1/* SPDX-License-Identifier: MIT */
2/*
3 * Copyright �� 2019 Intel Corporation
4 */
5
6#include <linux/string_helpers.h>
7
8#include "i915_drv.h"
9#include "i915_irq.h"
10#include "i915_reg.h"
11#include "intel_backlight_regs.h"
12#include "intel_cdclk.h"
13#include "intel_clock_gating.h"
14#include "intel_combo_phy.h"
15#include "intel_de.h"
16#include "intel_display_power.h"
17#include "intel_display_power_map.h"
18#include "intel_display_power_well.h"
19#include "intel_display_types.h"
20#include "intel_dmc.h"
21#include "intel_mchbar_regs.h"
22#include "intel_pch_refclk.h"
23#include "intel_pcode.h"
24#include "intel_pmdemand.h"
25#include "intel_pps_regs.h"
26#include "intel_snps_phy.h"
27#include "skl_watermark.h"
28#include "skl_watermark_regs.h"
29#include "vlv_sideband.h"
30
31#define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
32	for_each_power_well(__dev_priv, __power_well)				\
33		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
34
35#define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
36	for_each_power_well_reverse(__dev_priv, __power_well)		        \
37		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
38
39const char *
40intel_display_power_domain_str(enum intel_display_power_domain domain)
41{
42	switch (domain) {
43	case POWER_DOMAIN_DISPLAY_CORE:
44		return "DISPLAY_CORE";
45	case POWER_DOMAIN_PIPE_A:
46		return "PIPE_A";
47	case POWER_DOMAIN_PIPE_B:
48		return "PIPE_B";
49	case POWER_DOMAIN_PIPE_C:
50		return "PIPE_C";
51	case POWER_DOMAIN_PIPE_D:
52		return "PIPE_D";
53	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
54		return "PIPE_PANEL_FITTER_A";
55	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
56		return "PIPE_PANEL_FITTER_B";
57	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
58		return "PIPE_PANEL_FITTER_C";
59	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
60		return "PIPE_PANEL_FITTER_D";
61	case POWER_DOMAIN_TRANSCODER_A:
62		return "TRANSCODER_A";
63	case POWER_DOMAIN_TRANSCODER_B:
64		return "TRANSCODER_B";
65	case POWER_DOMAIN_TRANSCODER_C:
66		return "TRANSCODER_C";
67	case POWER_DOMAIN_TRANSCODER_D:
68		return "TRANSCODER_D";
69	case POWER_DOMAIN_TRANSCODER_EDP:
70		return "TRANSCODER_EDP";
71	case POWER_DOMAIN_TRANSCODER_DSI_A:
72		return "TRANSCODER_DSI_A";
73	case POWER_DOMAIN_TRANSCODER_DSI_C:
74		return "TRANSCODER_DSI_C";
75	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
76		return "TRANSCODER_VDSC_PW2";
77	case POWER_DOMAIN_PORT_DDI_LANES_A:
78		return "PORT_DDI_LANES_A";
79	case POWER_DOMAIN_PORT_DDI_LANES_B:
80		return "PORT_DDI_LANES_B";
81	case POWER_DOMAIN_PORT_DDI_LANES_C:
82		return "PORT_DDI_LANES_C";
83	case POWER_DOMAIN_PORT_DDI_LANES_D:
84		return "PORT_DDI_LANES_D";
85	case POWER_DOMAIN_PORT_DDI_LANES_E:
86		return "PORT_DDI_LANES_E";
87	case POWER_DOMAIN_PORT_DDI_LANES_F:
88		return "PORT_DDI_LANES_F";
89	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
90		return "PORT_DDI_LANES_TC1";
91	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
92		return "PORT_DDI_LANES_TC2";
93	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
94		return "PORT_DDI_LANES_TC3";
95	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
96		return "PORT_DDI_LANES_TC4";
97	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
98		return "PORT_DDI_LANES_TC5";
99	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
100		return "PORT_DDI_LANES_TC6";
101	case POWER_DOMAIN_PORT_DDI_IO_A:
102		return "PORT_DDI_IO_A";
103	case POWER_DOMAIN_PORT_DDI_IO_B:
104		return "PORT_DDI_IO_B";
105	case POWER_DOMAIN_PORT_DDI_IO_C:
106		return "PORT_DDI_IO_C";
107	case POWER_DOMAIN_PORT_DDI_IO_D:
108		return "PORT_DDI_IO_D";
109	case POWER_DOMAIN_PORT_DDI_IO_E:
110		return "PORT_DDI_IO_E";
111	case POWER_DOMAIN_PORT_DDI_IO_F:
112		return "PORT_DDI_IO_F";
113	case POWER_DOMAIN_PORT_DDI_IO_TC1:
114		return "PORT_DDI_IO_TC1";
115	case POWER_DOMAIN_PORT_DDI_IO_TC2:
116		return "PORT_DDI_IO_TC2";
117	case POWER_DOMAIN_PORT_DDI_IO_TC3:
118		return "PORT_DDI_IO_TC3";
119	case POWER_DOMAIN_PORT_DDI_IO_TC4:
120		return "PORT_DDI_IO_TC4";
121	case POWER_DOMAIN_PORT_DDI_IO_TC5:
122		return "PORT_DDI_IO_TC5";
123	case POWER_DOMAIN_PORT_DDI_IO_TC6:
124		return "PORT_DDI_IO_TC6";
125	case POWER_DOMAIN_PORT_DSI:
126		return "PORT_DSI";
127	case POWER_DOMAIN_PORT_CRT:
128		return "PORT_CRT";
129	case POWER_DOMAIN_PORT_OTHER:
130		return "PORT_OTHER";
131	case POWER_DOMAIN_VGA:
132		return "VGA";
133	case POWER_DOMAIN_AUDIO_MMIO:
134		return "AUDIO_MMIO";
135	case POWER_DOMAIN_AUDIO_PLAYBACK:
136		return "AUDIO_PLAYBACK";
137	case POWER_DOMAIN_AUX_IO_A:
138		return "AUX_IO_A";
139	case POWER_DOMAIN_AUX_IO_B:
140		return "AUX_IO_B";
141	case POWER_DOMAIN_AUX_IO_C:
142		return "AUX_IO_C";
143	case POWER_DOMAIN_AUX_IO_D:
144		return "AUX_IO_D";
145	case POWER_DOMAIN_AUX_IO_E:
146		return "AUX_IO_E";
147	case POWER_DOMAIN_AUX_IO_F:
148		return "AUX_IO_F";
149	case POWER_DOMAIN_AUX_A:
150		return "AUX_A";
151	case POWER_DOMAIN_AUX_B:
152		return "AUX_B";
153	case POWER_DOMAIN_AUX_C:
154		return "AUX_C";
155	case POWER_DOMAIN_AUX_D:
156		return "AUX_D";
157	case POWER_DOMAIN_AUX_E:
158		return "AUX_E";
159	case POWER_DOMAIN_AUX_F:
160		return "AUX_F";
161	case POWER_DOMAIN_AUX_USBC1:
162		return "AUX_USBC1";
163	case POWER_DOMAIN_AUX_USBC2:
164		return "AUX_USBC2";
165	case POWER_DOMAIN_AUX_USBC3:
166		return "AUX_USBC3";
167	case POWER_DOMAIN_AUX_USBC4:
168		return "AUX_USBC4";
169	case POWER_DOMAIN_AUX_USBC5:
170		return "AUX_USBC5";
171	case POWER_DOMAIN_AUX_USBC6:
172		return "AUX_USBC6";
173	case POWER_DOMAIN_AUX_TBT1:
174		return "AUX_TBT1";
175	case POWER_DOMAIN_AUX_TBT2:
176		return "AUX_TBT2";
177	case POWER_DOMAIN_AUX_TBT3:
178		return "AUX_TBT3";
179	case POWER_DOMAIN_AUX_TBT4:
180		return "AUX_TBT4";
181	case POWER_DOMAIN_AUX_TBT5:
182		return "AUX_TBT5";
183	case POWER_DOMAIN_AUX_TBT6:
184		return "AUX_TBT6";
185	case POWER_DOMAIN_GMBUS:
186		return "GMBUS";
187	case POWER_DOMAIN_INIT:
188		return "INIT";
189	case POWER_DOMAIN_GT_IRQ:
190		return "GT_IRQ";
191	case POWER_DOMAIN_DC_OFF:
192		return "DC_OFF";
193	case POWER_DOMAIN_TC_COLD_OFF:
194		return "TC_COLD_OFF";
195	default:
196		MISSING_CASE(domain);
197		return "?";
198	}
199}
200
201/**
202 * __intel_display_power_is_enabled - unlocked check for a power domain
203 * @dev_priv: i915 device instance
204 * @domain: power domain to check
205 *
206 * This is the unlocked version of intel_display_power_is_enabled() and should
207 * only be used from error capture and recovery code where deadlocks are
208 * possible.
209 *
210 * Returns:
211 * True when the power domain is enabled, false otherwise.
212 */
213bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
214				      enum intel_display_power_domain domain)
215{
216	struct i915_power_well *power_well;
217	bool is_enabled;
218
219	if (pm_runtime_suspended(dev_priv->drm.dev))
220		return false;
221
222	is_enabled = true;
223
224	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
225		if (intel_power_well_is_always_on(power_well))
226			continue;
227
228		if (!intel_power_well_is_enabled_cached(power_well)) {
229			is_enabled = false;
230			break;
231		}
232	}
233
234	return is_enabled;
235}
236
237/**
238 * intel_display_power_is_enabled - check for a power domain
239 * @dev_priv: i915 device instance
240 * @domain: power domain to check
241 *
242 * This function can be used to check the hw power domain state. It is mostly
243 * used in hardware state readout functions. Everywhere else code should rely
244 * upon explicit power domain reference counting to ensure that the hardware
245 * block is powered up before accessing it.
