1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2021 Intel Corporation
4 */
5
6#include <linux/shmem_fs.h>
7
8#include <drm/ttm/ttm_placement.h>
9#include <drm/ttm/ttm_tt.h>
10#include <drm/drm_buddy.h>
11
12#include "i915_drv.h"
13#include "i915_ttm_buddy_manager.h"
14#include "intel_memory_region.h"
15#include "intel_region_ttm.h"
16
17#include "gem/i915_gem_mman.h"
18#include "gem/i915_gem_object.h"
19#include "gem/i915_gem_region.h"
20#include "gem/i915_gem_ttm.h"
21#include "gem/i915_gem_ttm_move.h"
22#include "gem/i915_gem_ttm_pm.h"
23#include "gt/intel_gpu_commands.h"
24
25#define I915_TTM_PRIO_PURGE     0
26#define I915_TTM_PRIO_NO_PAGES  1
27#define I915_TTM_PRIO_HAS_PAGES 2
28#define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
29
30/*
31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
32 */
33#define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
34
35/**
36 * struct i915_ttm_tt - TTM page vector with additional private information
37 * @ttm: The base TTM page vector.
38 * @dev: The struct device used for dma mapping and unmapping.
39 * @cached_rsgt: The cached scatter-gather table.
40 * @is_shmem: Set if using shmem.
41 * @filp: The shmem file, if using shmem backend.
42 *
43 * Note that DMA may be going on right up to the point where the page-
44 * vector is unpopulated in delayed destroy. Hence keep the
45 * scatter-gather table mapped and cached up to that point. This is
46 * different from the cached gem object io scatter-gather table which
47 * doesn't have an associated dma mapping.
48 */
49struct i915_ttm_tt {
50	struct ttm_tt ttm;
51	struct device *dev;
52	struct i915_refct_sgt cached_rsgt;
53
54	bool is_shmem;
55	struct file *filp;
56};
57
58static const struct ttm_place sys_placement_flags = {
59	.fpfn = 0,
60	.lpfn = 0,
61	.mem_type = I915_PL_SYSTEM,
62	.flags = 0,
63};
64
65static struct ttm_placement i915_sys_placement = {
66	.num_placement = 1,
67	.placement = &sys_placement_flags,
68};
69
70/**
71 * i915_ttm_sys_placement - Return the struct ttm_placement to be
72 * used for an object in system memory.
73 *
74 * Rather than making the struct extern, use this
75 * function.
76 *
77 * Return: A pointer to a static variable for sys placement.
78 */
79struct ttm_placement *i915_ttm_sys_placement(void)
80{
81	return &i915_sys_placement;
82}
83
84static int i915_ttm_err_to_gem(int err)
85{
86	/* Fastpath */
87	if (likely(!err))
88		return 0;
89
90	switch (err) {
91	case -EBUSY:
92		/*
93		 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
94		 * restart the operation, since we don't record the contending
95		 * lock. We use -EAGAIN to restart.
96		 */
97		return -EAGAIN;
98	case -ENOSPC:
99		/*
100		 * Memory type / region is full, and we can't evict.
101		 * Except possibly system, that returns -ENOMEM;
102		 */
103		return -ENXIO;
104	default:
105		break;
106	}
107
108	return err;
109}
110
111static enum ttm_caching
112i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
113{
114	/*
115	 * Objects only allowed in system get cached cpu-mappings, or when
116	 * evicting lmem-only buffers to system for swapping. Other objects get
117	 * WC mapping for now. Even if in system.
118	 */
119	if (obj->mm.n_placements <= 1)
120		return ttm_cached;
121
122	return ttm_write_combined;
123}
124
125static void
126i915_ttm_place_from_region(const struct intel_memory_region *mr,
127			   struct ttm_place *place,
128			   resource_size_t offset,
129			   resource_size_t size,
130			   unsigned int flags)
131{
132	memset(place, 0, sizeof(*place));
133	place->mem_type = intel_region_to_ttm_type(mr);
134
135	if (mr->type == INTEL_MEMORY_SYSTEM)
136		return;
137
138	if (flags & I915_BO_ALLOC_CONTIGUOUS)
139		place->flags |= TTM_PL_FLAG_CONTIGUOUS;
140	if (offset != I915_BO_INVALID_OFFSET) {
141		WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn));
142		place->fpfn = offset >> PAGE_SHIFT;
143		WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn));
144		place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
145	} else if (resource_size(&mr->io) && resource_size(&mr->io) < mr->total) {
146		if (flags & I915_BO_ALLOC_GPU_ONLY) {
147			place->flags |= TTM_PL_FLAG_TOPDOWN;
148		} else {
149			place->fpfn = 0;
150			WARN_ON(overflows_type(resource_size(&mr->io) >> PAGE_SHIFT, place->lpfn));
151			place->lpfn = resource_size(&mr->io) >> PAGE_SHIFT;
152		}
153	}
154}
155
156static void
157i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
158			    struct ttm_place *places,
159			    struct ttm_placement *placement)
160{
161	unsigned int num_allowed = obj->mm.n_placements;
162	unsigned int flags = obj->flags;
163	unsigned int i;
164
165	i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
166				   obj->mm.region, &places[0], obj->bo_offset,
167				   obj->base.size, flags);
168	places[0].flags |= TTM_PL_FLAG_DESIRED;
169
170	/* Cache this on object? */
171	for (i = 0; i < num_allowed; ++i) {
172		i915_ttm_place_from_region(obj->mm.placements[i],
173					   &places[i + 1], obj->bo_offset,
174					   obj->base.size, flags);
175		places[i + 1].flags |= TTM_PL_FLAG_FALLBACK;
176	}
177
178	placement->num_placement = num_allowed + 1;
179	placement->placement = places;
180}
181
182static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
