1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright �� 2014-2016 Intel Corporation
5 */
6
7#include "display/intel_display.h"
8#include "gt/intel_gt.h"
9
10#include "i915_drv.h"
11#include "i915_gem_clflush.h"
12#include "i915_gem_domain.h"
13#include "i915_gem_gtt.h"
14#include "i915_gem_ioctls.h"
15#include "i915_gem_lmem.h"
16#include "i915_gem_mman.h"
17#include "i915_gem_object.h"
18#include "i915_gem_object_frontbuffer.h"
19#include "i915_vma.h"
20
21#define VTD_GUARD (168u * I915_GTT_PAGE_SIZE) /* 168 or tile-row PTE padding */
22
23static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
24{
25	struct drm_i915_private *i915 = to_i915(obj->base.dev);
26
27	if (IS_DGFX(i915))
28		return false;
29
30	/*
31	 * For objects created by userspace through GEM_CREATE with pat_index
32	 * set by set_pat extension, i915_gem_object_has_cache_level() will
33	 * always return true, because the coherency of such object is managed
34	 * by userspace. Othereise the call here would fall back to checking
35	 * whether the object is un-cached or write-through.
36	 */
37	return !(i915_gem_object_has_cache_level(obj, I915_CACHE_NONE) ||
38		 i915_gem_object_has_cache_level(obj, I915_CACHE_WT));
39}
40
41bool i915_gem_cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
42{
43	struct drm_i915_private *i915 = to_i915(obj->base.dev);
44
45	if (obj->cache_dirty)
46		return false;
47
48	if (IS_DGFX(i915))
49		return false;
50
51	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
52		return true;
53
54	/* Currently in use by HW (display engine)? Keep flushed. */
55	return i915_gem_object_is_framebuffer(obj);
56}
57
58static void
59flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
60{
61	struct i915_vma *vma;
62
63	assert_object_held(obj);
64
65	if (!(obj->write_domain & flush_domains))
66		return;
67
68	switch (obj->write_domain) {
69	case I915_GEM_DOMAIN_GTT:
70		spin_lock(&obj->vma.lock);
71		for_each_ggtt_vma(vma, obj)
72			i915_vma_flush_writes(vma);
73		spin_unlock(&obj->vma.lock);
74
75		i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
76		break;
77
78	case I915_GEM_DOMAIN_WC:
79		wmb();
80		break;
81
82	case I915_GEM_DOMAIN_CPU:
83		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
84		break;
85
86	case I915_GEM_DOMAIN_RENDER:
87		if (gpu_write_needs_clflush(obj))
88			obj->cache_dirty = true;
89		break;
90	}
91
92	obj->write_domain = 0;
93}
94
95static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
96{
97	/*
98	 * We manually flush the CPU domain so that we can override and
99	 * force the flush for the display, and perform it asyncrhonously.
100	 */
101	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
102	if (obj->cache_dirty)
103		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
104	obj->write_domain = 0;
105}
106
107void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
108{
109	if (!i915_gem_object_is_framebuffer(obj))
110		return;
111
112	i915_gem_object_lock(obj, NULL);
113	__i915_gem_object_flush_for_display(obj);
114	i915_gem_object_unlock(obj);
115}
116
117void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object *obj)
118{
119	if (i915_gem_object_is_framebuffer(obj))
120		__i915_gem_object_flush_for_display(obj);
121}
122
123/**
124 * i915_gem_object_set_to_wc_domain - Moves a single object to the WC read, and
125 *                                    possibly write domain.
126 * @obj: object to act on
127 * @write: ask for write access or read only
128 *
129 * This function returns when the move is complete, including waiting on
130 * flushes to occur.
131 */
132int
133i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
134{
135	int ret;
136
137	assert_object_held(obj);
138
139	ret = i915_gem_object_wait(obj,
140				   I915_WAIT_INTERRUPTIBLE |
141				   (write ? I915_WAIT_ALL : 0),
142				   MAX_SCHEDULE_TIMEOUT);
143	if (ret)
144		return ret;
145
146	if (obj->write_domain == I915_GEM_DOMAIN_WC)
147		return 0;
148
149	/* Flush and acquire obj->pages so that we are coherent through
150	 * direct access in memory with previous cached writes through
151	 * shmemfs and that our cache domain tracking remains valid.