246 *
247 * Callers must hold the relevant modesetting locks to ensure that concurrent
248 * threads can't disable the power well while the caller tries to read a few
249 * registers.
250 *
251 * Returns:
252 * True when the power domain is enabled, false otherwise.
253 */
254bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
255				    enum intel_display_power_domain domain)
256{
257	struct i915_power_domains *power_domains;
258	bool ret;
259
260	power_domains = &dev_priv->display.power.domains;
261
262	mutex_lock(&power_domains->lock);
263	ret = __intel_display_power_is_enabled(dev_priv, domain);
264	mutex_unlock(&power_domains->lock);
265
266	return ret;
267}
268
269static u32
270sanitize_target_dc_state(struct drm_i915_private *i915,
271			 u32 target_dc_state)
272{
273	struct i915_power_domains *power_domains = &i915->display.power.domains;
274	static const u32 states[] = {
275		DC_STATE_EN_UPTO_DC6,
276		DC_STATE_EN_UPTO_DC5,
277		DC_STATE_EN_DC3CO,
278		DC_STATE_DISABLE,
279	};
280	int i;
281
282	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
283		if (target_dc_state != states[i])
284			continue;
285
286		if (power_domains->allowed_dc_mask & target_dc_state)
287			break;
288
289		target_dc_state = states[i + 1];
290	}
291
292	return target_dc_state;
293}
294
295/**
296 * intel_display_power_set_target_dc_state - Set target dc state.
297 * @dev_priv: i915 device
298 * @state: state which needs to be set as target_dc_state.
299 *
300 * This function set the "DC off" power well target_dc_state,
301 * based upon this target_dc_stste, "DC off" power well will
302 * enable desired DC state.
303 */
304void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
305					     u32 state)
306{
307	struct i915_power_well *power_well;
308	bool dc_off_enabled;
309	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
310
311	mutex_lock(&power_domains->lock);
312	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
313
314	if (drm_WARN_ON(&dev_priv->drm, !power_well))
315		goto unlock;
316
317	state = sanitize_target_dc_state(dev_priv, state);
318
319	if (state == power_domains->target_dc_state)
320		goto unlock;
321
322	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
323	/*
324	 * If DC off power well is disabled, need to enable and disable the
325	 * DC off power well to effect target DC state.
326	 */
327	if (!dc_off_enabled)
328		intel_power_well_enable(dev_priv, power_well);
329
330	power_domains->target_dc_state = state;
331
332	if (!dc_off_enabled)
333		intel_power_well_disable(dev_priv, power_well);
334
335unlock:
336	mutex_unlock(&power_domains->lock);
337}
338
339static void __async_put_domains_mask(struct i915_power_domains *power_domains,
340				     struct intel_power_domain_mask *mask)
341{
342	bitmap_or(mask->bits,
343		  power_domains->async_put_domains[0].bits,
344		  power_domains->async_put_domains[1].bits,
345		  POWER_DOMAIN_NUM);
346}
347
348#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
349
350static bool
351assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
352{
353	struct drm_i915_private *i915 = container_of(power_domains,
354						     struct drm_i915_private,
355						     display.power.domains);
356
357	return !drm_WARN_ON(&i915->drm,
358			    bitmap_intersects(power_domains->async_put_domains[0].bits,
359					      power_domains->async_put_domains[1].bits,
360					      POWER_DOMAIN_NUM));
361}
362
363static bool
364__async_put_domains_state_ok(struct i915_power_domains *power_domains)
365{
366	struct drm_i915_private *i915 = container_of(power_domains,
367						     struct drm_i915_private,
368						     display.power.domains);
369	struct intel_power_domain_mask async_put_mask;
370	enum intel_display_power_domain domain;
371	bool err = false;
372
373	err |= !assert_async_put_domain_masks_disjoint(power_domains);
374	__async_put_domains_mask(power_domains, &async_put_mask);
375	err |= drm_WARN_ON(&i915->drm,
376			   !!power_domains->async_put_wakeref !=
377			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
378
379	for_each_power_domain(domain, &async_put_mask)
380		err |= drm_WARN_ON(&i915->drm,
381				   power_domains->domain_use_count[domain] != 1);
382
383	return !err;
384}
385
386static void print_power_domains(struct i915_power_domains *power_domains,
387				const char *prefix, struct intel_power_domain_mask *mask)
388{
389	struct drm_i915_private *i915 = container_of(power_domains,
390						     struct drm_i915_private,
391						     display.power.domains);
392	enum intel_display_power_domain domain;
393
394	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
395	for_each_power_domain(domain, mask)
396		drm_dbg(&i915->drm, "%s use_count %d\n",
397			intel_display_power_domain_str(domain),
398			power_domains->domain_use_count[domain]);
399}
400
401static void
402print_async_put_domains_state(struct i915_power_domains *power_domains)
403{
404	struct drm_i915_private *i915 = container_of(power_domains,
405						     struct drm_i915_private,
406						     display.power.domains);
407
408	drm_dbg(&i915->drm, "async_put_wakeref: %s\n",
409		str_yes_no(power_domains->async_put_wakeref));
410
411	print_power_domains(power_domains, "async_put_domains[0]",
412			    &power_domains->async_put_domains[0]);
413	print_power_domains(power_domains, "async_put_domains[1]",
414			    &power_domains->async_put_domains[1]);
415}
416
417static void
418verify_async_put_domains_state(struct i915_power_domains *power_domains)
419{
420	if (!__async_put_domains_state_ok(power_domains))
421		print_async_put_domains_state(power_domains);
422}
423
424#else
425
426static void
427assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
428{
429}
430
431static void
432verify_async_put_domains_state(struct i915_power_domains *power_domains)
433{
434}
435
436#endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
437
438static void async_put_domains_mask(struct i915_power_domains *power_domains,
439				   struct intel_power_domain_mask *mask)
440
441{
442	assert_async_put_domain_masks_disjoint(power_domains);
443
444	__async_put_domains_mask(power_domains, mask);
445}
446
447static void
448async_put_domains_clear_domain(struct i915_power_domains *power_domains,
449			       enum intel_display_power_domain domain)
450{
451	assert_async_put_domain_masks_disjoint(power_domains);
452
453	clear_bit(domain, power_domains->async_put_domains[0].bits);
454	clear_bit(domain, power_domains->async_put_domains[1].bits);
455}
456
457static void
458cancel_async_put_work(struct i915_power_domains *power_domains, bool sync)
459{
460	if (sync)
461		cancel_delayed_work_sync(&power_domains->async_put_work);
462	else
463		cancel_delayed_work(&power_domains->async_put_work);
464
465	power_domains->async_put_next_delay = 0;
466}
467
468static bool
469intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
470				       enum intel_display_power_domain domain)
471{
472	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
473	struct intel_power_domain_mask async_put_mask;
474	bool ret = false;
475
476	async_put_domains_mask(power_domains, &async_put_mask);
477	if (!test_bit(domain, async_put_mask.bits))
478		goto out_verify;
479
480	async_put_domains_clear_domain(power_domains, domain);
481
482	ret = true;
483
484	async_put_domains_mask(power_domains, &async_put_mask);
485	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
486		goto out_verify;
487
488	cancel_async_put_work(power_domains, false);
489	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
490				 fetch_and_zero(&power_domains->async_put_wakeref));
491out_verify:
492	verify_async_put_domains_state(power_domains);
493
494	return ret;
495}
496
497static void
498__intel_display_power_get_domain(struct drm_i915_private *dev_priv,
499				 enum intel_display_power_domain domain)
500{
501	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
502	struct i915_power_well *power_well;
503
504	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
505		return;
506
507	for_each_power_domain_well(dev_priv, power_well, domain)
508		intel_power_well_get(dev_priv, power_well);
509
510	power_domains->domain_use_count[domain]++;
511}
512
513/**
514 * intel_display_power_get - grab a power domain reference
515 * @dev_priv: i915 device instance
516 * @domain: power domain to reference
517 *
518 * This function grabs a power domain reference for @domain and ensures that the
519 * power domain and all its parents are powered up. Therefore users should only
520 * grab a reference to the innermost power domain they need.
521 *
522 * Any power domain reference obtained by this function must have a symmetric
523 * call to intel_display_power_put() to release the reference again.
524 */
525intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
526					enum intel_display_power_domain domain)
527{
528	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
529	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
530
531	mutex_lock(&power_domains->lock);
532	__intel_display_power_get_domain(dev_priv, domain);
533	mutex_unlock(&power_domains->lock);
534
535	return wakeref;
536}
537
538/**
539 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
540 * @dev_priv: i915 device instance
541 * @domain: power domain to reference
542 *
543 * This function grabs a power domain reference for @domain and ensures that the
544 * power domain and all its parents are powered up. Therefore users should only
545 * grab a reference to the innermost power domain they need.
546 *
547 * Any power domain reference obtained by this function must have a symmetric
548 * call to intel_display_power_put() to release the reference again.
