1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2022 Intel Corporation
4 */
5
6#include "i915_drv.h"
7#include "intel_gt.h"
8#include "intel_gt_mcr.h"
9#include "intel_gt_print.h"
10#include "intel_gt_regs.h"
11
12/**
13 * DOC: GT Multicast/Replicated (MCR) Register Support
14 *
15 * Some GT registers are designed as "multicast" or "replicated" registers:
16 * multiple instances of the same register share a single MMIO offset.  MCR
17 * registers are generally used when the hardware needs to potentially track
18 * independent values of a register per hardware unit (e.g., per-subslice,
19 * per-L3bank, etc.).  The specific types of replication that exist vary
20 * per-platform.
21 *
22 * MMIO accesses to MCR registers are controlled according to the settings
23 * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
24 * registers can be done in either a (i.e., a single write updates all
25 * instances of the register to the same value) or unicast (a write updates only
26 * one specific instance).  Reads of MCR registers always operate in a unicast
27 * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR.
28 * Selection of a specific MCR instance for unicast operations is referred to
29 * as "steering."
30 *
31 * If MCR register operations are steered toward a hardware unit that is
32 * fused off or currently powered down due to power gating, the MMIO operation
33 * is "terminated" by the hardware.  Terminated read operations will return a
34 * value of zero and terminated unicast write operations will be silently
35 * ignored.
36 */
37
38#define HAS_MSLICE_STEERING(i915)	(INTEL_INFO(i915)->has_mslice_steering)
39
40static const char * const intel_steering_types[] = {
41	"L3BANK",
42	"MSLICE",
43	"LNCF",
44	"GAM",
45	"DSS",
46	"OADDRM",
47	"INSTANCE 0",
48};
49
50static const struct intel_mmio_range icl_l3bank_steering_table[] = {
51	{ 0x00B100, 0x00B3FF },
52	{},
53};
54
55/*
56 * Although the bspec lists more "MSLICE" ranges than shown here, some of those
57 * are of a "GAM" subclass that has special rules.  Thus we use a separate
58 * GAM table farther down for those.
59 */
60static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
61	{ 0x00DD00, 0x00DDFF },
62	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
63	{},
64};
65
66static const struct intel_mmio_range xehpsdv_gam_steering_table[] = {
67	{ 0x004000, 0x004AFF },
68	{ 0x00C800, 0x00CFFF },
69	{},
70};
71
72static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
73	{ 0x00B000, 0x00B0FF },
74	{ 0x00D800, 0x00D8FF },
75	{},
76};
77
78static const struct intel_mmio_range dg2_lncf_steering_table[] = {
79	{ 0x00B000, 0x00B0FF },
80	{ 0x00D880, 0x00D8FF },
81	{},
82};
83
84/*
85 * We have several types of MCR registers on PVC where steering to (0,0)
86 * will always provide us with a non-terminated value.  We'll stick them
87 * all in the same table for simplicity.
88 */
89static const struct intel_mmio_range pvc_instance0_steering_table[] = {
90	{ 0x004000, 0x004AFF },		/* HALF-BSLICE */
91	{ 0x008800, 0x00887F },		/* CC */
92	{ 0x008A80, 0x008AFF },		/* TILEPSMI */
93	{ 0x00B000, 0x00B0FF },		/* HALF-BSLICE */
94	{ 0x00B100, 0x00B3FF },		/* L3BANK */
95	{ 0x00C800, 0x00CFFF },		/* HALF-BSLICE */
96	{ 0x00D800, 0x00D8FF },		/* HALF-BSLICE */
97	{ 0x00DD00, 0x00DDFF },		/* BSLICE */
98	{ 0x00E900, 0x00E9FF },		/* HALF-BSLICE */
99	{ 0x00EC00, 0x00EEFF },		/* HALF-BSLICE */
100	{ 0x00F000, 0x00FFFF },		/* HALF-BSLICE */
101	{ 0x024180, 0x0241FF },		/* HALF-BSLICE */
102	{},
103};
104
105static const struct intel_mmio_range xelpg_instance0_steering_table[] = {
106	{ 0x000B00, 0x000BFF },         /* SQIDI */
107	{ 0x001000, 0x001FFF },         /* SQIDI */
108	{ 0x004000, 0x0048FF },         /* GAM */
109	{ 0x008700, 0x0087FF },         /* SQIDI */
110	{ 0x00B000, 0x00B0FF },         /* NODE */
111	{ 0x00C800, 0x00CFFF },         /* GAM */
112	{ 0x00D880, 0x00D8FF },         /* NODE */
113	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
114	{},
115};
116
