1/* SPDX-License-Identifier: MIT */
2/*
3 * Copyright (C) 2017 Google, Inc.
4 * Copyright _ 2017-2019, Intel Corporation.
5 *
6 * Authors:
7 * Sean Paul <seanpaul@chromium.org>
8 * Ramalingam C <ramalingam.c@intel.com>
9 */
10
11#include <linux/component.h>
12#include <linux/i2c.h>
13#include <linux/random.h>
14
15#include <drm/display/drm_hdcp_helper.h>
16#include <drm/i915_component.h>
17
18#include "i915_drv.h"
19#include "i915_reg.h"
20#include "intel_connector.h"
21#include "intel_de.h"
22#include "intel_display_power.h"
23#include "intel_display_power_well.h"
24#include "intel_display_types.h"
25#include "intel_hdcp.h"
26#include "intel_hdcp_gsc.h"
27#include "intel_hdcp_regs.h"
28#include "intel_pcode.h"
29
30#define KEY_LOAD_TRIES	5
31#define HDCP2_LC_RETRY_CNT			3
32
33static int intel_conn_to_vcpi(struct intel_atomic_state *state,
34			      struct intel_connector *connector)
35{
36	struct drm_dp_mst_topology_mgr *mgr;
37	struct drm_dp_mst_atomic_payload *payload;
38	struct drm_dp_mst_topology_state *mst_state;
39	int vcpi = 0;
40
41	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
42	if (!connector->port)
43		return 0;
44	mgr = connector->port->mgr;
45
46	drm_modeset_lock(&mgr->base.lock, state->base.acquire_ctx);
47	mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
48	payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
49	if (drm_WARN_ON(mgr->dev, !payload))
50		goto out;
51
52	vcpi = payload->vcpi;
53	if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
54		vcpi = 0;
55		goto out;
56	}
57out:
58	return vcpi;
59}
60
61/*
62 * intel_hdcp_required_content_stream selects the most highest common possible HDCP
63 * content_type for all streams in DP MST topology because security f/w doesn't
64 * have any provision to mark content_type for each stream separately, it marks
65 * all available streams with the content_type proivided at the time of port
66 * authentication. This may prohibit the userspace to use type1 content on
67 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
68 * DP MST topology. Though it is not compulsory, security fw should change its
69 * policy to mark different content_types for different streams.
70 */
71static int
72intel_hdcp_required_content_stream(struct intel_atomic_state *state,
73				   struct intel_digital_port *dig_port)
74{
75	struct drm_connector_list_iter conn_iter;
76	struct intel_digital_port *conn_dig_port;
77	struct intel_connector *connector;
78	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
79	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
80	bool enforce_type0 = false;
81	int k;
82
83	if (dig_port->hdcp_auth_status)
84		return 0;
85
86	data->k = 0;
87
88	if (!dig_port->hdcp_mst_type1_capable)
89		enforce_type0 = true;
90
91	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
92	for_each_intel_connector_iter(connector, &conn_iter) {
93		if (connector->base.status == connector_status_disconnected)
94			continue;
95
96		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
97			continue;
98
99		conn_dig_port = intel_attached_dig_port(connector);
100		if (conn_dig_port != dig_port)
101			continue;
102
103		data->streams[data->k].stream_id =
104			intel_conn_to_vcpi(state, connector);
105		data->k++;
106
107		/* if there is only one active stream */
108		if (dig_port->dp.active_mst_links <= 1)
109			break;
110	}
111	drm_connector_list_iter_end(&conn_iter);
112
113	if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
114		return -EINVAL;
115
116	/*
117	 * Apply common protection level across all streams in DP MST Topology.
118	 * Use highest supported content type for all streams in DP MST Topology.
119	 */
120	for (k = 0; k < data->k; k++)
121		data->streams[k].stream_type =
122			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
123
124	return 0;
125}
126
127static int intel_hdcp_prepare_streams(struct intel_atomic_state *state,
128				      struct intel_connector *connector)
129{
130	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
131	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
132	struct intel_hdcp *hdcp = &connector->hdcp;
133
134	if (intel_encoder_is_mst(intel_attached_encoder(connector)))
135		return intel_hdcp_required_content_stream(state, dig_port);
136
137	data->k = 1;
138	data->streams[0].stream_id = 0;
139	data->streams[0].stream_type = hdcp->content_type;
140
141	return 0;
142}
143
144static
145bool intel_hdcp_is_ksv_valid(u8 *ksv)
146{
147	int i, ones = 0;
148	/* KSV has 20 1's and 20 0's */
149	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
150		ones += hweight8(ksv[i]);
151	if (ones != 20)
152		return false;
153
154	return true;
155}
156
157static
158int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
159			       const struct intel_hdcp_shim *shim, u8 *bksv)
160{
161	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
162	int ret, i, tries = 2;
163
164	/* HDCP spec states that we must retry the bksv if it is invalid */
165	for (i = 0; i < tries; i++) {
166		ret = shim->read_bksv(dig_port, bksv);
167		if (ret)
168			return ret;
169		if (intel_hdcp_is_ksv_valid(bksv))
170			break;
171	}
172	if (i == tries) {
173		drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
174		return -ENODEV;
175	}
176
177	return 0;
178}
179
180/* Is HDCP1.4 capable on Platform and Sink */
181bool intel_hdcp_get_capability(struct intel_connector *connector)
182{
183	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
184	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
185	bool capable = false;
186	u8 bksv[5];
187
188	if (!shim)
189		return capable;
190
191	if (shim->hdcp_get_capability) {
192		shim->hdcp_get_capability(dig_port, &capable);
193	} else {
194		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
195			capable = true;
196	}
197
198	return capable;
199}
200
201/*
202 * Check if the source has all the building blocks ready to make
203 * HDCP 2.2 work
204 */
205static bool intel_hdcp2_prerequisite(struct intel_connector *connector)
206{
207	struct drm_i915_private *i915 = to_i915(connector->base.dev);
208	struct intel_hdcp *hdcp = &connector->hdcp;
209
210	/* I915 support for HDCP2.2 */
211	if (!hdcp->hdcp2_supported)
212		return false;
213
214	/* If MTL+ make sure gsc is loaded and proxy is setup */
215	if (intel_hdcp_gsc_cs_required(i915)) {
216		if (!intel_hdcp_gsc_check_status(i915))
217			return false;
218	}
219
220	/* MEI/GSC interface is solid depending on which is used */
221	mutex_lock(&i915->display.hdcp.hdcp_mutex);
222	if (!i915->display.hdcp.comp_added ||  !i915->display.hdcp.arbiter) {
223		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
224		return false;
225	}
226	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
227
228	return true;
229}
230
231/* Is HDCP2.2 capable on Platform and Sink */
232bool intel_hdcp2_get_capability(struct intel_connector *connector)
233{
234	struct intel_hdcp *hdcp = &connector->hdcp;
235	bool capable = false;
236
237	if (!intel_hdcp2_prerequisite(connector))
238		return false;
239
240	/* Sink's capability for HDCP2.2 */
241	hdcp->shim->hdcp_2_2_get_capability(connector, &capable);
242
243	return capable;
244}
245
246void intel_hdcp_get_remote_capability(struct intel_connector *connector,
247				      bool *hdcp_capable,
248				      bool *hdcp2_capable)
249{
250	struct intel_hdcp *hdcp = &connector->hdcp;
251
252	if (!hdcp->shim->get_remote_hdcp_capability)
253		return;
254
255	hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable,
256					       hdcp2_capable);
257
258	if (!intel_hdcp2_prerequisite(connector))
259		*hdcp2_capable = false;
260}
261
262static bool intel_hdcp_in_use(struct drm_i915_private *i915,
263			      enum transcoder cpu_transcoder, enum port port)
264{
265	return intel_de_read(i915,
266			     HDCP_STATUS(i915, cpu_transcoder, port)) &
267		HDCP_STATUS_ENC;
268}
269
270static bool intel_hdcp2_in_use(struct drm_i915_private *i915,
271			       enum transcoder cpu_transcoder, enum port port)
272{
273	return intel_de_read(i915,
274			     HDCP2_STATUS(i915, cpu_transcoder, port)) &
275		LINK_ENCRYPTION_STATUS;
276}
277
278static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
279				    const struct intel_hdcp_shim *shim)
280{
281	int ret, read_ret;
282	bool ksv_ready;
283
284	/* Poll for ksv list ready (spec says max time allowed is 5s) */
285	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
286							 &ksv_ready),
287			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
288			 100 * 1000);
289	if (ret)
290		return ret;
291	if (read_ret)
292		return read_ret;
293	if (!ksv_ready)
294		return -ETIMEDOUT;
295
296	return 0;
297}
298
299static bool hdcp_key_loadable(struct drm_i915_private *i915)
300{
301	enum i915_power_well_id id;
302	intel_wakeref_t wakeref;
303	bool enabled = false;
304
305	/*
306	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
307	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
308	 */
309	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
310		id = HSW_DISP_PW_GLOBAL;
311	else
312		id = SKL_DISP_PW_1;
313
314	/* PG1 (power well #1) needs to be enabled */
315	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
316		enabled = intel_display_power_well_is_enabled(i915, id);
317
318	/*
319	 * Another req for hdcp key loadability is enabled state of pll for
320	 * cdclk. Without active crtc we wont land here. So we are assuming that
321	 * cdclk is already on.
322	 */
323
324	return enabled;
325}
326
327static void intel_hdcp_clear_keys(struct drm_i915_private *i915)
328{
329	intel_de_write(i915, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
330	intel_de_write(i915, HDCP_KEY_STATUS,
331		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
332}
333
334static int intel_hdcp_load_keys(struct drm_i915_private *i915)
335{
336	int ret;
337	u32 val;
338
339	val = intel_de_read(i915, HDCP_KEY_STATUS);
340	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
341		return 0;
342
343	/*
344	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
345	 * out of reset. So if Key is not already loaded, its an error state.
