1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2022 Intel Corporation
4 */
5
6#include <drm/drm_blend.h>
7
8#include "i915_drv.h"
9#include "i915_fixed.h"
10#include "i915_reg.h"
11#include "i9xx_wm.h"
12#include "intel_atomic.h"
13#include "intel_atomic_plane.h"
14#include "intel_bw.h"
15#include "intel_crtc.h"
16#include "intel_de.h"
17#include "intel_display.h"
18#include "intel_display_power.h"
19#include "intel_display_types.h"
20#include "intel_fb.h"
21#include "intel_pcode.h"
22#include "intel_wm.h"
23#include "skl_watermark.h"
24#include "skl_watermark_regs.h"
25
26/*It is expected that DSB can do posted writes to every register in
27 * the pipe and planes within 100us. For flip queue use case, the
28 * recommended DSB execution time is 100us + one SAGV block time.
29 */
30#define DSB_EXE_TIME 100
31
32static void skl_sagv_disable(struct drm_i915_private *i915);
33
34/* Stores plane specific WM parameters */
35struct skl_wm_params {
36	bool x_tiled, y_tiled;
37	bool rc_surface;
38	bool is_planar;
39	u32 width;
40	u8 cpp;
41	u32 plane_pixel_rate;
42	u32 y_min_scanlines;
43	u32 plane_bytes_per_line;
44	uint_fixed_16_16_t plane_blocks_per_line;
45	uint_fixed_16_16_t y_tile_minimum;
46	u32 linetime_us;
47	u32 dbuf_block_size;
48};
49
50u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *i915)
51{
52	u8 enabled_slices = 0;
53	enum dbuf_slice slice;
54
55	for_each_dbuf_slice(i915, slice) {
56		if (intel_de_read(i915, DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
57			enabled_slices |= BIT(slice);
58	}
59
60	return enabled_slices;
61}
62
63/*
64 * FIXME: We still don't have the proper code detect if we need to apply the WA,
65 * so assume we'll always need it in order to avoid underruns.
66 */
67static bool skl_needs_memory_bw_wa(struct drm_i915_private *i915)
68{
69	return DISPLAY_VER(i915) == 9;
70}
71
72static bool
73intel_has_sagv(struct drm_i915_private *i915)
74{
75	return HAS_SAGV(i915) &&
76		i915->display.sagv.status != I915_SAGV_NOT_CONTROLLED;
77}
78
79static u32
80intel_sagv_block_time(struct drm_i915_private *i915)
81{
82	if (DISPLAY_VER(i915) >= 14) {
83		u32 val;
84
85		val = intel_de_read(i915, MTL_LATENCY_SAGV);
86
87		return REG_FIELD_GET(MTL_LATENCY_QCLK_SAGV, val);
88	} else if (DISPLAY_VER(i915) >= 12) {
89		u32 val = 0;
90		int ret;
91
92		ret = snb_pcode_read(&i915->uncore,
93				     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
94				     &val, NULL);
95		if (ret) {
96			drm_dbg_kms(&i915->drm, "Couldn't read SAGV block time!\n");
97			return 0;
98		}
99
100		return val;
101	} else if (DISPLAY_VER(i915) == 11) {
102		return 10;
103	} else if (HAS_SAGV(i915)) {
104		return 30;
105	} else {
106		return 0;
107	}
108}
109
110static void intel_sagv_init(struct drm_i915_private *i915)
111{
112	if (!HAS_SAGV(i915))
113		i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
114
115	/*
116	 * Probe to see if we have working SAGV control.
117	 * For icl+ this was already determined by intel_bw_init_hw().
118	 */
119	if (DISPLAY_VER(i915) < 11)
120		skl_sagv_disable(i915);
121
122	drm_WARN_ON(&i915->drm, i915->display.sagv.status == I915_SAGV_UNKNOWN);
123
124	i915->display.sagv.block_time_us = intel_sagv_block_time(i915);
125
126	drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n",
127		    str_yes_no(intel_has_sagv(i915)), i915->display.sagv.block_time_us);
128
129	/* avoid overflow when adding with wm0 latency/etc. */
130	if (drm_WARN(&i915->drm, i915->display.sagv.block_time_us > U16_MAX,
131		     "Excessive SAGV block time %u, ignoring\n",
132		     i915->display.sagv.block_time_us))
133		i915->display.sagv.block_time_us = 0;
134
135	if (!intel_has_sagv(i915))
136		i915->display.sagv.block_time_us = 0;
137}
138
139/*
140 * SAGV dynamically adjusts the system agent voltage and clock frequencies
141 * depending on power and performance requirements. The display engine access
142 * to system memory is blocked during the adjustment time. Because of the
143 * blocking time, having this enabled can cause full system hangs and/or pipe
144 * underruns if we don't meet all of the following requirements:
145 *
146 *  - <= 1 pipe enabled
147 *  - All planes can enable watermarks for latencies >= SAGV engine block time
148 *  - We're not using an interlaced display configuration
149 */
150static void skl_sagv_enable(struct drm_i915_private *i915)
151{
152	int ret;
153
154	if (!intel_has_sagv(i915))
155		return;
156
157	if (i915->display.sagv.status == I915_SAGV_ENABLED)
158		return;
159
160	drm_dbg_kms(&i915->drm, "Enabling SAGV\n");
161	ret = snb_pcode_write(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
162			      GEN9_SAGV_ENABLE);
163
164	/* We don't need to wait for SAGV when enabling */
165
166	/*
167	 * Some skl systems, pre-release machines in particular,
168	 * don't actually have SAGV.
169	 */
170	if (IS_SKYLAKE(i915) && ret == -ENXIO) {
171		drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
172		i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
173		return;
174	} else if (ret < 0) {
175		drm_err(&i915->drm, "Failed to enable SAGV\n");
176		return;
177	}
178
179	i915->display.sagv.status = I915_SAGV_ENABLED;
180}
181
182static void skl_sagv_disable(struct drm_i915_private *i915)
183{
184	int ret;
185
186	if (!intel_has_sagv(i915))
187		return;
188
189	if (i915->display.sagv.status == I915_SAGV_DISABLED)
190		return;
191
192	drm_dbg_kms(&i915->drm, "Disabling SAGV\n");
193	/* bspec says to keep retrying for at least 1 ms */
194	ret = skl_pcode_request(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
195				GEN9_SAGV_DISABLE,
196				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
197				1);
198	/*
199	 * Some skl systems, pre-release machines in particular,
200	 * don't actually have SAGV.
201	 */
202	if (IS_SKYLAKE(i915) && ret == -ENXIO) {
203		drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
204		i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
205		return;
206	} else if (ret < 0) {
207		drm_err(&i915->drm, "Failed to disable SAGV (%d)\n", ret);
208		return;
209	}
210
211	i915->display.sagv.status = I915_SAGV_DISABLED;
212}
213
214static void skl_sagv_pre_plane_update(struct intel_atomic_state *state)
215{
216	struct drm_i915_private *i915 = to_i915(state->base.dev);
217	const struct intel_bw_state *new_bw_state =
218		intel_atomic_get_new_bw_state(state);
219
220	if (!new_bw_state)
221		return;
222
223	if (!intel_can_enable_sagv(i915, new_bw_state))
224		skl_sagv_disable(i915);
225}
226
227static void skl_sagv_post_plane_update(struct intel_atomic_state *state)
228{
229	struct drm_i915_private *i915 = to_i915(state->base.dev);
230	const struct intel_bw_state *new_bw_state =
231		intel_atomic_get_new_bw_state(state);
232
233	if (!new_bw_state)
234		return;
235
236	if (intel_can_enable_sagv(i915, new_bw_state))
237		skl_sagv_enable(i915);
238}
239
240static void icl_sagv_pre_plane_update(struct intel_atomic_state *state)
241{
242	struct drm_i915_private *i915 = to_i915(state->base.dev);
243	const struct intel_bw_state *old_bw_state =
244		intel_atomic_get_old_bw_state(state);
245	const struct intel_bw_state *new_bw_state =
246		intel_atomic_get_new_bw_state(state);
247	u16 old_mask, new_mask;
248
249	if (!new_bw_state)
250		return;
251
252	old_mask = old_bw_state->qgv_points_mask;
253	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
254
255	if (old_mask == new_mask)
256		return;
257
258	WARN_ON(!new_bw_state->base.changed);
259
260	drm_dbg_kms(&i915->drm, "Restricting QGV points: 0x%x -> 0x%x\n",
261		    old_mask, new_mask);
262
263	/*
264	 * Restrict required qgv points before updating the configuration.
265	 * According to BSpec we can't mask and unmask qgv points at the same
266	 * time. Also masking should be done before updating the configuration
267	 * and unmasking afterwards.
268	 */
269	icl_pcode_restrict_qgv_points(i915, new_mask);
270}
271
272static void icl_sagv_post_plane_update(struct intel_atomic_state *state)
273{
274	struct drm_i915_private *i915 = to_i915(state->base.dev);
275	const struct intel_bw_state *old_bw_state =
276		intel_atomic_get_old_bw_state(state);
277	const struct intel_bw_state *new_bw_state =
278		intel_atomic_get_new_bw_state(state);
279	u16 old_mask, new_mask;
280
281	if (!new_bw_state)
282		return;
283
284	old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
285	new_mask = new_bw_state->qgv_points_mask;
286
287	if (old_mask == new_mask)
288		return;
289
290	WARN_ON(!new_bw_state->base.changed);
291
292	drm_dbg_kms(&i915->drm, "Relaxing QGV points: 0x%x -> 0x%x\n",
293		    old_mask, new_mask);
294
295	/*
296	 * Allow required qgv points after updating the configuration.
297	 * According to BSpec we can't mask and unmask qgv points at the same
298	 * time. Also masking should be done before updating the configuration
299	 * and unmasking afterwards.
300	 */
301	icl_pcode_restrict_qgv_points(i915, new_mask);
302}
303
304void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
305{
306	struct drm_i915_private *i915 = to_i915(state->base.dev);
307
308	/*
309	 * Just return if we can't control SAGV or don't have it.
310	 * This is different from situation when we have SAGV but just can't
311	 * afford it due to DBuf limitation - in case if SAGV is completely
312	 * disabled in a BIOS, we are not even allowed to send a PCode request,
313	 * as it will throw an error. So have to check it here.
314	 */
315	if (!intel_has_sagv(i915))
316		return;
317
318	if (DISPLAY_VER(i915) >= 11)
319		icl_sagv_pre_plane_update(state);
320	else
321		skl_sagv_pre_plane_update(state);
322}
323
324void intel_sagv_post_plane_update(struct intel_atomic_state *state)
325{
326	struct drm_i915_private *i915 = to_i915(state->base.dev);
327
328	/*
329	 * Just return if we can't control SAGV or don't have it.
330	 * This is different from situation when we have SAGV but just can't
331	 * afford it due to DBuf limitation - in case if SAGV is completely
332	 * disabled in a BIOS, we are not even allowed to send a PCode request,
333	 * as it will throw an error. So have to check it here.
334	 */
335	if (!intel_has_sagv(i915))
336		return;
337
338	if (DISPLAY_VER(i915) >= 11)
339		icl_sagv_post_plane_update(state);
340	else
341		skl_sagv_post_plane_update(state);
342}
343
344static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
345{
346	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
347	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
348	enum plane_id plane_id;
349	int max_level = INT_MAX;
350
351	if (!intel_has_sagv(i915))
352		return false;
353
354	if (!crtc_state->hw.active)
355		return true;
356
357	if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
358		return false;
359
360	for_each_plane_id_on_crtc(crtc, plane_id) {
361		const struct skl_plane_wm *wm =
362			&crtc_state->wm.skl.optimal.planes[plane_id];
363		int level;
364
365		/* Skip this plane if it's not enabled */
366		if (!wm->wm[0].enable)
367			continue;
368
369		/* Find the highest enabled wm level for this plane */
370		for (level = i915->display.wm.num_levels - 1;
371		     !wm->wm[level].enable; --level)
372		     { }
373
374		/* Highest common enabled wm level for all planes */
375		max_level = min(level, max_level);
376	}
377
378	/* No enabled planes? */
379	if (max_level == INT_MAX)
380		return true;
381
382	for_each_plane_id_on_crtc(crtc, plane_id) {
383		const struct skl_plane_wm *wm =
384			&crtc_state->wm.skl.optimal.planes[plane_id];
385
386		/*
387		 * All enabled planes must have enabled a common wm level that
388		 * can tolerate memory latencies higher than sagv_block_time_us
389		 */
390		if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
391			return false;
392	}
393
394	return true;
395}
396
397static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
398{
399	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
400	enum plane_id plane_id;
401
402	if (!crtc_state->hw.active)
403		return true;
404
405	for_each_plane_id_on_crtc(crtc, plane_id) {
406		const struct skl_plane_wm *wm =
407			&crtc_state->wm.skl.optimal.planes[plane_id];
408
409		if (wm->wm[0].enable && !wm->sagv.wm0.enable)
410			return false;
411	}
412
413	return true;
414}
415
416static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
417{
418	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
419	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
420
421	if (!i915->display.params.enable_sagv)
422		return false;
423
424	if (DISPLAY_VER(i915) >= 12)
425		return tgl_crtc_can_enable_sagv(crtc_state);
426	else
427		return skl_crtc_can_enable_sagv(crtc_state);
428}
429
430bool intel_can_enable_sagv(struct drm_i915_private *i915,
431			   const struct intel_bw_state *bw_state)
432{
433	if (DISPLAY_VER(i915) < 11 &&
434	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
435		return false;
436
437	return bw_state->pipe_sagv_reject == 0;
438}
439
440static int intel_compute_sagv_mask(struct intel_atomic_state *state)
441{
442	struct drm_i915_private *i915 = to_i915(state->base.dev);
443	int ret;
444	struct intel_crtc *crtc;
445	struct intel_crtc_state *new_crtc_state;
446	struct intel_bw_state *new_bw_state = NULL;
447	const struct intel_bw_state *old_bw_state = NULL;
448	int i;
449
450	for_each_new_intel_crtc_in_state(state, crtc,
451					 new_crtc_state, i) {
452		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
453
454		new_bw_state = intel_atomic_get_bw_state(state);
455		if (IS_ERR(new_bw_state))
456			return PTR_ERR(new_bw_state);
457
458		old_bw_state = intel_atomic_get_old_bw_state(state);
459
460		/*
461		 * We store use_sagv_wm in the crtc state rather than relying on
462		 * that bw state since we have no convenient way to get at the
463		 * latter from the plane commit hooks (especially in the legacy
464		 * cursor case).
465		 *
466		 * drm_atomic_check_only() gets upset if we pull more crtcs
467		 * into the state, so we have to calculate this based on the
468		 * individual intel_crtc_can_enable_sagv() rather than
469		 * the overall intel_can_enable_sagv(). Otherwise the
470		 * crtcs not included in the commit would not switch to the
471		 * SAGV watermarks when we are about to enable SAGV, and that
472		 * would lead to underruns. This does mean extra power draw
473		 * when only a subset of the crtcs are blocking SAGV as the
474		 * other crtcs can't be allowed to use the more optimal
475		 * normal (ie. non-SAGV) watermarks.