152	 * For example, if the obj->filp was moved to swap without us
153	 * being notified and releasing the pages, we would mistakenly
154	 * continue to assume that the obj remained out of the CPU cached
155	 * domain.
156	 */
157	ret = i915_gem_object_pin_pages(obj);
158	if (ret)
159		return ret;
160
161	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
162
163	/* Serialise direct access to this object with the barriers for
164	 * coherent writes from the GPU, by effectively invalidating the
165	 * WC domain upon first access.
166	 */
167	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
168		mb();
169
170	/* It should now be out of any other write domains, and we can update
171	 * the domain values for our changes.
172	 */
173	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
174	obj->read_domains |= I915_GEM_DOMAIN_WC;
175	if (write) {
176		obj->read_domains = I915_GEM_DOMAIN_WC;
177		obj->write_domain = I915_GEM_DOMAIN_WC;
178		obj->mm.dirty = true;
179	}
180
181	i915_gem_object_unpin_pages(obj);
182	return 0;
183}
184
185/**
186 * i915_gem_object_set_to_gtt_domain - Moves a single object to the GTT read,
187 *                                     and possibly write domain.
188 * @obj: object to act on
189 * @write: ask for write access or read only
190 *
191 * This function returns when the move is complete, including waiting on
192 * flushes to occur.
193 */
194int
195i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
196{
197	int ret;
198
199	assert_object_held(obj);
200
201	ret = i915_gem_object_wait(obj,
202				   I915_WAIT_INTERRUPTIBLE |
203				   (write ? I915_WAIT_ALL : 0),
204				   MAX_SCHEDULE_TIMEOUT);
205	if (ret)
206		return ret;
207
208	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
209		return 0;
210
211	/* Flush and acquire obj->pages so that we are coherent through
212	 * direct access in memory with previous cached writes through
213	 * shmemfs and that our cache domain tracking remains valid.
214	 * For example, if the obj->filp was moved to swap without us
215	 * being notified and releasing the pages, we would mistakenly
216	 * continue to assume that the obj remained out of the CPU cached
217	 * domain.
218	 */
219	ret = i915_gem_object_pin_pages(obj);
220	if (ret)
221		return ret;
222
223	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
224
225	/* Serialise direct access to this object with the barriers for
226	 * coherent writes from the GPU, by effectively invalidating the
227	 * GTT domain upon first access.
228	 */
229	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
230		mb();
231
232	/* It should now be out of any other write domains, and we can update
233	 * the domain values for our changes.
234	 */
235	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
236	obj->read_domains |= I915_GEM_DOMAIN_GTT;
237	if (write) {
238		struct i915_vma *vma;
239
240		obj->read_domains = I915_GEM_DOMAIN_GTT;
241		obj->write_domain = I915_GEM_DOMAIN_GTT;
242		obj->mm.dirty = true;
243
244		spin_lock(&obj->vma.lock);
245		for_each_ggtt_vma(vma, obj)
246			if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
247				i915_vma_set_ggtt_write(vma);
248		spin_unlock(&obj->vma.lock);
249	}
250
251	i915_gem_object_unpin_pages(obj);
252	return 0;
253}
254
255/**
256 * i915_gem_object_set_cache_level - Changes the cache-level of an object across all VMA.
257 * @obj: object to act on
258 * @cache_level: new cache level to set for the object
259 *
260 * After this function returns, the object will be in the new cache-level
261 * across all GTT and the contents of the backing storage will be coherent,
262 * with respect to the new cache-level. In order to keep the backing storage
263 * coherent for all users, we only allow a single cache level to be set
264 * globally on the object and prevent it from being changed whilst the
265 * hardware is reading from the object. That is if the object is currently
266 * on the scanout it will be set to uncached (or equivalent display
267 * cache coherency) and all non-MOCS GPU access will also be uncached so
268 * that all direct access to the scanout remains coherent.