346	 */
347	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
348		if (!(intel_de_read(i915, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
349			return -ENXIO;
350
351	/*
352	 * Initiate loading the HDCP key from fuses.
353	 *
354	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
355	 * version 9 platforms (minus BXT) differ in the key load trigger
356	 * process from other platforms. These platforms use the GT Driver
357	 * Mailbox interface.
358	 */
359	if (DISPLAY_VER(i915) == 9 && !IS_BROXTON(i915)) {
360		ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
361		if (ret) {
362			drm_err(&i915->drm,
363				"Failed to initiate HDCP key load (%d)\n",
364				ret);
365			return ret;
366		}
367	} else {
368		intel_de_write(i915, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
369	}
370
371	/* Wait for the keys to load (500us) */
372	ret = __intel_wait_for_register(&i915->uncore, HDCP_KEY_STATUS,
373					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
374					10, 1, &val);
375	if (ret)
376		return ret;
377	else if (!(val & HDCP_KEY_LOAD_STATUS))
378		return -ENXIO;
379
380	/* Send Aksv over to PCH display for use in authentication */
381	intel_de_write(i915, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
382
383	return 0;
384}
385
386/* Returns updated SHA-1 index */
387static int intel_write_sha_text(struct drm_i915_private *i915, u32 sha_text)
388{
389	intel_de_write(i915, HDCP_SHA_TEXT, sha_text);
390	if (intel_de_wait_for_set(i915, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
391		drm_err(&i915->drm, "Timed out waiting for SHA1 ready\n");
392		return -ETIMEDOUT;
393	}
394	return 0;
395}
396
397static
398u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *i915,
399				enum transcoder cpu_transcoder, enum port port)
400{
401	if (DISPLAY_VER(i915) >= 12) {
402		switch (cpu_transcoder) {
403		case TRANSCODER_A:
404			return HDCP_TRANSA_REP_PRESENT |
405			       HDCP_TRANSA_SHA1_M0;
406		case TRANSCODER_B:
407			return HDCP_TRANSB_REP_PRESENT |
408			       HDCP_TRANSB_SHA1_M0;
409		case TRANSCODER_C:
410			return HDCP_TRANSC_REP_PRESENT |
411			       HDCP_TRANSC_SHA1_M0;
412		case TRANSCODER_D:
413			return HDCP_TRANSD_REP_PRESENT |
414			       HDCP_TRANSD_SHA1_M0;
415		default:
416			drm_err(&i915->drm, "Unknown transcoder %d\n",
417				cpu_transcoder);
418			return 0;
419		}
420	}
421
422	switch (port) {
423	case PORT_A:
424		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
425	case PORT_B:
426		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
427	case PORT_C:
428		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
429	case PORT_D:
430		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
431	case PORT_E:
432		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
433	default:
434		drm_err(&i915->drm, "Unknown port %d\n", port);
435		return 0;
436	}
437}
438
439static
440int intel_hdcp_validate_v_prime(struct intel_connector *connector,
441				const struct intel_hdcp_shim *shim,
442				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
443{
444	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
445	struct drm_i915_private *i915 = to_i915(connector->base.dev);
446	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
447	enum port port = dig_port->base.port;
448	u32 vprime, sha_text, sha_leftovers, rep_ctl;
449	int ret, i, j, sha_idx;
450
451	/* Process V' values from the receiver */
452	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
453		ret = shim->read_v_prime_part(dig_port, i, &vprime);
454		if (ret)
455			return ret;
456		intel_de_write(i915, HDCP_SHA_V_PRIME(i), vprime);
457	}
458
459	/*
460	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
461	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
462	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
463	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
464	 * index will keep track of our progress through the 64 bytes as well as
465	 * helping us work the 40-bit KSVs through our 32-bit register.
466	 *
467	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
468	 */
469	sha_idx = 0;
470	sha_text = 0;
471	sha_leftovers = 0;
472	rep_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port);
473	intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
474	for (i = 0; i < num_downstream; i++) {
475		unsigned int sha_empty;
476		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
477
478		/* Fill up the empty slots in sha_text and write it out */
479		sha_empty = sizeof(sha_text) - sha_leftovers;
480		for (j = 0; j < sha_empty; j++) {
481			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
482			sha_text |= ksv[j] << off;
483		}
484
485		ret = intel_write_sha_text(i915, sha_text);
486		if (ret < 0)
487			return ret;
488
489		/* Programming guide writes this every 64 bytes */
490		sha_idx += sizeof(sha_text);
491		if (!(sha_idx % 64))
492			intel_de_write(i915, HDCP_REP_CTL,
493				       rep_ctl | HDCP_SHA1_TEXT_32);
494
495		/* Store the leftover bytes from the ksv in sha_text */
496		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
497		sha_text = 0;
498		for (j = 0; j < sha_leftovers; j++)
499			sha_text |= ksv[sha_empty + j] <<
500					((sizeof(sha_text) - j - 1) * 8);
501
502		/*
503		 * If we still have room in sha_text for more data, continue.
504		 * Otherwise, write it out immediately.
505		 */
506		if (sizeof(sha_text) > sha_leftovers)
507			continue;
508
509		ret = intel_write_sha_text(i915, sha_text);
510		if (ret < 0)
511			return ret;
512		sha_leftovers = 0;
513		sha_text = 0;
514		sha_idx += sizeof(sha_text);
515	}
516
517	/*
518	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
519	 * bytes are leftover from the last ksv, we might be able to fit them
520	 * all in sha_text (first 2 cases), or we might need to split them up
521	 * into 2 writes (last 2 cases).
522	 */
523	if (sha_leftovers == 0) {
524		/* Write 16 bits of text, 16 bits of M0 */
525		intel_de_write(i915, HDCP_REP_CTL,
526			       rep_ctl | HDCP_SHA1_TEXT_16);
527		ret = intel_write_sha_text(i915,
528					   bstatus[0] << 8 | bstatus[1]);
529		if (ret < 0)
530			return ret;
531		sha_idx += sizeof(sha_text);
532
533		/* Write 32 bits of M0 */
534		intel_de_write(i915, HDCP_REP_CTL,
535			       rep_ctl | HDCP_SHA1_TEXT_0);
536		ret = intel_write_sha_text(i915, 0);
537		if (ret < 0)
538			return ret;
539		sha_idx += sizeof(sha_text);
540
541		/* Write 16 bits of M0 */
542		intel_de_write(i915, HDCP_REP_CTL,
543			       rep_ctl | HDCP_SHA1_TEXT_16);
544		ret = intel_write_sha_text(i915, 0);
545		if (ret < 0)
546			return ret;
547		sha_idx += sizeof(sha_text);
548
549	} else if (sha_leftovers == 1) {
550		/* Write 24 bits of text, 8 bits of M0 */
551		intel_de_write(i915, HDCP_REP_CTL,
552			       rep_ctl | HDCP_SHA1_TEXT_24);
553		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
554		/* Only 24-bits of data, must be in the LSB */
555		sha_text = (sha_text & 0xffffff00) >> 8;
556		ret = intel_write_sha_text(i915, sha_text);
557		if (ret < 0)
558			return ret;
559		sha_idx += sizeof(sha_text);
560
561		/* Write 32 bits of M0 */
562		intel_de_write(i915, HDCP_REP_CTL,
563			       rep_ctl | HDCP_SHA1_TEXT_0);
564		ret = intel_write_sha_text(i915, 0);
565		if (ret < 0)
566			return ret;
567		sha_idx += sizeof(sha_text);
568
569		/* Write 24 bits of M0 */
570		intel_de_write(i915, HDCP_REP_CTL,
571			       rep_ctl | HDCP_SHA1_TEXT_8);
572		ret = intel_write_sha_text(i915, 0);
573		if (ret < 0)
574			return ret;
575		sha_idx += sizeof(sha_text);
576
577	} else if (sha_leftovers == 2) {
578		/* Write 32 bits of text */
579		intel_de_write(i915, HDCP_REP_CTL,
580			       rep_ctl | HDCP_SHA1_TEXT_32);
581		sha_text |= bstatus[0] << 8 | bstatus[1];
582		ret = intel_write_sha_text(i915, sha_text);
583		if (ret < 0)
584			return ret;
585		sha_idx += sizeof(sha_text);
586
587		/* Write 64 bits of M0 */
588		intel_de_write(i915, HDCP_REP_CTL,
589			       rep_ctl | HDCP_SHA1_TEXT_0);
590		for (i = 0; i < 2; i++) {
591			ret = intel_write_sha_text(i915, 0);
592			if (ret < 0)
593				return ret;
594			sha_idx += sizeof(sha_text);
595		}
596
597		/*
598		 * Terminate the SHA-1 stream by hand. For the other leftover
599		 * cases this is appended by the hardware.