549 */
550intel_wakeref_t
551intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
552				   enum intel_display_power_domain domain)
553{
554	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
555	intel_wakeref_t wakeref;
556	bool is_enabled;
557
558	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
559	if (!wakeref)
560		return false;
561
562	mutex_lock(&power_domains->lock);
563
564	if (__intel_display_power_is_enabled(dev_priv, domain)) {
565		__intel_display_power_get_domain(dev_priv, domain);
566		is_enabled = true;
567	} else {
568		is_enabled = false;
569	}
570
571	mutex_unlock(&power_domains->lock);
572
573	if (!is_enabled) {
574		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
575		wakeref = 0;
576	}
577
578	return wakeref;
579}
580
581static void
582__intel_display_power_put_domain(struct drm_i915_private *dev_priv,
583				 enum intel_display_power_domain domain)
584{
585	struct i915_power_domains *power_domains;
586	struct i915_power_well *power_well;
587	const char *name = intel_display_power_domain_str(domain);
588	struct intel_power_domain_mask async_put_mask;
589
590	power_domains = &dev_priv->display.power.domains;
591
592	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
593		 "Use count on domain %s is already zero\n",
594		 name);
595	async_put_domains_mask(power_domains, &async_put_mask);
596	drm_WARN(&dev_priv->drm,
597		 test_bit(domain, async_put_mask.bits),
598		 "Async disabling of domain %s is pending\n",
599		 name);
600
601	power_domains->domain_use_count[domain]--;
602
603	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
604		intel_power_well_put(dev_priv, power_well);
605}
606
607static void __intel_display_power_put(struct drm_i915_private *dev_priv,
608				      enum intel_display_power_domain domain)
609{
610	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
611
612	mutex_lock(&power_domains->lock);
613	__intel_display_power_put_domain(dev_priv, domain);
614	mutex_unlock(&power_domains->lock);
615}
616
617static void
618queue_async_put_domains_work(struct i915_power_domains *power_domains,
619			     intel_wakeref_t wakeref,
620			     int delay_ms)
621{
622	struct drm_i915_private *i915 = container_of(power_domains,
623						     struct drm_i915_private,
624						     display.power.domains);
625	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
626	power_domains->async_put_wakeref = wakeref;
627	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
628						    &power_domains->async_put_work,
629						    msecs_to_jiffies(delay_ms)));
630}
631
632static void
633release_async_put_domains(struct i915_power_domains *power_domains,
634			  struct intel_power_domain_mask *mask)
635{
636	struct drm_i915_private *dev_priv =
637		container_of(power_domains, struct drm_i915_private,
638			     display.power.domains);
639	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
640	enum intel_display_power_domain domain;
641	intel_wakeref_t wakeref;
642
643	/*
644	 * The caller must hold already raw wakeref, upgrade that to a proper
645	 * wakeref to make the state checker happy about the HW access during
646	 * power well disabling.
647	 */
648	assert_rpm_raw_wakeref_held(rpm);
649	wakeref = intel_runtime_pm_get(rpm);
650
651	for_each_power_domain(domain, mask) {
652		/* Clear before put, so put's sanity check is happy. */
653		async_put_domains_clear_domain(power_domains, domain);
654		__intel_display_power_put_domain(dev_priv, domain);
655	}
656
657	intel_runtime_pm_put(rpm, wakeref);
658}
659
660static void
661intel_display_power_put_async_work(struct work_struct *work)
662{
663	struct drm_i915_private *dev_priv =
664		container_of(work, struct drm_i915_private,
665			     display.power.domains.async_put_work.work);
666	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
667	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
668	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
669	intel_wakeref_t old_work_wakeref = 0;
670
671	mutex_lock(&power_domains->lock);
672
673	/*
674	 * Bail out if all the domain refs pending to be released were grabbed
675	 * by subsequent gets or a flush_work.
676	 */
677	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
678	if (!old_work_wakeref)
679		goto out_verify;
680
681	release_async_put_domains(power_domains,
682				  &power_domains->async_put_domains[0]);
683
684	/* Requeue the work if more domains were async put meanwhile. */
685	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
686		bitmap_copy(power_domains->async_put_domains[0].bits,
687			    power_domains->async_put_domains[1].bits,
688			    POWER_DOMAIN_NUM);
689		bitmap_zero(power_domains->async_put_domains[1].bits,
690			    POWER_DOMAIN_NUM);
691		queue_async_put_domains_work(power_domains,
692					     fetch_and_zero(&new_work_wakeref),
693					     power_domains->async_put_next_delay);
694		power_domains->async_put_next_delay = 0;
695	} else {
696		/*
697		 * Cancel the work that got queued after this one got dequeued,
698		 * since here we released the corresponding async-put reference.
699		 */
700		cancel_async_put_work(power_domains, false);
701	}
702
703out_verify:
704	verify_async_put_domains_state(power_domains);
705
706	mutex_unlock(&power_domains->lock);
707
708	if (old_work_wakeref)
709		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
710	if (new_work_wakeref)
711		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
712}
713
714/**
715 * __intel_display_power_put_async - release a power domain reference asynchronously
716 * @i915: i915 device instance
717 * @domain: power domain to reference
718 * @wakeref: wakeref acquired for the reference that is being released
719 * @delay_ms: delay of powering down the power domain
720 *
721 * This function drops the power domain reference obtained by
722 * intel_display_power_get*() and schedules a work to power down the
723 * corresponding hardware block if this is the last reference.
724 * The power down is delayed by @delay_ms if this is >= 0, or by a default
725 * 100 ms otherwise.
726 */
727void __intel_display_power_put_async(struct drm_i915_private *i915,
728				     enum intel_display_power_domain domain,
729				     intel_wakeref_t wakeref,
730				     int delay_ms)
731{
732	struct i915_power_domains *power_domains = &i915->display.power.domains;
733	struct intel_runtime_pm *rpm = &i915->runtime_pm;
734	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
735
736	delay_ms = delay_ms >= 0 ? delay_ms : 100;
737
738	mutex_lock(&power_domains->lock);
739
740	if (power_domains->domain_use_count[domain] > 1) {
741		__intel_display_power_put_domain(i915, domain);
742
743		goto out_verify;
744	}
745
746	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
747
748	/* Let a pending work requeue itself or queue a new one. */
749	if (power_domains->async_put_wakeref) {
750		set_bit(domain, power_domains->async_put_domains[1].bits);
751		power_domains->async_put_next_delay = max(power_domains->async_put_next_delay,
752							  delay_ms);
753	} else {
754		set_bit(domain, power_domains->async_put_domains[0].bits);
755		queue_async_put_domains_work(power_domains,
756					     fetch_and_zero(&work_wakeref),
757					     delay_ms);
758	}
759
760out_verify:
761	verify_async_put_domains_state(power_domains);
762
763	mutex_unlock(&power_domains->lock);
764
765	if (work_wakeref)
766		intel_runtime_pm_put_raw(rpm, work_wakeref);
767
768	intel_runtime_pm_put(rpm, wakeref);
769}
770
771/**
772 * intel_display_power_flush_work - flushes the async display power disabling work
773 * @i915: i915 device instance
774 *
775 * Flushes any pending work that was scheduled by a preceding
776 * intel_display_power_put_async() call, completing the disabling of the
777 * corresponding power domains.
778 *
779 * Note that the work handler function may still be running after this
780 * function returns; to ensure that the work handler isn't running use
781 * intel_display_power_flush_work_sync() instead.
782 */
783void intel_display_power_flush_work(struct drm_i915_private *i915)
784{
785	struct i915_power_domains *power_domains = &i915->display.power.domains;
786	struct intel_power_domain_mask async_put_mask;
787	intel_wakeref_t work_wakeref;
788
789	mutex_lock(&power_domains->lock);
790
791	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
792	if (!work_wakeref)
793		goto out_verify;
794
795	async_put_domains_mask(power_domains, &async_put_mask);
796	release_async_put_domains(power_domains, &async_put_mask);
797	cancel_async_put_work(power_domains, false);
798
799out_verify:
800	verify_async_put_domains_state(power_domains);
801
802	mutex_unlock(&power_domains->lock);
803
804	if (work_wakeref)
805		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
806}
807
808/**
809 * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
810 * @i915: i915 device instance
811 *
812 * Like intel_display_power_flush_work(), but also ensure that the work
813 * handler function is not running any more when this function returns.
814 */
815static void
816intel_display_power_flush_work_sync(struct drm_i915_private *i915)
817{
818	struct i915_power_domains *power_domains = &i915->display.power.domains;
819
820	intel_display_power_flush_work(i915);
821	cancel_async_put_work(power_domains, true);
822
823	verify_async_put_domains_state(power_domains);
824
825	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
826}
827
828#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
829/**
830 * intel_display_power_put - release a power domain reference
831 * @dev_priv: i915 device instance
832 * @domain: power domain to reference
833 * @wakeref: wakeref acquired for the reference that is being released
834 *
835 * This function drops the power domain reference obtained by
836 * intel_display_power_get() and might power down the corresponding hardware
837 * block right away if this is the last reference.
838 */
839void intel_display_power_put(struct drm_i915_private *dev_priv,
840			     enum intel_display_power_domain domain,
841			     intel_wakeref_t wakeref)
842{
843	__intel_display_power_put(dev_priv, domain);
844	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
845}
846#else
847/**
848 * intel_display_power_put_unchecked - release an unchecked power domain reference
849 * @dev_priv: i915 device instance
850 * @domain: power domain to reference
851 *
852 * This function drops the power domain reference obtained by
853 * intel_display_power_get() and might power down the corresponding hardware
854 * block right away if this is the last reference.
855 *
856 * This function is only for the power domain code's internal use to suppress wakeref
857 * tracking when the correspondig debug kconfig option is disabled, should not
858 * be used otherwise.