183				      struct ttm_tt *ttm,
184				      struct ttm_operation_ctx *ctx)
185{
186	struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
187	struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
188	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
189	const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
190	const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
191	struct file *filp = i915_tt->filp;
192	struct sgt_iter sgt_iter;
193	struct sg_table *st;
194	struct page *page;
195	unsigned long i;
196	int err;
197
198	if (!filp) {
199		struct address_space *mapping;
200		gfp_t mask;
201
202		filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
203		if (IS_ERR(filp))
204			return PTR_ERR(filp);
205
206		mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
207
208		mapping = filp->f_mapping;
209		mapping_set_gfp_mask(mapping, mask);
210		GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
211
212		i915_tt->filp = filp;
213	}
214
215	st = &i915_tt->cached_rsgt.table;
216	err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
217				   max_segment);
218	if (err)
219		return err;
220
221	err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
222			      DMA_ATTR_SKIP_CPU_SYNC);
223	if (err)
224		goto err_free_st;
225
226	i = 0;
227	for_each_sgt_page(page, sgt_iter, st)
228		ttm->pages[i++] = page;
229
230	if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
231		ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
232
233	return 0;
234
235err_free_st:
236	shmem_sg_free_table(st, filp->f_mapping, false, false);
237
238	return err;
239}
240
241static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
242{
243	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
244	bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
245	struct sg_table *st = &i915_tt->cached_rsgt.table;
246
247	shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
248			    backup, backup);
249}
250
251static void i915_ttm_tt_release(struct kref *ref)
252{
253	struct i915_ttm_tt *i915_tt =
254		container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
255	struct sg_table *st = &i915_tt->cached_rsgt.table;
256
257	GEM_WARN_ON(st->sgl);
258
259	kfree(i915_tt);
260}
261
262static const struct i915_refct_sgt_ops tt_rsgt_ops = {
263	.release = i915_ttm_tt_release
264};
265
266static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
267					 uint32_t page_flags)
268{
269	struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
270						     bdev);
271	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
272	unsigned long ccs_pages = 0;
273	enum ttm_caching caching;
274	struct i915_ttm_tt *i915_tt;
275	int ret;
276
277	if (i915_ttm_is_ghost_object(bo))
278		return NULL;
279
280	i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
281	if (!i915_tt)
282		return NULL;
283
284	if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource ||
285	    ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt))
286		page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
287
288	caching = i915_ttm_select_tt_caching(obj);
289	if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
290		page_flags |= TTM_TT_FLAG_EXTERNAL |
291			      TTM_TT_FLAG_EXTERNAL_MAPPABLE;
292		i915_tt->is_shmem = true;
293	}
294
295	if (i915_gem_object_needs_ccs_pages(obj))
296		ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size,
297						      NUM_BYTES_PER_CCS_BYTE),
298					 PAGE_SIZE);
299
300	ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages);
301	if (ret)
302		goto err_free;
303
304	__i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
305			      &tt_rsgt_ops);
306
307	i915_tt->dev = obj->base.dev->dev;
308
309	return &i915_tt->ttm;
310
311err_free:
312	kfree(i915_tt);
313	return NULL;
314}
315
316static int i915_ttm_tt_populate(struct ttm_device *bdev,
317				struct ttm_tt *ttm,
318				struct ttm_operation_ctx *ctx)
319{
320	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
321
322	if (i915_tt->is_shmem)
323		return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
324
325	return ttm_pool_alloc(&bdev->pool, ttm, ctx);
326}
327
328static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
329{
330	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
331	struct sg_table *st = &i915_tt->cached_rsgt.table;
332
333	if (st->sgl)
334		dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
335
336	if (i915_tt->is_shmem) {
337		i915_ttm_tt_shmem_unpopulate(ttm);
338	} else {
339		sg_free_table(st);
340		ttm_pool_free(&bdev->pool, ttm);
341	}
342}
343
344static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
345{
346	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
347
348	if (i915_tt->filp)
349		fput(i915_tt->filp);
350
351	ttm_tt_fini(ttm);
352	i915_refct_sgt_put(&i915_tt->cached_rsgt);
353}
354
355static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
356				       const struct ttm_place *place)
357{
358	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
359
360	if (i915_ttm_is_ghost_object(bo))
361		return false;
362
363	/*
364	 * EXTERNAL objects should never be swapped out by TTM, instead we need
365	 * to handle that ourselves. TTM will already skip such objects for us,
366	 * but we would like to avoid grabbing locks for no good reason.