117static const struct intel_mmio_range xelpg_l3bank_steering_table[] = {
118	{ 0x00B100, 0x00B3FF },
119	{},
120};
121
122/* DSS steering is used for SLICE ranges as well */
123static const struct intel_mmio_range xelpg_dss_steering_table[] = {
124	{ 0x005200, 0x0052FF },		/* SLICE */
125	{ 0x005500, 0x007FFF },		/* SLICE */
126	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
127	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
128	{ 0x009680, 0x0096FF },		/* DSS */
129	{ 0x00D800, 0x00D87F },		/* SLICE */
130	{ 0x00DC00, 0x00DCFF },		/* SLICE */
131	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
132	{},
133};
134
135static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = {
136	{ 0x393200, 0x39323F },
137	{ 0x393400, 0x3934FF },
138	{},
139};
140
141void intel_gt_mcr_init(struct intel_gt *gt)
142{
143	struct drm_i915_private *i915 = gt->i915;
144	unsigned long fuse;
145	int i;
146
147	spin_lock_init(&gt->mcr_lock);
148
149	/*
150	 * An mslice is unavailable only if both the meml3 for the slice is
151	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
152	 */
153	if (HAS_MSLICE_STEERING(i915)) {
154		gt->info.mslice_mask =
155			intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask,
156							  GEN_DSS_PER_MSLICE);
157		gt->info.mslice_mask |=
158			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
159			 GEN12_MEML3_EN_MASK);
160
161		if (!gt->info.mslice_mask) /* should be impossible! */
162			gt_warn(gt, "mslice mask all zero!\n");
163	}
164
165	if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
166		gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table;
167	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
168		/* Wa_14016747170 */
169		if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
170		    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
171			fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK,
172					     intel_uncore_read(gt->uncore,
173							       MTL_GT_ACTIVITY_FACTOR));
174		else
175			fuse = REG_FIELD_GET(GT_L3_EXC_MASK,
176					     intel_uncore_read(gt->uncore, XEHP_FUSE4));
177
178		/*
179		 * Despite the register field being named "exclude mask" the
180		 * bits actually represent enabled banks (two banks per bit).
181		 */
182		for_each_set_bit(i, &fuse, 3)
183			gt->info.l3bank_mask |= 0x3 << 2 * i;
184
185		gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table;
186		gt->steering_table[L3BANK] = xelpg_l3bank_steering_table;
187		gt->steering_table[DSS] = xelpg_dss_steering_table;
188	} else if (IS_PONTEVECCHIO(i915)) {
189		gt->steering_table[INSTANCE0] = pvc_instance0_steering_table;
190	} else if (IS_DG2(i915)) {
191		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
192		gt->steering_table[LNCF] = dg2_lncf_steering_table;
193		/*
194		 * No need to hook up the GAM table since it has a dedicated
195		 * steering control register on DG2 and can use implicit
196		 * steering.
197		 */
198	} else if (IS_XEHPSDV(i915)) {
199		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
200		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
201		gt->steering_table[GAM] = xehpsdv_gam_steering_table;
202	} else if (GRAPHICS_VER(i915) >= 11 &&
203		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
204		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
205		gt->info.l3bank_mask =
206			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
207			GEN10_L3BANK_MASK;
208		if (!gt->info.l3bank_mask) /* should be impossible! */
209			gt_warn(gt, "L3 bank mask is all zero!\n");
210	} else if (GRAPHICS_VER(i915) >= 11) {
211		/*
212		 * We expect all modern platforms to have at least some
213		 * type of steering that needs to be initialized.
214		 */
215		MISSING_CASE(INTEL_INFO(i915)->platform);
216	}
217}
218
219/*
220 * Although the rest of the driver should use MCR-specific functions to
221 * read/write MCR registers, we still use the regular intel_uncore_* functions
222 * internally to implement those, so we need a way for the functions in this
223 * file to "cast" an i915_mcr_reg_t into an i915_reg_t.
