1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2019 Intel Corporation
4 *
5 */
6
7#include "i915_drv.h"
8#include "i915_irq.h"
9#include "i915_reg.h"
10#include "intel_crtc.h"
11#include "intel_de.h"
12#include "intel_display_types.h"
13#include "intel_dsb.h"
14#include "intel_dsb_buffer.h"
15#include "intel_dsb_regs.h"
16#include "intel_vblank.h"
17#include "intel_vrr.h"
18#include "skl_watermark.h"
19
20#define CACHELINE_BYTES 64
21
22enum dsb_id {
23	INVALID_DSB = -1,
24	DSB1,
25	DSB2,
26	DSB3,
27	MAX_DSB_PER_PIPE
28};
29
30struct intel_dsb {
31	enum dsb_id id;
32
33	struct intel_dsb_buffer dsb_buf;
34	struct intel_crtc *crtc;
35
36	/*
37	 * maximum number of dwords the buffer will hold.
38	 */
39	unsigned int size;
40
41	/*
42	 * free_pos will point the first free dword and
43	 * help in calculating tail of command buffer.
44	 */
45	unsigned int free_pos;
46
47	/*
48	 * ins_start_offset will help to store start dword of the dsb
49	 * instuction and help in identifying the batch of auto-increment
50	 * register.
51	 */
52	unsigned int ins_start_offset;
53
54	int dewake_scanline;
55};
56
57/**
58 * DOC: DSB
59 *
60 * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
61 * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
62 * engine that can be programmed to download the DSB from memory.
63 * It allows driver to batch submit display HW programming. This helps to
64 * reduce loading time and CPU activity, thereby making the context switch
65 * faster. DSB Support added from Gen12 Intel graphics based platform.
66 *
67 * DSB's can access only the pipe, plane, and transcoder Data Island Packet
68 * registers.
69 *
70 * DSB HW can support only register writes (both indexed and direct MMIO
71 * writes). There are no registers reads possible with DSB HW engine.
72 */
73
74/* DSB opcodes. */
75#define DSB_OPCODE_SHIFT		24
76#define DSB_OPCODE_NOOP			0x0
77#define DSB_OPCODE_MMIO_WRITE		0x1
78#define   DSB_BYTE_EN			0xf
79#define   DSB_BYTE_EN_SHIFT		20
80#define   DSB_REG_VALUE_MASK		0xfffff
81#define DSB_OPCODE_WAIT_USEC		0x2
82#define DSB_OPCODE_WAIT_SCANLINE	0x3
83#define DSB_OPCODE_WAIT_VBLANKS		0x4
84#define DSB_OPCODE_WAIT_DSL_IN		0x5
85#define DSB_OPCODE_WAIT_DSL_OUT		0x6
86#define   DSB_SCANLINE_UPPER_SHIFT	20
87#define   DSB_SCANLINE_LOWER_SHIFT	0
88#define DSB_OPCODE_INTERRUPT		0x7
89#define DSB_OPCODE_INDEXED_WRITE	0x9
90/* see DSB_REG_VALUE_MASK */
91#define DSB_OPCODE_POLL			0xA
92/* see DSB_REG_VALUE_MASK */
93
94static bool assert_dsb_has_room(struct intel_dsb *dsb)
95{
96	struct intel_crtc *crtc = dsb->crtc;
97	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
98
99	/* each instruction is 2 dwords */
100	return !drm_WARN(&i915->drm, dsb->free_pos > dsb->size - 2,
101			 "[CRTC:%d:%s] DSB %d buffer overflow\n",
102			 crtc->base.base.id, crtc->base.name, dsb->id);
103}
104
105static void intel_dsb_dump(struct intel_dsb *dsb)
106{
107	struct intel_crtc *crtc = dsb->crtc;
108	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
109	int i;
110
111	drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] DSB %d commands {\n",
112		    crtc->base.base.id, crtc->base.name, dsb->id);
113	for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4)
114		drm_dbg_kms(&i915->drm,
115			    " 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4,
116			    intel_dsb_buffer_read(&dsb->dsb_buf, i),
117			    intel_dsb_buffer_read(&dsb->dsb_buf, i + 1),
118			    intel_dsb_buffer_read(&dsb->dsb_buf, i + 2),
119			    intel_dsb_buffer_read(&dsb->dsb_buf, i + 3));
120	drm_dbg_kms(&i915->drm, "}\n");
121}
122
123static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe,
124			enum dsb_id id)
125{
126	return intel_de_read_fw(i915, DSB_CTRL(pipe, id)) & DSB_STATUS_BUSY;
127}
128
129static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw)
130{
131	if (!assert_dsb_has_room(dsb))
132		return;
133
134	/* Every instruction should be 8 byte aligned. */
135	dsb->free_pos = ALIGN(dsb->free_pos, 2);
136
137	dsb->ins_start_offset = dsb->free_pos;
138
139	intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, ldw);
140	intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, udw);
141}
142
143static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb,
144					u32 opcode, i915_reg_t reg)
145{
146	u32 prev_opcode, prev_reg;
147
148	/*
149	 * Nothing emitted yet? Must check before looking
150	 * at the actual data since i915_gem_object_create_internal()
151	 * does *not* give you zeroed memory!