476		 */
477		pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(i915) &&
478			DISPLAY_VER(i915) >= 12 &&
479			intel_crtc_can_enable_sagv(new_crtc_state);
480
481		if (intel_crtc_can_enable_sagv(new_crtc_state))
482			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
483		else
484			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
485	}
486
487	if (!new_bw_state)
488		return 0;
489
490	new_bw_state->active_pipes =
491		intel_calc_active_pipes(state, old_bw_state->active_pipes);
492
493	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
494		ret = intel_atomic_lock_global_state(&new_bw_state->base);
495		if (ret)
496			return ret;
497	}
498
499	if (intel_can_enable_sagv(i915, new_bw_state) !=
500	    intel_can_enable_sagv(i915, old_bw_state)) {
501		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
502		if (ret)
503			return ret;
504	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
505		ret = intel_atomic_lock_global_state(&new_bw_state->base);
506		if (ret)
507			return ret;
508	}
509
510	return 0;
511}
512
513static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
514			      u16 start, u16 end)
515{
516	entry->start = start;
517	entry->end = end;
518
519	return end;
520}
521
522static int intel_dbuf_slice_size(struct drm_i915_private *i915)
523{
524	return DISPLAY_INFO(i915)->dbuf.size /
525		hweight8(DISPLAY_INFO(i915)->dbuf.slice_mask);
526}
527
528static void
529skl_ddb_entry_for_slices(struct drm_i915_private *i915, u8 slice_mask,
530			 struct skl_ddb_entry *ddb)
531{
532	int slice_size = intel_dbuf_slice_size(i915);
533
534	if (!slice_mask) {
535		ddb->start = 0;
536		ddb->end = 0;
537		return;
538	}
539
540	ddb->start = (ffs(slice_mask) - 1) * slice_size;
541	ddb->end = fls(slice_mask) * slice_size;
542
543	WARN_ON(ddb->start >= ddb->end);
544	WARN_ON(ddb->end > DISPLAY_INFO(i915)->dbuf.size);
545}
546
547static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
548{
549	struct skl_ddb_entry ddb;
550
551	if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
552		slice_mask = BIT(DBUF_S1);
553	else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
554		slice_mask = BIT(DBUF_S3);
555
556	skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
557
558	return ddb.start;
559}
560
561u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *i915,
562			    const struct skl_ddb_entry *entry)
563{
564	int slice_size = intel_dbuf_slice_size(i915);
565	enum dbuf_slice start_slice, end_slice;
566	u8 slice_mask = 0;
567
568	if (!skl_ddb_entry_size(entry))
569		return 0;
570
571	start_slice = entry->start / slice_size;
572	end_slice = (entry->end - 1) / slice_size;
573
574	/*
575	 * Per plane DDB entry can in a really worst case be on multiple slices
576	 * but single entry is anyway contigious.
577	 */
578	while (start_slice <= end_slice) {
579		slice_mask |= BIT(start_slice);
580		start_slice++;
581	}
582
583	return slice_mask;
584}
585
586static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
587{
588	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
589	int hdisplay, vdisplay;
590
591	if (!crtc_state->hw.active)
592		return 0;
593
594	/*
595	 * Watermark/ddb requirement highly depends upon width of the
596	 * framebuffer, So instead of allocating DDB equally among pipes
597	 * distribute DDB based on resolution/width of the display.
598	 */
599	drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
600
601	return hdisplay;
602}
603
604static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
605				    enum pipe for_pipe,
606				    unsigned int *weight_start,
607				    unsigned int *weight_end,
608				    unsigned int *weight_total)
609{
610	struct drm_i915_private *i915 =
611		to_i915(dbuf_state->base.state->base.dev);
612	enum pipe pipe;
613
614	*weight_start = 0;
615	*weight_end = 0;
616	*weight_total = 0;
617
618	for_each_pipe(i915, pipe) {
619		int weight = dbuf_state->weight[pipe];
620
621		/*
622		 * Do not account pipes using other slice sets
623		 * luckily as of current BSpec slice sets do not partially
624		 * intersect(pipes share either same one slice or same slice set
625		 * i.e no partial intersection), so it is enough to check for
626		 * equality for now.
627		 */
628		if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
629			continue;
630
631		*weight_total += weight;
632		if (pipe < for_pipe) {
633			*weight_start += weight;
634			*weight_end += weight;
635		} else if (pipe == for_pipe) {
636			*weight_end += weight;
637		}
638	}
639}
640
641static int
642skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
643{
644	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
645	unsigned int weight_total, weight_start, weight_end;
646	const struct intel_dbuf_state *old_dbuf_state =
647		intel_atomic_get_old_dbuf_state(state);
648	struct intel_dbuf_state *new_dbuf_state =
649		intel_atomic_get_new_dbuf_state(state);
650	struct intel_crtc_state *crtc_state;
651	struct skl_ddb_entry ddb_slices;
652	enum pipe pipe = crtc->pipe;
653	unsigned int mbus_offset = 0;
654	u32 ddb_range_size;
655	u32 dbuf_slice_mask;
656	u32 start, end;
657	int ret;
658
659	if (new_dbuf_state->weight[pipe] == 0) {
660		skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0);
661		goto out;
662	}
663
664	dbuf_slice_mask = new_dbuf_state->slices[pipe];
665
666	skl_ddb_entry_for_slices(i915, dbuf_slice_mask, &ddb_slices);
667	mbus_offset = mbus_ddb_offset(i915, dbuf_slice_mask);
668	ddb_range_size = skl_ddb_entry_size(&ddb_slices);
669
670	intel_crtc_dbuf_weights(new_dbuf_state, pipe,
671				&weight_start, &weight_end, &weight_total);
672
673	start = ddb_range_size * weight_start / weight_total;
674	end = ddb_range_size * weight_end / weight_total;
675
676	skl_ddb_entry_init(&new_dbuf_state->ddb[pipe],
677			   ddb_slices.start - mbus_offset + start,
678			   ddb_slices.start - mbus_offset + end);
679
680out:
681	if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
682	    skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
683				&new_dbuf_state->ddb[pipe]))
684		return 0;
685
686	ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
687	if (ret)
688		return ret;
689
690	crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
691	if (IS_ERR(crtc_state))
692		return PTR_ERR(crtc_state);
693
694	/*
695	 * Used for checking overlaps, so we need absolute
696	 * offsets instead of MBUS relative offsets.
697	 */
698	crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
699	crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
700
701	drm_dbg_kms(&i915->drm,
702		    "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
703		    crtc->base.base.id, crtc->base.name,
704		    old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
705		    old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
706		    new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
707		    old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
708
709	return 0;
710}
711
712static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
713				 int width, const struct drm_format_info *format,
714				 u64 modifier, unsigned int rotation,
715				 u32 plane_pixel_rate, struct skl_wm_params *wp,
716				 int color_plane);
717
718static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
719				 struct intel_plane *plane,
720				 int level,
721				 unsigned int latency,
722				 const struct skl_wm_params *wp,
723				 const struct skl_wm_level *result_prev,
724				 struct skl_wm_level *result /* out */);
725
726static unsigned int skl_wm_latency(struct drm_i915_private *i915, int level,
727				   const struct skl_wm_params *wp)
728{
729	unsigned int latency = i915->display.wm.skl_latency[level];
730
731	if (latency == 0)
732		return 0;
733
734	/*
735	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
736	 * Display WA #1141: kbl,cfl
737	 */
738	if ((IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) &&
739	    skl_watermark_ipc_enabled(i915))
740		latency += 4;
741
742	if (skl_needs_memory_bw_wa(i915) && wp && wp->x_tiled)
743		latency += 15;
744
745	return latency;
746}
747
748static unsigned int
749skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
750		      int num_active)
751{
752	struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor);
753	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
754	struct skl_wm_level wm = {};
755	int ret, min_ddb_alloc = 0;
756	struct skl_wm_params wp;
757	int level;
758
759	ret = skl_compute_wm_params(crtc_state, 256,
760				    drm_format_info(DRM_FORMAT_ARGB8888),
761				    DRM_FORMAT_MOD_LINEAR,
762				    DRM_MODE_ROTATE_0,
763				    crtc_state->pixel_rate, &wp, 0);
764	drm_WARN_ON(&i915->drm, ret);
765
766	for (level = 0; level < i915->display.wm.num_levels; level++) {
767		unsigned int latency = skl_wm_latency(i915, level, &wp);
768
769		skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm);
770		if (wm.min_ddb_alloc == U16_MAX)
771			break;
772
773		min_ddb_alloc = wm.min_ddb_alloc;
774	}
775
776	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
777}
778
779static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
780{
781	skl_ddb_entry_init(entry,
782			   REG_FIELD_GET(PLANE_BUF_START_MASK, reg),
783			   REG_FIELD_GET(PLANE_BUF_END_MASK, reg));
784	if (entry->end)
785		entry->end++;
786}
787
788static void
789skl_ddb_get_hw_plane_state(struct drm_i915_private *i915,
790			   const enum pipe pipe,
791			   const enum plane_id plane_id,
792			   struct skl_ddb_entry *ddb,
793			   struct skl_ddb_entry *ddb_y)
794{
795	u32 val;
796
797	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
798	if (plane_id == PLANE_CURSOR) {
799		val = intel_de_read(i915, CUR_BUF_CFG(pipe));
800		skl_ddb_entry_init_from_hw(ddb, val);
801		return;
802	}
803
804	val = intel_de_read(i915, PLANE_BUF_CFG(pipe, plane_id));
805	skl_ddb_entry_init_from_hw(ddb, val);
806
807	if (DISPLAY_VER(i915) >= 11)
808		return;
809
810	val = intel_de_read(i915, PLANE_NV12_BUF_CFG(pipe, plane_id));
811	skl_ddb_entry_init_from_hw(ddb_y, val);
812}
813
814static void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
815				      struct skl_ddb_entry *ddb,
816				      struct skl_ddb_entry *ddb_y)
817{
818	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
819	enum intel_display_power_domain power_domain;
820	enum pipe pipe = crtc->pipe;
821	intel_wakeref_t wakeref;
822	enum plane_id plane_id;
823
824	power_domain = POWER_DOMAIN_PIPE(pipe);
825	wakeref = intel_display_power_get_if_enabled(i915, power_domain);
826	if (!wakeref)
827		return;
828
829	for_each_plane_id_on_crtc(crtc, plane_id)
830		skl_ddb_get_hw_plane_state(i915, pipe,
831					   plane_id,
832					   &ddb[plane_id],
833					   &ddb_y[plane_id]);
834
835	intel_display_power_put(i915, power_domain, wakeref);
836}
837
838struct dbuf_slice_conf_entry {
839	u8 active_pipes;
840	u8 dbuf_mask[I915_MAX_PIPES];
841	bool join_mbus;
842};
843
844/*
845 * Table taken from Bspec 12716
846 * Pipes do have some preferred DBuf slice affinity,
847 * plus there are some hardcoded requirements on how
848 * those should be distributed for multipipe scenarios.
849 * For more DBuf slices algorithm can get even more messy
850 * and less readable, so decided to use a table almost
851 * as is from BSpec itself - that way it is at least easier
852 * to compare, change and check.
853 */
854static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
855/* Autogenerated with igt/tools/intel_dbuf_map tool: */
856{
857	{
858		.active_pipes = BIT(PIPE_A),
859		.dbuf_mask = {
860			[PIPE_A] = BIT(DBUF_S1),
861		},
862	},
863	{
864		.active_pipes = BIT(PIPE_B),
865		.dbuf_mask = {
866			[PIPE_B] = BIT(DBUF_S1),
867		},
868	},
869	{
870		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
871		.dbuf_mask = {
872			[PIPE_A] = BIT(DBUF_S1),
873			[PIPE_B] = BIT(DBUF_S2),
874		},
875	},
876	{
877		.active_pipes = BIT(PIPE_C),
878		.dbuf_mask = {
879			[PIPE_C] = BIT(DBUF_S2),
880		},
881	},
882	{
883		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
884		.dbuf_mask = {
885			[PIPE_A] = BIT(DBUF_S1),
886			[PIPE_C] = BIT(DBUF_S2),
887		},
888	},
889	{
890		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
891		.dbuf_mask = {
892			[PIPE_B] = BIT(DBUF_S1),
893			[PIPE_C] = BIT(DBUF_S2),
894		},
895	},
896	{
897		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
898		.dbuf_mask = {
899			[PIPE_A] = BIT(DBUF_S1),
900			[PIPE_B] = BIT(DBUF_S1),
901			[PIPE_C] = BIT(DBUF_S2),
902		},
903	},
904	{}
905};
906
907/*
908 * Table taken from Bspec 49255
909 * Pipes do have some preferred DBuf slice affinity,
910 * plus there are some hardcoded requirements on how
911 * those should be distributed for multipipe scenarios.
912 * For more DBuf slices algorithm can get even more messy
913 * and less readable, so decided to use a table almost
914 * as is from BSpec itself - that way it is at least easier
915 * to compare, change and check.