224 */
225static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr)
226{
227	i915_reg_t r = { .reg = mcr.reg };
228
229	return r;
230}
231
232/*
233 * rw_with_mcr_steering_fw - Access a register with specific MCR steering
234 * @gt: GT to read register from
235 * @reg: register being accessed
236 * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access
237 * @group: group number (documented as "sliceid" on older platforms)
238 * @instance: instance number (documented as "subsliceid" on older platforms)
239 * @value: register value to be written (ignored for read)
240 *
241 * Context: The caller must hold the MCR lock
242 * Return: 0 for write access. register value for read access.
243 *
244 * Caller needs to make sure the relevant forcewake wells are up.
245 */
246static u32 rw_with_mcr_steering_fw(struct intel_gt *gt,
247				   i915_mcr_reg_t reg, u8 rw_flag,
248				   int group, int instance, u32 value)
249{
250	struct intel_uncore *uncore = gt->uncore;
251	u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0;
252
253	lockdep_assert_held(&gt->mcr_lock);
254
255	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) {
256		/*
257		 * Always leave the hardware in multicast mode when doing reads
258		 * (see comment about Wa_22013088509 below) and only change it
259		 * to unicast mode when doing writes of a specific instance.
260		 *
261		 * No need to save old steering reg value.
262		 */
263		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR,
264				      REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
265				      REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) |
266				      (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0));
267	} else if (GRAPHICS_VER(uncore->i915) >= 11) {
268		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
269		mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance);
270
271		/*
272		 * Wa_22013088509
273		 *
274		 * The setting of the multicast/unicast bit usually wouldn't
275		 * matter for read operations (which always return the value
276		 * from a single register instance regardless of how that bit
277		 * is set), but some platforms have a workaround requiring us
278		 * to remain in multicast mode for reads.  There's no real
279		 * downside to this, so we'll just go ahead and do so on all
280		 * platforms; we'll only clear the multicast bit from the mask
281		 * when exlicitly doing a write operation.
282		 */
283		if (rw_flag == FW_REG_WRITE)
284			mcr_mask |= GEN11_MCR_MULTICAST;
285
286		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
287		old_mcr = mcr;
288
289		mcr &= ~mcr_mask;
290		mcr |= mcr_ss;
291		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
292	} else {
293		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
294		mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance);
295
296		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
297		old_mcr = mcr;
298
299		mcr &= ~mcr_mask;
300		mcr |= mcr_ss;
301		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
302	}
303
304	if (rw_flag == FW_REG_READ)
305		val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg));
306	else
307		intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value);
308
309	/*
310	 * For pre-MTL platforms, we need to restore the old value of the
311	 * steering control register to ensure that implicit steering continues
312	 * to behave as expected.  For MTL and beyond, we need only reinstate
313	 * the 'multicast' bit (and only if we did a write that cleared it).
314	 */
315	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE)
316		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
317	else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70))
318		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr);
319
320	return val;
321}
322
323static u32 rw_with_mcr_steering(struct intel_gt *gt,
324				i915_mcr_reg_t reg, u8 rw_flag,
325				int group, int instance,
326				u32 value)
327{
328	struct intel_uncore *uncore = gt->uncore;
329	enum forcewake_domains fw_domains;
330	unsigned long flags;
331	u32 val;
332
333	fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg),
334						    rw_flag);
335	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
336						     GEN8_MCR_SELECTOR,
337						     FW_REG_READ | FW_REG_WRITE);
338
339	intel_gt_mcr_lock(gt, &flags);
340	spin_lock(&uncore->lock);
341	intel_uncore_forcewake_get__locked(uncore, fw_domains);
342
343	val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value);
344
345	intel_uncore_forcewake_put__locked(uncore, fw_domains);
346	spin_unlock(&uncore->lock);
347	intel_gt_mcr_unlock(gt, flags);
348
349	return val;
350}
351
352/**
353 * intel_gt_mcr_lock - Acquire MCR steering lock
354 * @gt: GT structure
355 * @flags: storage to save IRQ flags to
356 *
357 * Performs locking to protect the steering for the duration of an MCR
358 * operation.  On MTL and beyond, a hardware lock will also be taken to
359 * serialize access not only for the driver, but also for external hardware and
360 * firmware agents.
361 *
362 * Context: Takes gt->mcr_lock.  uncore->lock should *not* be held when this
363 *          function is called, although it may be acquired after this
364 *          function call.