600		 */
601		intel_de_write(i915, HDCP_REP_CTL,
602			       rep_ctl | HDCP_SHA1_TEXT_32);
603		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
604		ret = intel_write_sha_text(i915, sha_text);
605		if (ret < 0)
606			return ret;
607		sha_idx += sizeof(sha_text);
608	} else if (sha_leftovers == 3) {
609		/* Write 32 bits of text (filled from LSB) */
610		intel_de_write(i915, HDCP_REP_CTL,
611			       rep_ctl | HDCP_SHA1_TEXT_32);
612		sha_text |= bstatus[0];
613		ret = intel_write_sha_text(i915, sha_text);
614		if (ret < 0)
615			return ret;
616		sha_idx += sizeof(sha_text);
617
618		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
619		intel_de_write(i915, HDCP_REP_CTL,
620			       rep_ctl | HDCP_SHA1_TEXT_8);
621		ret = intel_write_sha_text(i915, bstatus[1]);
622		if (ret < 0)
623			return ret;
624		sha_idx += sizeof(sha_text);
625
626		/* Write 32 bits of M0 */
627		intel_de_write(i915, HDCP_REP_CTL,
628			       rep_ctl | HDCP_SHA1_TEXT_0);
629		ret = intel_write_sha_text(i915, 0);
630		if (ret < 0)
631			return ret;
632		sha_idx += sizeof(sha_text);
633
634		/* Write 8 bits of M0 */
635		intel_de_write(i915, HDCP_REP_CTL,
636			       rep_ctl | HDCP_SHA1_TEXT_24);
637		ret = intel_write_sha_text(i915, 0);
638		if (ret < 0)
639			return ret;
640		sha_idx += sizeof(sha_text);
641	} else {
642		drm_dbg_kms(&i915->drm, "Invalid number of leftovers %d\n",
643			    sha_leftovers);
644		return -EINVAL;
645	}
646
647	intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
648	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
649	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
650		ret = intel_write_sha_text(i915, 0);
651		if (ret < 0)
652			return ret;
653		sha_idx += sizeof(sha_text);
654	}
655
656	/*
657	 * Last write gets the length of the concatenation in bits. That is:
658	 *  - 5 bytes per device
659	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
660	 */
661	sha_text = (num_downstream * 5 + 10) * 8;
662	ret = intel_write_sha_text(i915, sha_text);
663	if (ret < 0)
664		return ret;
665
666	/* Tell the HW we're done with the hash and wait for it to ACK */
667	intel_de_write(i915, HDCP_REP_CTL,
668		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
669	if (intel_de_wait_for_set(i915, HDCP_REP_CTL,
670				  HDCP_SHA1_COMPLETE, 1)) {
671		drm_err(&i915->drm, "Timed out waiting for SHA1 complete\n");
672		return -ETIMEDOUT;
673	}
674	if (!(intel_de_read(i915, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
675		drm_dbg_kms(&i915->drm, "SHA-1 mismatch, HDCP failed\n");
676		return -ENXIO;
677	}
678
679	return 0;
680}
681
682/* Implements Part 2 of the HDCP authorization procedure */
683static
684int intel_hdcp_auth_downstream(struct intel_connector *connector)
685{
686	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
687	struct drm_i915_private *i915 = to_i915(connector->base.dev);
688	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
689	u8 bstatus[2], num_downstream, *ksv_fifo;
690	int ret, i, tries = 3;
691
692	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
693	if (ret) {
694		drm_dbg_kms(&i915->drm,
695			    "KSV list failed to become ready (%d)\n", ret);
696		return ret;
697	}
698
699	ret = shim->read_bstatus(dig_port, bstatus);
700	if (ret)
701		return ret;
702
703	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
704	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
705		drm_dbg_kms(&i915->drm, "Max Topology Limit Exceeded\n");
706		return -EPERM;
707	}
708
709	/*
710	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
711	 * the HDCP encryption. That implies that repeater can't have its own
712	 * display. As there is no consumption of encrypted content in the
713	 * repeater with 0 downstream devices, we are failing the
714	 * authentication.
715	 */
716	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
717	if (num_downstream == 0) {
718		drm_dbg_kms(&i915->drm,
719			    "Repeater with zero downstream devices\n");
720		return -EINVAL;
721	}
722
723	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
724	if (!ksv_fifo) {
725		drm_dbg_kms(&i915->drm, "Out of mem: ksv_fifo\n");
726		return -ENOMEM;
727	}
728
729	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
730	if (ret)
731		goto err;
732
733	if (drm_hdcp_check_ksvs_revoked(&i915->drm, ksv_fifo,
734					num_downstream) > 0) {
735		drm_err(&i915->drm, "Revoked Ksv(s) in ksv_fifo\n");
736		ret = -EPERM;
737		goto err;
738	}
739
740	/*
741	 * When V prime mismatches, DP Spec mandates re-read of
742	 * V prime atleast twice.
743	 */
744	for (i = 0; i < tries; i++) {
745		ret = intel_hdcp_validate_v_prime(connector, shim,
746						  ksv_fifo, num_downstream,
747						  bstatus);
748		if (!ret)
749			break;
750	}
751
752	if (i == tries) {
753		drm_dbg_kms(&i915->drm,
754			    "V Prime validation failed.(%d)\n", ret);
755		goto err;
756	}
757
758	drm_dbg_kms(&i915->drm, "HDCP is enabled (%d downstream devices)\n",
759		    num_downstream);
760	ret = 0;
761err:
762	kfree(ksv_fifo);
763	return ret;
764}
765
766/* Implements Part 1 of the HDCP authorization procedure */
767static int intel_hdcp_auth(struct intel_connector *connector)
768{
769	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
770	struct drm_i915_private *i915 = to_i915(connector->base.dev);
771	struct intel_hdcp *hdcp = &connector->hdcp;
772	const struct intel_hdcp_shim *shim = hdcp->shim;
773	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
774	enum port port = dig_port->base.port;
775	unsigned long r0_prime_gen_start;
776	int ret, i, tries = 2;
777	union {
778		u32 reg[2];
779		u8 shim[DRM_HDCP_AN_LEN];
780	} an;
781	union {
782		u32 reg[2];
783		u8 shim[DRM_HDCP_KSV_LEN];
784	} bksv;
785	union {
786		u32 reg;
787		u8 shim[DRM_HDCP_RI_LEN];
788	} ri;
789	bool repeater_present, hdcp_capable;
790
791	/*
792	 * Detects whether the display is HDCP capable. Although we check for
793	 * valid Bksv below, the HDCP over DP spec requires that we check
794	 * whether the display supports HDCP before we write An. For HDMI
795	 * displays, this is not necessary.
796	 */
797	if (shim->hdcp_get_capability) {
798		ret = shim->hdcp_get_capability(dig_port, &hdcp_capable);
799		if (ret)
800			return ret;
801		if (!hdcp_capable) {
802			drm_dbg_kms(&i915->drm,
803				    "Panel is not HDCP capable\n");
804			return -EINVAL;
805		}
806	}
807
808	/* Initialize An with 2 random values and acquire it */
809	for (i = 0; i < 2; i++)
810		intel_de_write(i915,
811			       HDCP_ANINIT(i915, cpu_transcoder, port),
812			       get_random_u32());
813	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
814		       HDCP_CONF_CAPTURE_AN);
815
816	/* Wait for An to be acquired */
817	if (intel_de_wait_for_set(i915,
818				  HDCP_STATUS(i915, cpu_transcoder, port),
819				  HDCP_STATUS_AN_READY, 1)) {
820		drm_err(&i915->drm, "Timed out waiting for An\n");
821		return -ETIMEDOUT;
822	}
823
824	an.reg[0] = intel_de_read(i915,
825				  HDCP_ANLO(i915, cpu_transcoder, port));
826	an.reg[1] = intel_de_read(i915,
827				  HDCP_ANHI(i915, cpu_transcoder, port));
828	ret = shim->write_an_aksv(dig_port, an.shim);
829	if (ret)
830		return ret;
831
832	r0_prime_gen_start = jiffies;
833
834	memset(&bksv, 0, sizeof(bksv));
835
836	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
837	if (ret < 0)
838		return ret;
839
840	if (drm_hdcp_check_ksvs_revoked(&i915->drm, bksv.shim, 1) > 0) {
841		drm_err(&i915->drm, "BKSV is revoked\n");
842		return -EPERM;
843	}
844
845	intel_de_write(i915, HDCP_BKSVLO(i915, cpu_transcoder, port),
846		       bksv.reg[0]);
847	intel_de_write(i915, HDCP_BKSVHI(i915, cpu_transcoder, port),
848		       bksv.reg[1]);
849
850	ret = shim->repeater_present(dig_port, &repeater_present);
851	if (ret)
852		return ret;
853	if (repeater_present)
854		intel_de_write(i915, HDCP_REP_CTL,
855			       intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port));
856
857	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
858	if (ret)
859		return ret;
860
861	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
862		       HDCP_CONF_AUTH_AND_ENC);
863
864	/* Wait for R0 ready */
865	if (wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
866		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
867		drm_err(&i915->drm, "Timed out waiting for R0 ready\n");
868		return -ETIMEDOUT;
869	}
870
871	/*
872	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
873	 * some monitors can take longer than this. We'll set the timeout at
874	 * 300ms just to be sure.
875	 *
876	 * On DP, there's an R0_READY bit available but no such bit
877	 * exists on HDMI. Since the upper-bound is the same, we'll just do
878	 * the stupid thing instead of polling on one and not the other.
879	 */
880	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
881
882	tries = 3;
883
884	/*
885	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
886	 * of R0 mismatch.