367	 */
368	if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
369		return false;
370
371	/* Will do for now. Our pinned objects are still on TTM's LRU lists */
372	if (!i915_gem_object_evictable(obj))
373		return false;
374
375	return ttm_bo_eviction_valuable(bo, place);
376}
377
378static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
379				 struct ttm_placement *placement)
380{
381	*placement = i915_sys_placement;
382}
383
384/**
385 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
386 * @obj: The GEM object
387 * This function frees any LMEM-related information that is cached on
388 * the object. For example the radix tree for fast page lookup and the
389 * cached refcounted sg-table
390 */
391void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
392{
393	struct radix_tree_iter iter;
394	void __rcu **slot;
395
396	if (!obj->ttm.cached_io_rsgt)
397		return;
398
399	rcu_read_lock();
400	radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
401		radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
402	rcu_read_unlock();
403
404	i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
405	obj->ttm.cached_io_rsgt = NULL;
406}
407
408/**
409 * i915_ttm_purge - Clear an object of its memory
410 * @obj: The object
411 *
412 * This function is called to clear an object of it's memory when it is
413 * marked as not needed anymore.
414 *
415 * Return: 0 on success, negative error code on failure.
416 */
417int i915_ttm_purge(struct drm_i915_gem_object *obj)
418{
419	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
420	struct i915_ttm_tt *i915_tt =
421		container_of(bo->ttm, typeof(*i915_tt), ttm);
422	struct ttm_operation_ctx ctx = {
423		.interruptible = true,
424		.no_wait_gpu = false,
425	};
426	struct ttm_placement place = {};
427	int ret;
428
429	if (obj->mm.madv == __I915_MADV_PURGED)
430		return 0;
431
432	ret = ttm_bo_validate(bo, &place, &ctx);
433	if (ret)
434		return ret;
435
436	if (bo->ttm && i915_tt->filp) {
437		/*
438		 * The below fput(which eventually calls shmem_truncate) might
439		 * be delayed by worker, so when directly called to purge the
440		 * pages(like by the shrinker) we should try to be more
441		 * aggressive and release the pages immediately.
442		 */
443		shmem_truncate_range(file_inode(i915_tt->filp),
444				     0, (loff_t)-1);
445		fput(fetch_and_zero(&i915_tt->filp));
446	}
447
448	obj->write_domain = 0;
449	obj->read_domains = 0;
450	i915_ttm_adjust_gem_after_move(obj);
451	i915_ttm_free_cached_io_rsgt(obj);
452	obj->mm.madv = __I915_MADV_PURGED;
453
454	return 0;
455}
456
457static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
458{
459	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
460	struct i915_ttm_tt *i915_tt =
461		container_of(bo->ttm, typeof(*i915_tt), ttm);
462	struct ttm_operation_ctx ctx = {
463		.interruptible = true,
464		.no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
465	};
466	struct ttm_placement place = {};
467	int ret;
468
469	if (!bo->ttm || i915_ttm_cpu_maps_iomem(bo->resource))
470		return 0;
471
472	GEM_BUG_ON(!i915_tt->is_shmem);
473
474	if (!i915_tt->filp)
475		return 0;
476
477	ret = ttm_bo_wait_ctx(bo, &ctx);
478	if (ret)
479		return ret;
480
481	switch (obj->mm.madv) {
482	case I915_MADV_DONTNEED:
483		return i915_ttm_purge(obj);
484	case __I915_MADV_PURGED:
485		return 0;
486	}
487
488	if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
489		return 0;
490
491	bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
492	ret = ttm_bo_validate(bo, &place, &ctx);
493	if (ret) {
494		bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
495		return ret;
496	}
497
498	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
499		__shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
500
501	return 0;
502}
503
504static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
505{
506	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
507
508	/*
509	 * This gets called twice by ttm, so long as we have a ttm resource or
510	 * ttm_tt then we can still safely call this. Due to pipeline-gutting,
511	 * we maybe have NULL bo->resource, but in that case we should always
512	 * have a ttm alive (like if the pages are swapped out).
513	 */
514	if ((bo->resource || bo->ttm) && !i915_ttm_is_ghost_object(bo)) {
515		__i915_gem_object_pages_fini(obj);
516		i915_ttm_free_cached_io_rsgt(obj);
517	}
518}
519
520static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
521{
522	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
523	struct sg_table *st;
524	int ret;
525
526	if (i915_tt->cached_rsgt.table.sgl)
527		return i915_refct_sgt_get(&i915_tt->cached_rsgt);
528
529	st = &i915_tt->cached_rsgt.table;
530	ret = sg_alloc_table_from_pages_segment(st,
531			ttm->pages, ttm->num_pages,
532			0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
533			i915_sg_segment_size(i915_tt->dev), GFP_KERNEL);
534	if (ret) {
535		st->sgl = NULL;
536		return ERR_PTR(ret);
537	}
538
539	ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
540	if (ret) {
541		sg_free_table(st);
542		return ERR_PTR(ret);
543	}
544
545	return i915_refct_sgt_get(&i915_tt->cached_rsgt);
546}
547
548/**
549 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
550 * resource memory
551 * @obj: The GEM object used for sg-table caching
552 * @res: The struct ttm_resource for which an sg-table is requested.
553 *
554 * This function returns a refcounted sg-table representing the memory
555 * pointed to by @res. If @res is the object's current resource it may also
556 * cache the sg_table on the object or attempt to access an already cached
557 * sg-table. The refcounted sg-table needs to be put when no-longer in use.