365 */
366void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags)
367	__acquires(&gt->mcr_lock)
368{
369	unsigned long __flags;
370	int err = 0;
371
372	lockdep_assert_not_held(&gt->uncore->lock);
373
374	/*
375	 * Starting with MTL, we need to coordinate not only with other
376	 * driver threads, but also with hardware/firmware agents.  A dedicated
377	 * locking register is used.
378	 */
379	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
380		/*
381		 * The steering control and semaphore registers are inside an
382		 * "always on" power domain with respect to RC6.  However there
383		 * are some issues if higher-level platform sleep states are
384		 * entering/exiting at the same time these registers are
385		 * accessed.  Grabbing GT forcewake and holding it over the
386		 * entire lock/steer/unlock cycle ensures that those sleep
387		 * states have been fully exited before we access these
388		 * registers.  This wakeref will be released in the unlock
389		 * routine.
390		 *
391		 * Wa_22018931422
392		 */
393		intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_GT);
394
395		err = wait_for(intel_uncore_read_fw(gt->uncore,
396						    MTL_STEER_SEMAPHORE) == 0x1, 100);
397	}
398
399	/*
400	 * Even on platforms with a hardware lock, we'll continue to grab
401	 * a software spinlock too for lockdep purposes.  If the hardware lock
402	 * was already acquired, there should never be contention on the
403	 * software lock.
404	 */
405	spin_lock_irqsave(&gt->mcr_lock, __flags);
406
407	*flags = __flags;
408
409	/*
410	 * In theory we should never fail to acquire the HW semaphore; this
411	 * would indicate some hardware/firmware is misbehaving and not
412	 * releasing it properly.
413	 */
414	if (err == -ETIMEDOUT) {
415		gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out");
416		add_taint_for_CI(gt->i915, TAINT_WARN);  /* CI is now unreliable */
417	}
418}
419
420/**
421 * intel_gt_mcr_unlock - Release MCR steering lock
422 * @gt: GT structure
423 * @flags: IRQ flags to restore
424 *
425 * Releases the lock acquired by intel_gt_mcr_lock().
426 *
427 * Context: Releases gt->mcr_lock
428 */
429void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags)
430	__releases(&gt->mcr_lock)
431{
432	spin_unlock_irqrestore(&gt->mcr_lock, flags);
433
434	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
435		intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1);
436
437		intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_GT);
438	}
439}
440
441/**
442 * intel_gt_mcr_lock_sanitize - Sanitize MCR steering lock
443 * @gt: GT structure
444 *
445 * This will be used to sanitize the initial status of the hardware lock
446 * during driver load and resume since there won't be any concurrent access
447 * from other agents at those times, but it's possible that boot firmware
448 * may have left the lock in a bad state.
449 *
450 */
451void intel_gt_mcr_lock_sanitize(struct intel_gt *gt)
452{
453	/*
454	 * This gets called at load/resume time, so we shouldn't be
455	 * racing with other driver threads grabbing the mcr lock.
456	 */
457	lockdep_assert_not_held(&gt->mcr_lock);
458
459	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
460		intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1);
461}
462
463/**
464 * intel_gt_mcr_read - read a specific instance of an MCR register
465 * @gt: GT structure
466 * @reg: the MCR register to read
467 * @group: the MCR group
468 * @instance: the MCR instance
469 *
470 * Context: Takes and releases gt->mcr_lock
471 *
472 * Returns the value read from an MCR register after steering toward a specific
473 * group/instance.
474 */
475u32 intel_gt_mcr_read(struct intel_gt *gt,
476		      i915_mcr_reg_t reg,
477		      int group, int instance)
478{
479	return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0);
480}
481
482/**
483 * intel_gt_mcr_unicast_write - write a specific instance of an MCR register
484 * @gt: GT structure
485 * @reg: the MCR register to write
486 * @value: value to write
487 * @group: the MCR group
488 * @instance: the MCR instance
489 *
490 * Write an MCR register in unicast mode after steering toward a specific
491 * group/instance.
492 *
493 * Context: Calls a function that takes and releases gt->mcr_lock
494 */
495void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value,
496				int group, int instance)
497{
498	rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value);
499}
500
501/**
502 * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register
503 * @gt: GT structure
504 * @reg: the MCR register to write
505 * @value: value to write
506 *
507 * Write an MCR register in multicast mode to update all instances.
