1/*
2 * Copyright �� 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/display/drm_dp_helper.h>
29#include <drm/display/drm_dsc_helper.h>
30#include <drm/drm_edid.h>
31
32#include "i915_drv.h"
33#include "i915_reg.h"
34#include "intel_display.h"
35#include "intel_display_types.h"
36#include "intel_gmbus.h"
37
38#define _INTEL_BIOS_PRIVATE
39#include "intel_vbt_defs.h"
40
41/**
42 * DOC: Video BIOS Table (VBT)
43 *
44 * The Video BIOS Table, or VBT, provides platform and board specific
45 * configuration information to the driver that is not discoverable or available
46 * through other means. The configuration is mostly related to display
47 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
48 * the PCI ROM.
49 *
50 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
51 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
52 * contain the actual configuration information. The VBT Header, and thus the
53 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
54 * BDB Header. The data blocks are concatenated after the BDB Header. The data
55 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
56 * data. (Block 53, the MIPI Sequence Block is an exception.)
57 *
58 * The driver parses the VBT during load. The relevant information is stored in
59 * driver private data for ease of use, and the actual VBT is not read after
60 * that.
61 */
62
63/* Wrapper for VBT child device config */
64struct intel_bios_encoder_data {
65	struct drm_i915_private *i915;
66
67	struct child_device_config child;
68	struct dsc_compression_parameters_entry *dsc;
69	struct list_head node;
70};
71
72#define	SLAVE_ADDR1	0x70
73#define	SLAVE_ADDR2	0x72
74
75/* Get BDB block size given a pointer to Block ID. */
76static u32 _get_blocksize(const u8 *block_base)
77{
78	/* The MIPI Sequence Block v3+ has a separate size field. */
79	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
80		return *((const u32 *)(block_base + 4));
81	else
82		return *((const u16 *)(block_base + 1));
83}
84
85/* Get BDB block size give a pointer to data after Block ID and Block Size. */
86static u32 get_blocksize(const void *block_data)
87{
88	return _get_blocksize(block_data - 3);
89}
90
91static const void *
92find_raw_section(const void *_bdb, enum bdb_block_id section_id)
93{
94	const struct bdb_header *bdb = _bdb;
95	const u8 *base = _bdb;
96	int index = 0;
97	u32 total, current_size;
98	enum bdb_block_id current_id;
99
100	/* skip to first section */
101	index += bdb->header_size;
102	total = bdb->bdb_size;
103
104	/* walk the sections looking for section_id */
105	while (index + 3 < total) {
106		current_id = *(base + index);
107		current_size = _get_blocksize(base + index);
108		index += 3;
109
110		if (index + current_size > total)
111			return NULL;
112
113		if (current_id == section_id)
114			return base + index;
115
116		index += current_size;
117	}
118
119	return NULL;
120}
121
122/*
123 * Offset from the start of BDB to the start of the
124 * block data (just past the block header).
125 */
126static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
127{
128	const void *block;
129
130	block = find_raw_section(bdb, section_id);
131	if (!block)
132		return 0;
133
134	return block - bdb;
135}
136
137struct bdb_block_entry {
138	struct list_head node;
139	enum bdb_block_id section_id;
140	u8 data[];
141};
142
143static const void *
144bdb_find_section(struct drm_i915_private *i915,
145		 enum bdb_block_id section_id)
146{
147	struct bdb_block_entry *entry;
148
149	list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
150		if (entry->section_id == section_id)
151			return entry->data + 3;
152	}
153
154	return NULL;
155}
156
157static const struct {
158	enum bdb_block_id section_id;
159	size_t min_size;
160} bdb_blocks[] = {
161	{ .section_id = BDB_GENERAL_FEATURES,
162	  .min_size = sizeof(struct bdb_general_features), },
163	{ .section_id = BDB_GENERAL_DEFINITIONS,
164	  .min_size = sizeof(struct bdb_general_definitions), },
165	{ .section_id = BDB_PSR,
166	  .min_size = sizeof(struct bdb_psr), },
167	{ .section_id = BDB_DRIVER_FEATURES,
168	  .min_size = sizeof(struct bdb_driver_features), },
169	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
170	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
171	{ .section_id = BDB_SDVO_PANEL_DTDS,
172	  .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
173	{ .section_id = BDB_EDP,
174	  .min_size = sizeof(struct bdb_edp), },
175	{ .section_id = BDB_LVDS_OPTIONS,
176	  .min_size = sizeof(struct bdb_lvds_options), },
177	/*
178	 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
179	 * so keep the two ordered.
180	 */
181	{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
182	  .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
183	{ .section_id = BDB_LVDS_LFP_DATA,
184	  .min_size = 0, /* special case */ },
185	{ .section_id = BDB_LVDS_BACKLIGHT,
186	  .min_size = sizeof(struct bdb_lfp_backlight_data), },
187	{ .section_id = BDB_LFP_POWER,
188	  .min_size = sizeof(struct bdb_lfp_power), },
189	{ .section_id = BDB_MIPI_CONFIG,
190	  .min_size = sizeof(struct bdb_mipi_config), },
191	{ .section_id = BDB_MIPI_SEQUENCE,
192	  .min_size = sizeof(struct bdb_mipi_sequence) },
193	{ .section_id = BDB_COMPRESSION_PARAMETERS,
194	  .min_size = sizeof(struct bdb_compression_parameters), },
195	{ .section_id = BDB_GENERIC_DTD,
196	  .min_size = sizeof(struct bdb_generic_dtd), },
197};
198
199static size_t lfp_data_min_size(struct drm_i915_private *i915)
200{
201	const struct bdb_lvds_lfp_data_ptrs *ptrs;
202	size_t size;
203
204	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
205	if (!ptrs)
206		return 0;
207
208	size = sizeof(struct bdb_lvds_lfp_data);
209	if (ptrs->panel_name.table_size)
210		size = max(size, ptrs->panel_name.offset +
211			   sizeof(struct bdb_lvds_lfp_data_tail));
212
213	return size;
214}
215
216static bool validate_lfp_data_ptrs(const void *bdb,
217				   const struct bdb_lvds_lfp_data_ptrs *ptrs)
218{
219	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
220	int data_block_size, lfp_data_size;
221	const void *data_block;
222	int i;
223
224	data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
225	if (!data_block)
226		return false;
227
228	data_block_size = get_blocksize(data_block);
229	if (data_block_size == 0)
230		return false;
231
232	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
233	if (ptrs->lvds_entries != 3)
234		return false;
235
236	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
237	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
238	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
239	panel_name_size = ptrs->panel_name.table_size;
240
241	/* fp_timing has variable size */
242	if (fp_timing_size < 32 ||
243	    dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
244	    panel_pnp_id_size != sizeof(struct lvds_pnp_id))
245		return false;
246
247	/* panel_name is not present in old VBTs */
248	if (panel_name_size != 0 &&
249	    panel_name_size != sizeof(struct lvds_lfp_panel_name))
250		return false;
251
252	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
253	if (16 * lfp_data_size > data_block_size)
254		return false;
255
256	/* make sure the table entries have uniform size */
257	for (i = 1; i < 16; i++) {
258		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
259		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
260		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
261			return false;
262
263		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
264		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
265		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
266			return false;
267	}
268
269	/*
270	 * Except for vlv/chv machines all real VBTs seem to have 6
271	 * unaccounted bytes in the fp_timing table. And it doesn't
272	 * appear to be a really intentional hole as the fp_timing
273	 * 0xffff terminator is always within those 6 missing bytes.
274	 */
275	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
276		fp_timing_size += 6;
277
278	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
279		return false;
280
281	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
282	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
283	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
284		return false;
285
286	/* make sure the tables fit inside the data block */
287	for (i = 0; i < 16; i++) {
288		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
289		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
290		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
291			return false;
292	}
293
294	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
295		return false;
296
297	/* make sure fp_timing terminators are present at expected locations */
298	for (i = 0; i < 16; i++) {
299		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
300			fp_timing_size - 2;
301
302		if (*t != 0xffff)
303			return false;
304	}
305
306	return true;
307}
308
309/* make the data table offsets relative to the data block */
310static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
311{
312	struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
313	u32 offset;
314	int i;
315
316	offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
317
318	for (i = 0; i < 16; i++) {
319		if (ptrs->ptr[i].fp_timing.offset < offset ||
320		    ptrs->ptr[i].dvo_timing.offset < offset ||
321		    ptrs->ptr[i].panel_pnp_id.offset < offset)
322			return false;
323
324		ptrs->ptr[i].fp_timing.offset -= offset;
325		ptrs->ptr[i].dvo_timing.offset -= offset;
326		ptrs->ptr[i].panel_pnp_id.offset -= offset;
327	}
328
329	if (ptrs->panel_name.table_size) {
330		if (ptrs->panel_name.offset < offset)
331			return false;
332
333		ptrs->panel_name.offset -= offset;
334	}
335
336	return validate_lfp_data_ptrs(bdb, ptrs);
337}
338
339static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
340			     int table_size, int total_size)
341{
342	if (total_size < table_size)
343		return total_size;
344
345	table->table_size = table_size;
346	table->offset = total_size - table_size;
347
348	return total_size - table_size;
349}
350
351static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
352			      const struct lvds_lfp_data_ptr_table *prev,
353			      int size)
354{
355	next->table_size = prev->table_size;
356	next->offset = prev->offset + size;
357}
358
359static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
360				    const void *bdb)
361{
362	int i, size, table_size, block_size, offset, fp_timing_size;
363	struct bdb_lvds_lfp_data_ptrs *ptrs;
364	const void *block;
365	void *ptrs_block;
366
367	/*
368	 * The hardcoded fp_timing_size is only valid for
369	 * modernish VBTs. All older VBTs definitely should
370	 * include block 41 and thus we don't need to
371	 * generate one.
372	 */
373	if (i915->display.vbt.version < 155)
374		return NULL;
375
376	fp_timing_size = 38;
377
378	block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
379	if (!block)
380		return NULL;
381
382	drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
383
384	block_size = get_blocksize(block);
385
386	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
387		sizeof(struct lvds_pnp_id);
388	if (size * 16 > block_size)
389		return NULL;
390
391	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
392	if (!ptrs_block)
393		return NULL;
394
395	*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
396	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
397	ptrs = ptrs_block + 3;
398
399	table_size = sizeof(struct lvds_pnp_id);
400	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
401
402	table_size = sizeof(struct lvds_dvo_timing);
403	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
404
405	table_size = fp_timing_size;
406	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
407
408	if (ptrs->ptr[0].fp_timing.table_size)
409		ptrs->lvds_entries++;
410	if (ptrs->ptr[0].dvo_timing.table_size)
411		ptrs->lvds_entries++;
412	if (ptrs->ptr[0].panel_pnp_id.table_size)
413		ptrs->lvds_entries++;
414
415	if (size != 0 || ptrs->lvds_entries != 3) {
416		kfree(ptrs_block);
417		return NULL;
418	}
419
420	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
421		sizeof(struct lvds_pnp_id);
422	for (i = 1; i < 16; i++) {
423		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
424		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
425		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
426	}
427
428	table_size = sizeof(struct lvds_lfp_panel_name);
429
430	if (16 * (size + table_size) <= block_size) {
431		ptrs->panel_name.table_size = table_size;
432		ptrs->panel_name.offset = size * 16;
433	}
434
435	offset = block - bdb;
436
437	for (i = 0; i < 16; i++) {
438		ptrs->ptr[i].fp_timing.offset += offset;
439		ptrs->ptr[i].dvo_timing.offset += offset;
440		ptrs->ptr[i].panel_pnp_id.offset += offset;
441	}
442
443	if (ptrs->panel_name.table_size)
444		ptrs->panel_name.offset += offset;
445
446	return ptrs_block;
447}
448
449static void
450init_bdb_block(struct drm_i915_private *i915,
451	       const void *bdb, enum bdb_block_id section_id,
452	       size_t min_size)
453{
454	struct bdb_block_entry *entry;
455	void *temp_block = NULL;
456	const void *block;
457	size_t block_size;
458
459	block = find_raw_section(bdb, section_id);
460
461	/* Modern VBTs lack the LFP data table pointers block, make one up */
462	if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
463		temp_block = generate_lfp_data_ptrs(i915, bdb);
464		if (temp_block)
465			block = temp_block + 3;
466	}
467	if (!block)
468		return;
469
470	drm_WARN(&i915->drm, min_size == 0,
471		 "Block %d min_size is zero\n", section_id);
472
473	block_size = get_blocksize(block);
474
475	/*
476	 * Version number and new block size are considered
477	 * part of the header for MIPI sequenece block v3+.