887	 */
888	for (i = 0; i < tries; i++) {
889		ri.reg = 0;
890		ret = shim->read_ri_prime(dig_port, ri.shim);
891		if (ret)
892			return ret;
893		intel_de_write(i915,
894			       HDCP_RPRIME(i915, cpu_transcoder, port),
895			       ri.reg);
896
897		/* Wait for Ri prime match */
898		if (!wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
899			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
900			break;
901	}
902
903	if (i == tries) {
904		drm_dbg_kms(&i915->drm,
905			    "Timed out waiting for Ri prime match (%x)\n",
906			    intel_de_read(i915,
907					  HDCP_STATUS(i915, cpu_transcoder, port)));
908		return -ETIMEDOUT;
909	}
910
911	/* Wait for encryption confirmation */
912	if (intel_de_wait_for_set(i915,
913				  HDCP_STATUS(i915, cpu_transcoder, port),
914				  HDCP_STATUS_ENC,
915				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
916		drm_err(&i915->drm, "Timed out waiting for encryption\n");
917		return -ETIMEDOUT;
918	}
919
920	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
921	if (shim->stream_encryption) {
922		ret = shim->stream_encryption(connector, true);
923		if (ret) {
924			drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n",
925				connector->base.base.id, connector->base.name);
926			return ret;
927		}
928		drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
929			    transcoder_name(hdcp->stream_transcoder));
930	}
931
932	if (repeater_present)
933		return intel_hdcp_auth_downstream(connector);
934
935	drm_dbg_kms(&i915->drm, "HDCP is enabled (no repeater present)\n");
936	return 0;
937}
938
939static int _intel_hdcp_disable(struct intel_connector *connector)
940{
941	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
942	struct drm_i915_private *i915 = to_i915(connector->base.dev);
943	struct intel_hdcp *hdcp = &connector->hdcp;
944	enum port port = dig_port->base.port;
945	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
946	u32 repeater_ctl;
947	int ret;
948
949	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n",
950		    connector->base.base.id, connector->base.name);
951
952	if (hdcp->shim->stream_encryption) {
953		ret = hdcp->shim->stream_encryption(connector, false);
954		if (ret) {
955			drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n",
956				connector->base.base.id, connector->base.name);
957			return ret;
958		}
959		drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
960			    transcoder_name(hdcp->stream_transcoder));
961		/*
962		 * If there are other connectors on this port using HDCP,
963		 * don't disable it until it disabled HDCP encryption for
964		 * all connectors in MST topology.
965		 */
966		if (dig_port->num_hdcp_streams > 0)
967			return 0;
968	}
969
970	hdcp->hdcp_encrypted = false;
971	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 0);
972	if (intel_de_wait_for_clear(i915,
973				    HDCP_STATUS(i915, cpu_transcoder, port),
974				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
975		drm_err(&i915->drm,
976			"Failed to disable HDCP, timeout clearing status\n");
977		return -ETIMEDOUT;
978	}
979
980	repeater_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder,
981						   port);
982	intel_de_rmw(i915, HDCP_REP_CTL, repeater_ctl, 0);
983
984	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
985	if (ret) {
986		drm_err(&i915->drm, "Failed to disable HDCP signalling\n");
987		return ret;
988	}
989
990	drm_dbg_kms(&i915->drm, "HDCP is disabled\n");
991	return 0;
992}
993
994static int intel_hdcp1_enable(struct intel_connector *connector)
995{
996	struct drm_i915_private *i915 = to_i915(connector->base.dev);
997	struct intel_hdcp *hdcp = &connector->hdcp;
998	int i, ret, tries = 3;
999
1000	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n",
1001		    connector->base.base.id, connector->base.name);
1002
1003	if (!hdcp_key_loadable(i915)) {
1004		drm_err(&i915->drm, "HDCP key Load is not possible\n");
1005		return -ENXIO;
1006	}
1007
1008	for (i = 0; i < KEY_LOAD_TRIES; i++) {
1009		ret = intel_hdcp_load_keys(i915);
1010		if (!ret)
1011			break;
1012		intel_hdcp_clear_keys(i915);
1013	}
1014	if (ret) {
1015		drm_err(&i915->drm, "Could not load HDCP keys, (%d)\n",
1016			ret);
1017		return ret;
1018	}
1019
1020	/* Incase of authentication failures, HDCP spec expects reauth. */
1021	for (i = 0; i < tries; i++) {
1022		ret = intel_hdcp_auth(connector);
1023		if (!ret) {
1024			hdcp->hdcp_encrypted = true;
1025			return 0;
1026		}
1027
1028		drm_dbg_kms(&i915->drm, "HDCP Auth failure (%d)\n", ret);
1029
1030		/* Ensuring HDCP encryption and signalling are stopped. */
1031		_intel_hdcp_disable(connector);
1032	}
1033
1034	drm_dbg_kms(&i915->drm,
1035		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1036	return ret;
1037}
1038
1039static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1040{
1041	return container_of(hdcp, struct intel_connector, hdcp);
1042}
1043
1044static void intel_hdcp_update_value(struct intel_connector *connector,
1045				    u64 value, bool update_property)
1046{
1047	struct drm_device *dev = connector->base.dev;
1048	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1049	struct intel_hdcp *hdcp = &connector->hdcp;
1050	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1051
1052	drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
1053
1054	if (hdcp->value == value)
1055		return;
1056
1057	drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
1058
1059	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1060		if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1061			dig_port->num_hdcp_streams--;
1062	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1063		dig_port->num_hdcp_streams++;
1064	}
1065
1066	hdcp->value = value;
1067	if (update_property) {
1068		drm_connector_get(&connector->base);
1069		queue_work(i915->unordered_wq, &hdcp->prop_work);
1070	}
1071}
1072
1073/* Implements Part 3 of the HDCP authorization procedure */
1074static int intel_hdcp_check_link(struct intel_connector *connector)
1075{
1076	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1077	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1078	struct intel_hdcp *hdcp = &connector->hdcp;
1079	enum port port = dig_port->base.port;
1080	enum transcoder cpu_transcoder;
1081	int ret = 0;
1082
1083	mutex_lock(&hdcp->mutex);
1084	mutex_lock(&dig_port->hdcp_mutex);
1085
1086	cpu_transcoder = hdcp->cpu_transcoder;
1087
1088	/* Check_link valid only when HDCP1.4 is enabled */
1089	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1090	    !hdcp->hdcp_encrypted) {
1091		ret = -EINVAL;
1092		goto out;
1093	}
1094
1095	if (drm_WARN_ON(&i915->drm,
1096			!intel_hdcp_in_use(i915, cpu_transcoder, port))) {
1097		drm_err(&i915->drm,
1098			"[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n",
1099			connector->base.base.id, connector->base.name,
1100			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)));
1101		ret = -ENXIO;
1102		intel_hdcp_update_value(connector,
1103					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1104					true);
1105		goto out;
1106	}
1107
1108	if (hdcp->shim->check_link(dig_port, connector)) {
1109		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1110			intel_hdcp_update_value(connector,
1111				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1112		}
1113		goto out;
1114	}
1115
1116	drm_dbg_kms(&i915->drm,
1117		    "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n",
1118		    connector->base.base.id, connector->base.name);
1119
1120	ret = _intel_hdcp_disable(connector);
1121	if (ret) {
1122		drm_err(&i915->drm, "Failed to disable hdcp (%d)\n", ret);
1123		intel_hdcp_update_value(connector,
1124					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1125					true);
1126		goto out;
1127	}
1128
1129	intel_hdcp_update_value(connector,
1130				DRM_MODE_CONTENT_PROTECTION_DESIRED,
1131				true);
1132out:
1133	mutex_unlock(&dig_port->hdcp_mutex);
1134	mutex_unlock(&hdcp->mutex);
1135	return ret;
1136}
1137
1138static void intel_hdcp_prop_work(struct work_struct *work)
1139{
1140	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1141					       prop_work);
1142	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1143	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1144
1145	drm_modeset_lock(&i915->drm.mode_config.connection_mutex, NULL);
1146	mutex_lock(&hdcp->mutex);
1147
1148	/*
1149	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1150	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1151	 * we're running just after hdcp has been disabled, so just exit
1152	 */
1153	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1154		drm_hdcp_update_content_protection(&connector->base,
1155						   hdcp->value);
1156
1157	mutex_unlock(&hdcp->mutex);
1158	drm_modeset_unlock(&i915->drm.mode_config.connection_mutex);
1159
1160	drm_connector_put(&connector->base);
1161}
1162
1163bool is_hdcp_supported(struct drm_i915_private *i915, enum port port)
1164{
1165	return DISPLAY_RUNTIME_INFO(i915)->has_hdcp &&
1166		(DISPLAY_VER(i915) >= 12 || port < PORT_E);
1167}
1168
1169static int
1170hdcp2_prepare_ake_init(struct intel_connector *connector,
1171		       struct hdcp2_ake_init *ake_data)
1172{
1173	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1174	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1175	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1176	struct i915_hdcp_arbiter *arbiter;
1177	int ret;
1178
1179	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1180	arbiter = i915->display.hdcp.arbiter;
1181
1182	if (!arbiter || !arbiter->ops) {
1183		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1184		return -EINVAL;
1185	}
1186
1187	ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1188	if (ret)
1189		drm_dbg_kms(&i915->drm, "Prepare_ake_init failed. %d\n",
1190			    ret);
1191	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1192
1193	return ret;
1194}
1195
1196static int
1197hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1198				struct hdcp2_ake_send_cert *rx_cert,
1199				bool *paired,
1200				struct hdcp2_ake_no_stored_km *ek_pub_km,
1201				size_t *msg_sz)
1202{
1203	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1204	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1205	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1206	struct i915_hdcp_arbiter *arbiter;
1207	int ret;
1208
1209	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1210	arbiter = i915->display.hdcp.arbiter;
1211
1212	if (!arbiter || !arbiter->ops) {
1213		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1214		return -EINVAL;
1215	}
1216
1217	ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1218							 rx_cert, paired,
1219							 ek_pub_km, msg_sz);
1220	if (ret < 0)
1221		drm_dbg_kms(&i915->drm, "Verify rx_cert failed. %d\n",
1222			    ret);
1223	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1224
1225	return ret;
1226}
1227
1228static int hdcp2_verify_hprime(struct intel_connector *connector,
1229			       struct hdcp2_ake_send_hprime *rx_hprime)
1230{
1231	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1232	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1233	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1234	struct i915_hdcp_arbiter *arbiter;
1235	int ret;
1236
1237	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1238	arbiter = i915->display.hdcp.arbiter;
