {
509		huc_dbg(huc, "auth took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n",
510			delta_ms, intel_rps_read_actual_frequency(&gt->rps),
511			before_freq, huc->status[type].reg.reg, count, ret);
512	}
513
514	/* mark the load process as complete even if the wait failed */
515	delayed_huc_load_complete(huc);
516
517	if (ret) {
518		huc_err(huc, "firmware not verified for %s: %pe\n",
519			auth_mode_string(huc, type), ERR_PTR(ret));
520		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
521		return ret;
522	}
523
524	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
525	huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type));
526	return 0;
527}
528
529/**
530 * intel_huc_auth() - Authenticate HuC uCode
531 * @huc: intel_huc structure
532 * @type: authentication type (via GuC or via GSC)
533 *
534 * Called after HuC and GuC firmware loading during intel_uc_init_hw().
535 *
536 * This function invokes the GuC action to authenticate the HuC firmware,
537 * passing the offset of the RSA signature to intel_guc_auth_huc(). It then
538 * waits for up to 50ms for firmware verification ACK.
539 */
540int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type)
541{
542	struct intel_gt *gt = huc_to_gt(huc);
543	struct intel_guc *guc = &gt->uc.guc;
544	int ret;
545
546	if (!intel_uc_fw_is_loaded(&huc->fw))
547		return -ENOEXEC;
548
549	/* GSC will do the auth with the load */
550	if (intel_huc_is_loaded_by_gsc(huc))
551		return -ENODEV;
552
553	if (intel_huc_is_authenticated(huc, type))
554		return -EEXIST;
555
556	ret = i915_inject_probe_error(gt->i915, -ENXIO);
557	if (ret)
558		goto fail;
559
560	switch (type) {
561	case INTEL_HUC_AUTH_BY_GUC:
562		ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
563		break;
564	case INTEL_HUC_AUTH_BY_GSC:
565		ret = intel_huc_fw_auth_via_gsccs(huc);
566		break;
567	default:
568		MISSING_CASE(type);
569		ret = -EINVAL;
570	}
571	if (ret)
572		goto fail;
573
574	/* Check authentication status, it should be done by now */
575	ret = intel_huc_wait_for_auth_complete(huc, type);
576	if (ret)
577		goto fail;
578
579	return 0;
580
581fail:
582	huc_probe_error(huc, "%s authentication failed %pe\n",
583			auth_mode_string(huc, type), ERR_PTR(ret));
584	return ret;
585}
586
587bool intel_huc_is_authenticated(struct intel_huc *huc,
588				enum intel_huc_authentication_type type)
589{
590	struct intel_gt *gt = huc_to_gt(huc);
591	intel_wakeref_t wakeref;
592	u32 status = 0;
593
594	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
595		status = intel_uncore_read(gt->uncore, huc->status[type].reg);
596
597	return (status & huc->status[type].mask) == huc->status[type].value;
598}
599
600static bool huc_is_fully_authenticated(struct intel_huc *huc)
601{
602	struct intel_uc_fw *huc_fw = &huc->fw;
603
604	if (!huc_fw->has_gsc_headers)
605		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC);
606	else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0))
607		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC);
608	else
609		return false;
610}
611
612/**
613 * intel_huc_check_status() - check HuC status
614 * @huc: intel_huc structure
615 *
616 * This function reads status register to verify if HuC
617 * firmware was successfully loaded.
618 *
619 * The return values match what is expected for the I915_PARAM_HUC_STATUS
620 * getparam.
621 */
622int intel_huc_check_status(struct intel_huc *huc)
623{
624	struct intel_uc_fw *huc_fw = &huc->fw;
625
626	switch (__intel_uc_fw_status(huc_fw)) {
627	case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
628		return -ENODEV;
629	case INTEL_UC_FIRMWARE_DISABLED:
630		return -EOPNOTSUPP;
631	case INTEL_UC_FIRMWARE_MISSING:
632		return -ENOPKG;
633	case INTEL_UC_FIRMWARE_ERROR:
634		return -ENOEXEC;
635	case INTEL_UC_FIRMWARE_INIT_FAIL:
636		return -ENOMEM;
637	case INTEL_UC_FIRMWARE_LOAD_FAIL:
638		return -EIO;
639	default:
640		break;
641	}
642
643	/*
644	 * GSC-enabled binaries loaded via DMA are first partially
645	 * authenticated by GuC and then fully authenticated by GSC
646	 */
647	if (huc_is_fully_authenticated(huc))
648		return 1; /* full auth */
649	else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) &&
650		 intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC))
651		return 2; /* clear media only */
652	else
653		return 0;
654}
655
656static bool huc_has_delayed_load(struct intel_huc *huc)
657{
658	return intel_huc_is_loaded_by_gsc(huc) &&
659	       (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
660}
661
662void intel_huc_update_auth_status(struct intel_huc *huc)
663{
664	if (!intel_uc_fw_is_loadable(&huc->fw))
665		return;
666
667	if (!huc->fw.has_gsc_headers)
668		return;
669
670	if (huc_is_fully_authenticated(huc))
671		intel_uc_fw_change_status(&huc->fw,
672					  INTEL_UC_FIRMWARE_RUNNING);
673	else if (huc_has_delayed_load(huc))
674		huc_delayed_load_start(huc);
675}
676
677/**
678 * intel_huc_load_status - dump information about HuC load status
679 * @huc: the HuC
680 * @p: the &drm_printer
681 *
682 * Pretty printer for HuC load status.
683 */
684void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
685{
686	struct intel_gt *gt = huc_to_gt(huc);
687	intel_wakeref_t wakeref;
688
689	if (!intel_huc_is_supported(huc)) {
690		drm_printf(p, "HuC not supported\n");
691		return;
692	}
693
694	if (!intel_huc_is_wanted(huc)) {
695		drm_printf(p, "HuC disabled\n");
696		return;
697	}
698
699	intel_uc_fw_dump(&huc->fw, p);
700
701	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
702		drm_printf(p, "HuC status: 0x%08x\n",
703			   intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg));
704}
705