478	 */
479	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
480		block_size += 5;
481
482	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
483			GFP_KERNEL);
484	if (!entry) {
485		kfree(temp_block);
486		return;
487	}
488
489	entry->section_id = section_id;
490	memcpy(entry->data, block - 3, block_size + 3);
491
492	kfree(temp_block);
493
494	drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
495		    section_id, block_size, min_size);
496
497	if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
498	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
499		drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
500		kfree(entry);
501		return;
502	}
503
504	list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
505}
506
507static void init_bdb_blocks(struct drm_i915_private *i915,
508			    const void *bdb)
509{
510	int i;
511
512	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
513		enum bdb_block_id section_id = bdb_blocks[i].section_id;
514		size_t min_size = bdb_blocks[i].min_size;
515
516		if (section_id == BDB_LVDS_LFP_DATA)
517			min_size = lfp_data_min_size(i915);
518
519		init_bdb_block(i915, bdb, section_id, min_size);
520	}
521}
522
523static void
524fill_detail_timing_data(struct drm_i915_private *i915,
525			struct drm_display_mode *panel_fixed_mode,
526			const struct lvds_dvo_timing *dvo_timing)
527{
528	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
529		dvo_timing->hactive_lo;
530	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
531		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
532	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
533		((dvo_timing->hsync_pulse_width_hi << 8) |
534			dvo_timing->hsync_pulse_width_lo);
535	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
536		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
537
538	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
539		dvo_timing->vactive_lo;
540	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
541		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
542	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
543		((dvo_timing->vsync_pulse_width_hi << 4) |
544			dvo_timing->vsync_pulse_width_lo);
545	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
546		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
547	panel_fixed_mode->clock = dvo_timing->clock * 10;
548	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
549
550	if (dvo_timing->hsync_positive)
551		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
552	else
553		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
554
555	if (dvo_timing->vsync_positive)
556		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
557	else
558		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
559
560	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
561		dvo_timing->himage_lo;
562	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
563		dvo_timing->vimage_lo;
564
565	/* Some VBTs have bogus h/vsync_end values */
566	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
567		drm_dbg_kms(&i915->drm, "reducing hsync_end %d->%d\n",
568			    panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
569		panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
570	}
571	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
572		drm_dbg_kms(&i915->drm, "reducing vsync_end %d->%d\n",
573			    panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
574		panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
575	}
576
577	drm_mode_set_name(panel_fixed_mode);
578}
579
580static const struct lvds_dvo_timing *
581get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
582		    const struct bdb_lvds_lfp_data_ptrs *ptrs,
583		    int index)
584{
585	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
586}
587
588static const struct lvds_fp_timing *
589get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
590		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
591		   int index)
592{
593	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
594}
595
596static const struct lvds_pnp_id *
597get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
598		const struct bdb_lvds_lfp_data_ptrs *ptrs,
599		int index)
600{
601	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
602}
603
604static const struct bdb_lvds_lfp_data_tail *
605get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
606		  const struct bdb_lvds_lfp_data_ptrs *ptrs)
607{
608	if (ptrs->panel_name.table_size)
609		return (const void *)data + ptrs->panel_name.offset;
610	else
611		return NULL;
612}
613
614static void dump_pnp_id(struct drm_i915_private *i915,
615			const struct lvds_pnp_id *pnp_id,
616			const char *name)
617{
618	u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
619	char vend[4];
620
621	drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
622		    name, drm_edid_decode_mfg_id(mfg_name, vend),
623		    pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
624		    pnp_id->mfg_week, pnp_id->mfg_year + 1990);
625}
626
627static int opregion_get_panel_type(struct drm_i915_private *i915,
628				   const struct intel_bios_encoder_data *devdata,
629				   const struct drm_edid *drm_edid, bool use_fallback)
630{
631	return intel_opregion_get_panel_type(i915);
632}
633
634static int vbt_get_panel_type(struct drm_i915_private *i915,
635			      const struct intel_bios_encoder_data *devdata,
636			      const struct drm_edid *drm_edid, bool use_fallback)
637{
638	const struct bdb_lvds_options *lvds_options;
639
640	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
641	if (!lvds_options)
642		return -1;
643
644	if (lvds_options->panel_type > 0xf &&
645	    lvds_options->panel_type != 0xff) {
646		drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
647			    lvds_options->panel_type);
648		return -1;
649	}
650
651	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
652		return lvds_options->panel_type2;
653
654	drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
655
656	return lvds_options->panel_type;
657}
658
659static int pnpid_get_panel_type(struct drm_i915_private *i915,
660				const struct intel_bios_encoder_data *devdata,
661				const struct drm_edid *drm_edid, bool use_fallback)
662{
663	const struct bdb_lvds_lfp_data *data;
664	const struct bdb_lvds_lfp_data_ptrs *ptrs;
665	const struct lvds_pnp_id *edid_id;
666	struct lvds_pnp_id edid_id_nodate;
667	const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */
668	int i, best = -1;
669
670	if (!edid)
671		return -1;
672
673	edid_id = (const void *)&edid->mfg_id[0];
674
675	edid_id_nodate = *edid_id;
676	edid_id_nodate.mfg_week = 0;
677	edid_id_nodate.mfg_year = 0;
678
679	dump_pnp_id(i915, edid_id, "EDID");
680
681	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
682	if (!ptrs)
683		return -1;
684
685	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
686	if (!data)
687		return -1;
688
689	for (i = 0; i < 16; i++) {
690		const struct lvds_pnp_id *vbt_id =
691			get_lvds_pnp_id(data, ptrs, i);
692
693		/* full match? */
694		if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
695			return i;
696
697		/*
698		 * Accept a match w/o date if no full match is found,
699		 * and the VBT entry does not specify a date.
700		 */
701		if (best < 0 &&
702		    !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
703			best = i;
704	}
705
706	return best;
707}
708
709static int fallback_get_panel_type(struct drm_i915_private *i915,
710				   const struct intel_bios_encoder_data *devdata,
711				   const struct drm_edid *drm_edid, bool use_fallback)
712{
713	return use_fallback ? 0 : -1;
714}
715
716enum panel_type {
717	PANEL_TYPE_OPREGION,
718	PANEL_TYPE_VBT,
719	PANEL_TYPE_PNPID,
720	PANEL_TYPE_FALLBACK,
721};
722
723static int get_panel_type(struct drm_i915_private *i915,
724			  const struct intel_bios_encoder_data *devdata,
725			  const struct drm_edid *drm_edid, bool use_fallback)
726{
727	struct {
728		const char *name;
729		int (*get_panel_type)(struct drm_i915_private *i915,
730				      const struct intel_bios_encoder_data *devdata,
731				      const struct drm_edid *drm_edid, bool use_fallback);
732		int panel_type;
733	} panel_types[] = {
734		[PANEL_TYPE_OPREGION] = {
735			.name = "OpRegion",
736			.get_panel_type = opregion_get_panel_type,
737		},
738		[PANEL_TYPE_VBT] = {
739			.name = "VBT",
740			.get_panel_type = vbt_get_panel_type,
741		},
742		[PANEL_TYPE_PNPID] = {
743			.name = "PNPID",
744			.get_panel_type = pnpid_get_panel_type,
745		},
746		[PANEL_TYPE_FALLBACK] = {
747			.name = "fallback",
748			.get_panel_type = fallback_get_panel_type,
749		},
750	};
751	int i;
752
753	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
754		panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
755									  drm_edid, use_fallback);
756
757		drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
758			    panel_types[i].panel_type != 0xff);
759
760		if (panel_types[i].panel_type >= 0)
761			drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
762				    panel_types[i].name, panel_types[i].panel_type);
763	}
764
765	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
766		i = PANEL_TYPE_OPREGION;
767	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
768		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
769		i = PANEL_TYPE_PNPID;
770	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
771		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
772		i = PANEL_TYPE_VBT;
773	else
774		i = PANEL_TYPE_FALLBACK;
775
776	drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
777		    panel_types[i].name, panel_types[i].panel_type);
778
779	return panel_types[i].panel_type;
780}
781
782static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
783{
784	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
785}
786
787static bool panel_bool(unsigned int value, int panel_type)
788{
789	return panel_bits(value, panel_type, 1);
790}
791
792/* Parse general panel options */
793static void
794parse_panel_options(struct drm_i915_private *i915,
795		    struct intel_panel *panel)
796{
797	const struct bdb_lvds_options *lvds_options;
798	int panel_type = panel->vbt.panel_type;
799	int drrs_mode;
800
801	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
802	if (!lvds_options)
803		return;
804
805	panel->vbt.lvds_dither = lvds_options->pixel_dither;
806
807	/*
808	 * Empirical evidence indicates the block size can be
809	 * either 4,14,16,24+ bytes. For older VBTs no clear
810	 * relationship between the block size vs. BDB version.
811	 */
812	if (get_blocksize(lvds_options) < 16)
813		return;
814
815	drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
816			       panel_type, 2);
817	/*
818	 * VBT has static DRRS = 0 and seamless DRRS = 2.
819	 * The below piece of code is required to adjust vbt.drrs_type
820	 * to match the enum drrs_support_type.
821	 */
822	switch (drrs_mode) {
823	case 0:
824		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
825		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
826		break;
827	case 2:
828		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
829		drm_dbg_kms(&i915->drm,
830			    "DRRS supported mode is seamless\n");
831		break;
832	default:
833		panel->vbt.drrs_type = DRRS_TYPE_NONE;
834		drm_dbg_kms(&i915->drm,
835			    "DRRS not supported (VBT input)\n");
836		break;
837	}
838}
839
840static void
841parse_lfp_panel_dtd(struct drm_i915_private *i915,
842		    struct intel_panel *panel,
843		    const struct bdb_lvds_lfp_data *lvds_lfp_data,
844		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
845{
846	const struct lvds_dvo_timing *panel_dvo_timing;
847	const struct lvds_fp_timing *fp_timing;
848	struct drm_display_mode *panel_fixed_mode;
849	int panel_type = panel->vbt.panel_type;
850
851	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
852					       lvds_lfp_data_ptrs,
853					       panel_type);
854
855	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
856	if (!panel_fixed_mode)
857		return;
858
859	fill_detail_timing_data(i915, panel_fixed_mode, panel_dvo_timing);
860
861	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
862
863	drm_dbg_kms(&i915->drm,
864		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
865		    DRM_MODE_ARG(panel_fixed_mode));
866
867	fp_timing = get_lvds_fp_timing(lvds_lfp_data,
868				       lvds_lfp_data_ptrs,
869				       panel_type);
870
871	/* check the resolution, just to be sure */
872	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
873	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
874		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
875		drm_dbg_kms(&i915->drm,
876			    "VBT initial LVDS value %x\n",
877			    panel->vbt.bios_lvds_val);
878	}
879}
880
881static void
882parse_lfp_data(struct drm_i915_private *i915,
883	       struct intel_panel *panel)
884{
885	const struct bdb_lvds_lfp_data *data;
886	const struct bdb_lvds_lfp_data_tail *tail;
887	const struct bdb_lvds_lfp_data_ptrs *ptrs;
888	const struct lvds_pnp_id *pnp_id;
889	int panel_type = panel->vbt.panel_type;
890
891	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
892	if (!ptrs)
893		return;
894
895	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
896	if (!data)
897		return;
898
899	if (!panel->vbt.lfp_lvds_vbt_mode)
900		parse_lfp_panel_dtd(i915, panel, data, ptrs);
901
902	pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
903	dump_pnp_id(i915, pnp_id, "Panel");
904
905	tail = get_lfp_data_tail(data, ptrs);
906	if (!tail)
907		return;
908
909	drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
910		    (int)sizeof(tail->panel_name[0].name),
911		    tail->panel_name[panel_type].name);
912
913	if (i915->display.vbt.version >= 188) {
914		panel->vbt.seamless_drrs_min_refresh_rate =
915			tail->seamless_drrs_min_refresh_rate[panel_type];
916		drm_dbg_kms(&i915->drm,
917			    "Seamless DRRS min refresh rate: %d Hz\n",
918			    panel->vbt.seamless_drrs_min_refresh_rate);
919	}
920}
921
922static void
923parse_generic_dtd(struct drm_i915_private *i915,
924		  struct intel_panel *panel)
925{
926	const struct bdb_generic_dtd *generic_dtd;
927	const struct generic_dtd_entry *dtd;
928	struct drm_display_mode *panel_fixed_mode;
929	int num_dtd;
930
931	/*
932	 * Older VBTs provided DTD information for internal displays through
933	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
934	 * DTD information should be provided via a newer "generic DTD"
935	 * block (58).  Just to be safe, we'll try the new generic DTD block
936	 * first on VBT >= 229, but still fall back to trying the old LFP
937	 * block if that fails.