916 */
917static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
918/* Autogenerated with igt/tools/intel_dbuf_map tool: */
919{
920	{
921		.active_pipes = BIT(PIPE_A),
922		.dbuf_mask = {
923			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
924		},
925	},
926	{
927		.active_pipes = BIT(PIPE_B),
928		.dbuf_mask = {
929			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
930		},
931	},
932	{
933		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
934		.dbuf_mask = {
935			[PIPE_A] = BIT(DBUF_S2),
936			[PIPE_B] = BIT(DBUF_S1),
937		},
938	},
939	{
940		.active_pipes = BIT(PIPE_C),
941		.dbuf_mask = {
942			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
943		},
944	},
945	{
946		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
947		.dbuf_mask = {
948			[PIPE_A] = BIT(DBUF_S1),
949			[PIPE_C] = BIT(DBUF_S2),
950		},
951	},
952	{
953		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
954		.dbuf_mask = {
955			[PIPE_B] = BIT(DBUF_S1),
956			[PIPE_C] = BIT(DBUF_S2),
957		},
958	},
959	{
960		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
961		.dbuf_mask = {
962			[PIPE_A] = BIT(DBUF_S1),
963			[PIPE_B] = BIT(DBUF_S1),
964			[PIPE_C] = BIT(DBUF_S2),
965		},
966	},
967	{
968		.active_pipes = BIT(PIPE_D),
969		.dbuf_mask = {
970			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
971		},
972	},
973	{
974		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
975		.dbuf_mask = {
976			[PIPE_A] = BIT(DBUF_S1),
977			[PIPE_D] = BIT(DBUF_S2),
978		},
979	},
980	{
981		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
982		.dbuf_mask = {
983			[PIPE_B] = BIT(DBUF_S1),
984			[PIPE_D] = BIT(DBUF_S2),
985		},
986	},
987	{
988		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
989		.dbuf_mask = {
990			[PIPE_A] = BIT(DBUF_S1),
991			[PIPE_B] = BIT(DBUF_S1),
992			[PIPE_D] = BIT(DBUF_S2),
993		},
994	},
995	{
996		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
997		.dbuf_mask = {
998			[PIPE_C] = BIT(DBUF_S1),
999			[PIPE_D] = BIT(DBUF_S2),
1000		},
1001	},
1002	{
1003		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1004		.dbuf_mask = {
1005			[PIPE_A] = BIT(DBUF_S1),
1006			[PIPE_C] = BIT(DBUF_S2),
1007			[PIPE_D] = BIT(DBUF_S2),
1008		},
1009	},
1010	{
1011		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1012		.dbuf_mask = {
1013			[PIPE_B] = BIT(DBUF_S1),
1014			[PIPE_C] = BIT(DBUF_S2),
1015			[PIPE_D] = BIT(DBUF_S2),
1016		},
1017	},
1018	{
1019		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1020		.dbuf_mask = {
1021			[PIPE_A] = BIT(DBUF_S1),
1022			[PIPE_B] = BIT(DBUF_S1),
1023			[PIPE_C] = BIT(DBUF_S2),
1024			[PIPE_D] = BIT(DBUF_S2),
1025		},
1026	},
1027	{}
1028};
1029
1030static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
1031	{
1032		.active_pipes = BIT(PIPE_A),
1033		.dbuf_mask = {
1034			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1035		},
1036	},
1037	{
1038		.active_pipes = BIT(PIPE_B),
1039		.dbuf_mask = {
1040			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1041		},
1042	},
1043	{
1044		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1045		.dbuf_mask = {
1046			[PIPE_A] = BIT(DBUF_S1),
1047			[PIPE_B] = BIT(DBUF_S2),
1048		},
1049	},
1050	{
1051		.active_pipes = BIT(PIPE_C),
1052		.dbuf_mask = {
1053			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1054		},
1055	},
1056	{
1057		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1058		.dbuf_mask = {
1059			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1060			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1061		},
1062	},
1063	{
1064		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1065		.dbuf_mask = {
1066			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1067			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1068		},
1069	},
1070	{
1071		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1072		.dbuf_mask = {
1073			[PIPE_A] = BIT(DBUF_S1),
1074			[PIPE_B] = BIT(DBUF_S2),
1075			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1076		},
1077	},
1078	{
1079		.active_pipes = BIT(PIPE_D),
1080		.dbuf_mask = {
1081			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1082		},
1083	},
1084	{
1085		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1086		.dbuf_mask = {
1087			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1088			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1089		},
1090	},
1091	{
1092		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1093		.dbuf_mask = {
1094			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1095			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1096		},
1097	},
1098	{
1099		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1100		.dbuf_mask = {
1101			[PIPE_A] = BIT(DBUF_S1),
1102			[PIPE_B] = BIT(DBUF_S2),
1103			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1104		},
1105	},
1106	{
1107		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1108		.dbuf_mask = {
1109			[PIPE_C] = BIT(DBUF_S3),
1110			[PIPE_D] = BIT(DBUF_S4),
1111		},
1112	},
1113	{
1114		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1115		.dbuf_mask = {
1116			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1117			[PIPE_C] = BIT(DBUF_S3),
1118			[PIPE_D] = BIT(DBUF_S4),
1119		},
1120	},
1121	{
1122		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1123		.dbuf_mask = {
1124			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1125			[PIPE_C] = BIT(DBUF_S3),
1126			[PIPE_D] = BIT(DBUF_S4),
1127		},
1128	},
1129	{
1130		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1131		.dbuf_mask = {
1132			[PIPE_A] = BIT(DBUF_S1),
1133			[PIPE_B] = BIT(DBUF_S2),
1134			[PIPE_C] = BIT(DBUF_S3),
1135			[PIPE_D] = BIT(DBUF_S4),
1136		},
1137	},
1138	{}
1139};
1140
1141static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
1142	/*
1143	 * Keep the join_mbus cases first so check_mbus_joined()
1144	 * will prefer them over the !join_mbus cases.
1145	 */
1146	{
1147		.active_pipes = BIT(PIPE_A),
1148		.dbuf_mask = {
1149			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1150		},
1151		.join_mbus = true,
1152	},
1153	{
1154		.active_pipes = BIT(PIPE_B),
1155		.dbuf_mask = {
1156			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1157		},
1158		.join_mbus = true,
1159	},
1160	{
1161		.active_pipes = BIT(PIPE_A),
1162		.dbuf_mask = {
1163			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1164		},
1165		.join_mbus = false,
1166	},
1167	{
1168		.active_pipes = BIT(PIPE_B),
1169		.dbuf_mask = {
1170			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1171		},
1172		.join_mbus = false,
1173	},
1174	{
1175		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1176		.dbuf_mask = {
1177			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1178			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1179		},
1180	},
1181	{
1182		.active_pipes = BIT(PIPE_C),
1183		.dbuf_mask = {
1184			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1185		},
1186	},
1187	{
1188		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1189		.dbuf_mask = {
1190			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1191			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1192		},
1193	},
1194	{
1195		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1196		.dbuf_mask = {
1197			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1198			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1199		},
1200	},
1201	{
1202		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1203		.dbuf_mask = {
1204			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1205			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1206			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1207		},
1208	},
1209	{
1210		.active_pipes = BIT(PIPE_D),
1211		.dbuf_mask = {
1212			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1213		},
1214	},
1215	{
1216		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1217		.dbuf_mask = {
1218			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1219			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1220		},
1221	},
1222	{
1223		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1224		.dbuf_mask = {
1225			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1226			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1227		},
1228	},
1229	{
1230		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1231		.dbuf_mask = {
1232			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1233			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1234			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1235		},
1236	},
1237	{
1238		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1239		.dbuf_mask = {
1240			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1241			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1242		},
1243	},
1244	{
1245		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1246		.dbuf_mask = {
1247			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1248			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1249			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1250		},
1251	},
1252	{
1253		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1254		.dbuf_mask = {
1255			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1256			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1257			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1258		},
1259	},
1260	{
1261		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1262		.dbuf_mask = {
1263			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1264			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1265			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1266			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1267		},
1268	},
1269	{}
1270
1271};
1272
1273static bool check_mbus_joined(u8 active_pipes,
1274			      const struct dbuf_slice_conf_entry *dbuf_slices)
1275{
1276	int i;
1277
1278	for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1279		if (dbuf_slices[i].active_pipes == active_pipes)
1280			return dbuf_slices[i].join_mbus;
1281	}
1282	return false;
1283}
1284
1285static bool adlp_check_mbus_joined(u8 active_pipes)
1286{
1287	return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
1288}
1289
1290static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
1291			      const struct dbuf_slice_conf_entry *dbuf_slices)
1292{
1293	int i;
1294
1295	for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1296		if (dbuf_slices[i].active_pipes == active_pipes &&
1297		    dbuf_slices[i].join_mbus == join_mbus)
1298			return dbuf_slices[i].dbuf_mask[pipe];
1299	}
1300	return 0;
1301}
1302
1303/*
1304 * This function finds an entry with same enabled pipe configuration and
1305 * returns correspondent DBuf slice mask as stated in BSpec for particular
1306 * platform.
1307 */
1308static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1309{
1310	/*
1311	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
1312	 * required calculating "pipe ratio" in order to determine
1313	 * if one or two slices can be used for single pipe configurations
1314	 * as additional constraint to the existing table.
1315	 * However based on recent info, it should be not "pipe ratio"
1316	 * but rather ratio between pixel_rate and cdclk with additional
1317	 * constants, so for now we are using only table until this is
1318	 * clarified. Also this is the reason why crtc_state param is
1319	 * still here - we will need it once those additional constraints
1320	 * pop up.
1321	 */
1322	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1323				   icl_allowed_dbufs);
1324}
1325
1326static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1327{
1328	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1329				   tgl_allowed_dbufs);
1330}
1331
1332static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1333{
1334	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1335				   adlp_allowed_dbufs);
1336}
1337
1338static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1339{
1340	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1341				   dg2_allowed_dbufs);
1342}
1343
1344static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
1345{
1346	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1347	enum pipe pipe = crtc->pipe;
1348
1349	if (IS_DG2(i915))
1350		return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1351	else if (DISPLAY_VER(i915) >= 13)
1352		return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1353	else if (DISPLAY_VER(i915) == 12)
1354		return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1355	else if (DISPLAY_VER(i915) == 11)
1356		return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1357	/*
1358	 * For anything else just return one slice yet.
1359	 * Should be extended for other platforms.
1360	 */
1361	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
1362}
1363
1364static bool
1365use_minimal_wm0_only(const struct intel_crtc_state *crtc_state,
1366		     struct intel_plane *plane)
1367{
1368	struct drm_i915_private *i915 = to_i915(plane->base.dev);
1369
1370	return DISPLAY_VER(i915) >= 13 &&
1371	       crtc_state->uapi.async_flip &&
1372	       plane->async_flip;
1373}
1374
1375static u64
1376skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state)
1377{
1378	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1379	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1380	enum plane_id plane_id;
1381	u64 data_rate = 0;
1382
1383	for_each_plane_id_on_crtc(crtc, plane_id) {
1384		if (plane_id == PLANE_CURSOR)
1385			continue;
1386
1387		data_rate += crtc_state->rel_data_rate[plane_id];
1388
1389		if (DISPLAY_VER(i915) < 11)
1390			data_rate += crtc_state->rel_data_rate_y[plane_id];
1391	}
1392
1393	return data_rate;
1394}
1395
1396static const struct skl_wm_level *
1397skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
1398		   enum plane_id plane_id,
1399		   int level)
1400{
1401	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1402
1403	if (level == 0 && pipe_wm->use_sagv_wm)
1404		return &wm->sagv.wm0;
1405
1406	return &wm->wm[level];
1407}
1408
1409static const struct skl_wm_level *
1410skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
1411		   enum plane_id plane_id)
1412{
1413	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1414
1415	if (pipe_wm->use_sagv_wm)
1416		return &wm->sagv.trans_wm;
1417
1418	return &wm->trans_wm;
1419}
1420
1421/*
1422 * We only disable the watermarks for each plane if
1423 * they exceed the ddb allocation of said plane. This
1424 * is done so that we don't end up touching cursor
1425 * watermarks needlessly when some other plane reduces
1426 * our max possible watermark level.
1427 *
1428 * Bspec has this to say about the PLANE_WM enable bit:
1429 * "All the watermarks at this level for all enabled
1430 *  planes must be enabled before the level will be used."
1431 * So this is actually safe to do.
1432 */
1433static void
1434skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb)
1435{
1436	if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb))
1437		memset(wm, 0, sizeof(*wm));
1438}
1439
1440static void
1441skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
1442			const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb)
1443{
1444	if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) ||
1445	    uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1446		memset(wm, 0, sizeof(*wm));
1447		memset(uv_wm, 0, sizeof(*uv_wm));
1448	}
1449}
1450
1451static bool skl_need_wm_copy_wa(struct drm_i915_private *i915, int level,
1452				const struct skl_plane_wm *wm)
1453{
1454	/*
1455	 * Wa_1408961008:icl, ehl
1456	 * Wa_14012656716:tgl, adl
1457	 * Wa_14017887344:icl
1458	 * Wa_14017868169:adl, tgl
1459	 * Due to some power saving optimizations, different subsystems
1460	 * like PSR, might still use even disabled wm level registers,
1461	 * for "reference", so lets keep at least the values sane.
1462	 * Considering amount of WA requiring us to do similar things, was
1463	 * decided to simply do it for all of the platforms, as those wm
1464	 * levels are disabled, this isn't going to do harm anyway.
1465	 */
1466	return level > 0 && !wm->wm[level].enable;
1467}
1468
1469struct skl_plane_ddb_iter {
1470	u64 data_rate;
1471	u16 start, size;
1472};
1473
1474static void
1475skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter,
1476		       struct skl_ddb_entry *ddb,
1477		       const struct skl_wm_level *wm,
1478		       u64 data_rate)
1479{
1480	u16 size, extra = 0;
1481
1482	if (data_rate) {
1483		extra = min_t(u16, iter->size,
1484			      DIV64_U64_ROUND_UP(iter->size * data_rate,
1485						 iter->data_rate));
1486		iter->size -= extra;
1487		iter->data_rate -= data_rate;
1488	}
1489
1490	/*
1491	 * Keep ddb entry of all disabled planes explicitly zeroed
1492	 * to avoid skl_ddb_add_affected_planes() adding them to
1493	 * the state when other planes change their allocations.
1494	 */
1495	size = wm->min_ddb_alloc + extra;
1496	if (size)
1497		iter->start = skl_ddb_entry_init(ddb, iter->start,
1498						 iter->start + size);
1499}
1500
1501static int
1502skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state,
1503			    struct intel_crtc *crtc)
1504{
1505	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1506	struct intel_crtc_state *crtc_state =
1507		intel_atomic_get_new_crtc_state(state, crtc);
1508	const struct intel_dbuf_state *dbuf_state =
1509		intel_atomic_get_new_dbuf_state(state);
1510	const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
1511	int num_active = hweight8(dbuf_state->active_pipes);
1512	struct skl_plane_ddb_iter iter;
1513	enum plane_id plane_id;
1514	u16 cursor_size;
1515	u32 blocks;
1516	int level;
1517
1518	/* Clear the partitioning for disabled planes. */
1519	memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb));
1520	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
1521
1522	if (!crtc_state->hw.active)
1523		return 0;
1524
1525	iter.start = alloc->start;
1526	iter.size = skl_ddb_entry_size(alloc);
1527	if (iter.size == 0)
1528		return 0;
1529
1530	/* Allocate fixed number of blocks for cursor. */
1531	cursor_size = skl_cursor_allocation(crtc_state, num_active);
1532	iter.size -= cursor_size;
1533	skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR],
1534			   alloc->end - cursor_size, alloc->end);
1535
1536	iter.data_rate = skl_total_relative_data_rate(crtc_state);
1537
1538	/*
1539	 * Find the highest watermark level for which we can satisfy the block
1540	 * requirement of active planes.
1541	 */
1542	for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
1543		blocks = 0;
1544		for_each_plane_id_on_crtc(crtc, plane_id) {
1545			const struct skl_plane_wm *wm =
1546				&crtc_state->wm.skl.optimal.planes[plane_id];
1547
1548			if (plane_id == PLANE_CURSOR) {
1549				const struct skl_ddb_entry *ddb =
1550					&crtc_state->wm.skl.plane_ddb[plane_id];
1551
1552				if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1553					drm_WARN_ON(&i915->drm,
1554						    wm->wm[level].min_ddb_alloc != U16_MAX);
1555					blocks = U32_MAX;
1556					break;
1557				}
1558				continue;
1559			}
1560
1561			blocks += wm->wm[level].min_ddb_alloc;
1562			blocks += wm->uv_wm[level].min_ddb_alloc;
1563		}
1564
1565		if (blocks <= iter.size) {
1566			iter.size -= blocks;
1567			break;
1568		}
1569	}
1570
1571	if (level < 0) {
1572		drm_dbg_kms(&i915->drm,
1573			    "Requested display configuration exceeds system DDB limitations");
1574		drm_dbg_kms(&i915->drm, "minimum required %d/%d\n",
1575			    blocks, iter.size);
1576		return -EINVAL;
1577	}
1578
1579	/* avoid the WARN later when we don't allocate any extra DDB */
1580	if (iter.data_rate == 0)
1581		iter.size = 0;
1582
1583	/*
1584	 * Grant each plane the blocks it requires at the highest achievable
1585	 * watermark level, plus an extra share of the leftover blocks
1586	 * proportional to its relative data rate.