1239
1240	if (!arbiter || !arbiter->ops) {
1241		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1242		return -EINVAL;
1243	}
1244
1245	ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1246	if (ret < 0)
1247		drm_dbg_kms(&i915->drm, "Verify hprime failed. %d\n", ret);
1248	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1249
1250	return ret;
1251}
1252
1253static int
1254hdcp2_store_pairing_info(struct intel_connector *connector,
1255			 struct hdcp2_ake_send_pairing_info *pairing_info)
1256{
1257	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1258	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1259	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1260	struct i915_hdcp_arbiter *arbiter;
1261	int ret;
1262
1263	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1264	arbiter = i915->display.hdcp.arbiter;
1265
1266	if (!arbiter || !arbiter->ops) {
1267		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1268		return -EINVAL;
1269	}
1270
1271	ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1272	if (ret < 0)
1273		drm_dbg_kms(&i915->drm, "Store pairing info failed. %d\n",
1274			    ret);
1275	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1276
1277	return ret;
1278}
1279
1280static int
1281hdcp2_prepare_lc_init(struct intel_connector *connector,
1282		      struct hdcp2_lc_init *lc_init)
1283{
1284	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1285	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1286	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1287	struct i915_hdcp_arbiter *arbiter;
1288	int ret;
1289
1290	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1291	arbiter = i915->display.hdcp.arbiter;
1292
1293	if (!arbiter || !arbiter->ops) {
1294		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1295		return -EINVAL;
1296	}
1297
1298	ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1299	if (ret < 0)
1300		drm_dbg_kms(&i915->drm, "Prepare lc_init failed. %d\n",
1301			    ret);
1302	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1303
1304	return ret;
1305}
1306
1307static int
1308hdcp2_verify_lprime(struct intel_connector *connector,
1309		    struct hdcp2_lc_send_lprime *rx_lprime)
1310{
1311	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1312	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1313	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1314	struct i915_hdcp_arbiter *arbiter;
1315	int ret;
1316
1317	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1318	arbiter = i915->display.hdcp.arbiter;
1319
1320	if (!arbiter || !arbiter->ops) {
1321		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1322		return -EINVAL;
1323	}
1324
1325	ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1326	if (ret < 0)
1327		drm_dbg_kms(&i915->drm, "Verify L_Prime failed. %d\n",
1328			    ret);
1329	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1330
1331	return ret;
1332}
1333
1334static int hdcp2_prepare_skey(struct intel_connector *connector,
1335			      struct hdcp2_ske_send_eks *ske_data)
1336{
1337	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1338	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1339	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1340	struct i915_hdcp_arbiter *arbiter;
1341	int ret;
1342
1343	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1344	arbiter = i915->display.hdcp.arbiter;
1345
1346	if (!arbiter || !arbiter->ops) {
1347		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1348		return -EINVAL;
1349	}
1350
1351	ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1352	if (ret < 0)
1353		drm_dbg_kms(&i915->drm, "Get session key failed. %d\n",
1354			    ret);
1355	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1356
1357	return ret;
1358}
1359
1360static int
1361hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1362				      struct hdcp2_rep_send_receiverid_list
1363								*rep_topology,
1364				      struct hdcp2_rep_send_ack *rep_send_ack)
1365{
1366	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1367	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1368	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1369	struct i915_hdcp_arbiter *arbiter;
1370	int ret;
1371
1372	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1373	arbiter = i915->display.hdcp.arbiter;
1374
1375	if (!arbiter || !arbiter->ops) {
1376		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1377		return -EINVAL;
1378	}
1379
1380	ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1381							    data,
1382							    rep_topology,
1383							    rep_send_ack);
1384	if (ret < 0)
1385		drm_dbg_kms(&i915->drm,
1386			    "Verify rep topology failed. %d\n", ret);
1387	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1388
1389	return ret;
1390}
1391
1392static int
1393hdcp2_verify_mprime(struct intel_connector *connector,
1394		    struct hdcp2_rep_stream_ready *stream_ready)
1395{
1396	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1397	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1398	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1399	struct i915_hdcp_arbiter *arbiter;
1400	int ret;
1401
1402	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1403	arbiter = i915->display.hdcp.arbiter;
1404
1405	if (!arbiter || !arbiter->ops) {
1406		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1407		return -EINVAL;
1408	}
1409
1410	ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1411	if (ret < 0)
1412		drm_dbg_kms(&i915->drm, "Verify mprime failed. %d\n", ret);
1413	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1414
1415	return ret;
1416}
1417
1418static int hdcp2_authenticate_port(struct intel_connector *connector)
1419{
1420	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1421	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1422	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1423	struct i915_hdcp_arbiter *arbiter;
1424	int ret;
1425
1426	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1427	arbiter = i915->display.hdcp.arbiter;
1428
1429	if (!arbiter || !arbiter->ops) {
1430		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1431		return -EINVAL;
1432	}
1433
1434	ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1435	if (ret < 0)
1436		drm_dbg_kms(&i915->drm, "Enable hdcp auth failed. %d\n",
1437			    ret);
1438	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1439
1440	return ret;
1441}
1442
1443static int hdcp2_close_session(struct intel_connector *connector)
1444{
1445	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1446	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1447	struct i915_hdcp_arbiter *arbiter;
1448	int ret;
1449
1450	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1451	arbiter = i915->display.hdcp.arbiter;
1452
1453	if (!arbiter || !arbiter->ops) {
1454		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1455		return -EINVAL;
1456	}
1457
1458	ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1459					     &dig_port->hdcp_port_data);
1460	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1461
1462	return ret;
1463}
1464
1465static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1466{
1467	return hdcp2_close_session(connector);
1468}
1469
1470/* Authentication flow starts from here */
1471static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1472{
1473	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1474	struct intel_hdcp *hdcp = &connector->hdcp;
1475	union {
1476		struct hdcp2_ake_init ake_init;
1477		struct hdcp2_ake_send_cert send_cert;
1478		struct hdcp2_ake_no_stored_km no_stored_km;
1479		struct hdcp2_ake_send_hprime send_hprime;
1480		struct hdcp2_ake_send_pairing_info pairing_info;
1481	} msgs;
1482	const struct intel_hdcp_shim *shim = hdcp->shim;
1483	size_t size;
1484	int ret;
1485
1486	/* Init for seq_num */
1487	hdcp->seq_num_v = 0;
1488	hdcp->seq_num_m = 0;
1489
1490	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1491	if (ret < 0)
1492		return ret;
1493
1494	ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1495				  sizeof(msgs.ake_init));
1496	if (ret < 0)
1497		return ret;
1498
1499	ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1500				 &msgs.send_cert, sizeof(msgs.send_cert));
1501	if (ret < 0)
1502		return ret;
1503
1504	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1505		drm_dbg_kms(&i915->drm, "cert.rx_caps dont claim HDCP2.2\n");
1506		return -EINVAL;
1507	}
1508
1509	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1510
1511	if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1512					msgs.send_cert.cert_rx.receiver_id,
1513					1) > 0) {
1514		drm_err(&i915->drm, "Receiver ID is revoked\n");
1515		return -EPERM;
1516	}
1517
1518	/*
1519	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1520	 * stored also.
1521	 */
1522	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1523					      &hdcp->is_paired,
1524					      &msgs.no_stored_km, &size);
1525	if (ret < 0)
1526		return ret;
1527
1528	ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1529	if (ret < 0)
1530		return ret;
1531
1532	ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1533				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1534	if (ret < 0)
1535		return ret;
1536
1537	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1538	if (ret < 0)
1539		return ret;
1540
1541	if (!hdcp->is_paired) {
1542		/* Pairing is required */
1543		ret = shim->read_2_2_msg(connector,
1544					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1545					 &msgs.pairing_info,
1546					 sizeof(msgs.pairing_info));
1547		if (ret < 0)
1548			return ret;
1549
1550		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1551		if (ret < 0)
1552			return ret;
1553		hdcp->is_paired = true;
1554	}
1555
1556	return 0;
1557}
1558
1559static int hdcp2_locality_check(struct intel_connector *connector)
1560{
1561	struct intel_hdcp *hdcp = &connector->hdcp;
1562	union {
1563		struct hdcp2_lc_init lc_init;
1564		struct hdcp2_lc_send_lprime send_lprime;
1565	} msgs;
1566	const struct intel_hdcp_shim *shim = hdcp->shim;
1567	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1568
1569	for (i = 0; i < tries; i++) {
1570		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1571		if (ret < 0)
1572			continue;
1573
1574		ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1575				      sizeof(msgs.lc_init));
1576		if (ret < 0)
1577			continue;
1578
1579		ret = shim->read_2_2_msg(connector,
1580					 HDCP_2_2_LC_SEND_LPRIME,
1581					 &msgs.send_lprime,
1582					 sizeof(msgs.send_lprime));
1583		if (ret < 0)
1584			continue;
1585
1586		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1587		if (!ret)
1588			break;
1589	}
1590
1591	return ret;
1592}
1593
1594static int hdcp2_session_key_exchange(struct intel_connector *connector)
1595{
1596	struct intel_hdcp *hdcp = &connector->hdcp;
1597	struct hdcp2_ske_send_eks send_eks;
1598	int ret;
1599
1600	ret = hdcp2_prepare_skey(connector, &send_eks);
1601	if (ret < 0)
1602		return ret;
1603
1604	ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1605					sizeof(send_eks));
1606	if (ret < 0)
1607		return ret;
1608
1609	return 0;
1610}
1611
1612static
1613int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1614{