859 */
860void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
861				       enum intel_display_power_domain domain)
862{
863	__intel_display_power_put(dev_priv, domain);
864	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
865}
866#endif
867
868void
869intel_display_power_get_in_set(struct drm_i915_private *i915,
870			       struct intel_display_power_domain_set *power_domain_set,
871			       enum intel_display_power_domain domain)
872{
873	intel_wakeref_t __maybe_unused wf;
874
875	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
876
877	wf = intel_display_power_get(i915, domain);
878#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
879	power_domain_set->wakerefs[domain] = wf;
880#endif
881	set_bit(domain, power_domain_set->mask.bits);
882}
883
884bool
885intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
886					  struct intel_display_power_domain_set *power_domain_set,
887					  enum intel_display_power_domain domain)
888{
889	intel_wakeref_t wf;
890
891	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
892
893	wf = intel_display_power_get_if_enabled(i915, domain);
894	if (!wf)
895		return false;
896
897#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
898	power_domain_set->wakerefs[domain] = wf;
899#endif
900	set_bit(domain, power_domain_set->mask.bits);
901
902	return true;
903}
904
905void
906intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
907				    struct intel_display_power_domain_set *power_domain_set,
908				    struct intel_power_domain_mask *mask)
909{
910	enum intel_display_power_domain domain;
911
912	drm_WARN_ON(&i915->drm,
913		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
914
915	for_each_power_domain(domain, mask) {
916		intel_wakeref_t __maybe_unused wf = -1;
917
918#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
919		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
920#endif
921		intel_display_power_put(i915, domain, wf);
922		clear_bit(domain, power_domain_set->mask.bits);
923	}
924}
925
926static int
927sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
928				   int disable_power_well)
929{
930	if (disable_power_well >= 0)
931		return !!disable_power_well;
932
933	return 1;
934}
935
936static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
937			       int enable_dc)
938{
939	u32 mask;
940	int requested_dc;
941	int max_dc;
942
943	if (!HAS_DISPLAY(dev_priv))
944		return 0;
945
946	if (DISPLAY_VER(dev_priv) >= 20)
947		max_dc = 2;
948	else if (IS_DG2(dev_priv))
949		max_dc = 1;
950	else if (IS_DG1(dev_priv))
951		max_dc = 3;
952	else if (DISPLAY_VER(dev_priv) >= 12)
953		max_dc = 4;
954	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
955		max_dc = 1;
956	else if (DISPLAY_VER(dev_priv) >= 9)
957		max_dc = 2;
958	else
959		max_dc = 0;
960
961	/*
962	 * DC9 has a separate HW flow from the rest of the DC states,
963	 * not depending on the DMC firmware. It's needed by system
964	 * suspend/resume, so allow it unconditionally.
965	 */
966	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
967		DISPLAY_VER(dev_priv) >= 11 ?
968	       DC_STATE_EN_DC9 : 0;
969
970	if (!dev_priv->display.params.disable_power_well)
971		max_dc = 0;
972
973	if (enable_dc >= 0 && enable_dc <= max_dc) {
974		requested_dc = enable_dc;
975	} else if (enable_dc == -1) {
976		requested_dc = max_dc;
977	} else if (enable_dc > max_dc && enable_dc <= 4) {
978		drm_dbg_kms(&dev_priv->drm,
979			    "Adjusting requested max DC state (%d->%d)\n",
980			    enable_dc, max_dc);
981		requested_dc = max_dc;
982	} else {
983		drm_err(&dev_priv->drm,
984			"Unexpected value for enable_dc (%d)\n", enable_dc);
985		requested_dc = max_dc;
986	}
987
988	switch (requested_dc) {
989	case 4:
990		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
991		break;
992	case 3:
993		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
994		break;
995	case 2:
996		mask |= DC_STATE_EN_UPTO_DC6;
997		break;
998	case 1:
999		mask |= DC_STATE_EN_UPTO_DC5;
1000		break;
1001	}
1002
1003	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
1004
1005	return mask;
1006}
1007
1008/**
1009 * intel_power_domains_init - initializes the power domain structures
1010 * @dev_priv: i915 device instance
1011 *
1012 * Initializes the power domain structures for @dev_priv depending upon the
1013 * supported platform.
1014 */
1015int intel_power_domains_init(struct drm_i915_private *dev_priv)
1016{
1017	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1018
1019	dev_priv->display.params.disable_power_well =
1020		sanitize_disable_power_well_option(dev_priv,
1021						   dev_priv->display.params.disable_power_well);
1022	power_domains->allowed_dc_mask =
1023		get_allowed_dc_mask(dev_priv, dev_priv->display.params.enable_dc);
1024
1025	power_domains->target_dc_state =
1026		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
1027
1028	mutex_init(&power_domains->lock);
1029
1030	INIT_DELAYED_WORK(&power_domains->async_put_work,
1031			  intel_display_power_put_async_work);
1032
1033	return intel_display_power_map_init(power_domains);
1034}
1035
1036/**
1037 * intel_power_domains_cleanup - clean up power domains resources
1038 * @dev_priv: i915 device instance
1039 *
1040 * Release any resources acquired by intel_power_domains_init()
1041 */
1042void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1043{
1044	intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1045}
1046
1047static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1048{
1049	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1050	struct i915_power_well *power_well;
1051
1052	mutex_lock(&power_domains->lock);
1053	for_each_power_well(dev_priv, power_well)
1054		intel_power_well_sync_hw(dev_priv, power_well);
1055	mutex_unlock(&power_domains->lock);
1056}
1057
1058static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1059				enum dbuf_slice slice, bool enable)
1060{
1061	i915_reg_t reg = DBUF_CTL_S(slice);
1062	bool state;
1063
1064	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1065		     enable ? DBUF_POWER_REQUEST : 0);
1066	intel_de_posting_read(dev_priv, reg);
1067	udelay(10);
1068
1069	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1070	drm_WARN(&dev_priv->drm, enable != state,
1071		 "DBuf slice %d power %s timeout!\n",
1072		 slice, str_enable_disable(enable));
1073}
1074
1075void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1076			     u8 req_slices)
1077{
1078	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1079	u8 slice_mask = DISPLAY_INFO(dev_priv)->dbuf.slice_mask;
1080	enum dbuf_slice slice;
1081
1082	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1083		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1084		 req_slices, slice_mask);
1085
1086	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1087		    req_slices);
1088
1089	/*
1090	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1091	 * being called from intel_dp_detect for instance,
1092	 * which causes assertion triggered by race condition,
1093	 * as gen9_assert_dbuf_enabled might preempt this when registers
1094	 * were already updated, while dev_priv was not.
1095	 */
1096	mutex_lock(&power_domains->lock);
1097
1098	for_each_dbuf_slice(dev_priv, slice)
1099		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1100
1101	dev_priv->display.dbuf.enabled_slices = req_slices;
1102
1103	mutex_unlock(&power_domains->lock);
1104}
1105
1106static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1107{
1108	u8 slices_mask;
1109
1110	dev_priv->display.dbuf.enabled_slices =
1111		intel_enabled_dbuf_slices_mask(dev_priv);
1112
1113	slices_mask = BIT(DBUF_S1) | dev_priv->display.dbuf.enabled_slices;
1114
1115	if (DISPLAY_VER(dev_priv) >= 14)
1116		intel_pmdemand_program_dbuf(dev_priv, slices_mask);
1117
1118	/*
1119	 * Just power up at least 1 slice, we will
1120	 * figure out later which slices we have and what we need.
1121	 */
1122	gen9_dbuf_slices_update(dev_priv, slices_mask);
1123}
1124
1125static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1126{
1127	gen9_dbuf_slices_update(dev_priv, 0);
1128
1129	if (DISPLAY_VER(dev_priv) >= 14)
1130		intel_pmdemand_program_dbuf(dev_priv, 0);
1131}
1132
1133static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1134{
1135	enum dbuf_slice slice;
1136
1137	if (IS_ALDERLAKE_P(dev_priv))
1138		return;
1139
1140	for_each_dbuf_slice(dev_priv, slice)
1141		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1142			     DBUF_TRACKER_STATE_SERVICE_MASK,
1143			     DBUF_TRACKER_STATE_SERVICE(8));
1144}
1145
1146static void icl_mbus_init(struct drm_i915_private *dev_priv)
1147{
1148	unsigned long abox_regs = DISPLAY_INFO(dev_priv)->abox_mask;
1149	u32 mask, val, i;
1150
1151	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1152		return;
1153
1154	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1155		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1156		MBUS_ABOX_B_CREDIT_MASK |
1157		MBUS_ABOX_BW_CREDIT_MASK;
1158	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1159		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1160		MBUS_ABOX_B_CREDIT(1) |
1161		MBUS_ABOX_BW_CREDIT(1);
1162
1163	/*
1164	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1165	 * expect us to program the abox_ctl0 register as well, even though
1166	 * we don't have to program other instance-0 registers like BW_BUDDY.
1167	 */
1168	if (DISPLAY_VER(dev_priv) == 12)
1169		abox_regs |= BIT(0);
1170
1171	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1172		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1173}
1174
1175static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1176{
1177	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1178
1179	/*
1180	 * The LCPLL register should be turned on by the BIOS. For now
1181	 * let's just check its state and print errors in case
1182	 * something is wrong.  Don't even try to turn it on.
1183	 */
1184
1185	if (val & LCPLL_CD_SOURCE_FCLK)
1186		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1187
1188	if (val & LCPLL_PLL_DISABLE)
1189		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1190
1191	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1192		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1193}
1194
1195static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1196{
1197	struct intel_crtc *crtc;
1198
1199	for_each_intel_crtc(&dev_priv->drm, crtc)
1200		I915_STATE_WARN(dev_priv, crtc->active,
1201				"CRTC for pipe %c enabled\n",
1202				pipe_name(crtc->pipe));
1203
1204	I915_STATE_WARN(dev_priv, intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1205			"Display power well on\n");
1206	I915_STATE_WARN(dev_priv,
1207			intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1208			"SPLL enabled\n");
1209	I915_STATE_WARN(dev_priv,
1210			intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1211			"WRPLL1 enabled\n");
1212	I915_STATE_WARN(dev_priv,
1213			intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1214			"WRPLL2 enabled\n");
1215	I915_STATE_WARN(dev_priv,
1216			intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1217			"Panel power on\n");
1218	I915_STATE_WARN(dev_priv,
1219			intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1220			"CPU PWM1 enabled\n");
1221	if (IS_HASWELL(dev_priv))
1222		I915_STATE_WARN(dev_priv,
1223				intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1224				"CPU PWM2 enabled\n");
1225	I915_STATE_WARN(dev_priv,
1226			intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1227			"PCH PWM1 enabled\n");
1228	I915_STATE_WARN(dev_priv,
1229			(intel_de_read(dev_priv, UTIL_PIN_CTL) & (UTIL_PIN_ENABLE | UTIL_PIN_MODE_MASK)) == (UTIL_PIN_ENABLE | UTIL_PIN_MODE_PWM),
1230			"Utility pin enabled in PWM mode\n");
1231	I915_STATE_WARN(dev_priv,
1232			intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1233			"PCH GTC enabled\n");
1234
1235	/*
1236	 * In theory we can still leave IRQs enabled, as long as only the HPD
1237	 * interrupts remain enabled. We used to check for that, but since it's
1238	 * gen-specific and since we only disable LCPLL after we fully disable
1239	 * the interrupts, the check below should be enough.