1587	 */
1588	for_each_plane_id_on_crtc(crtc, plane_id) {
1589		struct skl_ddb_entry *ddb =
1590			&crtc_state->wm.skl.plane_ddb[plane_id];
1591		struct skl_ddb_entry *ddb_y =
1592			&crtc_state->wm.skl.plane_ddb_y[plane_id];
1593		const struct skl_plane_wm *wm =
1594			&crtc_state->wm.skl.optimal.planes[plane_id];
1595
1596		if (plane_id == PLANE_CURSOR)
1597			continue;
1598
1599		if (DISPLAY_VER(i915) < 11 &&
1600		    crtc_state->nv12_planes & BIT(plane_id)) {
1601			skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level],
1602					       crtc_state->rel_data_rate_y[plane_id]);
1603			skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level],
1604					       crtc_state->rel_data_rate[plane_id]);
1605		} else {
1606			skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level],
1607					       crtc_state->rel_data_rate[plane_id]);
1608		}
1609	}
1610	drm_WARN_ON(&i915->drm, iter.size != 0 || iter.data_rate != 0);
1611
1612	/*
1613	 * When we calculated watermark values we didn't know how high
1614	 * of a level we'd actually be able to hit, so we just marked
1615	 * all levels as "enabled."  Go back now and disable the ones
1616	 * that aren't actually possible.
1617	 */
1618	for (level++; level < i915->display.wm.num_levels; level++) {
1619		for_each_plane_id_on_crtc(crtc, plane_id) {
1620			const struct skl_ddb_entry *ddb =
1621				&crtc_state->wm.skl.plane_ddb[plane_id];
1622			const struct skl_ddb_entry *ddb_y =
1623				&crtc_state->wm.skl.plane_ddb_y[plane_id];
1624			struct skl_plane_wm *wm =
1625				&crtc_state->wm.skl.optimal.planes[plane_id];
1626
1627			if (DISPLAY_VER(i915) < 11 &&
1628			    crtc_state->nv12_planes & BIT(plane_id))
1629				skl_check_nv12_wm_level(&wm->wm[level],
1630							&wm->uv_wm[level],
1631							ddb_y, ddb);
1632			else
1633				skl_check_wm_level(&wm->wm[level], ddb);
1634
1635			if (skl_need_wm_copy_wa(i915, level, wm)) {
1636				wm->wm[level].blocks = wm->wm[level - 1].blocks;
1637				wm->wm[level].lines = wm->wm[level - 1].lines;
1638				wm->wm[level].ignore_lines = wm->wm[level - 1].ignore_lines;
1639			}
1640		}
1641	}
1642
1643	/*
1644	 * Go back and disable the transition and SAGV watermarks
1645	 * if it turns out we don't have enough DDB blocks for them.
1646	 */
1647	for_each_plane_id_on_crtc(crtc, plane_id) {
1648		const struct skl_ddb_entry *ddb =
1649			&crtc_state->wm.skl.plane_ddb[plane_id];
1650		const struct skl_ddb_entry *ddb_y =
1651			&crtc_state->wm.skl.plane_ddb_y[plane_id];
1652		struct skl_plane_wm *wm =
1653			&crtc_state->wm.skl.optimal.planes[plane_id];
1654
1655		if (DISPLAY_VER(i915) < 11 &&
1656		    crtc_state->nv12_planes & BIT(plane_id)) {
1657			skl_check_wm_level(&wm->trans_wm, ddb_y);
1658		} else {
1659			WARN_ON(skl_ddb_entry_size(ddb_y));
1660
1661			skl_check_wm_level(&wm->trans_wm, ddb);
1662		}
1663
1664		skl_check_wm_level(&wm->sagv.wm0, ddb);
1665		skl_check_wm_level(&wm->sagv.trans_wm, ddb);
1666	}
1667
1668	return 0;
1669}
1670
1671/*
1672 * The max latency should be 257 (max the punit can code is 255 and we add 2us
1673 * for the read latency) and cpp should always be <= 8, so that
1674 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
1675 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
1676 */
1677static uint_fixed_16_16_t
1678skl_wm_method1(const struct drm_i915_private *i915, u32 pixel_rate,
1679	       u8 cpp, u32 latency, u32 dbuf_block_size)
1680{
1681	u32 wm_intermediate_val;
1682	uint_fixed_16_16_t ret;
1683
1684	if (latency == 0)
1685		return FP_16_16_MAX;
1686
1687	wm_intermediate_val = latency * pixel_rate * cpp;
1688	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
1689
1690	if (DISPLAY_VER(i915) >= 10)
1691		ret = add_fixed16_u32(ret, 1);
1692
1693	return ret;
1694}
1695
1696static uint_fixed_16_16_t
1697skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
1698	       uint_fixed_16_16_t plane_blocks_per_line)
1699{
1700	u32 wm_intermediate_val;
1701	uint_fixed_16_16_t ret;
1702
1703	if (latency == 0)
1704		return FP_16_16_MAX;
1705
1706	wm_intermediate_val = latency * pixel_rate;
1707	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
1708					   pipe_htotal * 1000);
1709	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
1710	return ret;
1711}
1712
1713static uint_fixed_16_16_t
1714intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
1715{
1716	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1717	u32 pixel_rate;
1718	u32 crtc_htotal;
1719	uint_fixed_16_16_t linetime_us;
1720
1721	if (!crtc_state->hw.active)
1722		return u32_to_fixed16(0);
1723
1724	pixel_rate = crtc_state->pixel_rate;
1725
1726	if (drm_WARN_ON(&i915->drm, pixel_rate == 0))
1727		return u32_to_fixed16(0);
1728
1729	crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
1730	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
1731
1732	return linetime_us;
1733}
1734
1735static int
1736skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
1737		      int width, const struct drm_format_info *format,
1738		      u64 modifier, unsigned int rotation,
1739		      u32 plane_pixel_rate, struct skl_wm_params *wp,
1740		      int color_plane)
1741{
1742	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1743	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1744	u32 interm_pbpl;
1745
1746	/* only planar format has two planes */
1747	if (color_plane == 1 &&
1748	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
1749		drm_dbg_kms(&i915->drm,
1750			    "Non planar format have single plane\n");
1751		return -EINVAL;
1752	}
1753
1754	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
1755	wp->y_tiled = modifier != I915_FORMAT_MOD_X_TILED &&
1756		intel_fb_is_tiled_modifier(modifier);
1757	wp->rc_surface = intel_fb_is_ccs_modifier(modifier);
1758	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
1759
1760	wp->width = width;
1761	if (color_plane == 1 && wp->is_planar)
1762		wp->width /= 2;
1763
1764	wp->cpp = format->cpp[color_plane];
1765	wp->plane_pixel_rate = plane_pixel_rate;
1766
1767	if (DISPLAY_VER(i915) >= 11 &&
1768	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
1769		wp->dbuf_block_size = 256;
1770	else
1771		wp->dbuf_block_size = 512;
1772
1773	if (drm_rotation_90_or_270(rotation)) {
1774		switch (wp->cpp) {
1775		case 1:
1776			wp->y_min_scanlines = 16;
1777			break;
1778		case 2:
1779			wp->y_min_scanlines = 8;
1780			break;
1781		case 4:
1782			wp->y_min_scanlines = 4;
1783			break;
1784		default:
1785			MISSING_CASE(wp->cpp);
1786			return -EINVAL;
1787		}
1788	} else {
1789		wp->y_min_scanlines = 4;
1790	}
1791
1792	if (skl_needs_memory_bw_wa(i915))
1793		wp->y_min_scanlines *= 2;
1794
1795	wp->plane_bytes_per_line = wp->width * wp->cpp;
1796	if (wp->y_tiled) {
1797		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
1798					   wp->y_min_scanlines,
1799					   wp->dbuf_block_size);
1800
1801		if (DISPLAY_VER(i915) >= 10)
1802			interm_pbpl++;
1803
1804		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
1805							wp->y_min_scanlines);
1806	} else {
1807		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
1808					   wp->dbuf_block_size);
1809
1810		if (!wp->x_tiled || DISPLAY_VER(i915) >= 10)
1811			interm_pbpl++;
1812
1813		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
1814	}
1815
1816	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
1817					     wp->plane_blocks_per_line);
1818
1819	wp->linetime_us = fixed16_to_u32_round_up(intel_get_linetime_us(crtc_state));
1820
1821	return 0;
1822}
1823
1824static int
1825skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
1826			    const struct intel_plane_state *plane_state,
1827			    struct skl_wm_params *wp, int color_plane)
1828{
1829	const struct drm_framebuffer *fb = plane_state->hw.fb;
1830	int width;
1831
1832	/*
1833	 * Src coordinates are already rotated by 270 degrees for
1834	 * the 90/270 degree plane rotation cases (to match the
1835	 * GTT mapping), hence no need to account for rotation here.
1836	 */
1837	width = drm_rect_width(&plane_state->uapi.src) >> 16;
1838
1839	return skl_compute_wm_params(crtc_state, width,
1840				     fb->format, fb->modifier,
1841				     plane_state->hw.rotation,
1842				     intel_plane_pixel_rate(crtc_state, plane_state),
1843				     wp, color_plane);
1844}
1845
1846static bool skl_wm_has_lines(struct drm_i915_private *i915, int level)
1847{
1848	if (DISPLAY_VER(i915) >= 10)
1849		return true;
1850
1851	/* The number of lines are ignored for the level 0 watermark. */
1852	return level > 0;
1853}
1854
1855static int skl_wm_max_lines(struct drm_i915_private *i915)
1856{
1857	if (DISPLAY_VER(i915) >= 13)
1858		return 255;
1859	else
1860		return 31;
1861}
1862
1863static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
1864				 struct intel_plane *plane,
1865				 int level,
1866				 unsigned int latency,
1867				 const struct skl_wm_params *wp,
1868				 const struct skl_wm_level *result_prev,
1869				 struct skl_wm_level *result /* out */)
1870{
1871	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1872	uint_fixed_16_16_t method1, method2;
1873	uint_fixed_16_16_t selected_result;
1874	u32 blocks, lines, min_ddb_alloc = 0;
1875
1876	if (latency == 0 ||
1877	    (use_minimal_wm0_only(crtc_state, plane) && level > 0)) {
1878		/* reject it */
1879		result->min_ddb_alloc = U16_MAX;
1880		return;
1881	}
1882
1883	method1 = skl_wm_method1(i915, wp->plane_pixel_rate,
1884				 wp->cpp, latency, wp->dbuf_block_size);
1885	method2 = skl_wm_method2(wp->plane_pixel_rate,
1886				 crtc_state->hw.pipe_mode.crtc_htotal,
1887				 latency,
1888				 wp->plane_blocks_per_line);
1889
1890	if (wp->y_tiled) {
1891		selected_result = max_fixed16(method2, wp->y_tile_minimum);
1892	} else {
1893		if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
1894		     wp->dbuf_block_size < 1) &&
1895		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
1896			selected_result = method2;
1897		} else if (latency >= wp->linetime_us) {
1898			if (DISPLAY_VER(i915) == 9)
1899				selected_result = min_fixed16(method1, method2);
1900			else
1901				selected_result = method2;
1902		} else {
1903			selected_result = method1;
1904		}
1905	}
1906
1907	blocks = fixed16_to_u32_round_up(selected_result) + 1;
1908	/*
1909	 * Lets have blocks at minimum equivalent to plane_blocks_per_line
1910	 * as there will be at minimum one line for lines configuration. This
1911	 * is a work around for FIFO underruns observed with resolutions like
1912	 * 4k 60 Hz in single channel DRAM configurations.
1913	 *
1914	 * As per the Bspec 49325, if the ddb allocation can hold at least
1915	 * one plane_blocks_per_line, we should have selected method2 in
1916	 * the above logic. Assuming that modern versions have enough dbuf
1917	 * and method2 guarantees blocks equivalent to at least 1 line,
1918	 * select the blocks as plane_blocks_per_line.
1919	 *
1920	 * TODO: Revisit the logic when we have better understanding on DRAM
1921	 * channels' impact on the level 0 memory latency and the relevant
1922	 * wm calculations.
1923	 */
1924	if (skl_wm_has_lines(i915, level))
1925		blocks = max(blocks,
1926			     fixed16_to_u32_round_up(wp->plane_blocks_per_line));
1927	lines = div_round_up_fixed16(selected_result,
1928				     wp->plane_blocks_per_line);
1929
1930	if (DISPLAY_VER(i915) == 9) {
1931		/* Display WA #1125: skl,bxt,kbl */
1932		if (level == 0 && wp->rc_surface)
1933			blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1934
1935		/* Display WA #1126: skl,bxt,kbl */
1936		if (level >= 1 && level <= 7) {
1937			if (wp->y_tiled) {
1938				blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1939				lines += wp->y_min_scanlines;
1940			} else {
1941				blocks++;
1942			}
1943
1944			/*
1945			 * Make sure result blocks for higher latency levels are
1946			 * at least as high as level below the current level.
1947			 * Assumption in DDB algorithm optimization for special
1948			 * cases. Also covers Display WA #1125 for RC.
1949			 */
1950			if (result_prev->blocks > blocks)
1951				blocks = result_prev->blocks;
1952		}
1953	}
1954
1955	if (DISPLAY_VER(i915) >= 11) {
1956		if (wp->y_tiled) {
1957			int extra_lines;
1958
1959			if (lines % wp->y_min_scanlines == 0)
1960				extra_lines = wp->y_min_scanlines;
1961			else
1962				extra_lines = wp->y_min_scanlines * 2 -
1963					lines % wp->y_min_scanlines;
1964
1965			min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
1966								 wp->plane_blocks_per_line);
1967		} else {
1968			min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
1969		}
1970	}
1971
1972	if (!skl_wm_has_lines(i915, level))
1973		lines = 0;
1974
1975	if (lines > skl_wm_max_lines(i915)) {
1976		/* reject it */
1977		result->min_ddb_alloc = U16_MAX;
1978		return;
1979	}
1980
1981	/*
1982	 * If lines is valid, assume we can use this watermark level
1983	 * for now.  We'll come back and disable it after we calculate the
1984	 * DDB allocation if it turns out we don't actually have enough
1985	 * blocks to satisfy it.