508 *
509 * Context: Takes and releases gt->mcr_lock
510 */
511void intel_gt_mcr_multicast_write(struct intel_gt *gt,
512				  i915_mcr_reg_t reg, u32 value)
513{
514	unsigned long flags;
515
516	intel_gt_mcr_lock(gt, &flags);
517
518	/*
519	 * Ensure we have multicast behavior, just in case some non-i915 agent
520	 * left the hardware in unicast mode.
521	 */
522	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
523		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
524
525	intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value);
526
527	intel_gt_mcr_unlock(gt, flags);
528}
529
530/**
531 * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register
532 * @gt: GT structure
533 * @reg: the MCR register to write
534 * @value: value to write
535 *
536 * Write an MCR register in multicast mode to update all instances.  This
537 * function assumes the caller is already holding any necessary forcewake
538 * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should
539 * be obtained automatically.
540 *
541 * Context: The caller must hold gt->mcr_lock.
542 */
543void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value)
544{
545	lockdep_assert_held(&gt->mcr_lock);
546
547	/*
548	 * Ensure we have multicast behavior, just in case some non-i915 agent
549	 * left the hardware in unicast mode.
550	 */
551	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
552		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
553
554	intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value);
555}
556
557/**
558 * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations
559 * @gt: GT structure
560 * @reg: the MCR register to read and write
561 * @clear: bits to clear during RMW
562 * @set: bits to set during RMW
563 *
564 * Performs a read-modify-write on an MCR register in a multicast manner.
565 * This operation only makes sense on MCR registers where all instances are
566 * expected to have the same value.  The read will target any non-terminated
567 * instance and the write will be applied to all instances.
568 *
569 * This function assumes the caller is already holding any necessary forcewake
570 * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should
571 * be obtained automatically.
572 *
573 * Context: Calls functions that take and release gt->mcr_lock
574 *
575 * Returns the old (unmodified) value read.
576 */
577u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg,
578			       u32 clear, u32 set)
579{
580	u32 val = intel_gt_mcr_read_any(gt, reg);
581
582	intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set);
583
584	return val;
585}
586
587/*
588 * reg_needs_read_steering - determine whether a register read requires
589 *     explicit steering
590 * @gt: GT structure
591 * @reg: the register to check steering requirements for
592 * @type: type of multicast steering to check
593 *
594 * Determines whether @reg needs explicit steering of a specific type for
595 * reads.
596 *
597 * Returns false if @reg does not belong to a register range of the given
598 * steering type, or if the default (subslice-based) steering IDs are suitable
599 * for @type steering too.
600 */
601static bool reg_needs_read_steering(struct intel_gt *gt,
602				    i915_mcr_reg_t reg,
603				    enum intel_steering_type type)
604{
605	u32 offset = i915_mmio_reg_offset(reg);
606	const struct intel_mmio_range *entry;
607
608	if (likely(!gt->steering_table[type]))
609		return false;
610
611	if (IS_GSI_REG(offset))
612		offset += gt->uncore->gsi_offset;
613
614	for (entry = gt->steering_table[type]; entry->end; entry++) {
615		if (offset >= entry->start && offset <= entry->end)
616			return true;
617	}
618
619	return false;
620}
621
622/*
623 * get_nonterminated_steering - determines valid IDs for a class of MCR steering
624 * @gt: GT structure
625 * @type: multicast register type
626 * @group: Group ID returned
627 * @instance: Instance ID returned
628 *
629 * Determines group and instance values that will steer reads of the specified
630 * MCR class to a non-terminated instance.
631 */
632static void get_nonterminated_steering(struct intel_gt *gt,
633				       enum intel_steering_type type,
634				       u8 *group, u8 *instance)
635{
636	u32 dss;
637
638	switch (type) {
639	case L3BANK:
640		*group = 0;		/* unused */
641		*instance = __ffs(gt->info.l3bank_mask);
642		break;
643	case MSLICE:
644		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
645		*group = __ffs(gt->info.mslice_mask);
646		*instance = 0;	/* unused */
647		break;
648	case LNCF:
649		/*
650		 * An LNCF is always present if its mslice is present, so we
651		 * can safely just steer to LNCF 0 in all cases.