1615	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1616	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1617	struct intel_hdcp *hdcp = &connector->hdcp;
1618	union {
1619		struct hdcp2_rep_stream_manage stream_manage;
1620		struct hdcp2_rep_stream_ready stream_ready;
1621	} msgs;
1622	const struct intel_hdcp_shim *shim = hdcp->shim;
1623	int ret, streams_size_delta, i;
1624
1625	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1626		return -ERANGE;
1627
1628	/* Prepare RepeaterAuth_Stream_Manage msg */
1629	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1630	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1631
1632	msgs.stream_manage.k = cpu_to_be16(data->k);
1633
1634	for (i = 0; i < data->k; i++) {
1635		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1636		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1637	}
1638
1639	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1640				sizeof(struct hdcp2_streamid_type);
1641	/* Send it to Repeater */
1642	ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1643				  sizeof(msgs.stream_manage) - streams_size_delta);
1644	if (ret < 0)
1645		goto out;
1646
1647	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1648				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1649	if (ret < 0)
1650		goto out;
1651
1652	data->seq_num_m = hdcp->seq_num_m;
1653
1654	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1655
1656out:
1657	hdcp->seq_num_m++;
1658
1659	return ret;
1660}
1661
1662static
1663int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1664{
1665	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1666	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1667	struct intel_hdcp *hdcp = &connector->hdcp;
1668	union {
1669		struct hdcp2_rep_send_receiverid_list recvid_list;
1670		struct hdcp2_rep_send_ack rep_ack;
1671	} msgs;
1672	const struct intel_hdcp_shim *shim = hdcp->shim;
1673	u32 seq_num_v, device_cnt;
1674	u8 *rx_info;
1675	int ret;
1676
1677	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1678				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1679	if (ret < 0)
1680		return ret;
1681
1682	rx_info = msgs.recvid_list.rx_info;
1683
1684	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1685	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1686		drm_dbg_kms(&i915->drm, "Topology Max Size Exceeded\n");
1687		return -EINVAL;
1688	}
1689
1690	/*
1691	 * MST topology is not Type 1 capable if it contains a downstream
1692	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1693	 */
1694	dig_port->hdcp_mst_type1_capable =
1695		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1696		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1697
1698	if (!dig_port->hdcp_mst_type1_capable && hdcp->content_type) {
1699		drm_dbg_kms(&i915->drm,
1700			    "HDCP1.x or 2.0 Legacy Device Downstream\n");
1701		return -EINVAL;
1702	}
1703
1704	/* Converting and Storing the seq_num_v to local variable as DWORD */
1705	seq_num_v =
1706		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1707
1708	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1709		drm_dbg_kms(&i915->drm,
1710			    "Non zero Seq_num_v at first RecvId_List msg\n");
1711		return -EINVAL;
1712	}
1713
1714	if (seq_num_v < hdcp->seq_num_v) {
1715		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1716		drm_dbg_kms(&i915->drm, "Seq_num_v roll over.\n");
1717		return -EINVAL;
1718	}
1719
1720	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1721		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1722	if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1723					msgs.recvid_list.receiver_ids,
1724					device_cnt) > 0) {
1725		drm_err(&i915->drm, "Revoked receiver ID(s) is in list\n");
1726		return -EPERM;
1727	}
1728
1729	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1730						    &msgs.recvid_list,
1731						    &msgs.rep_ack);
1732	if (ret < 0)
1733		return ret;
1734
1735	hdcp->seq_num_v = seq_num_v;
1736	ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1737				  sizeof(msgs.rep_ack));
1738	if (ret < 0)
1739		return ret;
1740
1741	return 0;
1742}
1743
1744static int hdcp2_authenticate_sink(struct intel_connector *connector)
1745{
1746	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1747	struct intel_hdcp *hdcp = &connector->hdcp;
1748	const struct intel_hdcp_shim *shim = hdcp->shim;
1749	int ret;
1750
1751	ret = hdcp2_authentication_key_exchange(connector);
1752	if (ret < 0) {
1753		drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1754		return ret;
1755	}
1756
1757	ret = hdcp2_locality_check(connector);
1758	if (ret < 0) {
1759		drm_dbg_kms(&i915->drm,
1760			    "Locality Check failed. Err : %d\n", ret);
1761		return ret;
1762	}
1763
1764	ret = hdcp2_session_key_exchange(connector);
1765	if (ret < 0) {
1766		drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1767		return ret;
1768	}
1769
1770	if (shim->config_stream_type) {
1771		ret = shim->config_stream_type(connector,
1772					       hdcp->is_repeater,
1773					       hdcp->content_type);
1774		if (ret < 0)
1775			return ret;
1776	}
1777
1778	if (hdcp->is_repeater) {
1779		ret = hdcp2_authenticate_repeater_topology(connector);
1780		if (ret < 0) {
1781			drm_dbg_kms(&i915->drm,
1782				    "Repeater Auth Failed. Err: %d\n", ret);
1783			return ret;
1784		}
1785	}
1786
1787	return ret;
1788}
1789
1790static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1791{
1792	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1793	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1794	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1795	struct intel_hdcp *hdcp = &connector->hdcp;
1796	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1797	enum port port = dig_port->base.port;
1798	int ret = 0;
1799
1800	if (!(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1801			    LINK_ENCRYPTION_STATUS)) {
1802		drm_err(&i915->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n",
1803			connector->base.base.id, connector->base.name);
1804		ret = -EPERM;
1805		goto link_recover;
1806	}
1807
1808	if (hdcp->shim->stream_2_2_encryption) {
1809		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1810		if (ret) {
1811			drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n",
1812				connector->base.base.id, connector->base.name);
1813			return ret;
1814		}
1815		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1816			    transcoder_name(hdcp->stream_transcoder));
1817	}
1818
1819	return 0;
1820
1821link_recover:
1822	if (hdcp2_deauthenticate_port(connector) < 0)
1823		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1824
1825	dig_port->hdcp_auth_status = false;
1826	data->k = 0;
1827
1828	return ret;
1829}
1830
1831static int hdcp2_enable_encryption(struct intel_connector *connector)
1832{
1833	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1834	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1835	struct intel_hdcp *hdcp = &connector->hdcp;
1836	enum port port = dig_port->base.port;
1837	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1838	int ret;
1839
1840	drm_WARN_ON(&i915->drm,
1841		    intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1842		    LINK_ENCRYPTION_STATUS);
1843	if (hdcp->shim->toggle_signalling) {
1844		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1845						    true);
1846		if (ret) {
1847			drm_err(&i915->drm,
1848				"Failed to enable HDCP signalling. %d\n",
1849				ret);
1850			return ret;
1851		}
1852	}
1853
1854	if (intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1855	    LINK_AUTH_STATUS)
1856		/* Link is Authenticated. Now set for Encryption */
1857		intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1858			     0, CTL_LINK_ENCRYPTION_REQ);
1859
1860	ret = intel_de_wait_for_set(i915,
1861				    HDCP2_STATUS(i915, cpu_transcoder,
1862						 port),
1863				    LINK_ENCRYPTION_STATUS,
1864				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1865	dig_port->hdcp_auth_status = true;
1866
1867	return ret;
1868}
1869
1870static int hdcp2_disable_encryption(struct intel_connector *connector)
1871{
1872	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1873	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1874	struct intel_hdcp *hdcp = &connector->hdcp;
1875	enum port port = dig_port->base.port;
1876	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1877	int ret;
1878
1879	drm_WARN_ON(&i915->drm, !(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1880				      LINK_ENCRYPTION_STATUS));
1881
1882	intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1883		     CTL_LINK_ENCRYPTION_REQ, 0);
1884
1885	ret = intel_de_wait_for_clear(i915,
1886				      HDCP2_STATUS(i915, cpu_transcoder,
1887						   port),
1888				      LINK_ENCRYPTION_STATUS,
1889				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1890	if (ret == -ETIMEDOUT)
1891		drm_dbg_kms(&i915->drm, "Disable Encryption Timedout");
1892
1893	if (hdcp->shim->toggle_signalling) {
1894		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1895						    false);
1896		if (ret) {
1897			drm_err(&i915->drm,
1898				"Failed to disable HDCP signalling. %d\n",
1899				ret);
1900			return ret;
1901		}
1902	}
1903
1904	return ret;
1905}
1906
1907static int
1908hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1909{
1910	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1911	int i, tries = 3, ret;
1912
1913	if (!connector->hdcp.is_repeater)
1914		return 0;
1915
1916	for (i = 0; i < tries; i++) {
1917		ret = _hdcp2_propagate_stream_management_info(connector);
1918		if (!ret)
1919			break;
1920
1921		/* Lets restart the auth incase of seq_num_m roll over */
1922		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1923			drm_dbg_kms(&i915->drm,
1924				    "seq_num_m roll over.(%d)\n", ret);
1925			break;
1926		}
1927
1928		drm_dbg_kms(&i915->drm,
1929			    "HDCP2 stream management %d of %d Failed.(%d)\n",
1930			    i + 1, tries, ret);
1931	}
1932
1933	return ret;
1934}
1935
1936static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state,
1937					  struct intel_connector *connector)
1938{
1939	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1940	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1941	int ret = 0, i, tries = 3;
1942
1943	for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1944		ret = hdcp2_authenticate_sink(connector);
1945		if (!ret) {
1946			ret = intel_hdcp_prepare_streams(state, connector);
1947			if (ret) {
1948				drm_dbg_kms(&i915->drm,
1949					    "Prepare stream failed.(%d)\n",
1950					    ret);
1951				break;
1952			}
1953
1954			ret = hdcp2_propagate_stream_management_info(connector);
1955			if (ret) {
1956				drm_dbg_kms(&i915->drm,
1957					    "Stream management failed.(%d)\n",
1958					    ret);
1959				break;
1960			}
1961
1962			ret = hdcp2_authenticate_port(connector);
1963			if (!ret)
1964				break;
1965			drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1966				    ret);
1967		}
1968
1969		/* Clearing the mei hdcp session */
1970		drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1971			    i + 1, tries, ret);
1972		if (hdcp2_deauthenticate_port(connector) < 0)
1973			drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1974	}
1975
1976	if (!ret && !dig_port->hdcp_auth_status) {
1977		/*
1978		 * Ensuring the required 200mSec min time interval between
1979		 * Session Key Exchange and encryption.