1986	 */
1987	result->blocks = blocks;
1988	result->lines = lines;
1989	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
1990	result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
1991	result->enable = true;
1992
1993	if (DISPLAY_VER(i915) < 12 && i915->display.sagv.block_time_us)
1994		result->can_sagv = latency >= i915->display.sagv.block_time_us;
1995}
1996
1997static void
1998skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
1999		      struct intel_plane *plane,
2000		      const struct skl_wm_params *wm_params,
2001		      struct skl_wm_level *levels)
2002{
2003	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2004	struct skl_wm_level *result_prev = &levels[0];
2005	int level;
2006
2007	for (level = 0; level < i915->display.wm.num_levels; level++) {
2008		struct skl_wm_level *result = &levels[level];
2009		unsigned int latency = skl_wm_latency(i915, level, wm_params);
2010
2011		skl_compute_plane_wm(crtc_state, plane, level, latency,
2012				     wm_params, result_prev, result);
2013
2014		result_prev = result;
2015	}
2016}
2017
2018static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
2019				struct intel_plane *plane,
2020				const struct skl_wm_params *wm_params,
2021				struct skl_plane_wm *plane_wm)
2022{
2023	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2024	struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
2025	struct skl_wm_level *levels = plane_wm->wm;
2026	unsigned int latency = 0;
2027
2028	if (i915->display.sagv.block_time_us)
2029		latency = i915->display.sagv.block_time_us +
2030			skl_wm_latency(i915, 0, wm_params);
2031
2032	skl_compute_plane_wm(crtc_state, plane, 0, latency,
2033			     wm_params, &levels[0],
2034			     sagv_wm);
2035}
2036
2037static void skl_compute_transition_wm(struct drm_i915_private *i915,
2038				      struct skl_wm_level *trans_wm,
2039				      const struct skl_wm_level *wm0,
2040				      const struct skl_wm_params *wp)
2041{
2042	u16 trans_min, trans_amount, trans_y_tile_min;
2043	u16 wm0_blocks, trans_offset, blocks;
2044
2045	/* Transition WM don't make any sense if ipc is disabled */
2046	if (!skl_watermark_ipc_enabled(i915))
2047		return;
2048
2049	/*
2050	 * WaDisableTWM:skl,kbl,cfl,bxt
2051	 * Transition WM are not recommended by HW team for GEN9
2052	 */
2053	if (DISPLAY_VER(i915) == 9)
2054		return;
2055
2056	if (DISPLAY_VER(i915) >= 11)
2057		trans_min = 4;
2058	else
2059		trans_min = 14;
2060
2061	/* Display WA #1140: glk,cnl */
2062	if (DISPLAY_VER(i915) == 10)
2063		trans_amount = 0;
2064	else
2065		trans_amount = 10; /* This is configurable amount */
2066
2067	trans_offset = trans_min + trans_amount;
2068
2069	/*
2070	 * The spec asks for Selected Result Blocks for wm0 (the real value),
2071	 * not Result Blocks (the integer value). Pay attention to the capital
2072	 * letters. The value wm_l0->blocks is actually Result Blocks, but
2073	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
2074	 * and since we later will have to get the ceiling of the sum in the
2075	 * transition watermarks calculation, we can just pretend Selected
2076	 * Result Blocks is Result Blocks minus 1 and it should work for the
2077	 * current platforms.
2078	 */
2079	wm0_blocks = wm0->blocks - 1;
2080
2081	if (wp->y_tiled) {
2082		trans_y_tile_min =
2083			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
2084		blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
2085	} else {
2086		blocks = wm0_blocks + trans_offset;
2087	}
2088	blocks++;
2089
2090	/*
2091	 * Just assume we can enable the transition watermark.  After
2092	 * computing the DDB we'll come back and disable it if that
2093	 * assumption turns out to be false.
2094	 */
2095	trans_wm->blocks = blocks;
2096	trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
2097	trans_wm->enable = true;
2098}
2099
2100static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
2101				     const struct intel_plane_state *plane_state,
2102				     struct intel_plane *plane, int color_plane)
2103{
2104	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2105	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2106	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2107	struct skl_wm_params wm_params;
2108	int ret;
2109
2110	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2111					  &wm_params, color_plane);
2112	if (ret)
2113		return ret;
2114
2115	skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm);
2116
2117	skl_compute_transition_wm(i915, &wm->trans_wm,
2118				  &wm->wm[0], &wm_params);
2119
2120	if (DISPLAY_VER(i915) >= 12) {
2121		tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm);
2122
2123		skl_compute_transition_wm(i915, &wm->sagv.trans_wm,
2124					  &wm->sagv.wm0, &wm_params);
2125	}
2126
2127	return 0;
2128}
2129
2130static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
2131				 const struct intel_plane_state *plane_state,
2132				 struct intel_plane *plane)
2133{
2134	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2135	struct skl_wm_params wm_params;
2136	int ret;
2137
2138	wm->is_planar = true;
2139
2140	/* uv plane watermarks must also be validated for NV12/Planar */
2141	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2142					  &wm_params, 1);
2143	if (ret)
2144		return ret;
2145
2146	skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm);
2147
2148	return 0;
2149}
2150
2151static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
2152			      const struct intel_plane_state *plane_state)
2153{
2154	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2155	enum plane_id plane_id = plane->id;
2156	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2157	const struct drm_framebuffer *fb = plane_state->hw.fb;
2158	int ret;
2159
2160	memset(wm, 0, sizeof(*wm));
2161
2162	if (!intel_wm_plane_visible(crtc_state, plane_state))
2163		return 0;
2164
2165	ret = skl_build_plane_wm_single(crtc_state, plane_state,
2166					plane, 0);
2167	if (ret)
2168		return ret;
2169
2170	if (fb->format->is_yuv && fb->format->num_planes > 1) {
2171		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
2172					    plane);
2173		if (ret)
2174			return ret;
2175	}
2176
2177	return 0;
2178}
2179
2180static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
2181			      const struct intel_plane_state *plane_state)
2182{
2183	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2184	struct drm_i915_private *i915 = to_i915(plane->base.dev);
2185	enum plane_id plane_id = plane->id;
2186	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2187	int ret;
2188
2189	/* Watermarks calculated in master */
2190	if (plane_state->planar_slave)
2191		return 0;
2192
2193	memset(wm, 0, sizeof(*wm));
2194
2195	if (plane_state->planar_linked_plane) {
2196		const struct drm_framebuffer *fb = plane_state->hw.fb;
2197
2198		drm_WARN_ON(&i915->drm,
2199			    !intel_wm_plane_visible(crtc_state, plane_state));
2200		drm_WARN_ON(&i915->drm, !fb->format->is_yuv ||
2201			    fb->format->num_planes == 1);
2202
2203		ret = skl_build_plane_wm_single(crtc_state, plane_state,
2204						plane_state->planar_linked_plane, 0);
2205		if (ret)
2206			return ret;
2207
2208		ret = skl_build_plane_wm_single(crtc_state, plane_state,
2209						plane, 1);
2210		if (ret)
2211			return ret;
2212	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
2213		ret = skl_build_plane_wm_single(crtc_state, plane_state,
2214						plane, 0);
2215		if (ret)
2216			return ret;
2217	}
2218
2219	return 0;
2220}
2221
2222static bool
2223skl_is_vblank_too_short(const struct intel_crtc_state *crtc_state,
2224			int wm0_lines, int latency)
2225{
2226	const struct drm_display_mode *adjusted_mode =
2227		&crtc_state->hw.adjusted_mode;
2228
2229	/* FIXME missing scaler and DSC pre-fill time */
2230	return crtc_state->framestart_delay +
2231		intel_usecs_to_scanlines(adjusted_mode, latency) +
2232		wm0_lines >
2233		adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vblank_start;
2234}
2235
2236static int skl_max_wm0_lines(const struct intel_crtc_state *crtc_state)
2237{
2238	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2239	enum plane_id plane_id;
2240	int wm0_lines = 0;
2241
2242	for_each_plane_id_on_crtc(crtc, plane_id) {
2243		const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
2244
2245		/* FIXME what about !skl_wm_has_lines() platforms? */
2246		wm0_lines = max_t(int, wm0_lines, wm->wm[0].lines);
2247	}
2248
2249	return wm0_lines;
2250}
2251
2252static int skl_max_wm_level_for_vblank(struct intel_crtc_state *crtc_state,
2253				       int wm0_lines)
2254{
2255	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2256	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2257	int level;
2258
2259	for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
2260		int latency;
2261
2262		/* FIXME should we care about the latency w/a's? */
2263		latency = skl_wm_latency(i915, level, NULL);
2264		if (latency == 0)
2265			continue;
2266
2267		/* FIXME is it correct to use 0 latency for wm0 here? */
2268		if (level == 0)
2269			latency = 0;
2270
2271		if (!skl_is_vblank_too_short(crtc_state, wm0_lines, latency))
2272			return level;
2273	}
2274
2275	return -EINVAL;
2276}
2277
2278static int skl_wm_check_vblank(struct intel_crtc_state *crtc_state)
2279{
2280	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2281	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2282	int wm0_lines, level;
2283
2284	if (!crtc_state->hw.active)
2285		return 0;
2286
2287	wm0_lines = skl_max_wm0_lines(crtc_state);
2288
2289	level = skl_max_wm_level_for_vblank(crtc_state, wm0_lines);
2290	if (level < 0)
2291		return level;
2292
2293	/*
2294	 * PSR needs to toggle LATENCY_REPORTING_REMOVED_PIPE_*
2295	 * based on whether we're limited by the vblank duration.
2296	 */
2297	crtc_state->wm_level_disabled = level < i915->display.wm.num_levels - 1;
2298
2299	for (level++; level < i915->display.wm.num_levels; level++) {
2300		enum plane_id plane_id;
2301
2302		for_each_plane_id_on_crtc(crtc, plane_id) {
2303			struct skl_plane_wm *wm =
2304				&crtc_state->wm.skl.optimal.planes[plane_id];
2305
2306			/*
2307			 * FIXME just clear enable or flag the entire
2308			 * thing as bad via min_ddb_alloc=U16_MAX?
2309			 */
2310			wm->wm[level].enable = false;
2311			wm->uv_wm[level].enable = false;
2312		}
2313	}
2314
2315	if (DISPLAY_VER(i915) >= 12 &&
2316	    i915->display.sagv.block_time_us &&
2317	    skl_is_vblank_too_short(crtc_state, wm0_lines,
2318				    i915->display.sagv.block_time_us)) {
2319		enum plane_id plane_id;
2320
2321		for_each_plane_id_on_crtc(crtc, plane_id) {
2322			struct skl_plane_wm *wm =
2323				&crtc_state->wm.skl.optimal.planes[plane_id];
2324
2325			wm->sagv.wm0.enable = false;
2326			wm->sagv.trans_wm.enable = false;
2327		}
2328	}
2329
2330	return 0;
2331}
2332
2333static int skl_build_pipe_wm(struct intel_atomic_state *state,
2334			     struct intel_crtc *crtc)
2335{
2336	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2337	struct intel_crtc_state *crtc_state =
2338		intel_atomic_get_new_crtc_state(state, crtc);
2339	const struct intel_plane_state *plane_state;
2340	struct intel_plane *plane;
2341	int ret, i;
2342
2343	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
2344		/*
2345		 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
2346		 * instead but we don't populate that correctly for NV12 Y
2347		 * planes so for now hack this.
2348		 */
2349		if (plane->pipe != crtc->pipe)
2350			continue;
2351
2352		if (DISPLAY_VER(i915) >= 11)
2353			ret = icl_build_plane_wm(crtc_state, plane_state);
2354		else
2355			ret = skl_build_plane_wm(crtc_state, plane_state);
2356		if (ret)
2357			return ret;
2358	}
2359
2360	crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
2361
2362	return skl_wm_check_vblank(crtc_state);
2363}
2364
2365static void skl_ddb_entry_write(struct drm_i915_private *i915,
2366				i915_reg_t reg,
2367				const struct skl_ddb_entry *entry)
2368{
2369	if (entry->end)
2370		intel_de_write_fw(i915, reg,
2371				  PLANE_BUF_END(entry->end - 1) |
2372				  PLANE_BUF_START(entry->start));
2373	else
2374		intel_de_write_fw(i915, reg, 0);
2375}
2376
2377static void skl_write_wm_level(struct drm_i915_private *i915,
2378			       i915_reg_t reg,
2379			       const struct skl_wm_level *level)
2380{
2381	u32 val = 0;
2382
2383	if (level->enable)
2384		val |= PLANE_WM_EN;
2385	if (level->ignore_lines)
2386		val |= PLANE_WM_IGNORE_LINES;
2387	val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks);
2388	val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
2389
2390	intel_de_write_fw(i915, reg, val);
2391}
2392
2393void skl_write_plane_wm(struct intel_plane *plane,
2394			const struct intel_crtc_state *crtc_state)
2395{
2396	struct drm_i915_private *i915 = to_i915(plane->base.dev);
2397	enum plane_id plane_id = plane->id;
2398	enum pipe pipe = plane->pipe;
2399	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
2400	const struct skl_ddb_entry *ddb =
2401		&crtc_state->wm.skl.plane_ddb[plane_id];
2402	const struct skl_ddb_entry *ddb_y =
2403		&crtc_state->wm.skl.plane_ddb_y[plane_id];
2404	int level;
2405
2406	for (level = 0; level < i915->display.wm.num_levels; level++)
2407		skl_write_wm_level(i915, PLANE_WM(pipe, plane_id, level),
2408				   skl_plane_wm_level(pipe_wm, plane_id, level));
2409
2410	skl_write_wm_level(i915, PLANE_WM_TRANS(pipe, plane_id),
2411			   skl_plane_trans_wm(pipe_wm, plane_id));
2412
2413	if (HAS_HW_SAGV_WM(i915)) {
2414		const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
2415
2416		skl_write_wm_level(i915, PLANE_WM_SAGV(pipe, plane_id),
2417				   &wm->sagv.wm0);
2418		skl_write_wm_level(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id),
2419				   &wm->sagv.trans_wm);
2420	}
2421
2422	skl_ddb_entry_write(i915,
2423			    PLANE_BUF_CFG(pipe, plane_id), ddb);
2424
2425	if (DISPLAY_VER(i915) < 11)
2426		skl_ddb_entry_write(i915,
2427				    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y);
2428}
2429
2430void skl_write_cursor_wm(struct intel_plane *plane,
2431			 const struct intel_crtc_state *crtc_state)
2432{
2433	struct drm_i915_private *i915 = to_i915(plane->base.dev);
2434	enum plane_id plane_id = plane->id;
2435	enum pipe pipe = plane->pipe;
2436	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
2437	const struct skl_ddb_entry *ddb =
2438		&crtc_state->wm.skl.plane_ddb[plane_id];
2439	int level;
2440
2441	for (level = 0; level < i915->display.wm.num_levels; level++)
2442		skl_write_wm_level(i915, CUR_WM(pipe, level),
2443				   skl_plane_wm_level(pipe_wm, plane_id, level));
2444
2445	skl_write_wm_level(i915, CUR_WM_TRANS(pipe),
2446			   skl_plane_trans_wm(pipe_wm, plane_id));
2447
2448	if (HAS_HW_SAGV_WM(i915)) {
2449		const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
2450
2451		skl_write_wm_level(i915, CUR_WM_SAGV(pipe),
2452				   &wm->sagv.wm0);
2453		skl_write_wm_level(i915, CUR_WM_SAGV_TRANS(pipe),
2454				   &wm->sagv.trans_wm);
2455	}
2456
2457	skl_ddb_entry_write(i915, CUR_BUF_CFG(pipe), ddb);
2458}
2459
2460static bool skl_wm_level_equals(const struct skl_wm_level *l1,
2461				const struct skl_wm_level *l2)
2462{
2463	return l1->enable == l2->enable &&
2464		l1->ignore_lines == l2->ignore_lines &&
2465		l1->lines == l2->lines &&
2466		l1->blocks == l2->blocks;
2467}
2468
2469static bool skl_plane_wm_equals(struct drm_i915_private *i915,
2470				const struct skl_plane_wm *wm1,
2471				const struct skl_plane_wm *wm2)
2472{
2473	int level;
2474
2475	for (level = 0; level < i915->display.wm.num_levels; level++) {
2476		/*
2477		 * We don't check uv_wm as the hardware doesn't actually
2478		 * use it. It only gets used for calculating the required
2479		 * ddb allocation.