652		 */
653		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
654		*group = __ffs(gt->info.mslice_mask) << 1;
655		*instance = 0;	/* unused */
656		break;
657	case GAM:
658		*group = IS_DG2(gt->i915) ? 1 : 0;
659		*instance = 0;
660		break;
661	case DSS:
662		dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
663		*group = dss / GEN_DSS_PER_GSLICE;
664		*instance = dss % GEN_DSS_PER_GSLICE;
665		break;
666	case INSTANCE0:
667		/*
668		 * There are a lot of MCR types for which instance (0, 0)
669		 * will always provide a non-terminated value.
670		 */
671		*group = 0;
672		*instance = 0;
673		break;
674	case OADDRM:
675		if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0))
676			*group = 0;
677		else
678			*group = 1;
679		*instance = 0;
680		break;
681	default:
682		MISSING_CASE(type);
683		*group = 0;
684		*instance = 0;
685	}
686}
687
688/**
689 * intel_gt_mcr_get_nonterminated_steering - find group/instance values that
690 *    will steer a register to a non-terminated instance
691 * @gt: GT structure
692 * @reg: register for which the steering is required
693 * @group: return variable for group steering
694 * @instance: return variable for instance steering
695 *
696 * This function returns a group/instance pair that is guaranteed to work for
697 * read steering of the given register. Note that a value will be returned even
698 * if the register is not replicated and therefore does not actually require
699 * steering.
700 */
701void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt,
702					     i915_mcr_reg_t reg,
703					     u8 *group, u8 *instance)
704{
705	int type;
706
707	for (type = 0; type < NUM_STEERING_TYPES; type++) {
708		if (reg_needs_read_steering(gt, reg, type)) {
709			get_nonterminated_steering(gt, type, group, instance);
710			return;
711		}
712	}
713
714	*group = gt->default_steering.groupid;
715	*instance = gt->default_steering.instanceid;
716}
717
718/**
719 * intel_gt_mcr_read_any_fw - reads one instance of an MCR register
720 * @gt: GT structure
721 * @reg: register to read
722 *
723 * Reads a GT MCR register.  The read will be steered to a non-terminated
724 * instance (i.e., one that isn't fused off or powered down by power gating).
725 * This function assumes the caller is already holding any necessary forcewake
726 * domains; use intel_gt_mcr_read_any() in cases where forcewake should be
727 * obtained automatically.
728 *
729 * Context: The caller must hold gt->mcr_lock.
730 *
731 * Returns the value from a non-terminated instance of @reg.
732 */
733u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg)
734{
735	int type;
736	u8 group, instance;
737
738	lockdep_assert_held(&gt->mcr_lock);
739
740	for (type = 0; type < NUM_STEERING_TYPES; type++) {
741		if (reg_needs_read_steering(gt, reg, type)) {
742			get_nonterminated_steering(gt, type, &group, &instance);
743			return rw_with_mcr_steering_fw(gt, reg,
744						       FW_REG_READ,
745						       group, instance, 0);
746		}
747	}
748
749	return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg));
750}
751
752/**
753 * intel_gt_mcr_read_any - reads one instance of an MCR register
754 * @gt: GT structure
755 * @reg: register to read
756 *
757 * Reads a GT MCR register.  The read will be steered to a non-terminated
758 * instance (i.e., one that isn't fused off or powered down by power gating).
759 *
760 * Context: Calls a function that takes and releases gt->mcr_lock.
761 *
762 * Returns the value from a non-terminated instance of @reg.
763 */
764u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg)
765{
766	int type;
767	u8 group, instance;
768
769	for (type = 0; type < NUM_STEERING_TYPES; type++) {
770		if (reg_needs_read_steering(gt, reg, type)) {
771			get_nonterminated_steering(gt, type, &group, &instance);
772			return rw_with_mcr_steering(gt, reg,
773						    FW_REG_READ,
774						    group, instance, 0);
775		}
776	}
777
778	return intel_uncore_read(gt->uncore, mcr_reg_cast(reg));
779}
780
781static void report_steering_type(struct drm_printer *p,
782				 struct intel_gt *gt,
783				 enum intel_steering_type type,
784				 bool dump_table)
785{
786	const struct intel_mmio_range *entry;
787	u8 group, instance;
788
789	BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
790
791	if (!gt->steering_table[type]) {
792		drm_printf(p, "%s steering: uses default steering\n",
793			   intel_steering_types[type]);
794		return;
795	}
796
797	get_nonterminated_steering(gt, type, &group, &instance);
798	drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n",
799		   intel_steering_types[type], group, instance);
800
801	if (!dump_table)
802		return;
803
804	for (entry = gt->steering_table[type]; entry->end; entry++)
805		drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
806}
807
808void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt,
809				  bool dump_table)
810{
811	/*
812	 * Starting with MTL we no longer have default steering;
813	 * all ranges are explicitly steered.