558 *
559 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
560 * failure.
561 */
562struct i915_refct_sgt *
563i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
564			 struct ttm_resource *res)
565{
566	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
567	u32 page_alignment;
568
569	if (!i915_ttm_gtt_binds_lmem(res))
570		return i915_ttm_tt_get_st(bo->ttm);
571
572	page_alignment = bo->page_alignment << PAGE_SHIFT;
573	if (!page_alignment)
574		page_alignment = obj->mm.region->min_page_size;
575
576	/*
577	 * If CPU mapping differs, we need to add the ttm_tt pages to
578	 * the resulting st. Might make sense for GGTT.
579	 */
580	GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
581	if (bo->resource == res) {
582		if (!obj->ttm.cached_io_rsgt) {
583			struct i915_refct_sgt *rsgt;
584
585			rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
586								 res,
587								 page_alignment);
588			if (IS_ERR(rsgt))
589				return rsgt;
590
591			obj->ttm.cached_io_rsgt = rsgt;
592		}
593		return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
594	}
595
596	return intel_region_ttm_resource_to_rsgt(obj->mm.region, res,
597						 page_alignment);
598}
599
600static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
601{
602	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
603	long err;
604
605	WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
606
607	err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
608				    true, 15 * HZ);
609	if (err < 0)
610		return err;
611	if (err == 0)
612		return -EBUSY;
613
614	err = i915_ttm_move_notify(bo);
615	if (err)
616		return err;
617
618	return i915_ttm_purge(obj);
619}
620
621static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
622{
623	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
624	int ret;
625
626	if (i915_ttm_is_ghost_object(bo))
627		return;
628
629	ret = i915_ttm_move_notify(bo);
630	GEM_WARN_ON(ret);
631	GEM_WARN_ON(obj->ttm.cached_io_rsgt);
632	if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
633		i915_ttm_purge(obj);
634}
635
636/**
637 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU
638 * accessible.
639 * @res: The TTM resource to check.
640 *
641 * This is interesting on small-BAR systems where we may encounter lmem objects
642 * that can't be accessed via the CPU.
643 */
644bool i915_ttm_resource_mappable(struct ttm_resource *res)
645{
646	struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
647
648	if (!i915_ttm_cpu_maps_iomem(res))
649		return true;
650
651	return bman_res->used_visible_size == PFN_UP(bman_res->base.size);
652}
653
654static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
655{
656	struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo);
657	bool unknown_state;
658
659	if (i915_ttm_is_ghost_object(mem->bo))
660		return -EINVAL;
661
662	if (!kref_get_unless_zero(&obj->base.refcount))
663		return -EINVAL;
664
665	assert_object_held(obj);
666
667	unknown_state = i915_gem_object_has_unknown_state(obj);
668	i915_gem_object_put(obj);
669	if (unknown_state)
670		return -EINVAL;
671
672	if (!i915_ttm_cpu_maps_iomem(mem))
673		return 0;
674
675	if (!i915_ttm_resource_mappable(mem))
676		return -EINVAL;
677
678	mem->bus.caching = ttm_write_combined;
679	mem->bus.is_iomem = true;
680
681	return 0;
682}
683
684static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
685					 unsigned long page_offset)
686{
687	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
688	struct scatterlist *sg;
689	unsigned long base;
690	unsigned int ofs;
691
692	GEM_BUG_ON(i915_ttm_is_ghost_object(bo));
693	GEM_WARN_ON(bo->ttm);
694
695	base = obj->mm.region->iomap.base - obj->mm.region->region.start;
696	sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs);
697
698	return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
699}
700
701static int i915_ttm_access_memory(struct ttm_buffer_object *bo,
702				  unsigned long offset, void *buf,
703				  int len, int write)
704{
705	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
706	resource_size_t iomap = obj->mm.region->iomap.base -
707		obj->mm.region->region.start;
708	unsigned long page = offset >> PAGE_SHIFT;
709	unsigned long bytes_left = len;
710
711	/*
712	 * TODO: For now just let it fail if the resource is non-mappable,
713	 * otherwise we need to perform the memcpy from the gpu here, without
714	 * interfering with the object (like moving the entire thing).
715	 */
716	if (!i915_ttm_resource_mappable(bo->resource))
717		return -EIO;
718
719	offset -= page << PAGE_SHIFT;
720	do {
721		unsigned long bytes = min(bytes_left, PAGE_SIZE - offset);
722		void __iomem *ptr;
723		dma_addr_t daddr;
724
725		daddr = i915_gem_object_get_dma_address(obj, page);
726		ptr = ioremap_wc(iomap + daddr + offset, bytes);
727		if (!ptr)
728			return -EIO;
729
730		if (write)
731			memcpy_toio(ptr, buf, bytes);
732		else
733			memcpy_fromio(buf, ptr, bytes);
734		iounmap(ptr);
735
736		page++;
737		buf += bytes;
738		bytes_left -= bytes;
739		offset = 0;
740	} while (bytes_left);
741
742	return len;
743}
744
745/*
746 * All callbacks need to take care not to downcast a struct ttm_buffer_object
747 * without checking its subclass, since it might be a TTM ghost object.