938	 */
939	if (i915->display.vbt.version < 229)
940		return;
941
942	generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD);
943	if (!generic_dtd)
944		return;
945
946	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
947		drm_err(&i915->drm, "GDTD size %u is too small.\n",
948			generic_dtd->gdtd_size);
949		return;
950	} else if (generic_dtd->gdtd_size !=
951		   sizeof(struct generic_dtd_entry)) {
952		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
953			generic_dtd->gdtd_size);
954		/* DTD has unknown fields, but keep going */
955	}
956
957	num_dtd = (get_blocksize(generic_dtd) -
958		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
959	if (panel->vbt.panel_type >= num_dtd) {
960		drm_err(&i915->drm,
961			"Panel type %d not found in table of %d DTD's\n",
962			panel->vbt.panel_type, num_dtd);
963		return;
964	}
965
966	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
967
968	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
969	if (!panel_fixed_mode)
970		return;
971
972	panel_fixed_mode->hdisplay = dtd->hactive;
973	panel_fixed_mode->hsync_start =
974		panel_fixed_mode->hdisplay + dtd->hfront_porch;
975	panel_fixed_mode->hsync_end =
976		panel_fixed_mode->hsync_start + dtd->hsync;
977	panel_fixed_mode->htotal =
978		panel_fixed_mode->hdisplay + dtd->hblank;
979
980	panel_fixed_mode->vdisplay = dtd->vactive;
981	panel_fixed_mode->vsync_start =
982		panel_fixed_mode->vdisplay + dtd->vfront_porch;
983	panel_fixed_mode->vsync_end =
984		panel_fixed_mode->vsync_start + dtd->vsync;
985	panel_fixed_mode->vtotal =
986		panel_fixed_mode->vdisplay + dtd->vblank;
987
988	panel_fixed_mode->clock = dtd->pixel_clock;
989	panel_fixed_mode->width_mm = dtd->width_mm;
990	panel_fixed_mode->height_mm = dtd->height_mm;
991
992	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
993	drm_mode_set_name(panel_fixed_mode);
994
995	if (dtd->hsync_positive_polarity)
996		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
997	else
998		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
999
1000	if (dtd->vsync_positive_polarity)
1001		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1002	else
1003		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1004
1005	drm_dbg_kms(&i915->drm,
1006		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1007		    DRM_MODE_ARG(panel_fixed_mode));
1008
1009	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1010}
1011
1012static void
1013parse_lfp_backlight(struct drm_i915_private *i915,
1014		    struct intel_panel *panel)
1015{
1016	const struct bdb_lfp_backlight_data *backlight_data;
1017	const struct lfp_backlight_data_entry *entry;
1018	int panel_type = panel->vbt.panel_type;
1019	u16 level;
1020
1021	backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT);
1022	if (!backlight_data)
1023		return;
1024
1025	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1026		drm_dbg_kms(&i915->drm,
1027			    "Unsupported backlight data entry size %u\n",
1028			    backlight_data->entry_size);
1029		return;
1030	}
1031
1032	entry = &backlight_data->data[panel_type];
1033
1034	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1035	if (!panel->vbt.backlight.present) {
1036		drm_dbg_kms(&i915->drm,
1037			    "PWM backlight not present in VBT (type %u)\n",
1038			    entry->type);
1039		return;
1040	}
1041
1042	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1043	panel->vbt.backlight.controller = 0;
1044	if (i915->display.vbt.version >= 191) {
1045		size_t exp_size;
1046
1047		if (i915->display.vbt.version >= 236)
1048			exp_size = sizeof(struct bdb_lfp_backlight_data);
1049		else if (i915->display.vbt.version >= 234)
1050			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1051		else
1052			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1053
1054		if (get_blocksize(backlight_data) >= exp_size) {
1055			const struct lfp_backlight_control_method *method;
1056
1057			method = &backlight_data->backlight_control[panel_type];
1058			panel->vbt.backlight.type = method->type;
1059			panel->vbt.backlight.controller = method->controller;
1060		}
1061	}
1062
1063	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1064	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1065
1066	if (i915->display.vbt.version >= 234) {
1067		u16 min_level;
1068		bool scale;
1069
1070		level = backlight_data->brightness_level[panel_type].level;
1071		min_level = backlight_data->brightness_min_level[panel_type].level;
1072
1073		if (i915->display.vbt.version >= 236)
1074			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1075		else
1076			scale = level > 255;
1077
1078		if (scale)
1079			min_level = min_level / 255;
1080
1081		if (min_level > 255) {
1082			drm_warn(&i915->drm, "Brightness min level > 255\n");
1083			level = 255;
1084		}
1085		panel->vbt.backlight.min_brightness = min_level;
1086
1087		panel->vbt.backlight.brightness_precision_bits =
1088			backlight_data->brightness_precision_bits[panel_type];
1089	} else {
1090		level = backlight_data->level[panel_type];
1091		panel->vbt.backlight.min_brightness = entry->min_brightness;
1092	}
1093
1094	if (i915->display.vbt.version >= 239)
1095		panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1096			DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1097	else
1098		panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1099
1100	drm_dbg_kms(&i915->drm,
1101		    "VBT backlight PWM modulation frequency %u Hz, "
1102		    "active %s, min brightness %u, level %u, controller %u\n",
1103		    panel->vbt.backlight.pwm_freq_hz,
1104		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1105		    panel->vbt.backlight.min_brightness,
1106		    level,
1107		    panel->vbt.backlight.controller);
1108}
1109
1110/* Try to find sdvo panel data */
1111static void
1112parse_sdvo_panel_data(struct drm_i915_private *i915,
1113		      struct intel_panel *panel)
1114{
1115	const struct bdb_sdvo_panel_dtds *dtds;
1116	struct drm_display_mode *panel_fixed_mode;
1117	int index;
1118
1119	index = i915->display.params.vbt_sdvo_panel_type;
1120	if (index == -2) {
1121		drm_dbg_kms(&i915->drm,
1122			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
1123		return;
1124	}
1125
1126	if (index == -1) {
1127		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1128
1129		sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1130		if (!sdvo_lvds_options)
1131			return;
1132
1133		index = sdvo_lvds_options->panel_type;
1134	}
1135
1136	dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS);
1137	if (!dtds)
1138		return;
1139
1140	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1141	if (!panel_fixed_mode)
1142		return;
1143
1144	fill_detail_timing_data(i915, panel_fixed_mode, &dtds->dtds[index]);
1145
1146	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1147
1148	drm_dbg_kms(&i915->drm,
1149		    "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1150		    DRM_MODE_ARG(panel_fixed_mode));
1151}
1152
1153static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1154				    bool alternate)
1155{
1156	switch (DISPLAY_VER(i915)) {
1157	case 2:
1158		return alternate ? 66667 : 48000;
1159	case 3:
1160	case 4:
1161		return alternate ? 100000 : 96000;
1162	default:
1163		return alternate ? 100000 : 120000;
1164	}
1165}
1166
1167static void
1168parse_general_features(struct drm_i915_private *i915)
1169{
1170	const struct bdb_general_features *general;
1171
1172	general = bdb_find_section(i915, BDB_GENERAL_FEATURES);
1173	if (!general)
1174		return;
1175
1176	i915->display.vbt.int_tv_support = general->int_tv_support;
1177	/* int_crt_support can't be trusted on earlier platforms */
1178	if (i915->display.vbt.version >= 155 &&
1179	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1180		i915->display.vbt.int_crt_support = general->int_crt_support;
1181	i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1182	i915->display.vbt.lvds_ssc_freq =
1183		intel_bios_ssc_frequency(i915, general->ssc_freq);
1184	i915->display.vbt.display_clock_mode = general->display_clock_mode;
1185	i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1186	if (i915->display.vbt.version >= 181) {
1187		i915->display.vbt.orientation = general->rotate_180 ?
1188			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1189			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1190	} else {
1191		i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1192	}
1193
1194	if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1195		i915->display.vbt.override_afc_startup = true;
1196		i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1197	}
1198
1199	drm_dbg_kms(&i915->drm,
1200		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1201		    i915->display.vbt.int_tv_support,
1202		    i915->display.vbt.int_crt_support,
1203		    i915->display.vbt.lvds_use_ssc,
1204		    i915->display.vbt.lvds_ssc_freq,
1205		    i915->display.vbt.display_clock_mode,
1206		    i915->display.vbt.fdi_rx_polarity_inverted);
1207}
1208
1209static const struct child_device_config *
1210child_device_ptr(const struct bdb_general_definitions *defs, int i)
1211{
1212	return (const void *) &defs->devices[i * defs->child_dev_size];
1213}
1214
1215static void
1216parse_sdvo_device_mapping(struct drm_i915_private *i915)
1217{
1218	const struct intel_bios_encoder_data *devdata;
1219	int count = 0;
1220
1221	/*
1222	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1223	 * accurate and doesn't have to be, as long as it's not too strict.
1224	 */
1225	if (!IS_DISPLAY_VER(i915, 3, 7)) {
1226		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1227		return;
1228	}
1229
1230	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1231		const struct child_device_config *child = &devdata->child;
1232		struct sdvo_device_mapping *mapping;
1233
1234		if (child->slave_addr != SLAVE_ADDR1 &&
1235		    child->slave_addr != SLAVE_ADDR2) {
1236			/*
1237			 * If the slave address is neither 0x70 nor 0x72,
1238			 * it is not a SDVO device. Skip it.
1239			 */
1240			continue;
1241		}
1242		if (child->dvo_port != DEVICE_PORT_DVOB &&
1243		    child->dvo_port != DEVICE_PORT_DVOC) {
1244			/* skip the incorrect SDVO port */
1245			drm_dbg_kms(&i915->drm,
1246				    "Incorrect SDVO port. Skip it\n");
1247			continue;
1248		}
1249		drm_dbg_kms(&i915->drm,
1250			    "the SDVO device with slave addr %2x is found on"
1251			    " %s port\n",
1252			    child->slave_addr,
1253			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1254			    "SDVOB" : "SDVOC");
1255		mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1256		if (!mapping->initialized) {
1257			mapping->dvo_port = child->dvo_port;
1258			mapping->slave_addr = child->slave_addr;
1259			mapping->dvo_wiring = child->dvo_wiring;
1260			mapping->ddc_pin = child->ddc_pin;
1261			mapping->i2c_pin = child->i2c_pin;
1262			mapping->initialized = 1;
1263			drm_dbg_kms(&i915->drm,
1264				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1265				    mapping->dvo_port, mapping->slave_addr,
1266				    mapping->dvo_wiring, mapping->ddc_pin,
1267				    mapping->i2c_pin);
1268		} else {
1269			drm_dbg_kms(&i915->drm,
1270				    "Maybe one SDVO port is shared by "
1271				    "two SDVO device.\n");
1272		}
1273		if (child->slave2_addr) {
1274			/* Maybe this is a SDVO device with multiple inputs */
1275			/* And the mapping info is not added */
1276			drm_dbg_kms(&i915->drm,
1277				    "there exists the slave2_addr. Maybe this"
1278				    " is a SDVO device with multiple inputs.\n");
1279		}
1280		count++;
1281	}
1282
1283	if (!count) {
1284		/* No SDVO device info is found */
1285		drm_dbg_kms(&i915->drm,
1286			    "No SDVO device info is found in VBT\n");
1287	}
1288}
1289
1290static void
1291parse_driver_features(struct drm_i915_private *i915)
1292{
1293	const struct bdb_driver_features *driver;
1294
1295	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1296	if (!driver)
1297		return;
1298
1299	if (DISPLAY_VER(i915) >= 5) {
1300		/*
1301		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1302		 * to mean "eDP". The VBT spec doesn't agree with that
1303		 * interpretation, but real world VBTs seem to.