269 */
270int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
271				    enum i915_cache_level cache_level)
272{
273	int ret;
274
275	/*
276	 * For objects created by userspace through GEM_CREATE with pat_index
277	 * set by set_pat extension, simply return 0 here without touching
278	 * the cache setting, because such objects should have an immutable
279	 * cache setting by desgin and always managed by userspace.
280	 */
281	if (i915_gem_object_has_cache_level(obj, cache_level))
282		return 0;
283
284	ret = i915_gem_object_wait(obj,
285				   I915_WAIT_INTERRUPTIBLE |
286				   I915_WAIT_ALL,
287				   MAX_SCHEDULE_TIMEOUT);
288	if (ret)
289		return ret;
290
291	/* Always invalidate stale cachelines */
292	i915_gem_object_set_cache_coherency(obj, cache_level);
293	obj->cache_dirty = true;
294
295	/* The cache-level will be applied when each vma is rebound. */
296	return i915_gem_object_unbind(obj,
297				      I915_GEM_OBJECT_UNBIND_ACTIVE |
298				      I915_GEM_OBJECT_UNBIND_BARRIER);
299}
300
301int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
302			       struct drm_file *file)
303{
304	struct drm_i915_gem_caching *args = data;
305	struct drm_i915_gem_object *obj;
306	int err = 0;
307
308	if (IS_DGFX(to_i915(dev)))
309		return -ENODEV;
310
311	rcu_read_lock();
312	obj = i915_gem_object_lookup_rcu(file, args->handle);
313	if (!obj) {
314		err = -ENOENT;
315		goto out;
316	}
317
318	/*
319	 * This ioctl should be disabled for the objects with pat_index
320	 * set by user space.
321	 */
322	if (obj->pat_set_by_user) {
323		err = -EOPNOTSUPP;
324		goto out;
325	}
326
327	if (i915_gem_object_has_cache_level(obj, I915_CACHE_LLC) ||
328	    i915_gem_object_has_cache_level(obj, I915_CACHE_L3_LLC))
329		args->caching = I915_CACHING_CACHED;
330	else if (i915_gem_object_has_cache_level(obj, I915_CACHE_WT))
331		args->caching = I915_CACHING_DISPLAY;
332	else
333		args->caching = I915_CACHING_NONE;
334out:
335	rcu_read_unlock();
336	return err;
337}
338
339int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
340			       struct drm_file *file)
341{
342	struct drm_i915_private *i915 = to_i915(dev);
343	struct drm_i915_gem_caching *args = data;
344	struct drm_i915_gem_object *obj;
345	enum i915_cache_level level;
346	int ret = 0;
347
348	if (IS_DGFX(i915))
349		return -ENODEV;
350
351	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
352		return -EOPNOTSUPP;
353
354	switch (args->caching) {
355	case I915_CACHING_NONE:
356		level = I915_CACHE_NONE;
357		break;
358	case I915_CACHING_CACHED:
359		/*
360		 * Due to a HW issue on BXT A stepping, GPU stores via a
361		 * snooped mapping may leave stale data in a corresponding CPU
362		 * cacheline, whereas normally such cachelines would get
363		 * invalidated.
364		 */
365		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
366			return -ENODEV;
367
368		level = I915_CACHE_LLC;
369		break;
370	case I915_CACHING_DISPLAY:
371		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
372		break;
373	default:
374		return -EINVAL;
375	}
376
377	obj = i915_gem_object_lookup(file, args->handle);
378	if (!obj)
379		return -ENOENT;
380
381	/*
382	 * This ioctl should be disabled for the objects with pat_index
383	 * set by user space.
384	 */
385	if (obj->pat_set_by_user) {
386		ret = -EOPNOTSUPP;
387		goto out;
388	}
389
390	/*
391	 * The caching mode of proxy object is handled by its generator, and
392	 * not allowed to be changed by userspace.