748 */
749static struct ttm_device_funcs i915_ttm_bo_driver = {
750	.ttm_tt_create = i915_ttm_tt_create,
751	.ttm_tt_populate = i915_ttm_tt_populate,
752	.ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
753	.ttm_tt_destroy = i915_ttm_tt_destroy,
754	.eviction_valuable = i915_ttm_eviction_valuable,
755	.evict_flags = i915_ttm_evict_flags,
756	.move = i915_ttm_move,
757	.swap_notify = i915_ttm_swap_notify,
758	.delete_mem_notify = i915_ttm_delete_mem_notify,
759	.io_mem_reserve = i915_ttm_io_mem_reserve,
760	.io_mem_pfn = i915_ttm_io_mem_pfn,
761	.access_memory = i915_ttm_access_memory,
762};
763
764/**
765 * i915_ttm_driver - Return a pointer to the TTM device funcs
766 *
767 * Return: Pointer to statically allocated TTM device funcs.
768 */
769struct ttm_device_funcs *i915_ttm_driver(void)
770{
771	return &i915_ttm_bo_driver;
772}
773
774static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
775				struct ttm_placement *placement)
776{
777	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
778	struct ttm_operation_ctx ctx = {
779		.interruptible = true,
780		.no_wait_gpu = false,
781	};
782	int real_num_busy;
783	int ret;
784
785	/* First try only the requested placement. No eviction. */
786	real_num_busy = placement->num_placement;
787	placement->num_placement = 1;
788	ret = ttm_bo_validate(bo, placement, &ctx);
789	if (ret) {
790		ret = i915_ttm_err_to_gem(ret);
791		/*
792		 * Anything that wants to restart the operation gets to
793		 * do that.
794		 */
795		if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
796		    ret == -EAGAIN)
797			return ret;
798
799		/*
800		 * If the initial attempt fails, allow all accepted placements,
801		 * evicting if necessary.
802		 */
803		placement->num_placement = real_num_busy;
804		ret = ttm_bo_validate(bo, placement, &ctx);
805		if (ret)
806			return i915_ttm_err_to_gem(ret);
807	}
808
809	if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
810		ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
811		if (ret)
812			return ret;
813
814		i915_ttm_adjust_domains_after_move(obj);
815		i915_ttm_adjust_gem_after_move(obj);
816	}
817
818	if (!i915_gem_object_has_pages(obj)) {
819		struct i915_refct_sgt *rsgt =
820			i915_ttm_resource_get_st(obj, bo->resource);
821
822		if (IS_ERR(rsgt))
823			return PTR_ERR(rsgt);
824
825		GEM_BUG_ON(obj->mm.rsgt);
826		obj->mm.rsgt = rsgt;
827		__i915_gem_object_set_pages(obj, &rsgt->table);
828	}
829
830	GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages));
831	i915_ttm_adjust_lru(obj);
832	return ret;
833}
834
835static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
836{
837	struct ttm_place places[I915_TTM_MAX_PLACEMENTS + 1];
838	struct ttm_placement placement;
839
840	/* restricted by sg_alloc_table */
841	if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int))
842		return -E2BIG;
843
844	GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
845
846	/* Move to the requested placement. */
847	i915_ttm_placement_from_obj(obj, places, &placement);
848
849	return __i915_ttm_get_pages(obj, &placement);
850}
851
852/**
853 * DOC: Migration vs eviction
854 *
855 * GEM migration may not be the same as TTM migration / eviction. If
856 * the TTM core decides to evict an object it may be evicted to a
857 * TTM memory type that is not in the object's allowable GEM regions, or
858 * in fact theoretically to a TTM memory type that doesn't correspond to
859 * a GEM memory region. In that case the object's GEM region is not
860 * updated, and the data is migrated back to the GEM region at
861 * get_pages time. TTM may however set up CPU ptes to the object even
862 * when it is evicted.
863 * Gem forced migration using the i915_ttm_migrate() op, is allowed even
864 * to regions that are not in the object's list of allowable placements.
865 */
866static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
867			      struct intel_memory_region *mr,
868			      unsigned int flags)
869{
870	struct ttm_place requested;
871	struct ttm_placement placement;
872	int ret;
873
874	i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
875				   obj->base.size, flags);
876	placement.num_placement = 1;
877	placement.placement = &requested;
878
879	ret = __i915_ttm_get_pages(obj, &placement);
880	if (ret)
881		return ret;
882
883	/*
884	 * Reinitialize the region bindings. This is primarily
885	 * required for objects where the new region is not in
886	 * its allowable placements.
887	 */
888	if (obj->mm.region != mr) {
889		i915_gem_object_release_memory_region(obj);
890		i915_gem_object_init_memory_region(obj, mr);
891	}
892
893	return 0;
894}
895
896static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
897			    struct intel_memory_region *mr,
898			    unsigned int flags)
899{
900	return __i915_ttm_migrate(obj, mr, flags);
901}
902
903static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
904			       struct sg_table *st)
905{
906	/*
907	 * We're currently not called from a shrinker, so put_pages()
908	 * typically means the object is about to destroyed, or called
909	 * from move_notify(). So just avoid doing much for now.
910	 * If the object is not destroyed next, The TTM eviction logic
911	 * and shrinkers will move it out if needed.