1304		 */
1305		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1306			i915->display.vbt.int_lvds_support = 0;
1307	} else {
1308		/*
1309		 * FIXME it's not clear which BDB version has the LVDS config
1310		 * bits defined. Revision history in the VBT spec says:
1311		 * "0.92 | Add two definitions for VBT value of LVDS Active
1312		 *  Config (00b and 11b values defined) | 06/13/2005"
1313		 * but does not the specify the BDB version.
1314		 *
1315		 * So far version 134 (on i945gm) is the oldest VBT observed
1316		 * in the wild with the bits correctly populated. Version
1317		 * 108 (on i85x) does not have the bits correctly populated.
1318		 */
1319		if (i915->display.vbt.version >= 134 &&
1320		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1321		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1322			i915->display.vbt.int_lvds_support = 0;
1323	}
1324}
1325
1326static void
1327parse_panel_driver_features(struct drm_i915_private *i915,
1328			    struct intel_panel *panel)
1329{
1330	const struct bdb_driver_features *driver;
1331
1332	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1333	if (!driver)
1334		return;
1335
1336	if (i915->display.vbt.version < 228) {
1337		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1338			    driver->drrs_enabled);
1339		/*
1340		 * If DRRS is not supported, drrs_type has to be set to 0.
1341		 * This is because, VBT is configured in such a way that
1342		 * static DRRS is 0 and DRRS not supported is represented by
1343		 * driver->drrs_enabled=false
1344		 */
1345		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1346			/*
1347			 * FIXME Should DMRRS perhaps be treated as seamless
1348			 * but without the automatic downclocking?
1349			 */
1350			if (driver->dmrrs_enabled)
1351				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1352			else
1353				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1354		}
1355
1356		panel->vbt.psr.enable = driver->psr_enabled;
1357	}
1358}
1359
1360static void
1361parse_power_conservation_features(struct drm_i915_private *i915,
1362				  struct intel_panel *panel)
1363{
1364	const struct bdb_lfp_power *power;
1365	u8 panel_type = panel->vbt.panel_type;
1366
1367	panel->vbt.vrr = true; /* matches Windows behaviour */
1368
1369	if (i915->display.vbt.version < 228)
1370		return;
1371
1372	power = bdb_find_section(i915, BDB_LFP_POWER);
1373	if (!power)
1374		return;
1375
1376	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1377
1378	/*
1379	 * If DRRS is not supported, drrs_type has to be set to 0.
1380	 * This is because, VBT is configured in such a way that
1381	 * static DRRS is 0 and DRRS not supported is represented by
1382	 * power->drrs & BIT(panel_type)=false
1383	 */
1384	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1385		/*
1386		 * FIXME Should DMRRS perhaps be treated as seamless
1387		 * but without the automatic downclocking?
1388		 */
1389		if (panel_bool(power->dmrrs, panel_type))
1390			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1391		else
1392			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1393	}
1394
1395	if (i915->display.vbt.version >= 232)
1396		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1397
1398	if (i915->display.vbt.version >= 233)
1399		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1400					    panel_type);
1401}
1402
1403static void
1404parse_edp(struct drm_i915_private *i915,
1405	  struct intel_panel *panel)
1406{
1407	const struct bdb_edp *edp;
1408	const struct edp_power_seq *edp_pps;
1409	const struct edp_fast_link_params *edp_link_params;
1410	int panel_type = panel->vbt.panel_type;
1411
1412	edp = bdb_find_section(i915, BDB_EDP);
1413	if (!edp)
1414		return;
1415
1416	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1417	case EDP_18BPP:
1418		panel->vbt.edp.bpp = 18;
1419		break;
1420	case EDP_24BPP:
1421		panel->vbt.edp.bpp = 24;
1422		break;
1423	case EDP_30BPP:
1424		panel->vbt.edp.bpp = 30;
1425		break;
1426	}
1427
1428	/* Get the eDP sequencing and link info */
1429	edp_pps = &edp->power_seqs[panel_type];
1430	edp_link_params = &edp->fast_link_params[panel_type];
1431
1432	panel->vbt.edp.pps = *edp_pps;
1433
1434	if (i915->display.vbt.version >= 224) {
1435		panel->vbt.edp.rate =
1436			edp->edp_fast_link_training_rate[panel_type] * 20;
1437	} else {
1438		switch (edp_link_params->rate) {
1439		case EDP_RATE_1_62:
1440			panel->vbt.edp.rate = 162000;
1441			break;
1442		case EDP_RATE_2_7:
1443			panel->vbt.edp.rate = 270000;
1444			break;
1445		case EDP_RATE_5_4:
1446			panel->vbt.edp.rate = 540000;
1447			break;
1448		default:
1449			drm_dbg_kms(&i915->drm,
1450				    "VBT has unknown eDP link rate value %u\n",
1451				    edp_link_params->rate);
1452			break;
1453		}
1454	}
1455
1456	switch (edp_link_params->lanes) {
1457	case EDP_LANE_1:
1458		panel->vbt.edp.lanes = 1;
1459		break;
1460	case EDP_LANE_2:
1461		panel->vbt.edp.lanes = 2;
1462		break;
1463	case EDP_LANE_4:
1464		panel->vbt.edp.lanes = 4;
1465		break;
1466	default:
1467		drm_dbg_kms(&i915->drm,
1468			    "VBT has unknown eDP lane count value %u\n",
1469			    edp_link_params->lanes);
1470		break;
1471	}
1472
1473	switch (edp_link_params->preemphasis) {
1474	case EDP_PREEMPHASIS_NONE:
1475		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1476		break;
1477	case EDP_PREEMPHASIS_3_5dB:
1478		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1479		break;
1480	case EDP_PREEMPHASIS_6dB:
1481		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1482		break;
1483	case EDP_PREEMPHASIS_9_5dB:
1484		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1485		break;
1486	default:
1487		drm_dbg_kms(&i915->drm,
1488			    "VBT has unknown eDP pre-emphasis value %u\n",
1489			    edp_link_params->preemphasis);
1490		break;
1491	}
1492
1493	switch (edp_link_params->vswing) {
1494	case EDP_VSWING_0_4V:
1495		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1496		break;
1497	case EDP_VSWING_0_6V:
1498		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1499		break;
1500	case EDP_VSWING_0_8V:
1501		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1502		break;
1503	case EDP_VSWING_1_2V:
1504		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1505		break;
1506	default:
1507		drm_dbg_kms(&i915->drm,
1508			    "VBT has unknown eDP voltage swing value %u\n",
1509			    edp_link_params->vswing);
1510		break;
1511	}
1512
1513	if (i915->display.vbt.version >= 173) {
1514		u8 vswing;
1515
1516		/* Don't read from VBT if module parameter has valid value*/
1517		if (i915->display.params.edp_vswing) {
1518			panel->vbt.edp.low_vswing =
1519				i915->display.params.edp_vswing == 1;
1520		} else {
1521			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1522			panel->vbt.edp.low_vswing = vswing == 0;
1523		}
1524	}
1525
1526	panel->vbt.edp.drrs_msa_timing_delay =
1527		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1528
1529	if (i915->display.vbt.version >= 244)
1530		panel->vbt.edp.max_link_rate =
1531			edp->edp_max_port_link_rate[panel_type] * 20;
1532}
1533
1534static void
1535parse_psr(struct drm_i915_private *i915,
1536	  struct intel_panel *panel)
1537{
1538	const struct bdb_psr *psr;
1539	const struct psr_table *psr_table;
1540	int panel_type = panel->vbt.panel_type;
1541
1542	psr = bdb_find_section(i915, BDB_PSR);
1543	if (!psr) {
1544		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1545		return;
1546	}
1547
1548	psr_table = &psr->psr_table[panel_type];
1549
1550	panel->vbt.psr.full_link = psr_table->full_link;
1551	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1552
1553	/* Allowed VBT values goes from 0 to 15 */
1554	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1555		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1556
1557	/*
1558	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1559	 * Old decimal value is wake up time in multiples of 100 us.
1560	 */
1561	if (i915->display.vbt.version >= 205 &&
1562	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1563		switch (psr_table->tp1_wakeup_time) {
1564		case 0:
1565			panel->vbt.psr.tp1_wakeup_time_us = 500;
1566			break;
1567		case 1:
1568			panel->vbt.psr.tp1_wakeup_time_us = 100;
1569			break;
1570		case 3:
1571			panel->vbt.psr.tp1_wakeup_time_us = 0;
1572			break;
1573		default:
1574			drm_dbg_kms(&i915->drm,
1575				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1576				    psr_table->tp1_wakeup_time);
1577			fallthrough;
1578		case 2:
1579			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1580			break;
1581		}
1582
1583		switch (psr_table->tp2_tp3_wakeup_time) {
1584		case 0:
1585			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1586			break;
1587		case 1:
1588			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1589			break;
1590		case 3:
1591			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1592			break;
1593		default:
1594			drm_dbg_kms(&i915->drm,
1595				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1596				    psr_table->tp2_tp3_wakeup_time);
1597			fallthrough;
1598		case 2:
1599			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1600		break;
1601		}
1602	} else {
1603		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1604		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1605	}
1606
1607	if (i915->display.vbt.version >= 226) {
1608		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1609
1610		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1611		switch (wakeup_time) {
1612		case 0:
1613			wakeup_time = 500;
1614			break;
1615		case 1:
1616			wakeup_time = 100;
1617			break;
1618		case 3:
1619			wakeup_time = 50;
1620			break;
1621		default:
1622		case 2:
1623			wakeup_time = 2500;
1624			break;
1625		}
1626		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1627	} else {
1628		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1629		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1630	}
1631}
1632
1633static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1634				      struct intel_panel *panel,
1635				      enum port port)
1636{
1637	enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1638
1639	if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1640		panel->vbt.dsi.bl_ports = BIT(port);
1641		if (panel->vbt.dsi.config->cabc_supported)
1642			panel->vbt.dsi.cabc_ports = BIT(port);
1643
1644		return;
1645	}
1646
1647	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1648	case DL_DCS_PORT_A:
1649		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1650		break;
1651	case DL_DCS_PORT_C:
1652		panel->vbt.dsi.bl_ports = BIT(port_bc);
1653		break;
1654	default:
1655	case DL_DCS_PORT_A_AND_C:
1656		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1657		break;
1658	}
1659
1660	if (!panel->vbt.dsi.config->cabc_supported)
1661		return;
1662
1663	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1664	case DL_DCS_PORT_A:
1665		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1666		break;
1667	case DL_DCS_PORT_C:
1668		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1669		break;
1670	default:
1671	case DL_DCS_PORT_A_AND_C:
1672		panel->vbt.dsi.cabc_ports =
1673					BIT(PORT_A) | BIT(port_bc);
1674		break;
1675	}
1676}
1677
1678static void
1679parse_mipi_config(struct drm_i915_private *i915,
1680		  struct intel_panel *panel)
1681{
1682	const struct bdb_mipi_config *start;
1683	const struct mipi_config *config;
1684	const struct mipi_pps_data *pps;
1685	int panel_type = panel->vbt.panel_type;
1686	enum port port;
1687
1688	/* parse MIPI blocks only if LFP type is MIPI */
1689	if (!intel_bios_is_dsi_present(i915, &port))
1690		return;
1691
1692	/* Initialize this to undefined indicating no generic MIPI support */
1693	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1694
1695	/* Block #40 is already parsed and panel_fixed_mode is
1696	 * stored in i915->lfp_lvds_vbt_mode
1697	 * resuse this when needed
1698	 */
1699
1700	/* Parse #52 for panel index used from panel_type already
1701	 * parsed
1702	 */
1703	start = bdb_find_section(i915, BDB_MIPI_CONFIG);
1704	if (!start) {
1705		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1706		return;
1707	}
1708
1709	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1710		panel_type);
1711
1712	/*
1713	 * get hold of the correct configuration block and pps data as per
1714	 * the panel_type as index
1715	 */
1716	config = &start->config[panel_type];
1717	pps = &start->pps[panel_type];
1718
1719	/* store as of now full data. Trim when we realise all is not needed */
1720	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1721	if (!panel->vbt.dsi.config)
1722		return;
1723
1724	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1725	if (!panel->vbt.dsi.pps) {
1726		kfree(panel->vbt.dsi.config);
1727		return;
1728	}
1729
1730	parse_dsi_backlight_ports(i915, panel, port);
1731
1732	/* FIXME is the 90 vs. 270 correct? */
1733	switch (config->rotation) {
1734	case ENABLE_ROTATION_0:
1735		/*
1736		 * Most (all?) VBTs claim 0 degrees despite having
1737		 * an upside down panel, thus we do not trust this.