393	 */
394	if (i915_gem_object_is_proxy(obj)) {
395		/*
396		 * Silently allow cached for userptr; the vulkan driver
397		 * sets all objects to cached
398		 */
399		if (!i915_gem_object_is_userptr(obj) ||
400		    args->caching != I915_CACHING_CACHED)
401			ret = -ENXIO;
402
403		goto out;
404	}
405
406	ret = i915_gem_object_lock_interruptible(obj, NULL);
407	if (ret)
408		goto out;
409
410	ret = i915_gem_object_set_cache_level(obj, level);
411	i915_gem_object_unlock(obj);
412
413out:
414	i915_gem_object_put(obj);
415	return ret;
416}
417
418/*
419 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
420 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
421 * (for pageflips). We only flush the caches while preparing the buffer for
422 * display, the callers are responsible for frontbuffer flush.
423 */
424struct i915_vma *
425i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
426				     struct i915_gem_ww_ctx *ww,
427				     u32 alignment,
428				     const struct i915_gtt_view *view,
429				     unsigned int flags)
430{
431	struct drm_i915_private *i915 = to_i915(obj->base.dev);
432	struct i915_vma *vma;
433	int ret;
434
435	/* Frame buffer must be in LMEM */
436	if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
437		return ERR_PTR(-EINVAL);
438
439	/*
440	 * The display engine is not coherent with the LLC cache on gen6.  As
441	 * a result, we make sure that the pinning that is about to occur is
442	 * done with uncached PTEs. This is lowest common denominator for all
443	 * chipsets.
444	 *
445	 * However for gen6+, we could do better by using the GFDT bit instead
446	 * of uncaching, which would allow us to flush all the LLC-cached data
447	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
448	 */
449	ret = i915_gem_object_set_cache_level(obj,
450					      HAS_WT(i915) ?
451					      I915_CACHE_WT : I915_CACHE_NONE);
452	if (ret)
453		return ERR_PTR(ret);
454
455	/* VT-d may overfetch before/after the vma, so pad with scratch */
456	if (intel_scanout_needs_vtd_wa(i915)) {
457		unsigned int guard = VTD_GUARD;
458
459		if (i915_gem_object_is_tiled(obj))
460			guard = max(guard,
461				    i915_gem_object_get_tile_row_size(obj));
462
463		flags |= PIN_OFFSET_GUARD | guard;
464	}
465
466	/*
467	 * As the user may map the buffer once pinned in the display plane
468	 * (e.g. libkms for the bootup splash), we have to ensure that we
469	 * always use map_and_fenceable for all scanout buffers. However,
470	 * it may simply be too big to fit into mappable, in which case
471	 * put it anyway and hope that userspace can cope (but always first
472	 * try to preserve the existing ABI).
473	 */
474	vma = ERR_PTR(-ENOSPC);
475	if ((flags & PIN_MAPPABLE) == 0 &&
476	    (!view || view->type == I915_GTT_VIEW_NORMAL))
477		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0, alignment,
478						  flags | PIN_MAPPABLE |
479						  PIN_NONBLOCK);
480	if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK))
481		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0,
482						  alignment, flags);
483	if (IS_ERR(vma))
484		return vma;
485
486	vma->display_alignment = max(vma->display_alignment, alignment);
487	i915_vma_mark_scanout(vma);
488
489	i915_gem_object_flush_if_display_locked(obj);
490
491	return vma;
492}
493
494/**
495 * i915_gem_object_set_to_cpu_domain - Moves a single object to the CPU read,
496 *                                     and possibly write domain.
497 * @obj: object to act on
498 * @write: requesting write or read-only access
499 *
500 * This function returns when the move is complete, including waiting on
501 * flushes to occur.