1980		 */
1981		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1982		ret = hdcp2_enable_encryption(connector);
1983		if (ret < 0) {
1984			drm_dbg_kms(&i915->drm,
1985				    "Encryption Enable Failed.(%d)\n", ret);
1986			if (hdcp2_deauthenticate_port(connector) < 0)
1987				drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1988		}
1989	}
1990
1991	if (!ret)
1992		ret = hdcp2_enable_stream_encryption(connector);
1993
1994	return ret;
1995}
1996
1997static int _intel_hdcp2_enable(struct intel_atomic_state *state,
1998			       struct intel_connector *connector)
1999{
2000	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2001	struct intel_hdcp *hdcp = &connector->hdcp;
2002	int ret;
2003
2004	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n",
2005		    connector->base.base.id, connector->base.name,
2006		    hdcp->content_type);
2007
2008	ret = hdcp2_authenticate_and_encrypt(state, connector);
2009	if (ret) {
2010		drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
2011			    hdcp->content_type, ret);
2012		return ret;
2013	}
2014
2015	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n",
2016		    connector->base.base.id, connector->base.name,
2017		    hdcp->content_type);
2018
2019	hdcp->hdcp2_encrypted = true;
2020	return 0;
2021}
2022
2023static int
2024_intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
2025{
2026	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2027	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2028	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2029	struct intel_hdcp *hdcp = &connector->hdcp;
2030	int ret;
2031
2032	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n",
2033		    connector->base.base.id, connector->base.name);
2034
2035	if (hdcp->shim->stream_2_2_encryption) {
2036		ret = hdcp->shim->stream_2_2_encryption(connector, false);
2037		if (ret) {
2038			drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n",
2039				connector->base.base.id, connector->base.name);
2040			return ret;
2041		}
2042		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2043			    transcoder_name(hdcp->stream_transcoder));
2044
2045		if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
2046			return 0;
2047	}
2048
2049	ret = hdcp2_disable_encryption(connector);
2050
2051	if (hdcp2_deauthenticate_port(connector) < 0)
2052		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
2053
2054	connector->hdcp.hdcp2_encrypted = false;
2055	dig_port->hdcp_auth_status = false;
2056	data->k = 0;
2057
2058	return ret;
2059}
2060
2061/* Implements the Link Integrity Check for HDCP2.2 */
2062static int intel_hdcp2_check_link(struct intel_connector *connector)
2063{
2064	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2065	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2066	struct intel_hdcp *hdcp = &connector->hdcp;
2067	enum port port = dig_port->base.port;
2068	enum transcoder cpu_transcoder;
2069	int ret = 0;
2070
2071	mutex_lock(&hdcp->mutex);
2072	mutex_lock(&dig_port->hdcp_mutex);
2073	cpu_transcoder = hdcp->cpu_transcoder;
2074
2075	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2076	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2077	    !hdcp->hdcp2_encrypted) {
2078		ret = -EINVAL;
2079		goto out;
2080	}
2081
2082	if (drm_WARN_ON(&i915->drm,
2083			!intel_hdcp2_in_use(i915, cpu_transcoder, port))) {
2084		drm_err(&i915->drm,
2085			"HDCP2.2 link stopped the encryption, %x\n",
2086			intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)));
2087		ret = -ENXIO;
2088		_intel_hdcp2_disable(connector, true);
2089		intel_hdcp_update_value(connector,
2090					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2091					true);
2092		goto out;
2093	}
2094
2095	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2096	if (ret == HDCP_LINK_PROTECTED) {
2097		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2098			intel_hdcp_update_value(connector,
2099					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2100					true);
2101		}
2102		goto out;
2103	}
2104
2105	if (ret == HDCP_TOPOLOGY_CHANGE) {
2106		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2107			goto out;
2108
2109		drm_dbg_kms(&i915->drm,
2110			    "HDCP2.2 Downstream topology change\n");
2111	} else {
2112		drm_dbg_kms(&i915->drm,
2113			    "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n",
2114			    connector->base.base.id, connector->base.name);
2115	}
2116
2117	ret = _intel_hdcp2_disable(connector, true);
2118	if (ret) {
2119		drm_err(&i915->drm,
2120			"[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n",
2121			connector->base.base.id, connector->base.name, ret);
2122		intel_hdcp_update_value(connector,
2123				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2124		goto out;
2125	}
2126
2127	intel_hdcp_update_value(connector,
2128				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2129out:
2130	mutex_unlock(&dig_port->hdcp_mutex);
2131	mutex_unlock(&hdcp->mutex);
2132	return ret;
2133}
2134
2135static void intel_hdcp_check_work(struct work_struct *work)
2136{
2137	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2138					       struct intel_hdcp,
2139					       check_work);
2140	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2141	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2142
2143	if (drm_connector_is_unregistered(&connector->base))
2144		return;
2145
2146	if (!intel_hdcp2_check_link(connector))
2147		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2148				   DRM_HDCP2_CHECK_PERIOD_MS);
2149	else if (!intel_hdcp_check_link(connector))
2150		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2151				   DRM_HDCP_CHECK_PERIOD_MS);
2152}
2153
2154static int i915_hdcp_component_bind(struct device *i915_kdev,
2155				    struct device *mei_kdev, void *data)
2156{
2157	struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2158
2159	drm_dbg(&i915->drm, "I915 HDCP comp bind\n");
2160	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2161	i915->display.hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2162	i915->display.hdcp.arbiter->hdcp_dev = mei_kdev;
2163	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2164
2165	return 0;
2166}
2167
2168static void i915_hdcp_component_unbind(struct device *i915_kdev,
2169				       struct device *mei_kdev, void *data)
2170{
2171	struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2172
2173	drm_dbg(&i915->drm, "I915 HDCP comp unbind\n");
2174	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2175	i915->display.hdcp.arbiter = NULL;
2176	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2177}
2178
2179static const struct component_ops i915_hdcp_ops = {
2180	.bind   = i915_hdcp_component_bind,
2181	.unbind = i915_hdcp_component_unbind,
2182};
2183
2184static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2185{
2186	switch (port) {
2187	case PORT_A:
2188		return HDCP_DDI_A;
2189	case PORT_B ... PORT_F:
2190		return (enum hdcp_ddi)port;
2191	default:
2192		return HDCP_DDI_INVALID_PORT;
2193	}
2194}
2195
2196static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2197{
2198	switch (cpu_transcoder) {
2199	case TRANSCODER_A ... TRANSCODER_D:
2200		return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2201	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2202		return HDCP_INVALID_TRANSCODER;
2203	}
2204}
2205
2206static int initialize_hdcp_port_data(struct intel_connector *connector,
2207				     struct intel_digital_port *dig_port,
2208				     const struct intel_hdcp_shim *shim)
2209{
2210	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2211	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2212	enum port port = dig_port->base.port;
2213
2214	if (DISPLAY_VER(i915) < 12)
2215		data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2216	else
2217		/*
2218		 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2219		 * with zero(INVALID PORT index).
2220		 */
2221		data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2222
2223	/*
2224	 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2225	 * is initialized to zero (invalid transcoder index). This will be
2226	 * retained for <Gen12 forever.
2227	 */
2228	data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2229
2230	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2231	data->protocol = (u8)shim->protocol;
2232
2233	if (!data->streams)
2234		data->streams = kcalloc(INTEL_NUM_PIPES(i915),
2235					sizeof(struct hdcp2_streamid_type),
2236					GFP_KERNEL);
2237	if (!data->streams) {
2238		drm_err(&i915->drm, "Out of Memory\n");
2239		return -ENOMEM;
2240	}
2241
2242	return 0;
2243}
2244
2245static bool is_hdcp2_supported(struct drm_i915_private *i915)
2246{
2247	if (intel_hdcp_gsc_cs_required(i915))
2248		return true;
2249
2250	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2251		return false;
2252
2253	return (DISPLAY_VER(i915) >= 10 ||
2254		IS_KABYLAKE(i915) ||
2255		IS_COFFEELAKE(i915) ||
2256		IS_COMETLAKE(i915));
2257}
2258
2259void intel_hdcp_component_init(struct drm_i915_private *i915)
2260{
2261	int ret;
2262
2263	if (!is_hdcp2_supported(i915))
2264		return;
2265
2266	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2267	drm_WARN_ON(&i915->drm, i915->display.hdcp.comp_added);
2268
2269	i915->display.hdcp.comp_added = true;
2270	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2271	if (intel_hdcp_gsc_cs_required(i915))
2272		ret = intel_hdcp_gsc_init(i915);
2273	else
2274		ret = component_add_typed(i915->drm.dev, &i915_hdcp_ops,
2275					  I915_COMPONENT_HDCP);
2276
2277	if (ret < 0) {
2278		drm_dbg_kms(&i915->drm, "Failed at fw component add(%d)\n",
2279			    ret);
2280		mutex_lock(&i915->display.hdcp.hdcp_mutex);
2281		i915->display.hdcp.comp_added = false;
2282		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2283		return;
2284	}
2285}
2286
2287static void intel_hdcp2_init(struct intel_connector *connector,
2288			     struct intel_digital_port *dig_port,
2289			     const struct intel_hdcp_shim *shim)
2290{
2291	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2292	struct intel_hdcp *hdcp = &connector->hdcp;
2293	int ret;
2294
2295	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2296	if (ret) {
2297		drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2298		return;
2299	}
2300
2301	hdcp->hdcp2_supported = true;
2302}
2303
2304int intel_hdcp_init(struct intel_connector *connector,
2305		    struct intel_digital_port *dig_port,
2306		    const struct intel_hdcp_shim *shim)
2307{
2308	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2309	struct intel_hdcp *hdcp = &connector->hdcp;
2310	int ret;
2311
2312	if (!shim)
2313		return -EINVAL;
2314
2315	if (is_hdcp2_supported(i915))
2316		intel_hdcp2_init(connector, dig_port, shim);
2317
2318	ret =
2319	drm_connector_attach_content_protection_property(&connector->base,
2320							 hdcp->hdcp2_supported);
2321	if (ret) {
2322		hdcp->hdcp2_supported = false;
2323		kfree(dig_port->hdcp_port_data.streams);
2324		return ret;
2325	}
2326
2327	hdcp->shim = shim;
2328	mutex_init(&hdcp->mutex);
2329	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2330	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2331	init_waitqueue_head(&hdcp->cp_irq_queue);
2332
2333	return 0;
2334}
2335
2336static int _intel_hdcp_enable(struct intel_atomic_state *state,
2337			      struct intel_encoder *encoder,
2338			      const struct intel_crtc_state *pipe_config,
2339			      const struct drm_connector_state *conn_state)
2340{
2341	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2342	struct intel_connector *connector =
2343		to_intel_connector(conn_state->connector);
2344	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2345	struct intel_hdcp *hdcp = &connector->hdcp;
2346	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2347	int ret = -EINVAL;
2348
2349	if (!hdcp->shim)
2350		return -ENOENT;
2351
2352	if (!connector->encoder) {
2353		drm_err(&i915->drm, "[CONNECTOR:%d:%s] encoder is not initialized\n",
2354			connector->base.base.id, connector->base.name);
2355		return -ENODEV;
2356	}
2357
2358	mutex_lock(&hdcp->mutex);
2359	mutex_lock(&dig_port->hdcp_mutex);
2360	drm_WARN_ON(&i915->drm,
2361		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2362	hdcp->content_type = (u8)conn_state->hdcp_content_type;
2363
2364	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2365		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2366		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2367	} else {
2368		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2369		hdcp->stream_transcoder = INVALID_TRANSCODER;
2370	}
2371
2372	if (DISPLAY_VER(i915) >= 12)
2373		dig_port->hdcp_port_data.hdcp_transcoder =
2374			intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2375
2376	/*
2377	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2378	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2379	 */
2380	if (intel_hdcp2_get_capability(connector)) {
2381		ret = _intel_hdcp2_enable(state, connector);
2382		if (!ret)
2383			check_link_interval =
2384				DRM_HDCP2_CHECK_PERIOD_MS;
2385	}
2386
2387	/*
2388	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2389	 * be attempted.