2480		 */
2481		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
2482			return false;
2483	}
2484
2485	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
2486		skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
2487		skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
2488}
2489
2490static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
2491				    const struct skl_ddb_entry *b)
2492{
2493	return a->start < b->end && b->start < a->end;
2494}
2495
2496static void skl_ddb_entry_union(struct skl_ddb_entry *a,
2497				const struct skl_ddb_entry *b)
2498{
2499	if (a->end && b->end) {
2500		a->start = min(a->start, b->start);
2501		a->end = max(a->end, b->end);
2502	} else if (b->end) {
2503		a->start = b->start;
2504		a->end = b->end;
2505	}
2506}
2507
2508bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
2509				 const struct skl_ddb_entry *entries,
2510				 int num_entries, int ignore_idx)
2511{
2512	int i;
2513
2514	for (i = 0; i < num_entries; i++) {
2515		if (i != ignore_idx &&
2516		    skl_ddb_entries_overlap(ddb, &entries[i]))
2517			return true;
2518	}
2519
2520	return false;
2521}
2522
2523static int
2524skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
2525			    struct intel_crtc_state *new_crtc_state)
2526{
2527	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
2528	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2529	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2530	struct intel_plane *plane;
2531
2532	for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2533		struct intel_plane_state *plane_state;
2534		enum plane_id plane_id = plane->id;
2535
2536		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id],
2537					&new_crtc_state->wm.skl.plane_ddb[plane_id]) &&
2538		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
2539					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]))
2540			continue;
2541
2542		plane_state = intel_atomic_get_plane_state(state, plane);
2543		if (IS_ERR(plane_state))
2544			return PTR_ERR(plane_state);
2545
2546		new_crtc_state->update_planes |= BIT(plane_id);
2547		new_crtc_state->async_flip_planes = 0;
2548		new_crtc_state->do_async_flip = false;
2549	}
2550
2551	return 0;
2552}
2553
2554static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
2555{
2556	struct drm_i915_private *i915 = to_i915(dbuf_state->base.state->base.dev);
2557	u8 enabled_slices;
2558	enum pipe pipe;
2559
2560	/*
2561	 * FIXME: For now we always enable slice S1 as per
2562	 * the Bspec display initialization sequence.
2563	 */
2564	enabled_slices = BIT(DBUF_S1);
2565
2566	for_each_pipe(i915, pipe)
2567		enabled_slices |= dbuf_state->slices[pipe];
2568
2569	return enabled_slices;
2570}
2571
2572static int
2573skl_compute_ddb(struct intel_atomic_state *state)
2574{
2575	struct drm_i915_private *i915 = to_i915(state->base.dev);
2576	const struct intel_dbuf_state *old_dbuf_state;
2577	struct intel_dbuf_state *new_dbuf_state = NULL;
2578	const struct intel_crtc_state *old_crtc_state;
2579	struct intel_crtc_state *new_crtc_state;
2580	struct intel_crtc *crtc;
2581	int ret, i;
2582
2583	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2584		new_dbuf_state = intel_atomic_get_dbuf_state(state);
2585		if (IS_ERR(new_dbuf_state))
2586			return PTR_ERR(new_dbuf_state);
2587
2588		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
2589		break;
2590	}
2591
2592	if (!new_dbuf_state)
2593		return 0;
2594
2595	new_dbuf_state->active_pipes =
2596		intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
2597
2598	if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
2599		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2600		if (ret)
2601			return ret;
2602	}
2603
2604	if (HAS_MBUS_JOINING(i915))
2605		new_dbuf_state->joined_mbus =
2606			adlp_check_mbus_joined(new_dbuf_state->active_pipes);
2607
2608	for_each_intel_crtc(&i915->drm, crtc) {
2609		enum pipe pipe = crtc->pipe;
2610
2611		new_dbuf_state->slices[pipe] =
2612			skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
2613						new_dbuf_state->joined_mbus);
2614
2615		if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
2616			continue;
2617
2618		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2619		if (ret)
2620			return ret;
2621	}
2622
2623	new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
2624
2625	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
2626	    old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2627		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
2628		if (ret)
2629			return ret;
2630
2631		if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2632			/* TODO: Implement vblank synchronized MBUS joining changes */
2633			ret = intel_modeset_all_pipes_late(state, "MBUS joining change");
2634			if (ret)
2635				return ret;
2636		}
2637
2638		drm_dbg_kms(&i915->drm,
2639			    "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
2640			    old_dbuf_state->enabled_slices,
2641			    new_dbuf_state->enabled_slices,
2642			    DISPLAY_INFO(i915)->dbuf.slice_mask,
2643			    str_yes_no(old_dbuf_state->joined_mbus),
2644			    str_yes_no(new_dbuf_state->joined_mbus));
2645	}
2646
2647	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2648		enum pipe pipe = crtc->pipe;
2649
2650		new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
2651
2652		if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
2653			continue;
2654
2655		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2656		if (ret)
2657			return ret;
2658	}
2659
2660	for_each_intel_crtc(&i915->drm, crtc) {
2661		ret = skl_crtc_allocate_ddb(state, crtc);
2662		if (ret)
2663			return ret;
2664	}
2665
2666	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
2667					    new_crtc_state, i) {
2668		ret = skl_crtc_allocate_plane_ddb(state, crtc);
2669		if (ret)
2670			return ret;
2671
2672		ret = skl_ddb_add_affected_planes(old_crtc_state,
2673						  new_crtc_state);
2674		if (ret)
2675			return ret;
2676	}
2677
2678	return 0;
2679}
2680
2681static char enast(bool enable)
2682{
2683	return enable ? '*' : ' ';
2684}
2685
2686static void
2687skl_print_wm_changes(struct intel_atomic_state *state)
2688{
2689	struct drm_i915_private *i915 = to_i915(state->base.dev);
2690	const struct intel_crtc_state *old_crtc_state;
2691	const struct intel_crtc_state *new_crtc_state;
2692	struct intel_plane *plane;
2693	struct intel_crtc *crtc;
2694	int i;
2695
2696	if (!drm_debug_enabled(DRM_UT_KMS))
2697		return;
2698
2699	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
2700					    new_crtc_state, i) {
2701		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
2702
2703		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
2704		new_pipe_wm = &new_crtc_state->wm.skl.optimal;
2705
2706		for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2707			enum plane_id plane_id = plane->id;
2708			const struct skl_ddb_entry *old, *new;
2709
2710			old = &old_crtc_state->wm.skl.plane_ddb[plane_id];
2711			new = &new_crtc_state->wm.skl.plane_ddb[plane_id];
2712
2713			if (skl_ddb_entry_equal(old, new))
2714				continue;
2715
2716			drm_dbg_kms(&i915->drm,
2717				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
2718				    plane->base.base.id, plane->base.name,
2719				    old->start, old->end, new->start, new->end,
2720				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
2721		}
2722
2723		for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2724			enum plane_id plane_id = plane->id;
2725			const struct skl_plane_wm *old_wm, *new_wm;
2726
2727			old_wm = &old_pipe_wm->planes[plane_id];
2728			new_wm = &new_pipe_wm->planes[plane_id];
2729
2730			if (skl_plane_wm_equals(i915, old_wm, new_wm))
2731				continue;
2732
2733			drm_dbg_kms(&i915->drm,
2734				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
2735				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
2736				    plane->base.base.id, plane->base.name,
2737				    enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
2738				    enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
2739				    enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
2740				    enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
2741				    enast(old_wm->trans_wm.enable),
2742				    enast(old_wm->sagv.wm0.enable),
2743				    enast(old_wm->sagv.trans_wm.enable),
2744				    enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
2745				    enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
2746				    enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
2747				    enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
2748				    enast(new_wm->trans_wm.enable),
2749				    enast(new_wm->sagv.wm0.enable),
2750				    enast(new_wm->sagv.trans_wm.enable));
2751
2752			drm_dbg_kms(&i915->drm,
2753				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
2754				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
2755				    plane->base.base.id, plane->base.name,
2756				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
2757				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
2758				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
2759				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
2760				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
2761				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
2762				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
2763				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
2764				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
2765				    enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
2766				    enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
2767				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
2768				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
2769				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
2770				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
2771				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
2772				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
2773				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
2774				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
2775				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
2776				    enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
2777				    enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
2778
2779			drm_dbg_kms(&i915->drm,
2780				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2781				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2782				    plane->base.base.id, plane->base.name,
2783				    old_wm->wm[0].blocks, old_wm->wm[1].blocks,
2784				    old_wm->wm[2].blocks, old_wm->wm[3].blocks,
2785				    old_wm->wm[4].blocks, old_wm->wm[5].blocks,
2786				    old_wm->wm[6].blocks, old_wm->wm[7].blocks,
2787				    old_wm->trans_wm.blocks,
2788				    old_wm->sagv.wm0.blocks,
2789				    old_wm->sagv.trans_wm.blocks,
2790				    new_wm->wm[0].blocks, new_wm->wm[1].blocks,
2791				    new_wm->wm[2].blocks, new_wm->wm[3].blocks,
2792				    new_wm->wm[4].blocks, new_wm->wm[5].blocks,
2793				    new_wm->wm[6].blocks, new_wm->wm[7].blocks,
2794				    new_wm->trans_wm.blocks,
2795				    new_wm->sagv.wm0.blocks,
2796				    new_wm->sagv.trans_wm.blocks);
2797
2798			drm_dbg_kms(&i915->drm,
2799				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2800				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2801				    plane->base.base.id, plane->base.name,
2802				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
2803				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
2804				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
2805				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
2806				    old_wm->trans_wm.min_ddb_alloc,
2807				    old_wm->sagv.wm0.min_ddb_alloc,
2808				    old_wm->sagv.trans_wm.min_ddb_alloc,
2809				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
2810				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
2811				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
2812				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
2813				    new_wm->trans_wm.min_ddb_alloc,
2814				    new_wm->sagv.wm0.min_ddb_alloc,
2815				    new_wm->sagv.trans_wm.min_ddb_alloc);
2816		}
2817	}
2818}
2819
2820static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
2821					 const struct skl_pipe_wm *old_pipe_wm,
2822					 const struct skl_pipe_wm *new_pipe_wm)
2823{
2824	struct drm_i915_private *i915 = to_i915(plane->base.dev);
2825	int level;
2826
2827	for (level = 0; level < i915->display.wm.num_levels; level++) {
2828		/*
2829		 * We don't check uv_wm as the hardware doesn't actually
2830		 * use it. It only gets used for calculating the required
2831		 * ddb allocation.
2832		 */
2833		if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
2834					 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
2835			return false;
2836	}
2837
2838	if (HAS_HW_SAGV_WM(i915)) {
2839		const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
2840		const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
2841
2842		if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
2843		    !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
2844			return false;
2845	}
2846
2847	return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
2848				   skl_plane_trans_wm(new_pipe_wm, plane->id));
2849}
2850
2851/*
2852 * To make sure the cursor watermark registers are always consistent
2853 * with our computed state the following scenario needs special
2854 * treatment:
2855 *
2856 * 1. enable cursor
2857 * 2. move cursor entirely offscreen
2858 * 3. disable cursor
2859 *
2860 * Step 2. does call .disable_plane() but does not zero the watermarks
2861 * (since we consider an offscreen cursor still active for the purposes
2862 * of watermarks). Step 3. would not normally call .disable_plane()
2863 * because the actual plane visibility isn't changing, and we don't
2864 * deallocate the cursor ddb until the pipe gets disabled. So we must
2865 * force step 3. to call .disable_plane() to update the watermark
2866 * registers properly.
2867 *
2868 * Other planes do not suffer from this issues as their watermarks are
2869 * calculated based on the actual plane visibility. The only time this
2870 * can trigger for the other planes is during the initial readout as the
2871 * default value of the watermarks registers is not zero.
2872 */
2873static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
2874				      struct intel_crtc *crtc)
2875{
2876	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2877	const struct intel_crtc_state *old_crtc_state =
2878		intel_atomic_get_old_crtc_state(state, crtc);
2879	struct intel_crtc_state *new_crtc_state =
2880		intel_atomic_get_new_crtc_state(state, crtc);
2881	struct intel_plane *plane;
2882
2883	for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2884		struct intel_plane_state *plane_state;
2885		enum plane_id plane_id = plane->id;
2886
2887		/*
2888		 * Force a full wm update for every plane on modeset.
2889		 * Required because the reset value of the wm registers
2890		 * is non-zero, whereas we want all disabled planes to
2891		 * have zero watermarks. So if we turn off the relevant
2892		 * power well the hardware state will go out of sync
2893		 * with the software state.
2894		 */
2895		if (!intel_crtc_needs_modeset(new_crtc_state) &&
2896		    skl_plane_selected_wm_equals(plane,
2897						 &old_crtc_state->wm.skl.optimal,
2898						 &new_crtc_state->wm.skl.optimal))
2899			continue;
2900
2901		plane_state = intel_atomic_get_plane_state(state, plane);
2902		if (IS_ERR(plane_state))
2903			return PTR_ERR(plane_state);
2904
2905		new_crtc_state->update_planes |= BIT(plane_id);
2906		new_crtc_state->async_flip_planes = 0;
2907		new_crtc_state->do_async_flip = false;
2908	}
2909
2910	return 0;
2911}
2912
2913/*
2914 * If Fixed Refresh Rate:
2915 * Program DEEP PKG_C_LATENCY Pkg C with highest valid latency from
2916 * watermark level1 and up and above. If watermark level 1 is
2917 * invalid program it with all 1's.
2918 * Program PKG_C_LATENCY Added Wake Time = DSB execution time
2919 * If Variable Refresh Rate:
2920 * Program DEEP PKG_C_LATENCY Pkg C with all 1's.