152	 */
153	if (dsb->free_pos == 0)
154		return false;
155
156	prev_opcode = intel_dsb_buffer_read(&dsb->dsb_buf,
157					    dsb->ins_start_offset + 1) & ~DSB_REG_VALUE_MASK;
158	prev_reg =  intel_dsb_buffer_read(&dsb->dsb_buf,
159					  dsb->ins_start_offset + 1) & DSB_REG_VALUE_MASK;
160
161	return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg);
162}
163
164static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg)
165{
166	/* only full byte-enables can be converted to indexed writes */
167	return intel_dsb_prev_ins_is_write(dsb,
168					   DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT |
169					   DSB_BYTE_EN << DSB_BYTE_EN_SHIFT,
170					   reg);
171}
172
173static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg)
174{
175	return intel_dsb_prev_ins_is_write(dsb,
176					   DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT,
177					   reg);
178}
179
180/**
181 * intel_dsb_reg_write() - Emit register wriite to the DSB context
182 * @dsb: DSB context
183 * @reg: register address.
184 * @val: value.
185 *
186 * This function is used for writing register-value pair in command
187 * buffer of DSB.
188 */
189void intel_dsb_reg_write(struct intel_dsb *dsb,
190			 i915_reg_t reg, u32 val)
191{
192	u32 old_val;
193
194	/*
195	 * For example the buffer will look like below for 3 dwords for auto
196	 * increment register:
197	 * +--------------------------------------------------------+
198	 * | size = 3 | offset &| value1 | value2 | value3 | zero   |
199	 * |          | opcode  |        |        |        |        |
200	 * +--------------------------------------------------------+
201	 * +          +         +        +        +        +        +
202	 * 0          4         8        12       16       20       24
203	 * Byte
204	 *
205	 * As every instruction is 8 byte aligned the index of dsb instruction
206	 * will start always from even number while dealing with u32 array. If
207	 * we are writing odd no of dwords, Zeros will be added in the end for
208	 * padding.
209	 */
210	if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) &&
211	    !intel_dsb_prev_ins_is_indexed_write(dsb, reg)) {
212		intel_dsb_emit(dsb, val,
213			       (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
214			       (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
215			       i915_mmio_reg_offset(reg));
216	} else {
217		if (!assert_dsb_has_room(dsb))
218			return;
219
220		/* convert to indexed write? */
221		if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) {
222			u32 prev_val = intel_dsb_buffer_read(&dsb->dsb_buf,
223							     dsb->ins_start_offset + 0);
224
225			intel_dsb_buffer_write(&dsb->dsb_buf,
226					       dsb->ins_start_offset + 0, 1); /* count */
227			intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 1,
228					       (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) |
229					       i915_mmio_reg_offset(reg));
230			intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 2, prev_val);
231
232			dsb->free_pos++;
233		}
234
235		intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val);
236		/* Update the count */
237		old_val = intel_dsb_buffer_read(&dsb->dsb_buf, dsb->ins_start_offset);
238		intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset, old_val + 1);
239
240		/* if number of data words is odd, then the last dword should be 0.*/
241		if (dsb->free_pos & 0x1)
242			intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0);
243	}
244}
245
246static u32 intel_dsb_mask_to_byte_en(u32 mask)
247{
248	return (!!(mask & 0xff000000) << 3 |
249		!!(mask & 0x00ff0000) << 2 |
250		!!(mask & 0x0000ff00) << 1 |
251		!!(mask & 0x000000ff) << 0);
252}
253
254/* Note: mask implemented via byte enables! */
255void intel_dsb_reg_write_masked(struct intel_dsb *dsb,
256				i915_reg_t reg, u32 mask, u32 val)
257{
258	intel_dsb_emit(dsb, val,
259		       (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