2390	 */
2391	if (ret && intel_hdcp_get_capability(connector) &&
2392	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2393		ret = intel_hdcp1_enable(connector);
2394	}
2395
2396	if (!ret) {
2397		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2398				   check_link_interval);
2399		intel_hdcp_update_value(connector,
2400					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2401					true);
2402	}
2403
2404	mutex_unlock(&dig_port->hdcp_mutex);
2405	mutex_unlock(&hdcp->mutex);
2406	return ret;
2407}
2408
2409void intel_hdcp_enable(struct intel_atomic_state *state,
2410		       struct intel_encoder *encoder,
2411		       const struct intel_crtc_state *crtc_state,
2412		       const struct drm_connector_state *conn_state)
2413{
2414	struct intel_connector *connector =
2415		to_intel_connector(conn_state->connector);
2416	struct intel_hdcp *hdcp = &connector->hdcp;
2417
2418	/*
2419	 * Enable hdcp if it's desired or if userspace is enabled and
2420	 * driver set its state to undesired
2421	 */
2422	if (conn_state->content_protection ==
2423	    DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2424	    (conn_state->content_protection ==
2425	    DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2426	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2427		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2428}
2429
2430int intel_hdcp_disable(struct intel_connector *connector)
2431{
2432	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2433	struct intel_hdcp *hdcp = &connector->hdcp;
2434	int ret = 0;
2435
2436	if (!hdcp->shim)
2437		return -ENOENT;
2438
2439	mutex_lock(&hdcp->mutex);
2440	mutex_lock(&dig_port->hdcp_mutex);
2441
2442	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2443		goto out;
2444
2445	intel_hdcp_update_value(connector,
2446				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2447	if (hdcp->hdcp2_encrypted)
2448		ret = _intel_hdcp2_disable(connector, false);
2449	else if (hdcp->hdcp_encrypted)
2450		ret = _intel_hdcp_disable(connector);
2451
2452out:
2453	mutex_unlock(&dig_port->hdcp_mutex);
2454	mutex_unlock(&hdcp->mutex);
2455	cancel_delayed_work_sync(&hdcp->check_work);
2456	return ret;
2457}
2458
2459void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2460			    struct intel_encoder *encoder,
2461			    const struct intel_crtc_state *crtc_state,
2462			    const struct drm_connector_state *conn_state)
2463{
2464	struct intel_connector *connector =
2465				to_intel_connector(conn_state->connector);
2466	struct intel_hdcp *hdcp = &connector->hdcp;
2467	bool content_protection_type_changed, desired_and_not_enabled = false;
2468	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2469
2470	if (!connector->hdcp.shim)
2471		return;
2472
2473	content_protection_type_changed =
2474		(conn_state->hdcp_content_type != hdcp->content_type &&
2475		 conn_state->content_protection !=
2476		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2477
2478	/*
2479	 * During the HDCP encryption session if Type change is requested,
2480	 * disable the HDCP and reenable it with new TYPE value.
2481	 */
2482	if (conn_state->content_protection ==
2483	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2484	    content_protection_type_changed)
2485		intel_hdcp_disable(connector);
2486
2487	/*
2488	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2489	 * change procedure.
2490	 */
2491	if (content_protection_type_changed) {
2492		mutex_lock(&hdcp->mutex);
2493		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2494		drm_connector_get(&connector->base);
2495		queue_work(i915->unordered_wq, &hdcp->prop_work);
2496		mutex_unlock(&hdcp->mutex);
2497	}
2498
2499	if (conn_state->content_protection ==
2500	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2501		mutex_lock(&hdcp->mutex);
2502		/* Avoid enabling hdcp, if it already ENABLED */
2503		desired_and_not_enabled =
2504			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2505		mutex_unlock(&hdcp->mutex);
2506		/*
2507		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2508		 * prop_work to update correct CP property to user space.
2509		 */
2510		if (!desired_and_not_enabled && !content_protection_type_changed) {
2511			drm_connector_get(&connector->base);
2512			queue_work(i915->unordered_wq, &hdcp->prop_work);
2513		}
2514	}
2515
2516	if (desired_and_not_enabled || content_protection_type_changed)
2517		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2518}
2519
2520void intel_hdcp_component_fini(struct drm_i915_private *i915)
2521{
2522	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2523	if (!i915->display.hdcp.comp_added) {
2524		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2525		return;
2526	}
2527
2528	i915->display.hdcp.comp_added = false;
2529	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2530
2531	if (intel_hdcp_gsc_cs_required(i915))
2532		intel_hdcp_gsc_fini(i915);
2533	else
2534		component_del(i915->drm.dev, &i915_hdcp_ops);
2535}
2536
2537void intel_hdcp_cleanup(struct intel_connector *connector)
2538{
2539	struct intel_hdcp *hdcp = &connector->hdcp;
2540
2541	if (!hdcp->shim)
2542		return;
2543
2544	/*
2545	 * If the connector is registered, it's possible userspace could kick
2546	 * off another HDCP enable, which would re-spawn the workers.
2547	 */
2548	drm_WARN_ON(connector->base.dev,
2549		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2550
2551	/*
2552	 * Now that the connector is not registered, check_work won't be run,
2553	 * but cancel any outstanding instances of it
2554	 */
2555	cancel_delayed_work_sync(&hdcp->check_work);
2556
2557	/*
2558	 * We don't cancel prop_work in the same way as check_work since it
2559	 * requires connection_mutex which could be held while calling this
2560	 * function. Instead, we rely on the connector references grabbed before
2561	 * scheduling prop_work to ensure the connector is alive when prop_work
2562	 * is run. So if we're in the destroy path (which is where this
2563	 * function should be called), we're "guaranteed" that prop_work is not
2564	 * active (tl;dr This Should Never Happen).
2565	 */
2566	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2567
2568	mutex_lock(&hdcp->mutex);
2569	hdcp->shim = NULL;
2570	mutex_unlock(&hdcp->mutex);
2571}
2572
2573void intel_hdcp_atomic_check(struct drm_connector *connector,
2574			     struct drm_connector_state *old_state,
2575			     struct drm_connector_state *new_state)
2576{
2577	u64 old_cp = old_state->content_protection;
2578	u64 new_cp = new_state->content_protection;
2579	struct drm_crtc_state *crtc_state;
2580
2581	if (!new_state->crtc) {
2582		/*
2583		 * If the connector is being disabled with CP enabled, mark it
2584		 * desired so it's re-enabled when the connector is brought back
2585		 */
2586		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2587			new_state->content_protection =
2588				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2589		return;
2590	}
2591
2592	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2593						   new_state->crtc);
2594	/*
2595	 * Fix the HDCP uapi content protection state in case of modeset.
2596	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2597	 * need to be sent if there is transition from ENABLED->DESIRED.
2598	 */
2599	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2600	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2601	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2602		new_state->content_protection =
2603			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2604
2605	/*
2606	 * Nothing to do if the state didn't change, or HDCP was activated since
2607	 * the last commit. And also no change in hdcp content type.
2608	 */
2609	if (old_cp == new_cp ||
2610	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2611	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2612		if (old_state->hdcp_content_type ==
2613				new_state->hdcp_content_type)
2614			return;
2615	}
2616
2617	crtc_state->mode_changed = true;
2618}
2619
2620/* Handles the CP_IRQ raised from the DP HDCP sink */
2621void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2622{
2623	struct intel_hdcp *hdcp = &connector->hdcp;
2624	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2625
2626	if (!hdcp->shim)
2627		return;
2628
2629	atomic_inc(&connector->hdcp.cp_irq_count);
2630	wake_up_all(&connector->hdcp.cp_irq_queue);
2631
2632	queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2633}
2634