2921 * Program PKG_C_LATENCY Added Wake Time = 0
2922 */
2923static void
2924skl_program_dpkgc_latency(struct drm_i915_private *i915, bool vrr_enabled)
2925{
2926	u32 max_latency = 0;
2927	u32 clear = 0, val = 0;
2928	u32 added_wake_time = 0;
2929
2930	if (DISPLAY_VER(i915) < 20)
2931		return;
2932
2933	if (vrr_enabled) {
2934		max_latency = LNL_PKG_C_LATENCY_MASK;
2935		added_wake_time = 0;
2936	} else {
2937		max_latency = skl_watermark_max_latency(i915, 1);
2938		if (max_latency == 0)
2939			max_latency = LNL_PKG_C_LATENCY_MASK;
2940		added_wake_time = DSB_EXE_TIME +
2941			i915->display.sagv.block_time_us;
2942	}
2943
2944	clear |= LNL_ADDED_WAKE_TIME_MASK | LNL_PKG_C_LATENCY_MASK;
2945	val |= REG_FIELD_PREP(LNL_PKG_C_LATENCY_MASK, max_latency);
2946	val |= REG_FIELD_PREP(LNL_ADDED_WAKE_TIME_MASK, added_wake_time);
2947
2948	intel_uncore_rmw(&i915->uncore, LNL_PKG_C_LATENCY, clear, val);
2949}
2950
2951static int
2952skl_compute_wm(struct intel_atomic_state *state)
2953{
2954	struct intel_crtc *crtc;
2955	struct intel_crtc_state __maybe_unused *new_crtc_state;
2956	int ret, i;
2957	bool vrr_enabled = false;
2958
2959	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2960		ret = skl_build_pipe_wm(state, crtc);
2961		if (ret)
2962			return ret;
2963	}
2964
2965	ret = skl_compute_ddb(state);
2966	if (ret)
2967		return ret;
2968
2969	ret = intel_compute_sagv_mask(state);
2970	if (ret)
2971		return ret;
2972
2973	/*
2974	 * skl_compute_ddb() will have adjusted the final watermarks
2975	 * based on how much ddb is available. Now we can actually
2976	 * check if the final watermarks changed.
2977	 */
2978	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2979		ret = skl_wm_add_affected_planes(state, crtc);
2980		if (ret)
2981			return ret;
2982
2983		if (new_crtc_state->vrr.enable)
2984			vrr_enabled = true;
2985	}
2986
2987	skl_program_dpkgc_latency(to_i915(state->base.dev), vrr_enabled);
2988
2989	skl_print_wm_changes(state);
2990
2991	return 0;
2992}
2993
2994static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
2995{
2996	level->enable = val & PLANE_WM_EN;
2997	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
2998	level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val);
2999	level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
3000}
3001
3002static void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
3003				     struct skl_pipe_wm *out)
3004{
3005	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
3006	enum pipe pipe = crtc->pipe;
3007	enum plane_id plane_id;
3008	int level;
3009	u32 val;
3010
3011	for_each_plane_id_on_crtc(crtc, plane_id) {
3012		struct skl_plane_wm *wm = &out->planes[plane_id];
3013
3014		for (level = 0; level < i915->display.wm.num_levels; level++) {
3015			if (plane_id != PLANE_CURSOR)
3016				val = intel_de_read(i915, PLANE_WM(pipe, plane_id, level));
3017			else
3018				val = intel_de_read(i915, CUR_WM(pipe, level));
3019
3020			skl_wm_level_from_reg_val(val, &wm->wm[level]);
3021		}
3022
3023		if (plane_id != PLANE_CURSOR)
3024			val = intel_de_read(i915, PLANE_WM_TRANS(pipe, plane_id));
3025		else
3026			val = intel_de_read(i915, CUR_WM_TRANS(pipe));
3027
3028		skl_wm_level_from_reg_val(val, &wm->trans_wm);
3029
3030		if (HAS_HW_SAGV_WM(i915)) {
3031			if (plane_id != PLANE_CURSOR)
3032				val = intel_de_read(i915, PLANE_WM_SAGV(pipe, plane_id));
3033			else
3034				val = intel_de_read(i915, CUR_WM_SAGV(pipe));
3035
3036			skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
3037
3038			if (plane_id != PLANE_CURSOR)
3039				val = intel_de_read(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id));
3040			else
3041				val = intel_de_read(i915, CUR_WM_SAGV_TRANS(pipe));
3042
3043			skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
3044		} else if (DISPLAY_VER(i915) >= 12) {
3045			wm->sagv.wm0 = wm->wm[0];
3046			wm->sagv.trans_wm = wm->trans_wm;
3047		}
3048	}
3049}
3050
3051static void skl_wm_get_hw_state(struct drm_i915_private *i915)
3052{
3053	struct intel_dbuf_state *dbuf_state =
3054		to_intel_dbuf_state(i915->display.dbuf.obj.state);
3055	struct intel_crtc *crtc;
3056
3057	if (HAS_MBUS_JOINING(i915))
3058		dbuf_state->joined_mbus = intel_de_read(i915, MBUS_CTL) & MBUS_JOIN;
3059
3060	for_each_intel_crtc(&i915->drm, crtc) {
3061		struct intel_crtc_state *crtc_state =
3062			to_intel_crtc_state(crtc->base.state);
3063		enum pipe pipe = crtc->pipe;
3064		unsigned int mbus_offset;
3065		enum plane_id plane_id;
3066		u8 slices;
3067
3068		memset(&crtc_state->wm.skl.optimal, 0,
3069		       sizeof(crtc_state->wm.skl.optimal));
3070		if (crtc_state->hw.active)
3071			skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
3072		crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
3073
3074		memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
3075
3076		for_each_plane_id_on_crtc(crtc, plane_id) {
3077			struct skl_ddb_entry *ddb =
3078				&crtc_state->wm.skl.plane_ddb[plane_id];
3079			struct skl_ddb_entry *ddb_y =
3080				&crtc_state->wm.skl.plane_ddb_y[plane_id];
3081
3082			if (!crtc_state->hw.active)
3083				continue;
3084
3085			skl_ddb_get_hw_plane_state(i915, crtc->pipe,
3086						   plane_id, ddb, ddb_y);
3087
3088			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb);
3089			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
3090		}
3091
3092		dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
3093
3094		/*
3095		 * Used for checking overlaps, so we need absolute
3096		 * offsets instead of MBUS relative offsets.
3097		 */
3098		slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3099						 dbuf_state->joined_mbus);
3100		mbus_offset = mbus_ddb_offset(i915, slices);
3101		crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
3102		crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
3103
3104		/* The slices actually used by the planes on the pipe */
3105		dbuf_state->slices[pipe] =
3106			skl_ddb_dbuf_slice_mask(i915, &crtc_state->wm.skl.ddb);
3107
3108		drm_dbg_kms(&i915->drm,
3109			    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
3110			    crtc->base.base.id, crtc->base.name,
3111			    dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
3112			    dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
3113			    str_yes_no(dbuf_state->joined_mbus));
3114	}
3115
3116	dbuf_state->enabled_slices = i915->display.dbuf.enabled_slices;
3117}
3118
3119static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915)
3120{
3121	const struct intel_dbuf_state *dbuf_state =
3122		to_intel_dbuf_state(i915->display.dbuf.obj.state);
3123	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
3124	struct intel_crtc *crtc;
3125
3126	for_each_intel_crtc(&i915->drm, crtc) {
3127		const struct intel_crtc_state *crtc_state =
3128			to_intel_crtc_state(crtc->base.state);
3129
3130		entries[crtc->pipe] = crtc_state->wm.skl.ddb;
3131	}
3132
3133	for_each_intel_crtc(&i915->drm, crtc) {
3134		const struct intel_crtc_state *crtc_state =
3135			to_intel_crtc_state(crtc->base.state);
3136		u8 slices;
3137
3138		slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3139						 dbuf_state->joined_mbus);
3140		if (dbuf_state->slices[crtc->pipe] & ~slices)
3141			return true;
3142
3143		if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
3144						I915_MAX_PIPES, crtc->pipe))
3145			return true;
3146	}
3147
3148	return false;
3149}
3150
3151static void skl_wm_sanitize(struct drm_i915_private *i915)
3152{
3153	struct intel_crtc *crtc;
3154
3155	/*
3156	 * On TGL/RKL (at least) the BIOS likes to assign the planes
3157	 * to the wrong DBUF slices. This will cause an infinite loop
3158	 * in skl_commit_modeset_enables() as it can't find a way to
3159	 * transition between the old bogus DBUF layout to the new
3160	 * proper DBUF layout without DBUF allocation overlaps between
3161	 * the planes (which cannot be allowed or else the hardware
3162	 * may hang). If we detect a bogus DBUF layout just turn off
3163	 * all the planes so that skl_commit_modeset_enables() can
3164	 * simply ignore them.
3165	 */
3166	if (!skl_dbuf_is_misconfigured(i915))
3167		return;
3168
3169	drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
3170
3171	for_each_intel_crtc(&i915->drm, crtc) {
3172		struct intel_plane *plane = to_intel_plane(crtc->base.primary);
3173		const struct intel_plane_state *plane_state =
3174			to_intel_plane_state(plane->base.state);
3175		struct intel_crtc_state *crtc_state =
3176			to_intel_crtc_state(crtc->base.state);
3177
3178		if (plane_state->uapi.visible)
3179			intel_plane_disable_noatomic(crtc, plane);
3180
3181		drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0);
3182
3183		memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
3184	}
3185}
3186
3187static void skl_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3188{
3189	skl_wm_get_hw_state(i915);
3190	skl_wm_sanitize(i915);
3191}
3192
3193void intel_wm_state_verify(struct intel_atomic_state *state,
3194			   struct intel_crtc *crtc)
3195{
3196	struct drm_i915_private *i915 = to_i915(state->base.dev);
3197	const struct intel_crtc_state *new_crtc_state =
3198		intel_atomic_get_new_crtc_state(state, crtc);
3199	struct skl_hw_state {
3200		struct skl_ddb_entry ddb[I915_MAX_PLANES];
3201		struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
3202		struct skl_pipe_wm wm;
3203	} *hw;
3204	const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal;
3205	struct intel_plane *plane;
3206	u8 hw_enabled_slices;
3207	int level;
3208
3209	if (DISPLAY_VER(i915) < 9 || !new_crtc_state->hw.active)
3210		return;
3211
3212	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3213	if (!hw)
3214		return;
3215
3216	skl_pipe_wm_get_hw_state(crtc, &hw->wm);
3217
3218	skl_pipe_ddb_get_hw_state(crtc, hw->ddb, hw->ddb_y);
3219
3220	hw_enabled_slices = intel_enabled_dbuf_slices_mask(i915);
3221
3222	if (DISPLAY_VER(i915) >= 11 &&
3223	    hw_enabled_slices != i915->display.dbuf.enabled_slices)
3224		drm_err(&i915->drm,
3225			"mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
3226			i915->display.dbuf.enabled_slices,
3227			hw_enabled_slices);
3228
3229	for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
3230		const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
3231		const struct skl_wm_level *hw_wm_level, *sw_wm_level;
3232
3233		/* Watermarks */
3234		for (level = 0; level < i915->display.wm.num_levels; level++) {
3235			hw_wm_level = &hw->wm.planes[plane->id].wm[level];
3236			sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level);
3237
3238			if (skl_wm_level_equals(hw_wm_level, sw_wm_level))
3239				continue;
3240
3241			drm_err(&i915->drm,
3242				"[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3243				plane->base.base.id, plane->base.name, level,
3244				sw_wm_level->enable,
3245				sw_wm_level->blocks,
3246				sw_wm_level->lines,
3247				hw_wm_level->enable,
3248				hw_wm_level->blocks,
3249				hw_wm_level->lines);
3250		}
3251
3252		hw_wm_level = &hw->wm.planes[plane->id].trans_wm;
3253		sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id);
3254
3255		if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3256			drm_err(&i915->drm,
3257				"[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3258				plane->base.base.id, plane->base.name,
3259				sw_wm_level->enable,
3260				sw_wm_level->blocks,
3261				sw_wm_level->lines,
3262				hw_wm_level->enable,
3263				hw_wm_level->blocks,
3264				hw_wm_level->lines);
3265		}
3266
3267		hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0;
3268		sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0;
3269
3270		if (HAS_HW_SAGV_WM(i915) &&
3271		    !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3272			drm_err(&i915->drm,
3273				"[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3274				plane->base.base.id, plane->base.name,
3275				sw_wm_level->enable,
3276				sw_wm_level->blocks,
3277				sw_wm_level->lines,
3278				hw_wm_level->enable,
3279				hw_wm_level->blocks,
3280				hw_wm_level->lines);
3281		}
3282
3283		hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm;
3284		sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm;
3285
3286		if (HAS_HW_SAGV_WM(i915) &&
3287		    !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3288			drm_err(&i915->drm,
3289				"[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3290				plane->base.base.id, plane->base.name,
3291				sw_wm_level->enable,
3292				sw_wm_level->blocks,
3293				sw_wm_level->lines,
3294				hw_wm_level->enable,
3295				hw_wm_level->blocks,
3296				hw_wm_level->lines);
3297		}
3298
3299		/* DDB */
3300		hw_ddb_entry = &hw->ddb[PLANE_CURSOR];
3301		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb[PLANE_CURSOR];
3302
3303		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
3304			drm_err(&i915->drm,
3305				"[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n",
3306				plane->base.base.id, plane->base.name,
3307				sw_ddb_entry->start, sw_ddb_entry->end,
3308				hw_ddb_entry->start, hw_ddb_entry->end);
3309		}
3310	}
3311
3312	kfree(hw);
3313}
3314
3315bool skl_watermark_ipc_enabled(struct drm_i915_private *i915)
3316{
3317	return i915->display.wm.ipc_enabled;
3318}
3319
3320void skl_watermark_ipc_update(struct drm_i915_private *i915)
3321{
3322	if (!HAS_IPC(i915))
3323		return;
3324
3325	intel_de_rmw(i915, DISP_ARB_CTL2, DISP_IPC_ENABLE,
3326		     skl_watermark_ipc_enabled(i915) ? DISP_IPC_ENABLE : 0);
3327}
3328
3329static bool skl_watermark_ipc_can_enable(struct drm_i915_private *i915)
3330{
3331	/* Display WA #0477 WaDisableIPC: skl */
3332	if (IS_SKYLAKE(i915))
3333		return false;
3334
3335	/* Display WA #1141: SKL:all KBL:all CFL */
3336	if (IS_KABYLAKE(i915) ||
3337	    IS_COFFEELAKE(i915) ||
3338	    IS_COMETLAKE(i915))
3339		return i915->dram_info.symmetric_memory;
3340
3341	return true;
3342}
3343
3344void skl_watermark_ipc_init(struct drm_i915_private *i915)
3345{
3346	if (!HAS_IPC(i915))
3347		return;
3348
3349	i915->display.wm.ipc_enabled = skl_watermark_ipc_can_enable(i915);
3350
3351	skl_watermark_ipc_update(i915);
3352}
3353
3354static void
3355adjust_wm_latency(struct drm_i915_private *i915,
3356		  u16 wm[], int num_levels, int read_latency)
3357{
3358	bool wm_lv_0_adjust_needed = i915->dram_info.wm_lv_0_adjust_needed;
3359	int i, level;
3360
3361	/*
3362	 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
3363	 * need to be disabled. We make sure to sanitize the values out
3364	 * of the punit to satisfy this requirement.