260		       (intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) |
261		       i915_mmio_reg_offset(reg));
262}
263
264void intel_dsb_noop(struct intel_dsb *dsb, int count)
265{
266	int i;
267
268	for (i = 0; i < count; i++)
269		intel_dsb_emit(dsb, 0,
270			       DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT);
271}
272
273void intel_dsb_nonpost_start(struct intel_dsb *dsb)
274{
275	struct intel_crtc *crtc = dsb->crtc;
276	enum pipe pipe = crtc->pipe;
277
278	intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
279				   DSB_NON_POSTED, DSB_NON_POSTED);
280	intel_dsb_noop(dsb, 4);
281}
282
283void intel_dsb_nonpost_end(struct intel_dsb *dsb)
284{
285	struct intel_crtc *crtc = dsb->crtc;
286	enum pipe pipe = crtc->pipe;
287
288	intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
289				   DSB_NON_POSTED, 0);
290	intel_dsb_noop(dsb, 4);
291}
292
293static void intel_dsb_align_tail(struct intel_dsb *dsb)
294{
295	u32 aligned_tail, tail;
296
297	tail = dsb->free_pos * 4;
298	aligned_tail = ALIGN(tail, CACHELINE_BYTES);
299
300	if (aligned_tail > tail)
301		intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0,
302					aligned_tail - tail);
303
304	dsb->free_pos = aligned_tail / 4;
305}
306
307void intel_dsb_finish(struct intel_dsb *dsb)
308{
309	struct intel_crtc *crtc = dsb->crtc;
310
311	/*
312	 * DSB_FORCE_DEWAKE remains active even after DSB is
313	 * disabled, so make sure to clear it (if set during
314	 * intel_dsb_commit()).
315	 */
316	intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id),
317				   DSB_FORCE_DEWAKE, 0);
318
319	intel_dsb_align_tail(dsb);
320
321	intel_dsb_buffer_flush_map(&dsb->dsb_buf);
322}
323
324static int intel_dsb_dewake_scanline(const struct intel_crtc_state *crtc_state)
325{
326	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
327	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
328	unsigned int latency = skl_watermark_max_latency(i915, 0);
329	int vblank_start;
330
331	if (crtc_state->vrr.enable) {
332		vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
333	} else {
334		vblank_start = adjusted_mode->crtc_vblank_start;
335
336		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
337			vblank_start = DIV_ROUND_UP(vblank_start, 2);
338	}
339
340	return max(0, vblank_start - intel_usecs_to_scanlines(adjusted_mode, latency));
341}
342
343static u32 dsb_chicken(struct intel_crtc *crtc)
344{
345	if (crtc->mode_flags & I915_MODE_FLAG_VRR)
346		return DSB_CTRL_WAIT_SAFE_WINDOW |
347			DSB_CTRL_NO_WAIT_VBLANK |
348			DSB_INST_WAIT_SAFE_WINDOW |
349			DSB_INST_NO_WAIT_VBLANK;
350	else
351		return 0;
352}
353
354static void _intel_dsb_commit(struct intel_dsb *dsb, u32 ctrl,
355			      int dewake_scanline)
356{
357	struct intel_crtc *crtc = dsb->crtc;
358	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
359	enum pipe pipe = crtc->pipe;
360	u32 tail;
361
362	tail = dsb->free_pos * 4;
363	if (drm_WARN_ON(&dev_priv->drm, !IS_ALIGNED(tail, CACHELINE_BYTES)))
364		return;
365
366	if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
367		drm_err(&dev_priv->drm, "[CRTC:%d:%s] DSB %d is busy\n",
368			crtc->base.base.id, crtc->base.name, dsb->id);
369		return;
370	}
371
372	intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id),
373			  ctrl | DSB_ENABLE);
374
375	intel_de_write_fw(dev_priv, DSB_CHICKEN(pipe, dsb->id),
376			  dsb_chicken(crtc));
377
378	intel_de_write_fw(dev_priv, DSB_HEAD(pipe, dsb->id),
379			  intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf));
380
381	if (dewake_scanline >= 0) {
382		int diff, hw_dewake_scanline;
383
384		hw_dewake_scanline = intel_crtc_scanline_to_hw(crtc, dewake_scanline);
385
386		intel_de_write_fw(dev_priv, DSB_PMCTRL(pipe, dsb->id),
387				  DSB_ENABLE_DEWAKE |
388				  DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline));
389
390		/*
391		 * Force DEwake immediately if we're already past
392		 * or close to racing past the target scanline.