1738		 */
1739		panel->vbt.dsi.orientation =
1740			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1741		break;
1742	case ENABLE_ROTATION_90:
1743		panel->vbt.dsi.orientation =
1744			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1745		break;
1746	case ENABLE_ROTATION_180:
1747		panel->vbt.dsi.orientation =
1748			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1749		break;
1750	case ENABLE_ROTATION_270:
1751		panel->vbt.dsi.orientation =
1752			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1753		break;
1754	}
1755
1756	/* We have mandatory mipi config blocks. Initialize as generic panel */
1757	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1758}
1759
1760/* Find the sequence block and size for the given panel. */
1761static const u8 *
1762find_panel_sequence_block(struct drm_i915_private *i915,
1763			  const struct bdb_mipi_sequence *sequence,
1764			  u16 panel_id, u32 *seq_size)
1765{
1766	u32 total = get_blocksize(sequence);
1767	const u8 *data = &sequence->data[0];
1768	u8 current_id;
1769	u32 current_size;
1770	int header_size = sequence->version >= 3 ? 5 : 3;
1771	int index = 0;
1772	int i;
1773
1774	/* skip new block size */
1775	if (sequence->version >= 3)
1776		data += 4;
1777
1778	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1779		if (index + header_size > total) {
1780			drm_err(&i915->drm, "Invalid sequence block (header)\n");
1781			return NULL;
1782		}
1783
1784		current_id = *(data + index);
1785		if (sequence->version >= 3)
1786			current_size = *((const u32 *)(data + index + 1));
1787		else
1788			current_size = *((const u16 *)(data + index + 1));
1789
1790		index += header_size;
1791
1792		if (index + current_size > total) {
1793			drm_err(&i915->drm, "Invalid sequence block\n");
1794			return NULL;
1795		}
1796
1797		if (current_id == panel_id) {
1798			*seq_size = current_size;
1799			return data + index;
1800		}
1801
1802		index += current_size;
1803	}
1804
1805	drm_err(&i915->drm, "Sequence block detected but no valid configuration\n");
1806
1807	return NULL;
1808}
1809
1810static int goto_next_sequence(struct drm_i915_private *i915,
1811			      const u8 *data, int index, int total)
1812{
1813	u16 len;
1814
1815	/* Skip Sequence Byte. */
1816	for (index = index + 1; index < total; index += len) {
1817		u8 operation_byte = *(data + index);
1818		index++;
1819
1820		switch (operation_byte) {
1821		case MIPI_SEQ_ELEM_END:
1822			return index;
1823		case MIPI_SEQ_ELEM_SEND_PKT:
1824			if (index + 4 > total)
1825				return 0;
1826
1827			len = *((const u16 *)(data + index + 2)) + 4;
1828			break;
1829		case MIPI_SEQ_ELEM_DELAY:
1830			len = 4;
1831			break;
1832		case MIPI_SEQ_ELEM_GPIO:
1833			len = 2;
1834			break;
1835		case MIPI_SEQ_ELEM_I2C:
1836			if (index + 7 > total)
1837				return 0;
1838			len = *(data + index + 6) + 7;
1839			break;
1840		default:
1841			drm_err(&i915->drm, "Unknown operation byte\n");
1842			return 0;
1843		}
1844	}
1845
1846	return 0;
1847}
1848
1849static int goto_next_sequence_v3(struct drm_i915_private *i915,
1850				 const u8 *data, int index, int total)
1851{
1852	int seq_end;
1853	u16 len;
1854	u32 size_of_sequence;
1855
1856	/*
1857	 * Could skip sequence based on Size of Sequence alone, but also do some
1858	 * checking on the structure.
1859	 */
1860	if (total < 5) {
1861		drm_err(&i915->drm, "Too small sequence size\n");
1862		return 0;
1863	}
1864
1865	/* Skip Sequence Byte. */
1866	index++;
1867
1868	/*
1869	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1870	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1871	 * byte.
1872	 */
1873	size_of_sequence = *((const u32 *)(data + index));
1874	index += 4;
1875
1876	seq_end = index + size_of_sequence;
1877	if (seq_end > total) {
1878		drm_err(&i915->drm, "Invalid sequence size\n");
1879		return 0;
1880	}
1881
1882	for (; index < total; index += len) {
1883		u8 operation_byte = *(data + index);
1884		index++;
1885
1886		if (operation_byte == MIPI_SEQ_ELEM_END) {
1887			if (index != seq_end) {
1888				drm_err(&i915->drm, "Invalid element structure\n");
1889				return 0;
1890			}
1891			return index;
1892		}
1893
1894		len = *(data + index);
1895		index++;
1896
1897		/*
1898		 * FIXME: Would be nice to check elements like for v1/v2 in
1899		 * goto_next_sequence() above.
1900		 */
1901		switch (operation_byte) {
1902		case MIPI_SEQ_ELEM_SEND_PKT:
1903		case MIPI_SEQ_ELEM_DELAY:
1904		case MIPI_SEQ_ELEM_GPIO:
1905		case MIPI_SEQ_ELEM_I2C:
1906		case MIPI_SEQ_ELEM_SPI:
1907		case MIPI_SEQ_ELEM_PMIC:
1908			break;
1909		default:
1910			drm_err(&i915->drm, "Unknown operation byte %u\n",
1911				operation_byte);
1912			break;
1913		}
1914	}
1915
1916	return 0;
1917}
1918
1919/*
1920 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1921 * skip all delay + gpio operands and stop at the first DSI packet op.
1922 */
1923static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1924					      struct intel_panel *panel)
1925{
1926	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1927	int index, len;
1928
1929	if (drm_WARN_ON(&i915->drm,
1930			!data || panel->vbt.dsi.seq_version != 1))
1931		return 0;
1932
1933	/* index = 1 to skip sequence byte */
1934	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1935		switch (data[index]) {
1936		case MIPI_SEQ_ELEM_SEND_PKT:
1937			return index == 1 ? 0 : index;
1938		case MIPI_SEQ_ELEM_DELAY:
1939			len = 5; /* 1 byte for operand + uint32 */
1940			break;
1941		case MIPI_SEQ_ELEM_GPIO:
1942			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1943			break;
1944		default:
1945			return 0;
1946		}
1947	}
1948
1949	return 0;
1950}
1951
1952/*
1953 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1954 * The deassert must be done before calling intel_dsi_device_ready, so for
1955 * these devices we split the init OTP sequence into a deassert sequence and
1956 * the actual init OTP part.
1957 */
1958static void vlv_fixup_mipi_sequences(struct drm_i915_private *i915,
1959				     struct intel_panel *panel)
1960{
1961	u8 *init_otp;
1962	int len;
1963
1964	/* Limit this to v1 vid-mode sequences */
1965	if (panel->vbt.dsi.config->is_cmd_mode ||
1966	    panel->vbt.dsi.seq_version != 1)
1967		return;
1968
1969	/* Only do this if there are otp and assert seqs and no deassert seq */
1970	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1971	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1972	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1973		return;
1974
1975	/* The deassert-sequence ends at the first DSI packet */
1976	len = get_init_otp_deassert_fragment_len(i915, panel);
1977	if (!len)
1978		return;
1979
1980	drm_dbg_kms(&i915->drm,
1981		    "Using init OTP fragment to deassert reset\n");
1982
1983	/* Copy the fragment, update seq byte and terminate it */
1984	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1985	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1986	if (!panel->vbt.dsi.deassert_seq)
1987		return;
1988	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1989	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1990	/* Use the copy for deassert */
1991	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1992		panel->vbt.dsi.deassert_seq;
1993	/* Replace the last byte of the fragment with init OTP seq byte */
1994	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1995	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1996	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1997}
1998
1999/*
2000 * Some machines (eg. Lenovo 82TQ) appear to have broken
2001 * VBT sequences:
2002 * - INIT_OTP is not present at all
2003 * - what should be in INIT_OTP is in DISPLAY_ON
2004 * - what should be in DISPLAY_ON is in BACKLIGHT_ON
2005 *   (along with the actual backlight stuff)
2006 *
2007 * To make those work we simply swap DISPLAY_ON and INIT_OTP.
2008 *
2009 * TODO: Do we need to limit this to specific machines,
2010 *       or examine the contents of the sequences to
2011 *       avoid false positives?
2012 */
2013static void icl_fixup_mipi_sequences(struct drm_i915_private *i915,
2014				     struct intel_panel *panel)
2015{
2016	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
2017	    panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
2018		drm_dbg_kms(&i915->drm, "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
2019
2020		swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2021		     panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2022	}
2023}
2024
2025static void fixup_mipi_sequences(struct drm_i915_private *i915,
2026				 struct intel_panel *panel)
2027{
2028	if (DISPLAY_VER(i915) >= 11)
2029		icl_fixup_mipi_sequences(i915, panel);
2030	else if (IS_VALLEYVIEW(i915))
2031		vlv_fixup_mipi_sequences(i915, panel);
2032}
2033
2034static void
2035parse_mipi_sequence(struct drm_i915_private *i915,
2036		    struct intel_panel *panel)
2037{
2038	int panel_type = panel->vbt.panel_type;
2039	const struct bdb_mipi_sequence *sequence;
2040	const u8 *seq_data;
2041	u32 seq_size;
2042	u8 *data;
2043	int index = 0;
2044
2045	/* Only our generic panel driver uses the sequence block. */
2046	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2047		return;
2048
2049	sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE);
2050	if (!sequence) {
2051		drm_dbg_kms(&i915->drm,
2052			    "No MIPI Sequence found, parsing complete\n");
2053		return;
2054	}
2055
2056	/* Fail gracefully for forward incompatible sequence block. */
2057	if (sequence->version >= 4) {
2058		drm_err(&i915->drm,
2059			"Unable to parse MIPI Sequence Block v%u\n",
2060			sequence->version);
2061		return;
2062	}
2063
2064	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2065		sequence->version);
2066
2067	seq_data = find_panel_sequence_block(i915, sequence, panel_type, &seq_size);
2068	if (!seq_data)
2069		return;
2070
2071	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2072	if (!data)
2073		return;
2074
2075	/* Parse the sequences, store pointers to each sequence. */
2076	for (;;) {
2077		u8 seq_id = *(data + index);
2078		if (seq_id == MIPI_SEQ_END)
2079			break;
2080
2081		if (seq_id >= MIPI_SEQ_MAX) {
2082			drm_err(&i915->drm, "Unknown sequence %u\n",
2083				seq_id);
2084			goto err;
2085		}
2086
2087		/* Log about presence of sequences we won't run. */
2088		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2089			drm_dbg_kms(&i915->drm,
2090				    "Unsupported sequence %u\n", seq_id);
2091
2092		panel->vbt.dsi.sequence[seq_id] = data + index;
2093
2094		if (sequence->version >= 3)
2095			index = goto_next_sequence_v3(i915, data, index, seq_size);
2096		else
2097			index = goto_next_sequence(i915, data, index, seq_size);
2098		if (!index) {
2099			drm_err(&i915->drm, "Invalid sequence %u\n",
2100				seq_id);
2101			goto err;
2102		}
2103	}
2104
2105	panel->vbt.dsi.data = data;
2106	panel->vbt.dsi.size = seq_size;
2107	panel->vbt.dsi.seq_version = sequence->version;
2108
2109	fixup_mipi_sequences(i915, panel);
2110
2111	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2112	return;
2113
2114err:
2115	kfree(data);
2116	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2117}
2118
2119static void
2120parse_compression_parameters(struct drm_i915_private *i915)
2121{
2122	const struct bdb_compression_parameters *params;
2123	struct intel_bios_encoder_data *devdata;
2124	u16 block_size;
2125	int index;
2126
2127	if (i915->display.vbt.version < 198)
2128		return;
2129
2130	params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS);
2131	if (params) {
2132		/* Sanity checks */
2133		if (params->entry_size != sizeof(params->data[0])) {
2134			drm_dbg_kms(&i915->drm,
2135				    "VBT: unsupported compression param entry size\n");
2136			return;
2137		}
2138
2139		block_size = get_blocksize(params);
2140		if (block_size < sizeof(*params)) {
2141			drm_dbg_kms(&i915->drm,
2142				    "VBT: expected 16 compression param entries\n");
2143			return;
2144		}
2145	}
2146
2147	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2148		const struct child_device_config *child = &devdata->child;
2149
2150		if (!child->compression_enable)
2151			continue;
2152
2153		if (!params) {
2154			drm_dbg_kms(&i915->drm,
2155				    "VBT: compression params not available\n");
2156			continue;
2157		}
2158
2159		if (child->compression_method_cps) {
2160			drm_dbg_kms(&i915->drm,
2161				    "VBT: CPS compression not supported\n");
2162			continue;
2163		}
2164
2165		index = child->compression_structure_index;
2166
2167		devdata->dsc = kmemdup(&params->data[index],
2168				       sizeof(*devdata->dsc), GFP_KERNEL);
2169	}
2170}
2171
2172static u8 translate_iboost(struct drm_i915_private *i915, u8 val)
2173{
2174	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2175
2176	if (val >= ARRAY_SIZE(mapping)) {
2177		drm_dbg_kms(&i915->drm,
2178			    "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2179		return 0;
2180	}
2181	return mapping[val];
2182}
2183
2184static const u8 cnp_ddc_pin_map[] = {
2185	[0] = 0, /* N/A */
2186	[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2187	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2188	[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2189	[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2190};
2191
2192static const u8 icp_ddc_pin_map[] = {
2193	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2194	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2195	[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2196	[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2197	[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2198	[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2199	[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2200	[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2201	[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2202};
2203
2204static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2205	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2206	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2207	[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2208	[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2209};
2210
2211static const u8 adls_ddc_pin_map[] = {
2212	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2213	[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2214	[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2215	[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2216	[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2217};
2218
2219static const u8 gen9bc_tgp_ddc_pin_map[] = {
2220	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2221	[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2222	[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2223};
2224
2225static const u8 adlp_ddc_pin_map[] = {