814	 */
815	if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))
816		drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n",
817			   gt->default_steering.groupid,
818			   gt->default_steering.instanceid);
819
820	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
821		for (int i = 0; i < NUM_STEERING_TYPES; i++)
822			if (gt->steering_table[i])
823				report_steering_type(p, gt, i, dump_table);
824	} else if (IS_PONTEVECCHIO(gt->i915)) {
825		report_steering_type(p, gt, INSTANCE0, dump_table);
826	} else if (HAS_MSLICE_STEERING(gt->i915)) {
827		report_steering_type(p, gt, MSLICE, dump_table);
828		report_steering_type(p, gt, LNCF, dump_table);
829	}
830}
831
832/**
833 * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS
834 * @gt: GT structure
835 * @dss: DSS ID to obtain steering for
836 * @group: pointer to storage for steering group ID
837 * @instance: pointer to storage for steering instance ID
838 *
839 * Returns the steering IDs (via the @group and @instance parameters) that
840 * correspond to a specific subslice/DSS ID.
841 */
842void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss,
843				   unsigned int *group, unsigned int *instance)
844{
845	if (IS_PONTEVECCHIO(gt->i915)) {
846		*group = dss / GEN_DSS_PER_CSLICE;
847		*instance = dss % GEN_DSS_PER_CSLICE;
848	} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) {
849		*group = dss / GEN_DSS_PER_GSLICE;
850		*instance = dss % GEN_DSS_PER_GSLICE;
851	} else {
852		*group = dss / GEN_MAX_SS_PER_HSW_SLICE;
853		*instance = dss % GEN_MAX_SS_PER_HSW_SLICE;
854		return;
855	}
856}
857
858/**
859 * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state
860 * @gt: GT structure
861 * @reg: the register to read
862 * @mask: mask to apply to register value
863 * @value: value to wait for
864 * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait
865 * @slow_timeout_ms: slow timeout in millisecond
866 *
867 * This routine waits until the target register @reg contains the expected
868 * @value after applying the @mask, i.e. it waits until ::
869 *
870 *     (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value
871 *
872 * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds.
873 * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us
874 * must be not larger than 20,0000 microseconds.
875 *
876 * This function is basically an MCR-friendly version of
877 * __intel_wait_for_register_fw().  Generally this function will only be used
878 * on GAM registers which are a bit special --- although they're MCR registers,
879 * reads (e.g., waiting for status updates) are always directed to the primary
880 * instance.
881 *
882 * Note that this routine assumes the caller holds forcewake asserted, it is
883 * not suitable for very long waits.
884 *
885 * Context: Calls a function that takes and releases gt->mcr_lock
886 * Return: 0 if the register matches the desired condition, or -ETIMEDOUT.
887 */
888int intel_gt_mcr_wait_for_reg(struct intel_gt *gt,
889			      i915_mcr_reg_t reg,
890			      u32 mask,
891			      u32 value,
892			      unsigned int fast_timeout_us,
893			      unsigned int slow_timeout_ms)
894{
895	int ret;
896
897	lockdep_assert_not_held(&gt->mcr_lock);
898
899#define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value)
900
901	/* Catch any overuse of this function */
902	might_sleep_if(slow_timeout_ms);
903	GEM_BUG_ON(fast_timeout_us > 20000);
904	GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms);
905
906	ret = -ETIMEDOUT;
907	if (fast_timeout_us && fast_timeout_us <= 20000)
908		ret = _wait_for_atomic(done, fast_timeout_us, 0);
909	if (ret && slow_timeout_ms)
910		ret = wait_for(done, slow_timeout_ms);
911
912	return ret;
913#undef done
914}
915