912	 */
913
914	if (obj->mm.rsgt)
915		i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
916}
917
918/**
919 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
920 * @obj: The object
921 */
922void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
923{
924	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
925	struct i915_ttm_tt *i915_tt =
926		container_of(bo->ttm, typeof(*i915_tt), ttm);
927	bool shrinkable =
928		bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
929
930	/*
931	 * Don't manipulate the TTM LRUs while in TTM bo destruction.
932	 * We're called through i915_ttm_delete_mem_notify().
933	 */
934	if (!kref_read(&bo->kref))
935		return;
936
937	/*
938	 * We skip managing the shrinker LRU in set_pages() and just manage
939	 * everything here. This does at least solve the issue with having
940	 * temporary shmem mappings(like with evicted lmem) not being visible to
941	 * the shrinker. Only our shmem objects are shrinkable, everything else
942	 * we keep as unshrinkable.
943	 *
944	 * To make sure everything plays nice we keep an extra shrink pin in TTM
945	 * if the underlying pages are not currently shrinkable. Once we release
946	 * our pin, like when the pages are moved to shmem, the pages will then
947	 * be added to the shrinker LRU, assuming the caller isn't also holding
948	 * a pin.
949	 *
950	 * TODO: consider maybe also bumping the shrinker list here when we have
951	 * already unpinned it, which should give us something more like an LRU.
952	 *
953	 * TODO: There is a small window of opportunity for this function to
954	 * get called from eviction after we've dropped the last GEM refcount,
955	 * but before the TTM deleted flag is set on the object. Avoid
956	 * adjusting the shrinker list in such cases, since the object is
957	 * not available to the shrinker anyway due to its zero refcount.
958	 * To fix this properly we should move to a TTM shrinker LRU list for
959	 * these objects.
960	 */
961	if (kref_get_unless_zero(&obj->base.refcount)) {
962		if (shrinkable != obj->mm.ttm_shrinkable) {
963			if (shrinkable) {
964				if (obj->mm.madv == I915_MADV_WILLNEED)
965					__i915_gem_object_make_shrinkable(obj);
966				else
967					__i915_gem_object_make_purgeable(obj);
968			} else {
969				i915_gem_object_make_unshrinkable(obj);
970			}
971
972			obj->mm.ttm_shrinkable = shrinkable;
973		}
974		i915_gem_object_put(obj);
975	}
976
977	/*
978	 * Put on the correct LRU list depending on the MADV status
979	 */
980	spin_lock(&bo->bdev->lru_lock);
981	if (shrinkable) {
982		/* Try to keep shmem_tt from being considered for shrinking. */
983		bo->priority = TTM_MAX_BO_PRIORITY - 1;
984	} else if (obj->mm.madv != I915_MADV_WILLNEED) {
985		bo->priority = I915_TTM_PRIO_PURGE;
986	} else if (!i915_gem_object_has_pages(obj)) {
987		bo->priority = I915_TTM_PRIO_NO_PAGES;
988	} else {
989		struct ttm_resource_manager *man =
990			ttm_manager_type(bo->bdev, bo->resource->mem_type);
991
992		/*
993		 * If we need to place an LMEM resource which doesn't need CPU
994		 * access then we should try not to victimize mappable objects
995		 * first, since we likely end up stealing more of the mappable
996		 * portion. And likewise when we try to find space for a mappble
997		 * object, we know not to ever victimize objects that don't
998		 * occupy any mappable pages.
999		 */
1000		if (i915_ttm_cpu_maps_iomem(bo->resource) &&
1001		    i915_ttm_buddy_man_visible_size(man) < man->size &&
1002		    !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
1003			bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
1004		else
1005			bo->priority = I915_TTM_PRIO_HAS_PAGES;
1006	}
1007
1008	ttm_bo_move_to_lru_tail(bo);
1009	spin_unlock(&bo->bdev->lru_lock);
1010}
1011
1012/*
1013 * TTM-backed gem object destruction requires some clarification.
1014 * Basically we have two possibilities here. We can either rely on the
1015 * i915 delayed destruction and put the TTM object when the object
1016 * is idle. This would be detected by TTM which would bypass the
1017 * TTM delayed destroy handling. The other approach is to put the TTM
1018 * object early and rely on the TTM destroyed handling, and then free
1019 * the leftover parts of the GEM object once TTM's destroyed list handling is
1020 * complete. For now, we rely on the latter for two reasons:
1021 * a) TTM can evict an object even when it's on the delayed destroy list,
1022 * which in theory allows for complete eviction.
1023 * b) There is work going on in TTM to allow freeing an object even when
1024 * it's not idle, and using the TTM destroyed list handling could help us
1025 * benefit from that.
1026 */
1027static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
1028{
1029	GEM_BUG_ON(!obj->ttm.created);
1030
1031	ttm_bo_put(i915_gem_to_ttm(obj));
1032}
1033
1034static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
1035{
1036	struct vm_area_struct *area = vmf->vma;
1037	struct ttm_buffer_object *bo = area->vm_private_data;
1038	struct drm_device *dev = bo->base.dev;
1039	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1040	intel_wakeref_t wakeref = 0;
1041	vm_fault_t ret;
1042	int idx;
1043
1044	/* Sanity check that we allow writing into this object */
1045	if (unlikely(i915_gem_object_is_readonly(obj) &&
1046		     area->vm_flags & VM_WRITE))
1047		return VM_FAULT_SIGBUS;
1048
1049	ret = ttm_bo_vm_reserve(bo, vmf);
1050	if (ret)
1051		return ret;
1052
1053	if (obj->mm.madv != I915_MADV_WILLNEED) {
1054		dma_resv_unlock(bo->base.resv);
1055		return VM_FAULT_SIGBUS;
1056	}
1057
1058	/*
1059	 * This must be swapped out with shmem ttm_tt (pipeline-gutting).