2226	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2227	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2228	[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2229	[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2230	[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2231	[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2232};
2233
2234static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2235{
2236	const u8 *ddc_pin_map;
2237	int i, n_entries;
2238
2239	if (IS_DGFX(i915))
2240		return vbt_pin;
2241
2242	if (INTEL_PCH_TYPE(i915) >= PCH_MTL || IS_ALDERLAKE_P(i915)) {
2243		ddc_pin_map = adlp_ddc_pin_map;
2244		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2245	} else if (IS_ALDERLAKE_S(i915)) {
2246		ddc_pin_map = adls_ddc_pin_map;
2247		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2248	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2249		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2250		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2251	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2252		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2253		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2254	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2255		ddc_pin_map = icp_ddc_pin_map;
2256		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2257	} else if (HAS_PCH_CNP(i915)) {
2258		ddc_pin_map = cnp_ddc_pin_map;
2259		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2260	} else {
2261		/* Assuming direct map */
2262		return vbt_pin;
2263	}
2264
2265	for (i = 0; i < n_entries; i++) {
2266		if (ddc_pin_map[i] == vbt_pin)
2267			return i;
2268	}
2269
2270	drm_dbg_kms(&i915->drm,
2271		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2272		    vbt_pin);
2273	return 0;
2274}
2275
2276static u8 dvo_port_type(u8 dvo_port)
2277{
2278	switch (dvo_port) {
2279	case DVO_PORT_HDMIA:
2280	case DVO_PORT_HDMIB:
2281	case DVO_PORT_HDMIC:
2282	case DVO_PORT_HDMID:
2283	case DVO_PORT_HDMIE:
2284	case DVO_PORT_HDMIF:
2285	case DVO_PORT_HDMIG:
2286	case DVO_PORT_HDMIH:
2287	case DVO_PORT_HDMII:
2288		return DVO_PORT_HDMIA;
2289	case DVO_PORT_DPA:
2290	case DVO_PORT_DPB:
2291	case DVO_PORT_DPC:
2292	case DVO_PORT_DPD:
2293	case DVO_PORT_DPE:
2294	case DVO_PORT_DPF:
2295	case DVO_PORT_DPG:
2296	case DVO_PORT_DPH:
2297	case DVO_PORT_DPI:
2298		return DVO_PORT_DPA;
2299	case DVO_PORT_MIPIA:
2300	case DVO_PORT_MIPIB:
2301	case DVO_PORT_MIPIC:
2302	case DVO_PORT_MIPID:
2303		return DVO_PORT_MIPIA;
2304	default:
2305		return dvo_port;
2306	}
2307}
2308
2309static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2310				    const int port_mapping[][3], u8 dvo_port)
2311{
2312	enum port port;
2313	int i;
2314
2315	for (port = PORT_A; port < n_ports; port++) {
2316		for (i = 0; i < n_dvo; i++) {
2317			if (port_mapping[port][i] == -1)
2318				break;
2319
2320			if (dvo_port == port_mapping[port][i])
2321				return port;
2322		}
2323	}
2324
2325	return PORT_NONE;
2326}
2327
2328static enum port dvo_port_to_port(struct drm_i915_private *i915,
2329				  u8 dvo_port)
2330{
2331	/*
2332	 * Each DDI port can have more than one value on the "DVO Port" field,
2333	 * so look for all the possible values for each port.
2334	 */
2335	static const int port_mapping[][3] = {
2336		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2337		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2338		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2339		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2340		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2341		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2342		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2343		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2344		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2345	};
2346	/*
2347	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2348	 * map to DDI A,B,TC1,TC2 respectively.
2349	 */
2350	static const int rkl_port_mapping[][3] = {
2351		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2352		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2353		[PORT_C] = { -1 },
2354		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2355		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2356	};
2357	/*
2358	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2359	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2360	 */
2361	static const int adls_port_mapping[][3] = {
2362		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2363		[PORT_B] = { -1 },
2364		[PORT_C] = { -1 },
2365		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2366		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2367		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2368		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2369	};
2370	static const int xelpd_port_mapping[][3] = {
2371		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2372		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2373		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2374		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2375		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2376		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2377		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2378		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2379		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2380	};
2381
2382	if (DISPLAY_VER(i915) >= 13)
2383		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2384					  ARRAY_SIZE(xelpd_port_mapping[0]),
2385					  xelpd_port_mapping,
2386					  dvo_port);
2387	else if (IS_ALDERLAKE_S(i915))
2388		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2389					  ARRAY_SIZE(adls_port_mapping[0]),
2390					  adls_port_mapping,
2391					  dvo_port);
2392	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2393		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2394					  ARRAY_SIZE(rkl_port_mapping[0]),
2395					  rkl_port_mapping,
2396					  dvo_port);
2397	else
2398		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2399					  ARRAY_SIZE(port_mapping[0]),
2400					  port_mapping,
2401					  dvo_port);
2402}
2403
2404static enum port
2405dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2406{
2407	switch (dvo_port) {
2408	case DVO_PORT_MIPIA:
2409		return PORT_A;
2410	case DVO_PORT_MIPIC:
2411		if (DISPLAY_VER(i915) >= 11)
2412			return PORT_B;
2413		else
2414			return PORT_C;
2415	default:
2416		return PORT_NONE;
2417	}
2418}
2419
2420enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2421{
2422	struct drm_i915_private *i915 = devdata->i915;
2423	const struct child_device_config *child = &devdata->child;
2424	enum port port;
2425
2426	port = dvo_port_to_port(i915, child->dvo_port);
2427	if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
2428		port = dsi_dvo_port_to_port(i915, child->dvo_port);
2429
2430	return port;
2431}
2432
2433static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2434{
2435	switch (vbt_max_link_rate) {
2436	default:
2437	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2438		return 0;
2439	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2440		return 2000000;
2441	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2442		return 1350000;
2443	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2444		return 1000000;
2445	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2446		return 810000;
2447	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2448		return 540000;
2449	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2450		return 270000;
2451	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2452		return 162000;
2453	}
2454}
2455
2456static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2457{
2458	switch (vbt_max_link_rate) {
2459	default:
2460	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2461		return 810000;
2462	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2463		return 540000;
2464	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2465		return 270000;
2466	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2467		return 162000;
2468	}
2469}
2470
2471int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2472{
2473	if (!devdata || devdata->i915->display.vbt.version < 216)
2474		return 0;
2475
2476	if (devdata->i915->display.vbt.version >= 230)
2477		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2478	else
2479		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2480}
2481
2482int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2483{
2484	if (!devdata || devdata->i915->display.vbt.version < 244)
2485		return 0;
2486
2487	return devdata->child.dp_max_lane_count + 1;
2488}
2489
2490static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2491				 enum port port)
2492{
2493	struct drm_i915_private *i915 = devdata->i915;
2494	bool is_hdmi;
2495
2496	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2497		return;
2498
2499	if (!intel_bios_encoder_supports_dvi(devdata))
2500		return;
2501
2502	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2503
2504	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2505		    is_hdmi ? "/HDMI" : "");
2506
2507	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2508	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2509}
2510
2511static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2512				      enum port port)
2513{
2514	struct drm_i915_private *i915 = devdata->i915;
2515
2516	if (!intel_bios_encoder_supports_dvi(devdata))
2517		return;
2518
2519	/*
2520	 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2521	 * with a HSW VBT where the level shifter value goes
2522	 * up to 11, whereas the BDW max is 9.
2523	 */
2524	if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) {
2525		drm_dbg_kms(&i915->drm, "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2526			    port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2527
2528		devdata->child.hdmi_level_shifter_value = 9;
2529	}
2530}
2531
2532static bool
2533intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2534{
2535	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2536}
2537
2538bool
2539intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2540{
2541	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2542}
2543
2544bool
2545intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2546{
2547	return intel_bios_encoder_supports_dvi(devdata) &&
2548		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2549}
2550
2551bool
2552intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2553{
2554	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2555}
2556
2557bool
2558intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2559{
2560	return intel_bios_encoder_supports_dp(devdata) &&
2561		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2562}
2563
2564bool
2565intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2566{
2567	return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2568}
2569
2570bool
2571intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2572{
2573	return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon;
2574}
2575
2576/* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2577int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2578{
2579	if (!devdata || devdata->i915->display.vbt.version < 158 ||
2580	    DISPLAY_VER(devdata->i915) >= 14)
2581		return -1;
2582
2583	return devdata->child.hdmi_level_shifter_value;
2584}
2585
2586int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2587{
2588	if (!devdata || devdata->i915->display.vbt.version < 204)
2589		return 0;
2590
2591	switch (devdata->child.hdmi_max_data_rate) {
2592	default:
2593		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2594		fallthrough;
2595	case HDMI_MAX_DATA_RATE_PLATFORM:
2596		return 0;
2597	case HDMI_MAX_DATA_RATE_594:
2598		return 594000;
2599	case HDMI_MAX_DATA_RATE_340:
2600		return 340000;
2601	case HDMI_MAX_DATA_RATE_300:
2602		return 300000;
2603	case HDMI_MAX_DATA_RATE_297:
2604		return 297000;
2605	case HDMI_MAX_DATA_RATE_165:
2606		return 165000;
2607	}
2608}
2609
2610static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2611{
2612	/*
2613	 * On some ICL SKUs port F is not present, but broken VBTs mark
2614	 * the port as present. Only try to initialize port F for the
2615	 * SKUs that may actually have it.
2616	 */
2617	if (port == PORT_F && IS_ICELAKE(i915))
2618		return IS_ICL_WITH_PORT_F(i915);
2619
2620	return true;
2621}
2622
2623static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2624{
2625	struct drm_i915_private *i915 = devdata->i915;
2626	const struct child_device_config *child = &devdata->child;
2627	bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2628	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2629	enum port port;
2630
2631	port = intel_bios_encoder_port(devdata);
2632	if (port == PORT_NONE)
2633		return;
2634
2635	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2636	is_dp = intel_bios_encoder_supports_dp(devdata);
2637	is_crt = intel_bios_encoder_supports_crt(devdata);
2638	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2639	is_edp = intel_bios_encoder_supports_edp(devdata);
2640	is_dsi = intel_bios_encoder_supports_dsi(devdata);
2641
2642	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2643	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2644
2645	drm_dbg_kms(&i915->drm,
2646		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2647		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2648		    intel_bios_encoder_supports_dp_dual_mode(devdata),
2649		    intel_bios_encoder_is_lspcon(devdata),
2650		    supports_typec_usb, supports_tbt,
2651		    devdata->dsc != NULL);
2652
2653	hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2654	if (hdmi_level_shift >= 0) {
2655		drm_dbg_kms(&i915->drm,
2656			    "Port %c VBT HDMI level shift: %d\n",
2657			    port_name(port), hdmi_level_shift);
2658	}
2659
2660	max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2661	if (max_tmds_clock)
2662		drm_dbg_kms(&i915->drm,
2663			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2664			    port_name(port), max_tmds_clock);
2665
2666	/* I_boost config for SKL and above */
2667	dp_boost_level = intel_bios_dp_boost_level(devdata);
2668	if (dp_boost_level)
2669		drm_dbg_kms(&i915->drm,
2670			    "Port %c VBT (e)DP boost level: %d\n",
2671			    port_name(port), dp_boost_level);
2672
2673	hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2674	if (hdmi_boost_level)
2675		drm_dbg_kms(&i915->drm,
2676			    "Port %c VBT HDMI boost level: %d\n",
2677			    port_name(port), hdmi_boost_level);
2678
2679	dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2680	if (dp_max_link_rate)
2681		drm_dbg_kms(&i915->drm,
2682			    "Port %c VBT DP max link rate: %d\n",
2683			    port_name(port), dp_max_link_rate);
2684
2685	/*
2686	 * FIXME need to implement support for VBT
2687	 * vswing/preemph tables should this ever trigger.