1240	 */
1241	I915_STATE_WARN(dev_priv, intel_irqs_enabled(dev_priv),
1242			"IRQs enabled\n");
1243}
1244
1245static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1246{
1247	if (IS_HASWELL(dev_priv))
1248		return intel_de_read(dev_priv, D_COMP_HSW);
1249	else
1250		return intel_de_read(dev_priv, D_COMP_BDW);
1251}
1252
1253static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1254{
1255	if (IS_HASWELL(dev_priv)) {
1256		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1257			drm_dbg_kms(&dev_priv->drm,
1258				    "Failed to write to D_COMP\n");
1259	} else {
1260		intel_de_write(dev_priv, D_COMP_BDW, val);
1261		intel_de_posting_read(dev_priv, D_COMP_BDW);
1262	}
1263}
1264
1265/*
1266 * This function implements pieces of two sequences from BSpec:
1267 * - Sequence for display software to disable LCPLL
1268 * - Sequence for display software to allow package C8+
1269 * The steps implemented here are just the steps that actually touch the LCPLL
1270 * register. Callers should take care of disabling all the display engine
1271 * functions, doing the mode unset, fixing interrupts, etc.
1272 */
1273static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1274			      bool switch_to_fclk, bool allow_power_down)
1275{
1276	u32 val;
1277
1278	assert_can_disable_lcpll(dev_priv);
1279
1280	val = intel_de_read(dev_priv, LCPLL_CTL);
1281
1282	if (switch_to_fclk) {
1283		val |= LCPLL_CD_SOURCE_FCLK;
1284		intel_de_write(dev_priv, LCPLL_CTL, val);
1285
1286		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1287				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1288			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1289
1290		val = intel_de_read(dev_priv, LCPLL_CTL);
1291	}
1292
1293	val |= LCPLL_PLL_DISABLE;
1294	intel_de_write(dev_priv, LCPLL_CTL, val);
1295	intel_de_posting_read(dev_priv, LCPLL_CTL);
1296
1297	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1298		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1299
1300	val = hsw_read_dcomp(dev_priv);
1301	val |= D_COMP_COMP_DISABLE;
1302	hsw_write_dcomp(dev_priv, val);
1303	ndelay(100);
1304
1305	if (wait_for((hsw_read_dcomp(dev_priv) &
1306		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1307		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1308
1309	if (allow_power_down) {
1310		intel_de_rmw(dev_priv, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW);
1311		intel_de_posting_read(dev_priv, LCPLL_CTL);
1312	}
1313}
1314
1315/*
1316 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1317 * source.
1318 */
1319static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1320{
1321	u32 val;
1322
1323	val = intel_de_read(dev_priv, LCPLL_CTL);
1324
1325	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1326		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1327		return;
1328
1329	/*
1330	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1331	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1332	 */
1333	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1334
1335	if (val & LCPLL_POWER_DOWN_ALLOW) {
1336		val &= ~LCPLL_POWER_DOWN_ALLOW;
1337		intel_de_write(dev_priv, LCPLL_CTL, val);
1338		intel_de_posting_read(dev_priv, LCPLL_CTL);
1339	}
1340
1341	val = hsw_read_dcomp(dev_priv);
1342	val |= D_COMP_COMP_FORCE;
1343	val &= ~D_COMP_COMP_DISABLE;
1344	hsw_write_dcomp(dev_priv, val);
1345
1346	val = intel_de_read(dev_priv, LCPLL_CTL);
1347	val &= ~LCPLL_PLL_DISABLE;
1348	intel_de_write(dev_priv, LCPLL_CTL, val);
1349
1350	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1351		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1352
1353	if (val & LCPLL_CD_SOURCE_FCLK) {
1354		intel_de_rmw(dev_priv, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0);
1355
1356		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1357				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1358			drm_err(&dev_priv->drm,
1359				"Switching back to LCPLL failed\n");
1360	}
1361
1362	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1363
1364	intel_update_cdclk(dev_priv);
1365	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1366}
1367
1368/*
1369 * Package states C8 and deeper are really deep PC states that can only be
1370 * reached when all the devices on the system allow it, so even if the graphics
1371 * device allows PC8+, it doesn't mean the system will actually get to these
1372 * states. Our driver only allows PC8+ when going into runtime PM.
1373 *
1374 * The requirements for PC8+ are that all the outputs are disabled, the power
1375 * well is disabled and most interrupts are disabled, and these are also
1376 * requirements for runtime PM. When these conditions are met, we manually do
1377 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1378 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1379 * hang the machine.
1380 *
1381 * When we really reach PC8 or deeper states (not just when we allow it) we lose
1382 * the state of some registers, so when we come back from PC8+ we need to
1383 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1384 * need to take care of the registers kept by RC6. Notice that this happens even
1385 * if we don't put the device in PCI D3 state (which is what currently happens
1386 * because of the runtime PM support).
1387 *
1388 * For more, read "Display Sequences for Package C8" on the hardware
1389 * documentation.
1390 */
1391static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1392{
1393	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1394
1395	if (HAS_PCH_LPT_LP(dev_priv))
1396		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1397			     PCH_LP_PARTITION_LEVEL_DISABLE, 0);
1398
1399	lpt_disable_clkout_dp(dev_priv);
1400	hsw_disable_lcpll(dev_priv, true, true);
1401}
1402
1403static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1404{
1405	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1406
1407	hsw_restore_lcpll(dev_priv);
1408	intel_init_pch_refclk(dev_priv);
1409
1410	/* Many display registers don't survive PC8+ */
1411	intel_clock_gating_init(dev_priv);
1412}
1413
1414static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1415				      bool enable)
1416{
1417	i915_reg_t reg;
1418	u32 reset_bits;
1419
1420	if (IS_IVYBRIDGE(dev_priv)) {
1421		reg = GEN7_MSG_CTL;
1422		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1423	} else {
1424		reg = HSW_NDE_RSTWRN_OPT;
1425		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1426	}
1427
1428	if (DISPLAY_VER(dev_priv) >= 14)
1429		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1430
1431	intel_de_rmw(dev_priv, reg, reset_bits, enable ? reset_bits : 0);
1432}
1433
1434static void skl_display_core_init(struct drm_i915_private *dev_priv,
1435				  bool resume)
1436{
1437	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1438	struct i915_power_well *well;
1439
1440	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1441
1442	/* enable PCH reset handshake */
1443	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1444
1445	if (!HAS_DISPLAY(dev_priv))
1446		return;
1447
1448	/* enable PG1 and Misc I/O */
1449	mutex_lock(&power_domains->lock);
1450
1451	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1452	intel_power_well_enable(dev_priv, well);
1453
1454	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1455	intel_power_well_enable(dev_priv, well);
1456
1457	mutex_unlock(&power_domains->lock);
1458
1459	intel_cdclk_init_hw(dev_priv);
1460
1461	gen9_dbuf_enable(dev_priv);
1462
1463	if (resume)
1464		intel_dmc_load_program(dev_priv);
1465}
1466
1467static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1468{
1469	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1470	struct i915_power_well *well;
1471
1472	if (!HAS_DISPLAY(dev_priv))
1473		return;
1474
1475	gen9_disable_dc_states(dev_priv);
1476	/* TODO: disable DMC program */
1477
1478	gen9_dbuf_disable(dev_priv);
1479
1480	intel_cdclk_uninit_hw(dev_priv);
1481
1482	/* The spec doesn't call for removing the reset handshake flag */
1483	/* disable PG1 and Misc I/O */
1484
1485	mutex_lock(&power_domains->lock);
1486
1487	/*
1488	 * BSpec says to keep the MISC IO power well enabled here, only
1489	 * remove our request for power well 1.
1490	 * Note that even though the driver's request is removed power well 1
1491	 * may stay enabled after this due to DMC's own request on it.
1492	 */
1493	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1494	intel_power_well_disable(dev_priv, well);
1495
1496	mutex_unlock(&power_domains->lock);
1497
1498	usleep_range(10, 30);		/* 10 us delay per Bspec */
1499}
1500
1501static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1502{
1503	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1504	struct i915_power_well *well;
1505
1506	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1507
1508	/*
1509	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1510	 * or else the reset will hang because there is no PCH to respond.
1511	 * Move the handshake programming to initialization sequence.
1512	 * Previously was left up to BIOS.
1513	 */
1514	intel_pch_reset_handshake(dev_priv, false);
1515
1516	if (!HAS_DISPLAY(dev_priv))
1517		return;
1518
1519	/* Enable PG1 */
1520	mutex_lock(&power_domains->lock);
1521
1522	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1523	intel_power_well_enable(dev_priv, well);
1524
1525	mutex_unlock(&power_domains->lock);
1526
1527	intel_cdclk_init_hw(dev_priv);
1528
1529	gen9_dbuf_enable(dev_priv);
1530
1531	if (resume)
1532		intel_dmc_load_program(dev_priv);
1533}
1534
1535static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1536{
1537	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1538	struct i915_power_well *well;
1539
1540	if (!HAS_DISPLAY(dev_priv))
1541		return;
1542
1543	gen9_disable_dc_states(dev_priv);
1544	/* TODO: disable DMC program */
1545
1546	gen9_dbuf_disable(dev_priv);
1547
1548	intel_cdclk_uninit_hw(dev_priv);
1549
1550	/* The spec doesn't call for removing the reset handshake flag */
1551
1552	/*
1553	 * Disable PW1 (PG1).