393		 */
394		diff = dewake_scanline - intel_get_crtc_scanline(crtc);
395		intel_de_write_fw(dev_priv, DSB_PMCTRL_2(pipe, dsb->id),
396				  (diff >= 0 && diff < 5 ? DSB_FORCE_DEWAKE : 0) |
397				  DSB_BLOCK_DEWAKE_EXTENSION);
398	}
399
400	intel_de_write_fw(dev_priv, DSB_TAIL(pipe, dsb->id),
401			  intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + tail);
402}
403
404/**
405 * intel_dsb_commit() - Trigger workload execution of DSB.
406 * @dsb: DSB context
407 * @wait_for_vblank: wait for vblank before executing
408 *
409 * This function is used to do actual write to hardware using DSB.
410 */
411void intel_dsb_commit(struct intel_dsb *dsb,
412		      bool wait_for_vblank)
413{
414	_intel_dsb_commit(dsb,
415			  wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0,
416			  wait_for_vblank ? dsb->dewake_scanline : -1);
417}
418
419void intel_dsb_wait(struct intel_dsb *dsb)
420{
421	struct intel_crtc *crtc = dsb->crtc;
422	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
423	enum pipe pipe = crtc->pipe;
424
425	if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1)) {
426		u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf);
427
428		intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id),
429				  DSB_ENABLE | DSB_HALT);
430
431		drm_err(&dev_priv->drm,
432			"[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n",
433			crtc->base.base.id, crtc->base.name, dsb->id,
434			intel_de_read_fw(dev_priv, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset,
435			intel_de_read_fw(dev_priv, DSB_HEAD(pipe, dsb->id)) - offset,
436			intel_de_read_fw(dev_priv, DSB_TAIL(pipe, dsb->id)) - offset);
437
438		intel_dsb_dump(dsb);
439	}
440
441	/* Attempt to reset it */
442	dsb->free_pos = 0;
443	dsb->ins_start_offset = 0;
444	intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id), 0);
445}
446
447/**
448 * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
449 * @crtc_state: the CRTC state
450 * @max_cmds: number of commands we need to fit into command buffer
451 *
452 * This function prepare the command buffer which is used to store dsb
453 * instructions with data.
454 *
455 * Returns:
456 * DSB context, NULL on failure
457 */
458struct intel_dsb *intel_dsb_prepare(const struct intel_crtc_state *crtc_state,
459				    unsigned int max_cmds)
460{
461	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
462	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
463	intel_wakeref_t wakeref;
464	struct intel_dsb *dsb;
465	unsigned int size;
466
467	if (!HAS_DSB(i915))
468		return NULL;
469
470	/* TODO: DSB is broken in Xe KMD, so disabling it until fixed */
471	if (!IS_ENABLED(I915))
472		return NULL;
473
474	dsb = kzalloc(sizeof(*dsb), GFP_KERNEL);
475	if (!dsb)
476		goto out;
477
478	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
479
480	/* ~1 qword per instruction, full cachelines */
481	size = ALIGN(max_cmds * 8, CACHELINE_BYTES);
482
483	if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size))
484		goto out_put_rpm;
485
486	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
487
488	dsb->id = DSB1;
489	dsb->crtc = crtc;
490	dsb->size = size / 4; /* in dwords */
491	dsb->free_pos = 0;
492	dsb->ins_start_offset = 0;
493	dsb->dewake_scanline = intel_dsb_dewake_scanline(crtc_state);
494
495	return dsb;
496
497out_put_rpm:
498	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
499	kfree(dsb);
500out:
501	drm_info_once(&i915->drm,
502		      "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n",
503		      crtc->base.base.id, crtc->base.name, DSB1);
504
505	return NULL;
506}
507
508/**
509 * intel_dsb_cleanup() - To cleanup DSB context.
510 * @dsb: DSB context
511 *
512 * This function cleanup the DSB context by unpinning and releasing
513 * the VMA object associated with it.
514 */
515void intel_dsb_cleanup(struct intel_dsb *dsb)
516{
517	intel_dsb_buffer_cleanup(&dsb->dsb_buf);
518	kfree(dsb);
519}
520