2688	 */
2689	drm_WARN(&i915->drm, child->use_vbt_vswing,
2690		 "Port %c asks to use VBT vswing/preemph tables\n",
2691		 port_name(port));
2692}
2693
2694static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2695{
2696	struct drm_i915_private *i915 = devdata->i915;
2697	enum port port;
2698
2699	port = intel_bios_encoder_port(devdata);
2700	if (port == PORT_NONE)
2701		return;
2702
2703	if (!is_port_valid(i915, port)) {
2704		drm_dbg_kms(&i915->drm,
2705			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2706			    port_name(port));
2707		return;
2708	}
2709
2710	sanitize_device_type(devdata, port);
2711	sanitize_hdmi_level_shift(devdata, port);
2712}
2713
2714static bool has_ddi_port_info(struct drm_i915_private *i915)
2715{
2716	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2717}
2718
2719static void parse_ddi_ports(struct drm_i915_private *i915)
2720{
2721	struct intel_bios_encoder_data *devdata;
2722
2723	if (!has_ddi_port_info(i915))
2724		return;
2725
2726	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2727		parse_ddi_port(devdata);
2728
2729	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2730		print_ddi_port(devdata);
2731}
2732
2733static void
2734parse_general_definitions(struct drm_i915_private *i915)
2735{
2736	const struct bdb_general_definitions *defs;
2737	struct intel_bios_encoder_data *devdata;
2738	const struct child_device_config *child;
2739	int i, child_device_num;
2740	u8 expected_size;
2741	u16 block_size;
2742	int bus_pin;
2743
2744	defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS);
2745	if (!defs) {
2746		drm_dbg_kms(&i915->drm,
2747			    "No general definition block is found, no devices defined.\n");
2748		return;
2749	}
2750
2751	block_size = get_blocksize(defs);
2752	if (block_size < sizeof(*defs)) {
2753		drm_dbg_kms(&i915->drm,
2754			    "General definitions block too small (%u)\n",
2755			    block_size);
2756		return;
2757	}
2758
2759	bus_pin = defs->crt_ddc_gmbus_pin;
2760	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2761	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2762		i915->display.vbt.crt_ddc_pin = bus_pin;
2763
2764	if (i915->display.vbt.version < 106) {
2765		expected_size = 22;
2766	} else if (i915->display.vbt.version < 111) {
2767		expected_size = 27;
2768	} else if (i915->display.vbt.version < 195) {
2769		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2770	} else if (i915->display.vbt.version == 195) {
2771		expected_size = 37;
2772	} else if (i915->display.vbt.version <= 215) {
2773		expected_size = 38;
2774	} else if (i915->display.vbt.version <= 250) {
2775		expected_size = 39;
2776	} else {
2777		expected_size = sizeof(*child);
2778		BUILD_BUG_ON(sizeof(*child) < 39);
2779		drm_dbg(&i915->drm,
2780			"Expected child device config size for VBT version %u not known; assuming %u\n",
2781			i915->display.vbt.version, expected_size);
2782	}
2783
2784	/* Flag an error for unexpected size, but continue anyway. */
2785	if (defs->child_dev_size != expected_size)
2786		drm_err(&i915->drm,
2787			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2788			defs->child_dev_size, expected_size, i915->display.vbt.version);
2789
2790	/* The legacy sized child device config is the minimum we need. */
2791	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2792		drm_dbg_kms(&i915->drm,
2793			    "Child device config size %u is too small.\n",
2794			    defs->child_dev_size);
2795		return;
2796	}
2797
2798	/* get the number of child device */
2799	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2800
2801	for (i = 0; i < child_device_num; i++) {
2802		child = child_device_ptr(defs, i);
2803		if (!child->device_type)
2804			continue;
2805
2806		drm_dbg_kms(&i915->drm,
2807			    "Found VBT child device with type 0x%x\n",
2808			    child->device_type);
2809
2810		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2811		if (!devdata)
2812			break;
2813
2814		devdata->i915 = i915;
2815
2816		/*
2817		 * Copy as much as we know (sizeof) and is available
2818		 * (child_dev_size) of the child device config. Accessing the
2819		 * data must depend on VBT version.
2820		 */
2821		memcpy(&devdata->child, child,
2822		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2823
2824		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2825	}
2826
2827	if (list_empty(&i915->display.vbt.display_devices))
2828		drm_dbg_kms(&i915->drm,
2829			    "no child dev is parsed from VBT\n");
2830}
2831
2832/* Common defaults which may be overridden by VBT. */
2833static void
2834init_vbt_defaults(struct drm_i915_private *i915)
2835{
2836	i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2837
2838	/* general features */
2839	i915->display.vbt.int_tv_support = 1;
2840	i915->display.vbt.int_crt_support = 1;
2841
2842	/* driver features */
2843	i915->display.vbt.int_lvds_support = 1;
2844
2845	/* Default to using SSC */
2846	i915->display.vbt.lvds_use_ssc = 1;
2847	/*
2848	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2849	 * clock for LVDS.
2850	 */
2851	i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2852								   !HAS_PCH_SPLIT(i915));
2853	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2854		    i915->display.vbt.lvds_ssc_freq);
2855}
2856
2857/* Common defaults which may be overridden by VBT. */
2858static void
2859init_vbt_panel_defaults(struct intel_panel *panel)
2860{
2861	/* Default to having backlight */
2862	panel->vbt.backlight.present = true;
2863
2864	/* LFP panel data */
2865	panel->vbt.lvds_dither = true;
2866}
2867
2868/* Defaults to initialize only if there is no VBT. */
2869static void
2870init_vbt_missing_defaults(struct drm_i915_private *i915)
2871{
2872	enum port port;
2873	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2874		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2875
2876	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2877		return;
2878
2879	for_each_port_masked(port, ports) {
2880		struct intel_bios_encoder_data *devdata;
2881		struct child_device_config *child;
2882		enum phy phy = intel_port_to_phy(i915, port);
2883
2884		/*
2885		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2886		 * to detect it.
2887		 */
2888		if (intel_phy_is_tc(i915, phy))
2889			continue;
2890
2891		/* Create fake child device config */
2892		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2893		if (!devdata)
2894			break;
2895
2896		devdata->i915 = i915;
2897		child = &devdata->child;
2898
2899		if (port == PORT_F)
2900			child->dvo_port = DVO_PORT_HDMIF;
2901		else if (port == PORT_E)
2902			child->dvo_port = DVO_PORT_HDMIE;
2903		else
2904			child->dvo_port = DVO_PORT_HDMIA + port;
2905
2906		if (port != PORT_A && port != PORT_E)
2907			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2908
2909		if (port != PORT_E)
2910			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2911
2912		if (port == PORT_A)
2913			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2914
2915		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2916
2917		drm_dbg_kms(&i915->drm,
2918			    "Generating default VBT child device with type 0x04%x on port %c\n",
2919			    child->device_type, port_name(port));
2920	}
2921
2922	/* Bypass some minimum baseline VBT version checks */
2923	i915->display.vbt.version = 155;
2924}
2925
2926static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2927{
2928	const void *_vbt = vbt;
2929
2930	return _vbt + vbt->bdb_offset;
2931}
2932
2933/**
2934 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2935 * @i915:	the device
2936 * @buf:	pointer to a buffer to validate
2937 * @size:	size of the buffer
2938 *
2939 * Returns true on valid VBT.
2940 */
2941bool intel_bios_is_valid_vbt(struct drm_i915_private *i915,
2942			     const void *buf, size_t size)
2943{
2944	const struct vbt_header *vbt = buf;
2945	const struct bdb_header *bdb;
2946
2947	if (!vbt)
2948		return false;
2949
2950	if (sizeof(struct vbt_header) > size) {
2951		drm_dbg_kms(&i915->drm, "VBT header incomplete\n");
2952		return false;
2953	}
2954
2955	if (memcmp(vbt->signature, "$VBT", 4)) {
2956		drm_dbg_kms(&i915->drm, "VBT invalid signature\n");
2957		return false;
2958	}
2959
2960	if (vbt->vbt_size > size) {
2961		drm_dbg_kms(&i915->drm, "VBT incomplete (vbt_size overflows)\n");
2962		return false;
2963	}
2964
2965	size = vbt->vbt_size;
2966
2967	if (range_overflows_t(size_t,
2968			      vbt->bdb_offset,
2969			      sizeof(struct bdb_header),
2970			      size)) {
2971		drm_dbg_kms(&i915->drm, "BDB header incomplete\n");
2972		return false;
2973	}
2974
2975	bdb = get_bdb_header(vbt);
2976	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2977		drm_dbg_kms(&i915->drm, "BDB incomplete\n");
2978		return false;
2979	}
2980
2981	return vbt;
2982}
2983
2984static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
2985{
2986	intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
2987
2988	return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
2989}
2990
2991static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2992{
2993	u32 count, data, found, store = 0;
2994	u32 static_region, oprom_offset;
2995	u32 oprom_size = 0x200000;
2996	u16 vbt_size;
2997	u32 *vbt;
2998
2999	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
3000	static_region &= OPTIONROM_SPI_REGIONID_MASK;
3001	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
3002
3003	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
3004	oprom_offset &= OROM_OFFSET_MASK;
3005
3006	for (count = 0; count < oprom_size; count += 4) {
3007		data = intel_spi_read(&i915->uncore, oprom_offset + count);
3008		if (data == *((const u32 *)"$VBT")) {
3009			found = oprom_offset + count;
3010			break;
3011		}
3012	}
3013
3014	if (count >= oprom_size)
3015		goto err_not_found;
3016
3017	/* Get VBT size and allocate space for the VBT */
3018	vbt_size = intel_spi_read(&i915->uncore,
3019				  found + offsetof(struct vbt_header, vbt_size));
3020	vbt_size &= 0xffff;
3021
3022	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3023	if (!vbt)
3024		goto err_not_found;
3025
3026	for (count = 0; count < vbt_size; count += 4)
3027		*(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
3028
3029	if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size))
3030		goto err_free_vbt;
3031
3032	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
3033
3034	return (struct vbt_header *)vbt;
3035
3036err_free_vbt:
3037	kfree(vbt);
3038err_not_found:
3039	return NULL;
3040}
3041
3042static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
3043{
3044	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3045	void __iomem *p = NULL, *oprom;
3046	struct vbt_header *vbt;
3047	u16 vbt_size;
3048	size_t i, size;
3049
3050	oprom = pci_map_rom(pdev, &size);
3051	if (!oprom)
3052		return NULL;
3053
3054	/* Scour memory looking for the VBT signature. */
3055	for (i = 0; i + 4 < size; i += 4) {
3056		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3057			continue;
3058
3059		p = oprom + i;
3060		size -= i;
3061		break;
3062	}
3063
3064	if (!p)
3065		goto err_unmap_oprom;
3066
3067	if (sizeof(struct vbt_header) > size) {
3068		drm_dbg(&i915->drm, "VBT header incomplete\n");
3069		goto err_unmap_oprom;
3070	}
3071
3072	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3073	if (vbt_size > size) {
3074		drm_dbg(&i915->drm,
3075			"VBT incomplete (vbt_size overflows)\n");
3076		goto err_unmap_oprom;
3077	}
3078
3079	/* The rest will be validated by intel_bios_is_valid_vbt() */
3080	vbt = kmalloc(vbt_size, GFP_KERNEL);
3081	if (!vbt)
3082		goto err_unmap_oprom;
3083
3084	memcpy_fromio(vbt, p, vbt_size);
3085
3086	if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size))
3087		goto err_free_vbt;
3088
3089	pci_unmap_rom(pdev, oprom);
3090
3091	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3092
3093	return vbt;
3094
3095err_free_vbt:
3096	kfree(vbt);
3097err_unmap_oprom:
3098	pci_unmap_rom(pdev, oprom);
3099
3100	return NULL;
3101}
3102
3103/**
3104 * intel_bios_init - find VBT and initialize settings from the BIOS
3105 * @i915: i915 device instance
3106 *
3107 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3108 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3109 * initialize some defaults if the VBT is not present at all.