1060	 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as
1061	 * far as far doing a ttm_bo_move_null(), which should skip all the
1062	 * other junk.
1063	 */
1064	if (!bo->resource) {
1065		struct ttm_operation_ctx ctx = {
1066			.interruptible = true,
1067			.no_wait_gpu = true, /* should be idle already */
1068		};
1069		int err;
1070
1071		GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED));
1072
1073		err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx);
1074		if (err) {
1075			dma_resv_unlock(bo->base.resv);
1076			return VM_FAULT_SIGBUS;
1077		}
1078	} else if (!i915_ttm_resource_mappable(bo->resource)) {
1079		int err = -ENODEV;
1080		int i;
1081
1082		for (i = 0; i < obj->mm.n_placements; i++) {
1083			struct intel_memory_region *mr = obj->mm.placements[i];
1084			unsigned int flags;
1085
1086			if (!resource_size(&mr->io) && mr->type != INTEL_MEMORY_SYSTEM)
1087				continue;
1088
1089			flags = obj->flags;
1090			flags &= ~I915_BO_ALLOC_GPU_ONLY;
1091			err = __i915_ttm_migrate(obj, mr, flags);
1092			if (!err)
1093				break;
1094		}
1095
1096		if (err) {
1097			drm_dbg_ratelimited(dev,
1098					    "Unable to make resource CPU accessible(err = %pe)\n",
1099					    ERR_PTR(err));
1100			dma_resv_unlock(bo->base.resv);
1101			ret = VM_FAULT_SIGBUS;
1102			goto out_rpm;
1103		}
1104	}
1105
1106	if (i915_ttm_cpu_maps_iomem(bo->resource))
1107		wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1108
1109	if (drm_dev_enter(dev, &idx)) {
1110		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1111					       TTM_BO_VM_NUM_PREFAULT);
1112		drm_dev_exit(idx);
1113	} else {
1114		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1115	}
1116
1117	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1118		goto out_rpm;
1119
1120	/*
1121	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1122	 * userfault_count is protected by dma_resv lock and rpm wakeref.
1123	 */
1124	if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) {
1125		obj->userfault_count = 1;
1126		spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1127		list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list);
1128		spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1129
1130		GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource));
1131	}
1132
1133	if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
1134		intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref,
1135				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
1136
1137	i915_ttm_adjust_lru(obj);
1138
1139	dma_resv_unlock(bo->base.resv);
1140
1141out_rpm:
1142	if (wakeref)
1143		intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1144
1145	return ret;
1146}
1147
1148static int
1149vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
1150	      void *buf, int len, int write)
1151{
1152	struct drm_i915_gem_object *obj =
1153		i915_ttm_to_gem(area->vm_private_data);
1154
1155	if (i915_gem_object_is_readonly(obj) && write)
1156		return -EACCES;
1157
1158	return ttm_bo_vm_access(area, addr, buf, len, write);
1159}
1160
1161static void ttm_vm_open(struct vm_area_struct *vma)
1162{
1163	struct drm_i915_gem_object *obj =
1164		i915_ttm_to_gem(vma->vm_private_data);
1165
1166	GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1167	i915_gem_object_get(obj);
1168}
1169
1170static void ttm_vm_close(struct vm_area_struct *vma)
1171{
1172	struct drm_i915_gem_object *obj =
1173		i915_ttm_to_gem(vma->vm_private_data);
1174
1175	GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1176	i915_gem_object_put(obj);
1177}
1178
1179static const struct vm_operations_struct vm_ops_ttm = {
1180	.fault = vm_fault_ttm,
1181	.access = vm_access_ttm,
1182	.open = ttm_vm_open,
1183	.close = ttm_vm_close,
1184};
1185
1186static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
1187{
1188	/* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
1189	GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
1190
1191	return drm_vma_node_offset_addr(&obj->base.vma_node);
1192}
1193
1194static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
1195{
1196	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
1197	intel_wakeref_t wakeref = 0;
1198
1199	assert_object_held_shared(obj);
1200
1201	if (i915_ttm_cpu_maps_iomem(bo->resource)) {
1202		wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1203
1204		/* userfault_count is protected by obj lock and rpm wakeref. */
1205		if (obj->userfault_count) {
1206			spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1207			list_del(&obj->userfault_link);
1208			spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1209			obj->userfault_count = 0;
1210		}
1211	}
1212
1213	GEM_WARN_ON(obj->userfault_count);
1214
1215	ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
1216
1217	if (wakeref)
1218		intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1219}
1220
1221static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
1222	.name = "i915_gem_object_ttm",
1223	.flags = I915_GEM_OBJECT_IS_SHRINKABLE |
1224		 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
1225
1226	.get_pages = i915_ttm_get_pages,
1227	.put_pages = i915_ttm_put_pages,
1228	.truncate = i915_ttm_truncate,
1229	.shrink = i915_ttm_shrink,
1230
1231	.adjust_lru = i915_ttm_adjust_lru,
1232	.delayed_free = i915_ttm_delayed_free,
1233	.migrate = i915_ttm_migrate,
1234
1235	.mmap_offset = i915_ttm_mmap_offset,
1236	.unmap_virtual = i915_ttm_unmap_virtual,
1237	.mmap_ops = &vm_ops_ttm,
1238};
1239
1240void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
1241{
1242	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1243
1244	i915_gem_object_release_memory_region(obj);
1245	mutex_destroy(&obj->ttm.get_io_page.lock);
1246
1247	if (obj->ttm.created) {
1248		/*
1249		 * We freely manage the shrinker LRU outide of the mm.pages life
1250		 * cycle. As a result when destroying the object we should be
1251		 * extra paranoid and ensure we remove it from the LRU, before
1252		 * we free the object.