1554	 * Note that even though the driver's request is removed power well 1
1555	 * may stay enabled after this due to DMC's own request on it.
1556	 */
1557	mutex_lock(&power_domains->lock);
1558
1559	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1560	intel_power_well_disable(dev_priv, well);
1561
1562	mutex_unlock(&power_domains->lock);
1563
1564	usleep_range(10, 30);		/* 10 us delay per Bspec */
1565}
1566
1567struct buddy_page_mask {
1568	u32 page_mask;
1569	u8 type;
1570	u8 num_channels;
1571};
1572
1573static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1574	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1575	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1576	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1577	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1578	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1579	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1580	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1581	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1582	{}
1583};
1584
1585static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1586	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1587	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1588	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1589	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1590	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1591	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1592	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1593	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1594	{}
1595};
1596
1597static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1598{
1599	enum intel_dram_type type = dev_priv->dram_info.type;
1600	u8 num_channels = dev_priv->dram_info.num_channels;
1601	const struct buddy_page_mask *table;
1602	unsigned long abox_mask = DISPLAY_INFO(dev_priv)->abox_mask;
1603	int config, i;
1604
1605	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1606	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1607		return;
1608
1609	if (IS_ALDERLAKE_S(dev_priv) ||
1610	    (IS_ROCKETLAKE(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)))
1611		/* Wa_1409767108 */
1612		table = wa_1409767108_buddy_page_masks;
1613	else
1614		table = tgl_buddy_page_masks;
1615
1616	for (config = 0; table[config].page_mask != 0; config++)
1617		if (table[config].num_channels == num_channels &&
1618		    table[config].type == type)
1619			break;
1620
1621	if (table[config].page_mask == 0) {
1622		drm_dbg(&dev_priv->drm,
1623			"Unknown memory configuration; disabling address buddy logic.\n");
1624		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1625			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1626				       BW_BUDDY_DISABLE);
1627	} else {
1628		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1629			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1630				       table[config].page_mask);
1631
1632			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1633			if (DISPLAY_VER(dev_priv) == 12)
1634				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1635					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1636					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1637		}
1638	}
1639}
1640
1641static void icl_display_core_init(struct drm_i915_private *dev_priv,
1642				  bool resume)
1643{
1644	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1645	struct i915_power_well *well;
1646
1647	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1648
1649	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1650	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1651	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1652		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1653			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1654
1655	/* 1. Enable PCH reset handshake. */
1656	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1657
1658	if (!HAS_DISPLAY(dev_priv))
1659		return;
1660
1661	/* 2. Initialize all combo phys */
1662	intel_combo_phy_init(dev_priv);
1663
1664	/*
1665	 * 3. Enable Power Well 1 (PG1).
1666	 *    The AUX IO power wells will be enabled on demand.
1667	 */
1668	mutex_lock(&power_domains->lock);
1669	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1670	intel_power_well_enable(dev_priv, well);
1671	mutex_unlock(&power_domains->lock);
1672
1673	if (DISPLAY_VER(dev_priv) == 14)
1674		intel_de_rmw(dev_priv, DC_STATE_EN,
1675			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH, 0);
1676
1677	/* 4. Enable CDCLK. */
1678	intel_cdclk_init_hw(dev_priv);
1679
1680	if (DISPLAY_VER(dev_priv) >= 12)
1681		gen12_dbuf_slices_config(dev_priv);
1682
1683	/* 5. Enable DBUF. */
1684	gen9_dbuf_enable(dev_priv);
1685
1686	/* 6. Setup MBUS. */
1687	icl_mbus_init(dev_priv);
1688
1689	/* 7. Program arbiter BW_BUDDY registers */
1690	if (DISPLAY_VER(dev_priv) >= 12)
1691		tgl_bw_buddy_init(dev_priv);
1692
1693	/* 8. Ensure PHYs have completed calibration and adaptation */
1694	if (IS_DG2(dev_priv))
1695		intel_snps_phy_wait_for_calibration(dev_priv);
1696
1697	if (resume)
1698		intel_dmc_load_program(dev_priv);
1699
1700	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p,dg2 */
1701	if (IS_DISPLAY_IP_RANGE(dev_priv, IP_VER(12, 0), IP_VER(13, 0)))
1702		intel_de_rmw(dev_priv, GEN11_CHICKEN_DCPR_2, 0,
1703			     DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1704			     DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR);
1705
1706	/* Wa_14011503030:xelpd */
1707	if (DISPLAY_VER(dev_priv) == 13)
1708		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1709}
1710
1711static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1712{
1713	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1714	struct i915_power_well *well;
1715
1716	if (!HAS_DISPLAY(dev_priv))
1717		return;
1718
1719	gen9_disable_dc_states(dev_priv);
1720	intel_dmc_disable_program(dev_priv);
1721
1722	/* 1. Disable all display engine functions -> aready done */
1723
1724	/* 2. Disable DBUF */
1725	gen9_dbuf_disable(dev_priv);
1726
1727	/* 3. Disable CD clock */
1728	intel_cdclk_uninit_hw(dev_priv);
1729
1730	if (DISPLAY_VER(dev_priv) == 14)
1731		intel_de_rmw(dev_priv, DC_STATE_EN, 0,
1732			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH);
1733
1734	/*
1735	 * 4. Disable Power Well 1 (PG1).
1736	 *    The AUX IO power wells are toggled on demand, so they are already
1737	 *    disabled at this point.
1738	 */
1739	mutex_lock(&power_domains->lock);
1740	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1741	intel_power_well_disable(dev_priv, well);
1742	mutex_unlock(&power_domains->lock);
1743
1744	/* 5. */
1745	intel_combo_phy_uninit(dev_priv);
1746}
1747
1748static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1749{
1750	struct i915_power_well *cmn_bc =
1751		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1752	struct i915_power_well *cmn_d =
1753		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1754
1755	/*
1756	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1757	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1758	 * instead maintain a shadow copy ourselves. Use the actual
1759	 * power well state and lane status to reconstruct the
1760	 * expected initial value.
1761	 */
1762	dev_priv->display.power.chv_phy_control =
1763		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1764		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1765		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1766		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1767		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1768
1769	/*
1770	 * If all lanes are disabled we leave the override disabled
1771	 * with all power down bits cleared to match the state we
1772	 * would use after disabling the port. Otherwise enable the
1773	 * override and set the lane powerdown bits accding to the
1774	 * current lane status.
1775	 */
1776	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1777		u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1778		unsigned int mask;
1779
1780		mask = status & DPLL_PORTB_READY_MASK;
1781		if (mask == 0xf)
1782			mask = 0x0;
1783		else
1784			dev_priv->display.power.chv_phy_control |=
1785				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1786
1787		dev_priv->display.power.chv_phy_control |=
1788			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1789
1790		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1791		if (mask == 0xf)
1792			mask = 0x0;
1793		else
1794			dev_priv->display.power.chv_phy_control |=
1795				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1796
1797		dev_priv->display.power.chv_phy_control |=
1798			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1799
1800		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1801
1802		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1803	} else {
1804		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1805	}
1806
1807	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1808		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1809		unsigned int mask;
1810
1811		mask = status & DPLL_PORTD_READY_MASK;
1812
1813		if (mask == 0xf)
1814			mask = 0x0;
1815		else
1816			dev_priv->display.power.chv_phy_control |=
1817				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1818
1819		dev_priv->display.power.chv_phy_control |=
1820			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1821
1822		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1823
1824		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1825	} else {
1826		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1827	}
1828
1829	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1830		    dev_priv->display.power.chv_phy_control);
1831
1832	/* Defer application of initial phy_control to enabling the powerwell */
1833}
1834
1835static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1836{
1837	struct i915_power_well *cmn =
1838		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1839	struct i915_power_well *disp2d =
1840		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1841
1842	/* If the display might be already active skip this */
1843	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1844	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1845	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1846		return;
1847
1848	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1849
1850	/* cmnlane needs DPLL registers */
1851	intel_power_well_enable(dev_priv, disp2d);
1852
1853	/*
1854	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1855	 * Need to assert and de-assert PHY SB reset by gating the
1856	 * common lane power, then un-gating it.
1857	 * Simply ungating isn't enough to reset the PHY enough to get
1858	 * ports and lanes running.
1859	 */
1860	intel_power_well_disable(dev_priv, cmn);
1861}
1862
1863static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1864{
1865	bool ret;
1866
1867	vlv_punit_get(dev_priv);
1868	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1869	vlv_punit_put(dev_priv);
1870
1871	return ret;
1872}
1873
1874static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1875{
1876	drm_WARN(&dev_priv->drm,
1877		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1878		 "VED not power gated\n");
1879}
1880
1881static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1882{
1883	static const struct pci_device_id isp_ids[] = {
1884		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1885		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1886		{}
1887	};
1888
1889	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1890		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1891		 "ISP not power gated\n");
1892}
1893
1894static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1895
1896/**
1897 * intel_power_domains_init_hw - initialize hardware power domain state
1898 * @i915: i915 device instance
1899 * @resume: Called from resume code paths or not
1900 *
1901 * This function initializes the hardware power domain state and enables all
1902 * power wells belonging to the INIT power domain. Power wells in other
1903 * domains (and not in the INIT domain) are referenced or disabled by
1904 * intel_modeset_readout_hw_state(). After that the reference count of each
1905 * power well must match its HW enabled state, see
1906 * intel_power_domains_verify_state().
1907 *
1908 * It will return with power domains disabled (to be enabled later by
1909 * intel_power_domains_enable()) and must be paired with
1910 * intel_power_domains_driver_remove().