3365	 */
3366	for (level = 1; level < num_levels; level++) {
3367		if (wm[level] == 0) {
3368			for (i = level + 1; i < num_levels; i++)
3369				wm[i] = 0;
3370
3371			num_levels = level;
3372			break;
3373		}
3374	}
3375
3376	/*
3377	 * WaWmMemoryReadLatency
3378	 *
3379	 * punit doesn't take into account the read latency so we need
3380	 * to add proper adjustement to each valid level we retrieve
3381	 * from the punit when level 0 response data is 0us.
3382	 */
3383	if (wm[0] == 0) {
3384		for (level = 0; level < num_levels; level++)
3385			wm[level] += read_latency;
3386	}
3387
3388	/*
3389	 * WA Level-0 adjustment for 16GB DIMMs: SKL+
3390	 * If we could not get dimm info enable this WA to prevent from
3391	 * any underrun. If not able to get Dimm info assume 16GB dimm
3392	 * to avoid any underrun.
3393	 */
3394	if (wm_lv_0_adjust_needed)
3395		wm[0] += 1;
3396}
3397
3398static void mtl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3399{
3400	int num_levels = i915->display.wm.num_levels;
3401	u32 val;
3402
3403	val = intel_de_read(i915, MTL_LATENCY_LP0_LP1);
3404	wm[0] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3405	wm[1] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3406
3407	val = intel_de_read(i915, MTL_LATENCY_LP2_LP3);
3408	wm[2] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3409	wm[3] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3410
3411	val = intel_de_read(i915, MTL_LATENCY_LP4_LP5);
3412	wm[4] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3413	wm[5] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3414
3415	adjust_wm_latency(i915, wm, num_levels, 6);
3416}
3417
3418static void skl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3419{
3420	int num_levels = i915->display.wm.num_levels;
3421	int read_latency = DISPLAY_VER(i915) >= 12 ? 3 : 2;
3422	int mult = IS_DG2(i915) ? 2 : 1;
3423	u32 val;
3424	int ret;
3425
3426	/* read the first set of memory latencies[0:3] */
3427	val = 0; /* data0 to be programmed to 0 for first set */
3428	ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3429	if (ret) {
3430		drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3431		return;
3432	}
3433
3434	wm[0] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3435	wm[1] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3436	wm[2] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3437	wm[3] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3438
3439	/* read the second set of memory latencies[4:7] */
3440	val = 1; /* data0 to be programmed to 1 for second set */
3441	ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3442	if (ret) {
3443		drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3444		return;
3445	}
3446
3447	wm[4] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3448	wm[5] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3449	wm[6] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3450	wm[7] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3451
3452	adjust_wm_latency(i915, wm, num_levels, read_latency);
3453}
3454
3455static void skl_setup_wm_latency(struct drm_i915_private *i915)
3456{
3457	if (HAS_HW_SAGV_WM(i915))
3458		i915->display.wm.num_levels = 6;
3459	else
3460		i915->display.wm.num_levels = 8;
3461
3462	if (DISPLAY_VER(i915) >= 14)
3463		mtl_read_wm_latency(i915, i915->display.wm.skl_latency);
3464	else
3465		skl_read_wm_latency(i915, i915->display.wm.skl_latency);
3466
3467	intel_print_wm_latency(i915, "Gen9 Plane", i915->display.wm.skl_latency);
3468}
3469
3470static const struct intel_wm_funcs skl_wm_funcs = {
3471	.compute_global_watermarks = skl_compute_wm,
3472	.get_hw_state = skl_wm_get_hw_state_and_sanitize,
3473};
3474
3475void skl_wm_init(struct drm_i915_private *i915)
3476{
3477	intel_sagv_init(i915);
3478
3479	skl_setup_wm_latency(i915);
3480
3481	i915->display.funcs.wm = &skl_wm_funcs;
3482}
3483
3484static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
3485{
3486	struct intel_dbuf_state *dbuf_state;
3487
3488	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
3489	if (!dbuf_state)
3490		return NULL;
3491
3492	return &dbuf_state->base;
3493}
3494
3495static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
3496				     struct intel_global_state *state)
3497{
3498	kfree(state);
3499}
3500
3501static const struct intel_global_state_funcs intel_dbuf_funcs = {
3502	.atomic_duplicate_state = intel_dbuf_duplicate_state,
3503	.atomic_destroy_state = intel_dbuf_destroy_state,
3504};
3505
3506struct intel_dbuf_state *
3507intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
3508{
3509	struct drm_i915_private *i915 = to_i915(state->base.dev);
3510	struct intel_global_state *dbuf_state;
3511
3512	dbuf_state = intel_atomic_get_global_obj_state(state, &i915->display.dbuf.obj);
3513	if (IS_ERR(dbuf_state))
3514		return ERR_CAST(dbuf_state);
3515
3516	return to_intel_dbuf_state(dbuf_state);
3517}
3518
3519int intel_dbuf_init(struct drm_i915_private *i915)
3520{
3521	struct intel_dbuf_state *dbuf_state;
3522
3523	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
3524	if (!dbuf_state)
3525		return -ENOMEM;
3526
3527	intel_atomic_global_obj_init(i915, &i915->display.dbuf.obj,
3528				     &dbuf_state->base, &intel_dbuf_funcs);
3529
3530	return 0;
3531}
3532
3533/*
3534 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
3535 * update the request state of all DBUS slices.
3536 */
3537static void update_mbus_pre_enable(struct intel_atomic_state *state)
3538{
3539	struct drm_i915_private *i915 = to_i915(state->base.dev);
3540	u32 mbus_ctl, dbuf_min_tracker_val;
3541	enum dbuf_slice slice;
3542	const struct intel_dbuf_state *dbuf_state =
3543		intel_atomic_get_new_dbuf_state(state);
3544
3545	if (!HAS_MBUS_JOINING(i915))
3546		return;
3547
3548	/*
3549	 * TODO: Implement vblank synchronized MBUS joining changes.
3550	 * Must be properly coordinated with dbuf reprogramming.
3551	 */
3552	if (dbuf_state->joined_mbus) {
3553		mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
3554			MBUS_JOIN_PIPE_SELECT_NONE;
3555		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
3556	} else {
3557		mbus_ctl = MBUS_HASHING_MODE_2x2 |
3558			MBUS_JOIN_PIPE_SELECT_NONE;
3559		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
3560	}
3561
3562	intel_de_rmw(i915, MBUS_CTL,
3563		     MBUS_HASHING_MODE_MASK | MBUS_JOIN |
3564		     MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
3565
3566	for_each_dbuf_slice(i915, slice)
3567		intel_de_rmw(i915, DBUF_CTL_S(slice),
3568			     DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
3569			     dbuf_min_tracker_val);
3570}
3571
3572void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
3573{
3574	struct drm_i915_private *i915 = to_i915(state->base.dev);
3575	const struct intel_dbuf_state *new_dbuf_state =
3576		intel_atomic_get_new_dbuf_state(state);
3577	const struct intel_dbuf_state *old_dbuf_state =
3578		intel_atomic_get_old_dbuf_state(state);
3579
3580	if (!new_dbuf_state ||
3581	    (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices &&
3582	     new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))
3583		return;
3584
3585	WARN_ON(!new_dbuf_state->base.changed);
3586
3587	update_mbus_pre_enable(state);
3588	gen9_dbuf_slices_update(i915,
3589				old_dbuf_state->enabled_slices |
3590				new_dbuf_state->enabled_slices);
3591}
3592
3593void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
3594{
3595	struct drm_i915_private *i915 = to_i915(state->base.dev);
3596	const struct intel_dbuf_state *new_dbuf_state =
3597		intel_atomic_get_new_dbuf_state(state);
3598	const struct intel_dbuf_state *old_dbuf_state =
3599		intel_atomic_get_old_dbuf_state(state);
3600
3601	if (!new_dbuf_state ||
3602	    (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices &&
3603	     new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))
3604		return;
3605
3606	WARN_ON(!new_dbuf_state->base.changed);
3607
3608	gen9_dbuf_slices_update(i915,
3609				new_dbuf_state->enabled_slices);
3610}
3611
3612static bool xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe, u8 active_pipes)
3613{
3614	switch (pipe) {
3615	case PIPE_A:
3616		return !(active_pipes & BIT(PIPE_D));
3617	case PIPE_D:
3618		return !(active_pipes & BIT(PIPE_A));
3619	case PIPE_B:
3620		return !(active_pipes & BIT(PIPE_C));
3621	case PIPE_C:
3622		return !(active_pipes & BIT(PIPE_B));
3623	default: /* to suppress compiler warning */
3624		MISSING_CASE(pipe);
3625		break;
3626	}
3627
3628	return false;
3629}
3630
3631void intel_mbus_dbox_update(struct intel_atomic_state *state)
3632{
3633	struct drm_i915_private *i915 = to_i915(state->base.dev);
3634	const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
3635	const struct intel_crtc_state *new_crtc_state;
3636	const struct intel_crtc *crtc;
3637	u32 val = 0;
3638	int i;
3639
3640	if (DISPLAY_VER(i915) < 11)
3641		return;
3642
3643	new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
3644	old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
3645	if (!new_dbuf_state ||
3646	    (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus &&
3647	     new_dbuf_state->active_pipes == old_dbuf_state->active_pipes))
3648		return;
3649
3650	if (DISPLAY_VER(i915) >= 14)
3651		val |= MBUS_DBOX_I_CREDIT(2);
3652
3653	if (DISPLAY_VER(i915) >= 12) {
3654		val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16);
3655		val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1);
3656		val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN;
3657	}
3658
3659	if (DISPLAY_VER(i915) >= 14)
3660		val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(12) :
3661						     MBUS_DBOX_A_CREDIT(8);
3662	else if (IS_ALDERLAKE_P(i915))
3663		/* Wa_22010947358:adl-p */
3664		val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) :
3665						     MBUS_DBOX_A_CREDIT(4);
3666	else
3667		val |= MBUS_DBOX_A_CREDIT(2);
3668
3669	if (DISPLAY_VER(i915) >= 14) {
3670		val |= MBUS_DBOX_B_CREDIT(0xA);
3671	} else if (IS_ALDERLAKE_P(i915)) {
3672		val |= MBUS_DBOX_BW_CREDIT(2);
3673		val |= MBUS_DBOX_B_CREDIT(8);
3674	} else if (DISPLAY_VER(i915) >= 12) {
3675		val |= MBUS_DBOX_BW_CREDIT(2);
3676		val |= MBUS_DBOX_B_CREDIT(12);
3677	} else {
3678		val |= MBUS_DBOX_BW_CREDIT(1);
3679		val |= MBUS_DBOX_B_CREDIT(8);
3680	}
3681
3682	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
3683		u32 pipe_val = val;
3684
3685		if (!new_crtc_state->hw.active)
3686			continue;
3687
3688		if (DISPLAY_VER(i915) >= 14) {
3689			if (xelpdp_is_only_pipe_per_dbuf_bank(crtc->pipe,
3690							      new_dbuf_state->active_pipes))
3691				pipe_val |= MBUS_DBOX_BW_8CREDITS_MTL;
3692			else
3693				pipe_val |= MBUS_DBOX_BW_4CREDITS_MTL;
3694		}
3695
3696		intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), pipe_val);
3697	}
3698}
3699
3700static int skl_watermark_ipc_status_show(struct seq_file *m, void *data)
3701{
3702	struct drm_i915_private *i915 = m->private;
3703
3704	seq_printf(m, "Isochronous Priority Control: %s\n",
3705		   str_yes_no(skl_watermark_ipc_enabled(i915)));
3706	return 0;
3707}
3708
3709static int skl_watermark_ipc_status_open(struct inode *inode, struct file *file)
3710{
3711	struct drm_i915_private *i915 = inode->i_private;
3712
3713	return single_open(file, skl_watermark_ipc_status_show, i915);
3714}
3715
3716static ssize_t skl_watermark_ipc_status_write(struct file *file,
3717					      const char __user *ubuf,
3718					      size_t len, loff_t *offp)
3719{
3720	struct seq_file *m = file->private_data;
3721	struct drm_i915_private *i915 = m->private;
3722	intel_wakeref_t wakeref;
3723	bool enable;
3724	int ret;
3725
3726	ret = kstrtobool_from_user(ubuf, len, &enable);
3727	if (ret < 0)
3728		return ret;
3729
3730	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
3731		if (!skl_watermark_ipc_enabled(i915) && enable)
3732			drm_info(&i915->drm,
3733				 "Enabling IPC: WM will be proper only after next commit\n");
3734		i915->display.wm.ipc_enabled = enable;
3735		skl_watermark_ipc_update(i915);
3736	}
3737
3738	return len;
3739}
3740
3741static const struct file_operations skl_watermark_ipc_status_fops = {
3742	.owner = THIS_MODULE,
3743	.open = skl_watermark_ipc_status_open,
3744	.read = seq_read,
3745	.llseek = seq_lseek,
3746	.release = single_release,
3747	.write = skl_watermark_ipc_status_write
3748};
3749
3750static int intel_sagv_status_show(struct seq_file *m, void *unused)
3751{
3752	struct drm_i915_private *i915 = m->private;
3753	static const char * const sagv_status[] = {
3754		[I915_SAGV_UNKNOWN] = "unknown",
3755		[I915_SAGV_DISABLED] = "disabled",
3756		[I915_SAGV_ENABLED] = "enabled",
3757		[I915_SAGV_NOT_CONTROLLED] = "not controlled",
3758	};
3759
3760	seq_printf(m, "SAGV available: %s\n", str_yes_no(intel_has_sagv(i915)));
3761	seq_printf(m, "SAGV modparam: %s\n",
3762		   str_enabled_disabled(i915->display.params.enable_sagv));
3763	seq_printf(m, "SAGV status: %s\n", sagv_status[i915->display.sagv.status]);
3764	seq_printf(m, "SAGV block time: %d usec\n", i915->display.sagv.block_time_us);
3765
3766	return 0;
3767}
3768
3769DEFINE_SHOW_ATTRIBUTE(intel_sagv_status);
3770
3771void skl_watermark_debugfs_register(struct drm_i915_private *i915)
3772{
3773	struct drm_minor *minor = i915->drm.primary;
3774
3775	if (HAS_IPC(i915))
3776		debugfs_create_file("i915_ipc_status", 0644, minor->debugfs_root, i915,
3777				    &skl_watermark_ipc_status_fops);
3778
3779	if (HAS_SAGV(i915))
3780		debugfs_create_file("i915_sagv_status", 0444, minor->debugfs_root, i915,
3781				    &intel_sagv_status_fops);
3782}
3783
3784unsigned int skl_watermark_max_latency(struct drm_i915_private *i915, int initial_wm_level)
3785{
3786	int level;
3787
3788	for (level = i915->display.wm.num_levels - 1; level >= initial_wm_level; level--) {
3789		unsigned int latency = skl_wm_latency(i915, level, NULL);
3790
3791		if (latency)
3792			return latency;
3793	}
3794
3795	return 0;
3796}
3797