502 */
503int
504i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
505{
506	int ret;
507
508	assert_object_held(obj);
509
510	ret = i915_gem_object_wait(obj,
511				   I915_WAIT_INTERRUPTIBLE |
512				   (write ? I915_WAIT_ALL : 0),
513				   MAX_SCHEDULE_TIMEOUT);
514	if (ret)
515		return ret;
516
517	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
518
519	/* Flush the CPU cache if it's still invalid. */
520	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
521		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
522		obj->read_domains |= I915_GEM_DOMAIN_CPU;
523	}
524
525	/* It should now be out of any other write domains, and we can update
526	 * the domain values for our changes.
527	 */
528	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
529
530	/* If we're writing through the CPU, then the GPU read domains will
531	 * need to be invalidated at next use.
532	 */
533	if (write)
534		__start_cpu_write(obj);
535
536	return 0;
537}
538
539/**
540 * i915_gem_set_domain_ioctl - Called when user space prepares to use an
541 *                             object with the CPU, either
542 * through the mmap ioctl's mapping or a GTT mapping.
543 * @dev: drm device
544 * @data: ioctl data blob
545 * @file: drm file
546 */
547int
548i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
549			  struct drm_file *file)
550{
551	struct drm_i915_gem_set_domain *args = data;
552	struct drm_i915_gem_object *obj;
553	u32 read_domains = args->read_domains;
554	u32 write_domain = args->write_domain;
555	int err;
556
557	if (IS_DGFX(to_i915(dev)))
558		return -ENODEV;
559
560	/* Only handle setting domains to types used by the CPU. */
561	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
562		return -EINVAL;
563
564	/*
565	 * Having something in the write domain implies it's in the read
566	 * domain, and only that read domain.  Enforce that in the request.
567	 */
568	if (write_domain && read_domains != write_domain)
569		return -EINVAL;
570
571	if (!read_domains)
572		return 0;
573
574	obj = i915_gem_object_lookup(file, args->handle);
575	if (!obj)
576		return -ENOENT;
577
578	/*
579	 * Try to flush the object off the GPU without holding the lock.
580	 * We will repeat the flush holding the lock in the normal manner
581	 * to catch cases where we are gazumped.
582	 */
583	err = i915_gem_object_wait(obj,
584				   I915_WAIT_INTERRUPTIBLE |
585				   I915_WAIT_PRIORITY |
586				   (write_domain ? I915_WAIT_ALL : 0),
587				   MAX_SCHEDULE_TIMEOUT);
588	if (err)
589		goto out;
590
591	if (i915_gem_object_is_userptr(obj)) {
592		/*
593		 * Try to grab userptr pages, iris uses set_domain to check
594		 * userptr validity
595		 */
596		err = i915_gem_object_userptr_validate(obj);
597		if (!err)
598			err = i915_gem_object_wait(obj,
599						   I915_WAIT_INTERRUPTIBLE |
600						   I915_WAIT_PRIORITY |
601						   (write_domain ? I915_WAIT_ALL : 0),
602						   MAX_SCHEDULE_TIMEOUT);
603		goto out;
604	}
605
606	/*
607	 * Proxy objects do not control access to the backing storage, ergo
608	 * they cannot be used as a means to manipulate the cache domain
609	 * tracking for that backing storage. The proxy object is always
610	 * considered to be outside of any cache domain.
611	 */
612	if (i915_gem_object_is_proxy(obj)) {
613		err = -ENXIO;
614		goto out;
615	}
616
617	err = i915_gem_object_lock_interruptible(obj, NULL);
618	if (err)
619		goto out;
620
621	/*
622	 * Flush and acquire obj->pages so that we are coherent through
623	 * direct access in memory with previous cached writes through
624	 * shmemfs and that our cache domain tracking remains valid.
625	 * For example, if the obj->filp was moved to swap without us
626	 * being notified and releasing the pages, we would mistakenly
627	 * continue to assume that the obj remained out of the CPU cached
628	 * domain.
629	 */
630	err = i915_gem_object_pin_pages(obj);
631	if (err)
632		goto out_unlock;
633
634	/*
635	 * Already in the desired write domain? Nothing for us to do!