1911 */
1912void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1913{
1914	struct i915_power_domains *power_domains = &i915->display.power.domains;
1915
1916	power_domains->initializing = true;
1917
1918	if (DISPLAY_VER(i915) >= 11) {
1919		icl_display_core_init(i915, resume);
1920	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1921		bxt_display_core_init(i915, resume);
1922	} else if (DISPLAY_VER(i915) == 9) {
1923		skl_display_core_init(i915, resume);
1924	} else if (IS_CHERRYVIEW(i915)) {
1925		mutex_lock(&power_domains->lock);
1926		chv_phy_control_init(i915);
1927		mutex_unlock(&power_domains->lock);
1928		assert_isp_power_gated(i915);
1929	} else if (IS_VALLEYVIEW(i915)) {
1930		mutex_lock(&power_domains->lock);
1931		vlv_cmnlane_wa(i915);
1932		mutex_unlock(&power_domains->lock);
1933		assert_ved_power_gated(i915);
1934		assert_isp_power_gated(i915);
1935	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1936		hsw_assert_cdclk(i915);
1937		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1938	} else if (IS_IVYBRIDGE(i915)) {
1939		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1940	}
1941
1942	/*
1943	 * Keep all power wells enabled for any dependent HW access during
1944	 * initialization and to make sure we keep BIOS enabled display HW
1945	 * resources powered until display HW readout is complete. We drop
1946	 * this reference in intel_power_domains_enable().
1947	 */
1948	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1949	power_domains->init_wakeref =
1950		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1951
1952	/* Disable power support if the user asked so. */
1953	if (!i915->display.params.disable_power_well) {
1954		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1955		i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1956										      POWER_DOMAIN_INIT);
1957	}
1958	intel_power_domains_sync_hw(i915);
1959
1960	power_domains->initializing = false;
1961}
1962
1963/**
1964 * intel_power_domains_driver_remove - deinitialize hw power domain state
1965 * @i915: i915 device instance
1966 *
1967 * De-initializes the display power domain HW state. It also ensures that the
1968 * device stays powered up so that the driver can be reloaded.
1969 *
1970 * It must be called with power domains already disabled (after a call to
1971 * intel_power_domains_disable()) and must be paired with
1972 * intel_power_domains_init_hw().
1973 */
1974void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1975{
1976	intel_wakeref_t wakeref __maybe_unused =
1977		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1978
1979	/* Remove the refcount we took to keep power well support disabled. */
1980	if (!i915->display.params.disable_power_well)
1981		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1982					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1983
1984	intel_display_power_flush_work_sync(i915);
1985
1986	intel_power_domains_verify_state(i915);
1987
1988	/* Keep the power well enabled, but cancel its rpm wakeref. */
1989	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1990}
1991
1992/**
1993 * intel_power_domains_sanitize_state - sanitize power domains state
1994 * @i915: i915 device instance
1995 *
1996 * Sanitize the power domains state during driver loading and system resume.
1997 * The function will disable all display power wells that BIOS has enabled
1998 * without a user for it (any user for a power well has taken a reference
1999 * on it by the time this function is called, after the state of all the
2000 * pipe, encoder, etc. HW resources have been sanitized).
2001 */
2002void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
2003{
2004	struct i915_power_domains *power_domains = &i915->display.power.domains;
2005	struct i915_power_well *power_well;
2006
2007	mutex_lock(&power_domains->lock);
2008
2009	for_each_power_well_reverse(i915, power_well) {
2010		if (power_well->desc->always_on || power_well->count ||
2011		    !intel_power_well_is_enabled(i915, power_well))
2012			continue;
2013
2014		drm_dbg_kms(&i915->drm,
2015			    "BIOS left unused %s power well enabled, disabling it\n",
2016			    intel_power_well_name(power_well));
2017		intel_power_well_disable(i915, power_well);
2018	}
2019
2020	mutex_unlock(&power_domains->lock);
2021}
2022
2023/**
2024 * intel_power_domains_enable - enable toggling of display power wells
2025 * @i915: i915 device instance
2026 *
2027 * Enable the ondemand enabling/disabling of the display power wells. Note that
2028 * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
2029 * only at specific points of the display modeset sequence, thus they are not
2030 * affected by the intel_power_domains_enable()/disable() calls. The purpose
2031 * of these function is to keep the rest of power wells enabled until the end
2032 * of display HW readout (which will acquire the power references reflecting
2033 * the current HW state).
2034 */
2035void intel_power_domains_enable(struct drm_i915_private *i915)
2036{
2037	intel_wakeref_t wakeref __maybe_unused =
2038		fetch_and_zero(&i915->display.power.domains.init_wakeref);
2039
2040	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2041	intel_power_domains_verify_state(i915);
2042}
2043
2044/**
2045 * intel_power_domains_disable - disable toggling of display power wells
2046 * @i915: i915 device instance
2047 *
2048 * Disable the ondemand enabling/disabling of the display power wells. See
2049 * intel_power_domains_enable() for which power wells this call controls.
2050 */
2051void intel_power_domains_disable(struct drm_i915_private *i915)
2052{
2053	struct i915_power_domains *power_domains = &i915->display.power.domains;
2054
2055	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2056	power_domains->init_wakeref =
2057		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2058
2059	intel_power_domains_verify_state(i915);
2060}
2061
2062/**
2063 * intel_power_domains_suspend - suspend power domain state
2064 * @i915: i915 device instance
2065 * @s2idle: specifies whether we go to idle, or deeper sleep
2066 *
2067 * This function prepares the hardware power domain state before entering
2068 * system suspend.
2069 *
2070 * It must be called with power domains already disabled (after a call to
2071 * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2072 */
2073void intel_power_domains_suspend(struct drm_i915_private *i915, bool s2idle)
2074{
2075	struct i915_power_domains *power_domains = &i915->display.power.domains;
2076	intel_wakeref_t wakeref __maybe_unused =
2077		fetch_and_zero(&power_domains->init_wakeref);
2078
2079	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2080
2081	/*
2082	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2083	 * support don't manually deinit the power domains. This also means the
2084	 * DMC firmware will stay active, it will power down any HW
2085	 * resources as required and also enable deeper system power states
2086	 * that would be blocked if the firmware was inactive.
2087	 */
2088	if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) && s2idle &&
2089	    intel_dmc_has_payload(i915)) {
2090		intel_display_power_flush_work(i915);
2091		intel_power_domains_verify_state(i915);
2092		return;
2093	}
2094
2095	/*
2096	 * Even if power well support was disabled we still want to disable
2097	 * power wells if power domains must be deinitialized for suspend.
2098	 */
2099	if (!i915->display.params.disable_power_well)
2100		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2101					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2102
2103	intel_display_power_flush_work(i915);
2104	intel_power_domains_verify_state(i915);
2105
2106	if (DISPLAY_VER(i915) >= 11)
2107		icl_display_core_uninit(i915);
2108	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2109		bxt_display_core_uninit(i915);
2110	else if (DISPLAY_VER(i915) == 9)
2111		skl_display_core_uninit(i915);
2112
2113	power_domains->display_core_suspended = true;
2114}
2115
2116/**
2117 * intel_power_domains_resume - resume power domain state
2118 * @i915: i915 device instance
2119 *
2120 * This function resume the hardware power domain state during system resume.
2121 *
2122 * It will return with power domain support disabled (to be enabled later by
2123 * intel_power_domains_enable()) and must be paired with
2124 * intel_power_domains_suspend().
2125 */
2126void intel_power_domains_resume(struct drm_i915_private *i915)
2127{
2128	struct i915_power_domains *power_domains = &i915->display.power.domains;
2129
2130	if (power_domains->display_core_suspended) {
2131		intel_power_domains_init_hw(i915, true);
2132		power_domains->display_core_suspended = false;
2133	} else {
2134		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2135		power_domains->init_wakeref =
2136			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2137	}
2138
2139	intel_power_domains_verify_state(i915);
2140}
2141
2142#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2143
2144static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2145{
2146	struct i915_power_domains *power_domains = &i915->display.power.domains;
2147	struct i915_power_well *power_well;
2148
2149	for_each_power_well(i915, power_well) {
2150		enum intel_display_power_domain domain;
2151
2152		drm_dbg(&i915->drm, "%-25s %d\n",
2153			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2154
2155		for_each_power_domain(domain, intel_power_well_domains(power_well))
2156			drm_dbg(&i915->drm, "  %-23s %d\n",
2157				intel_display_power_domain_str(domain),
2158				power_domains->domain_use_count[domain]);
2159	}
2160}
2161
2162/**
2163 * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2164 * @i915: i915 device instance
2165 *
2166 * Verify if the reference count of each power well matches its HW enabled
2167 * state and the total refcount of the domains it belongs to. This must be
2168 * called after modeset HW state sanitization, which is responsible for
2169 * acquiring reference counts for any power wells in use and disabling the
2170 * ones left on by BIOS but not required by any active output.