1253		 *
1254		 * Touching the ttm_shrinkable outside of the object lock here
1255		 * should be safe now that the last GEM object ref was dropped.
1256		 */
1257		if (obj->mm.ttm_shrinkable)
1258			i915_gem_object_make_unshrinkable(obj);
1259
1260		i915_ttm_backup_free(obj);
1261
1262		/* This releases all gem object bindings to the backend. */
1263		__i915_gem_free_object(obj);
1264
1265		call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1266	} else {
1267		__i915_gem_object_fini(obj);
1268	}
1269}
1270
1271/*
1272 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1273 * @mem: The initial memory region for the object.
1274 * @obj: The gem object.
1275 * @size: Object size in bytes.
1276 * @flags: gem object flags.
1277 *
1278 * Return: 0 on success, negative error code on failure.
1279 */
1280int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1281			       struct drm_i915_gem_object *obj,
1282			       resource_size_t offset,
1283			       resource_size_t size,
1284			       resource_size_t page_size,
1285			       unsigned int flags)
1286{
1287	static struct lock_class_key lock_class;
1288	struct drm_i915_private *i915 = mem->i915;
1289	struct ttm_operation_ctx ctx = {
1290		.interruptible = true,
1291		.no_wait_gpu = false,
1292	};
1293	enum ttm_bo_type bo_type;
1294	int ret;
1295
1296	drm_gem_private_object_init(&i915->drm, &obj->base, size);
1297	i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1298
1299	obj->bo_offset = offset;
1300
1301	/* Don't put on a region list until we're either locked or fully initialized. */
1302	obj->mm.region = mem;
1303	INIT_LIST_HEAD(&obj->mm.region_link);
1304
1305	INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1306	mutex_init(&obj->ttm.get_io_page.lock);
1307	bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1308		ttm_bo_type_kernel;
1309
1310	obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1311
1312	/* Forcing the page size is kernel internal only */
1313	GEM_BUG_ON(page_size && obj->mm.n_placements);
1314
1315	/*
1316	 * Keep an extra shrink pin to prevent the object from being made
1317	 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1318	 * drop the pin. The TTM backend manages the shrinker LRU itself,
1319	 * outside of the normal mm.pages life cycle.
1320	 */
1321	i915_gem_object_make_unshrinkable(obj);
1322
1323	/*
1324	 * If this function fails, it will call the destructor, but
1325	 * our caller still owns the object. So no freeing in the
1326	 * destructor until obj->ttm.created is true.
1327	 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
1328	 * until successful initialization.
1329	 */
1330	ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type,
1331				   &i915_sys_placement, page_size >> PAGE_SHIFT,
1332				   &ctx, NULL, NULL, i915_ttm_bo_destroy);
1333
1334	/*
1335	 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size
1336	 * is too big to add vma. The direct function that returns -ENOSPC is
1337	 * drm_mm_insert_node_in_range(). To handle the same error as other code
1338	 * that returns -E2BIG when the size is too large, it converts -ENOSPC to
1339	 * -E2BIG.
1340	 */
1341	if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC)
1342		ret = -E2BIG;
1343
1344	if (ret)
1345		return i915_ttm_err_to_gem(ret);
1346
1347	obj->ttm.created = true;
1348	i915_gem_object_release_memory_region(obj);
1349	i915_gem_object_init_memory_region(obj, mem);
1350	i915_ttm_adjust_domains_after_move(obj);
1351	i915_ttm_adjust_gem_after_move(obj);
1352	i915_gem_object_unlock(obj);
1353
1354	return 0;
1355}
1356
1357static const struct intel_memory_region_ops ttm_system_region_ops = {
1358	.init_object = __i915_gem_ttm_object_init,
1359	.release = intel_region_ttm_fini,
1360};
1361
1362struct intel_memory_region *
1363i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1364			  u16 type, u16 instance)
1365{
1366	struct intel_memory_region *mr;
1367
1368	mr = intel_memory_region_create(i915, 0,
1369					totalram_pages() << PAGE_SHIFT,
1370					PAGE_SIZE, 0, 0,
1371					type, instance,
1372					&ttm_system_region_ops);
1373	if (IS_ERR(mr))
1374		return mr;
1375
1376	intel_memory_region_set_name(mr, "system-ttm");
1377	return mr;
1378}
1379