636	 *
637	 * We apply a little bit of cunning here to catch a broader set of
638	 * no-ops. If obj->write_domain is set, we must be in the same
639	 * obj->read_domains, and only that domain. Therefore, if that
640	 * obj->write_domain matches the request read_domains, we are
641	 * already in the same read/write domain and can skip the operation,
642	 * without having to further check the requested write_domain.
643	 */
644	if (READ_ONCE(obj->write_domain) == read_domains)
645		goto out_unpin;
646
647	if (read_domains & I915_GEM_DOMAIN_WC)
648		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
649	else if (read_domains & I915_GEM_DOMAIN_GTT)
650		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
651	else
652		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
653
654out_unpin:
655	i915_gem_object_unpin_pages(obj);
656
657out_unlock:
658	i915_gem_object_unlock(obj);
659
660	if (!err && write_domain)
661		i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
662
663out:
664	i915_gem_object_put(obj);
665	return err;
666}
667
668/*
669 * Pins the specified object's pages and synchronizes the object with
670 * GPU accesses. Sets needs_clflush to non-zero if the caller should
671 * flush the object from the CPU cache.
672 */
673int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
674				 unsigned int *needs_clflush)
675{
676	int ret;
677
678	*needs_clflush = 0;
679	if (!i915_gem_object_has_struct_page(obj))
680		return -ENODEV;
681
682	assert_object_held(obj);
683
684	ret = i915_gem_object_wait(obj,
685				   I915_WAIT_INTERRUPTIBLE,
686				   MAX_SCHEDULE_TIMEOUT);
687	if (ret)
688		return ret;
689
690	ret = i915_gem_object_pin_pages(obj);
691	if (ret)
692		return ret;
693
694	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
695	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
696		ret = i915_gem_object_set_to_cpu_domain(obj, false);
697		if (ret)
698			goto err_unpin;
699		else
700			goto out;
701	}
702
703	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
704
705	/* If we're not in the cpu read domain, set ourself into the gtt
706	 * read domain and manually flush cachelines (if required). This
707	 * optimizes for the case when the gpu will dirty the data
708	 * anyway again before the next pread happens.
709	 */
710	if (!obj->cache_dirty &&
711	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
712		*needs_clflush = CLFLUSH_BEFORE;
713
714out:
715	/* return with the pages pinned */
716	return 0;
717
718err_unpin:
719	i915_gem_object_unpin_pages(obj);
720	return ret;
721}
722
723int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
724				  unsigned int *needs_clflush)
725{
726	int ret;
727
728	*needs_clflush = 0;
729	if (!i915_gem_object_has_struct_page(obj))
730		return -ENODEV;
731
732	assert_object_held(obj);
733
734	ret = i915_gem_object_wait(obj,
735				   I915_WAIT_INTERRUPTIBLE |
736				   I915_WAIT_ALL,
737				   MAX_SCHEDULE_TIMEOUT);
738	if (ret)
739		return ret;
740
741	ret = i915_gem_object_pin_pages(obj);
742	if (ret)
743		return ret;
744
745	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
746	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
747		ret = i915_gem_object_set_to_cpu_domain(obj, true);
748		if (ret)
749			goto err_unpin;
750		else
751			goto out;
752	}
753
754	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
755
756	/* If we're not in the cpu write domain, set ourself into the
757	 * gtt write domain and manually flush cachelines (as required).
758	 * This optimizes for the case when the gpu will use the data
759	 * right away and we therefore have to clflush anyway.
760	 */
761	if (!obj->cache_dirty) {
762		*needs_clflush |= CLFLUSH_AFTER;
763
764		/*
765		 * Same trick applies to invalidate partially written
766		 * cachelines read before writing.
767		 */
768		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
769			*needs_clflush |= CLFLUSH_BEFORE;
770	}
771
772out:
773	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
774	obj->mm.dirty = true;
775	/* return with the pages pinned */
776	return 0;
777
778err_unpin:
779	i915_gem_object_unpin_pages(obj);
780	return ret;
781}
782