2171 */
2172static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2173{
2174	struct i915_power_domains *power_domains = &i915->display.power.domains;
2175	struct i915_power_well *power_well;
2176	bool dump_domain_info;
2177
2178	mutex_lock(&power_domains->lock);
2179
2180	verify_async_put_domains_state(power_domains);
2181
2182	dump_domain_info = false;
2183	for_each_power_well(i915, power_well) {
2184		enum intel_display_power_domain domain;
2185		int domains_count;
2186		bool enabled;
2187
2188		enabled = intel_power_well_is_enabled(i915, power_well);
2189		if ((intel_power_well_refcount(power_well) ||
2190		     intel_power_well_is_always_on(power_well)) !=
2191		    enabled)
2192			drm_err(&i915->drm,
2193				"power well %s state mismatch (refcount %d/enabled %d)",
2194				intel_power_well_name(power_well),
2195				intel_power_well_refcount(power_well), enabled);
2196
2197		domains_count = 0;
2198		for_each_power_domain(domain, intel_power_well_domains(power_well))
2199			domains_count += power_domains->domain_use_count[domain];
2200
2201		if (intel_power_well_refcount(power_well) != domains_count) {
2202			drm_err(&i915->drm,
2203				"power well %s refcount/domain refcount mismatch "
2204				"(refcount %d/domains refcount %d)\n",
2205				intel_power_well_name(power_well),
2206				intel_power_well_refcount(power_well),
2207				domains_count);
2208			dump_domain_info = true;
2209		}
2210	}
2211
2212	if (dump_domain_info) {
2213		static bool dumped;
2214
2215		if (!dumped) {
2216			intel_power_domains_dump_info(i915);
2217			dumped = true;
2218		}
2219	}
2220
2221	mutex_unlock(&power_domains->lock);
2222}
2223
2224#else
2225
2226static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2227{
2228}
2229
2230#endif
2231
2232void intel_display_power_suspend_late(struct drm_i915_private *i915)
2233{
2234	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2235	    IS_BROXTON(i915)) {
2236		bxt_enable_dc9(i915);
2237	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2238		hsw_enable_pc8(i915);
2239	}
2240
2241	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2242	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2243		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2244}
2245
2246void intel_display_power_resume_early(struct drm_i915_private *i915)
2247{
2248	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2249	    IS_BROXTON(i915)) {
2250		gen9_sanitize_dc_state(i915);
2251		bxt_disable_dc9(i915);
2252	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2253		hsw_disable_pc8(i915);
2254	}
2255
2256	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2257	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2258		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2259}
2260
2261void intel_display_power_suspend(struct drm_i915_private *i915)
2262{
2263	if (DISPLAY_VER(i915) >= 11) {
2264		icl_display_core_uninit(i915);
2265		bxt_enable_dc9(i915);
2266	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2267		bxt_display_core_uninit(i915);
2268		bxt_enable_dc9(i915);
2269	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2270		hsw_enable_pc8(i915);
2271	}
2272}
2273
2274void intel_display_power_resume(struct drm_i915_private *i915)
2275{
2276	struct i915_power_domains *power_domains = &i915->display.power.domains;
2277
2278	if (DISPLAY_VER(i915) >= 11) {
2279		bxt_disable_dc9(i915);
2280		icl_display_core_init(i915, true);
2281		if (intel_dmc_has_payload(i915)) {
2282			if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
2283				skl_enable_dc6(i915);
2284			else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
2285				gen9_enable_dc5(i915);
2286		}
2287	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2288		bxt_disable_dc9(i915);
2289		bxt_display_core_init(i915, true);
2290		if (intel_dmc_has_payload(i915) &&
2291		    (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2292			gen9_enable_dc5(i915);
2293	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2294		hsw_disable_pc8(i915);
2295	}
2296}
2297
2298void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2299{
2300	struct i915_power_domains *power_domains = &i915->display.power.domains;
2301	int i;
2302
2303	mutex_lock(&power_domains->lock);
2304
2305	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2306	for (i = 0; i < power_domains->power_well_count; i++) {
2307		struct i915_power_well *power_well;
2308		enum intel_display_power_domain power_domain;
2309
2310		power_well = &power_domains->power_wells[i];
2311		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2312			   intel_power_well_refcount(power_well));
2313
2314		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2315			seq_printf(m, "  %-23s %d\n",
2316				   intel_display_power_domain_str(power_domain),
2317				   power_domains->domain_use_count[power_domain]);
2318	}
2319
2320	mutex_unlock(&power_domains->lock);
2321}
2322
2323struct intel_ddi_port_domains {
2324	enum port port_start;
2325	enum port port_end;
2326	enum aux_ch aux_ch_start;
2327	enum aux_ch aux_ch_end;
2328
2329	enum intel_display_power_domain ddi_lanes;
2330	enum intel_display_power_domain ddi_io;
2331	enum intel_display_power_domain aux_io;
2332	enum intel_display_power_domain aux_legacy_usbc;
2333	enum intel_display_power_domain aux_tbt;
2334};
2335
2336static const struct intel_ddi_port_domains
2337i9xx_port_domains[] = {
2338	{
2339		.port_start = PORT_A,
2340		.port_end = PORT_F,
2341		.aux_ch_start = AUX_CH_A,
2342		.aux_ch_end = AUX_CH_F,
2343
2344		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2345		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2346		.aux_io = POWER_DOMAIN_AUX_IO_A,
2347		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2348		.aux_tbt = POWER_DOMAIN_INVALID,
2349	},
2350};
2351
2352static const struct intel_ddi_port_domains
2353d11_port_domains[] = {
2354	{
2355		.port_start = PORT_A,
2356		.port_end = PORT_B,
2357		.aux_ch_start = AUX_CH_A,
2358		.aux_ch_end = AUX_CH_B,
2359
2360		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2361		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2362		.aux_io = POWER_DOMAIN_AUX_IO_A,
2363		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2364		.aux_tbt = POWER_DOMAIN_INVALID,
2365	}, {
2366		.port_start = PORT_C,
2367		.port_end = PORT_F,
2368		.aux_ch_start = AUX_CH_C,
2369		.aux_ch_end = AUX_CH_F,
2370
2371		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2372		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2373		.aux_io = POWER_DOMAIN_AUX_IO_C,
2374		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2375		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2376	},
2377};
2378
2379static const struct intel_ddi_port_domains
2380d12_port_domains[] = {
2381	{
2382		.port_start = PORT_A,
2383		.port_end = PORT_C,
2384		.aux_ch_start = AUX_CH_A,
2385		.aux_ch_end = AUX_CH_C,
2386
2387		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2388		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2389		.aux_io = POWER_DOMAIN_AUX_IO_A,
2390		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2391		.aux_tbt = POWER_DOMAIN_INVALID,
2392	}, {
2393		.port_start = PORT_TC1,
2394		.port_end = PORT_TC6,
2395		.aux_ch_start = AUX_CH_USBC1,
2396		.aux_ch_end = AUX_CH_USBC6,
2397
2398		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2399		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2400		.aux_io = POWER_DOMAIN_INVALID,
2401		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2402		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2403	},
2404};
2405
2406static const struct intel_ddi_port_domains
2407d13_port_domains[] = {
2408	{
2409		.port_start = PORT_A,
2410		.port_end = PORT_C,
2411		.aux_ch_start = AUX_CH_A,
2412		.aux_ch_end = AUX_CH_C,
2413
2414		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2415		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2416		.aux_io = POWER_DOMAIN_AUX_IO_A,
2417		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2418		.aux_tbt = POWER_DOMAIN_INVALID,
2419	}, {
2420		.port_start = PORT_TC1,
2421		.port_end = PORT_TC4,
2422		.aux_ch_start = AUX_CH_USBC1,
2423		.aux_ch_end = AUX_CH_USBC4,
2424
2425		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2426		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2427		.aux_io = POWER_DOMAIN_INVALID,
2428		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2429		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2430	}, {
2431		.port_start = PORT_D_XELPD,
2432		.port_end = PORT_E_XELPD,
2433		.aux_ch_start = AUX_CH_D_XELPD,
2434		.aux_ch_end = AUX_CH_E_XELPD,
2435
2436		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2437		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2438		.aux_io = POWER_DOMAIN_AUX_IO_D,
2439		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2440		.aux_tbt = POWER_DOMAIN_INVALID,
2441	},
2442};
2443
2444static void
2445intel_port_domains_for_platform(struct drm_i915_private *i915,
2446				const struct intel_ddi_port_domains **domains,
2447				int *domains_size)
2448{
2449	if (DISPLAY_VER(i915) >= 13) {
2450		*domains = d13_port_domains;
2451		*domains_size = ARRAY_SIZE(d13_port_domains);
2452	} else if (DISPLAY_VER(i915) >= 12) {
2453		*domains = d12_port_domains;
2454		*domains_size = ARRAY_SIZE(d12_port_domains);
2455	} else if (DISPLAY_VER(i915) >= 11) {
2456		*domains = d11_port_domains;
2457		*domains_size = ARRAY_SIZE(d11_port_domains);
2458	} else {
2459		*domains = i9xx_port_domains;
2460		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2461	}
2462}
2463
2464static const struct intel_ddi_port_domains *
2465intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2466{
2467	const struct intel_ddi_port_domains *domains;
2468	int domains_size;
2469	int i;
2470
2471	intel_port_domains_for_platform(i915, &domains, &domains_size);
2472	for (i = 0; i < domains_size; i++)
2473		if (port >= domains[i].port_start && port <= domains[i].port_end)
2474			return &domains[i];
2475
2476	return NULL;
2477}
2478
2479enum intel_display_power_domain
2480intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2481{
2482	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2483
2484	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID))
2485		return POWER_DOMAIN_PORT_DDI_IO_A;
2486
2487	return domains->ddi_io + (int)(port - domains->port_start);
2488}
2489
2490enum intel_display_power_domain
2491intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2492{
2493	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2494
2495	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID))
2496		return POWER_DOMAIN_PORT_DDI_LANES_A;
2497
2498	return domains->ddi_lanes + (int)(port - domains->port_start);
2499}
2500
2501static const struct intel_ddi_port_domains *
2502intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2503{
2504	const struct intel_ddi_port_domains *domains;
2505	int domains_size;
2506	int i;
2507
2508	intel_port_domains_for_platform(i915, &domains, &domains_size);
2509	for (i = 0; i < domains_size; i++)
2510		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2511			return &domains[i];
2512
2513	return NULL;
2514}
2515
2516enum intel_display_power_domain
2517intel_display_power_aux_io_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2518{
2519	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2520
2521	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID))
2522		return POWER_DOMAIN_AUX_IO_A;
2523
2524	return domains->aux_io + (int)(aux_ch - domains->aux_ch_start);
2525}
2526
2527enum intel_display_power_domain
2528intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2529{
2530	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2531
2532	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID))
2533		return POWER_DOMAIN_AUX_A;
2534
2535	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2536}
2537
2538enum intel_display_power_domain
2539intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2540{
2541	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2542
2543	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID))
2544		return POWER_DOMAIN_AUX_TBT1;
2545
2546	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2547}
2548