3110 */
3111void intel_bios_init(struct drm_i915_private *i915)
3112{
3113	const struct vbt_header *vbt;
3114	struct vbt_header *oprom_vbt = NULL;
3115	const struct bdb_header *bdb;
3116
3117	INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3118	INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3119
3120	if (!HAS_DISPLAY(i915)) {
3121		drm_dbg_kms(&i915->drm,
3122			    "Skipping VBT init due to disabled display.\n");
3123		return;
3124	}
3125
3126	init_vbt_defaults(i915);
3127
3128	vbt = intel_opregion_get_vbt(i915, NULL);
3129
3130	/*
3131	 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3132	 * PCI mapping
3133	 */
3134	if (!vbt && IS_DGFX(i915)) {
3135		oprom_vbt = spi_oprom_get_vbt(i915);
3136		vbt = oprom_vbt;
3137	}
3138
3139	if (!vbt) {
3140		oprom_vbt = oprom_get_vbt(i915);
3141		vbt = oprom_vbt;
3142	}
3143
3144	if (!vbt)
3145		goto out;
3146
3147	bdb = get_bdb_header(vbt);
3148	i915->display.vbt.version = bdb->version;
3149
3150	drm_dbg_kms(&i915->drm,
3151		    "VBT signature \"%.*s\", BDB version %d\n",
3152		    (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3153
3154	init_bdb_blocks(i915, bdb);
3155
3156	/* Grab useful general definitions */
3157	parse_general_features(i915);
3158	parse_general_definitions(i915);
3159	parse_driver_features(i915);
3160
3161	/* Depends on child device list */
3162	parse_compression_parameters(i915);
3163
3164out:
3165	if (!vbt) {
3166		drm_info(&i915->drm,
3167			 "Failed to find VBIOS tables (VBT)\n");
3168		init_vbt_missing_defaults(i915);
3169	}
3170
3171	/* Further processing on pre-parsed or generated child device data */
3172	parse_sdvo_device_mapping(i915);
3173	parse_ddi_ports(i915);
3174
3175	kfree(oprom_vbt);
3176}
3177
3178static void intel_bios_init_panel(struct drm_i915_private *i915,
3179				  struct intel_panel *panel,
3180				  const struct intel_bios_encoder_data *devdata,
3181				  const struct drm_edid *drm_edid,
3182				  bool use_fallback)
3183{
3184	/* already have it? */
3185	if (panel->vbt.panel_type >= 0) {
3186		drm_WARN_ON(&i915->drm, !use_fallback);
3187		return;
3188	}
3189
3190	panel->vbt.panel_type = get_panel_type(i915, devdata,
3191					       drm_edid, use_fallback);
3192	if (panel->vbt.panel_type < 0) {
3193		drm_WARN_ON(&i915->drm, use_fallback);
3194		return;
3195	}
3196
3197	init_vbt_panel_defaults(panel);
3198
3199	parse_panel_options(i915, panel);
3200	parse_generic_dtd(i915, panel);
3201	parse_lfp_data(i915, panel);
3202	parse_lfp_backlight(i915, panel);
3203	parse_sdvo_panel_data(i915, panel);
3204	parse_panel_driver_features(i915, panel);
3205	parse_power_conservation_features(i915, panel);
3206	parse_edp(i915, panel);
3207	parse_psr(i915, panel);
3208	parse_mipi_config(i915, panel);
3209	parse_mipi_sequence(i915, panel);
3210}
3211
3212void intel_bios_init_panel_early(struct drm_i915_private *i915,
3213				 struct intel_panel *panel,
3214				 const struct intel_bios_encoder_data *devdata)
3215{
3216	intel_bios_init_panel(i915, panel, devdata, NULL, false);
3217}
3218
3219void intel_bios_init_panel_late(struct drm_i915_private *i915,
3220				struct intel_panel *panel,
3221				const struct intel_bios_encoder_data *devdata,
3222				const struct drm_edid *drm_edid)
3223{
3224	intel_bios_init_panel(i915, panel, devdata, drm_edid, true);
3225}
3226
3227/**
3228 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3229 * @i915: i915 device instance
3230 */
3231void intel_bios_driver_remove(struct drm_i915_private *i915)
3232{
3233	struct intel_bios_encoder_data *devdata, *nd;
3234	struct bdb_block_entry *entry, *ne;
3235
3236	list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3237		list_del(&devdata->node);
3238		kfree(devdata->dsc);
3239		kfree(devdata);
3240	}
3241
3242	list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3243		list_del(&entry->node);
3244		kfree(entry);
3245	}
3246}
3247
3248void intel_bios_fini_panel(struct intel_panel *panel)
3249{
3250	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3251	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3252	kfree(panel->vbt.lfp_lvds_vbt_mode);
3253	panel->vbt.lfp_lvds_vbt_mode = NULL;
3254	kfree(panel->vbt.dsi.data);
3255	panel->vbt.dsi.data = NULL;
3256	kfree(panel->vbt.dsi.pps);
3257	panel->vbt.dsi.pps = NULL;
3258	kfree(panel->vbt.dsi.config);
3259	panel->vbt.dsi.config = NULL;
3260	kfree(panel->vbt.dsi.deassert_seq);
3261	panel->vbt.dsi.deassert_seq = NULL;
3262}
3263
3264/**
3265 * intel_bios_is_tv_present - is integrated TV present in VBT
3266 * @i915: i915 device instance
3267 *
3268 * Return true if TV is present. If no child devices were parsed from VBT,
3269 * assume TV is present.
3270 */
3271bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3272{
3273	const struct intel_bios_encoder_data *devdata;
3274
3275	if (!i915->display.vbt.int_tv_support)
3276		return false;
3277
3278	if (list_empty(&i915->display.vbt.display_devices))
3279		return true;
3280
3281	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3282		const struct child_device_config *child = &devdata->child;
3283
3284		/*
3285		 * If the device type is not TV, continue.
3286		 */
3287		switch (child->device_type) {
3288		case DEVICE_TYPE_INT_TV:
3289		case DEVICE_TYPE_TV:
3290		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3291			break;
3292		default:
3293			continue;
3294		}
3295		/* Only when the addin_offset is non-zero, it is regarded
3296		 * as present.
3297		 */
3298		if (child->addin_offset)
3299			return true;
3300	}
3301
3302	return false;
3303}
3304
3305/**
3306 * intel_bios_is_lvds_present - is LVDS present in VBT
3307 * @i915:	i915 device instance
3308 * @i2c_pin:	i2c pin for LVDS if present
3309 *
3310 * Return true if LVDS is present. If no child devices were parsed from VBT,
3311 * assume LVDS is present.
3312 */
3313bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3314{
3315	const struct intel_bios_encoder_data *devdata;
3316
3317	if (list_empty(&i915->display.vbt.display_devices))
3318		return true;
3319
3320	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3321		const struct child_device_config *child = &devdata->child;
3322
3323		/* If the device type is not LFP, continue.
3324		 * We have to check both the new identifiers as well as the
3325		 * old for compatibility with some BIOSes.
3326		 */
3327		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3328		    child->device_type != DEVICE_TYPE_LFP)
3329			continue;
3330
3331		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3332			*i2c_pin = child->i2c_pin;
3333
3334		/* However, we cannot trust the BIOS writers to populate
3335		 * the VBT correctly.  Since LVDS requires additional
3336		 * information from AIM blocks, a non-zero addin offset is
3337		 * a good indicator that the LVDS is actually present.
3338		 */
3339		if (child->addin_offset)
3340			return true;
3341
3342		/* But even then some BIOS writers perform some black magic
3343		 * and instantiate the device without reference to any
3344		 * additional data.  Trust that if the VBT was written into
3345		 * the OpRegion then they have validated the LVDS's existence.
3346		 */
3347		if (intel_opregion_get_vbt(i915, NULL))
3348			return true;
3349	}
3350
3351	return false;
3352}
3353
3354/**
3355 * intel_bios_is_port_present - is the specified digital port present
3356 * @i915:	i915 device instance
3357 * @port:	port to check
3358 *
3359 * Return true if the device in %port is present.
3360 */
3361bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3362{
3363	const struct intel_bios_encoder_data *devdata;
3364
3365	if (WARN_ON(!has_ddi_port_info(i915)))
3366		return true;
3367
3368	if (!is_port_valid(i915, port))
3369		return false;
3370
3371	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3372		const struct child_device_config *child = &devdata->child;
3373
3374		if (dvo_port_to_port(i915, child->dvo_port) == port)
3375			return true;
3376	}
3377
3378	return false;
3379}
3380
3381bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3382{
3383	const struct child_device_config *child = &devdata->child;
3384
3385	if (!devdata)
3386		return false;
3387
3388	if (!intel_bios_encoder_supports_dp(devdata) ||
3389	    !intel_bios_encoder_supports_hdmi(devdata))
3390		return false;
3391
3392	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3393		return true;
3394
3395	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3396	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3397	    child->aux_channel != 0)
3398		return true;
3399
3400	return false;
3401}
3402
3403/**
3404 * intel_bios_is_dsi_present - is DSI present in VBT
3405 * @i915:	i915 device instance
3406 * @port:	port for DSI if present
3407 *
3408 * Return true if DSI is present, and return the port in %port.
3409 */
3410bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3411			       enum port *port)
3412{
3413	const struct intel_bios_encoder_data *devdata;
3414
3415	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3416		const struct child_device_config *child = &devdata->child;
3417		u8 dvo_port = child->dvo_port;
3418
3419		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3420			continue;
3421
3422		if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
3423			drm_dbg_kms(&i915->drm,
3424				    "VBT has unsupported DSI port %c\n",
3425				    port_name(dvo_port - DVO_PORT_MIPIA));
3426			continue;
3427		}
3428
3429		if (port)
3430			*port = dsi_dvo_port_to_port(i915, dvo_port);
3431		return true;
3432	}
3433
3434	return false;
3435}
3436
3437static void fill_dsc(struct intel_crtc_state *crtc_state,
3438		     struct dsc_compression_parameters_entry *dsc,
3439		     int dsc_max_bpc)
3440{
3441	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
3442	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3443	int bpc = 8;
3444
3445	vdsc_cfg->dsc_version_major = dsc->version_major;
3446	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3447
3448	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3449		bpc = 12;
3450	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3451		bpc = 10;
3452	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3453		bpc = 8;
3454	else
3455		drm_dbg_kms(&i915->drm, "VBT: Unsupported BPC %d for DCS\n",
3456			    dsc_max_bpc);
3457
3458	crtc_state->pipe_bpp = bpc * 3;
3459
3460	crtc_state->dsc.compressed_bpp_x16 = to_bpp_x16(min(crtc_state->pipe_bpp,
3461							    VBT_DSC_MAX_BPP(dsc->max_bpp)));
3462
3463	/*
3464	 * FIXME: This is ugly, and slice count should take DSC engine
3465	 * throughput etc. into account.
3466	 *
3467	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3468	 */
3469	if (dsc->slices_per_line & BIT(2)) {
3470		crtc_state->dsc.slice_count = 4;
3471	} else if (dsc->slices_per_line & BIT(1)) {
3472		crtc_state->dsc.slice_count = 2;
3473	} else {
3474		/* FIXME */
3475		if (!(dsc->slices_per_line & BIT(0)))
3476			drm_dbg_kms(&i915->drm, "VBT: Unsupported DSC slice count for DSI\n");
3477
3478		crtc_state->dsc.slice_count = 1;
3479	}
3480
3481	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3482	    crtc_state->dsc.slice_count != 0)
3483		drm_dbg_kms(&i915->drm, "VBT: DSC hdisplay %d not divisible by slice count %d\n",
3484			    crtc_state->hw.adjusted_mode.crtc_hdisplay,
3485			    crtc_state->dsc.slice_count);
3486
3487	/*
3488	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3489	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3490	 */
3491	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3492							    dsc->rc_buffer_size);
3493
3494	/* FIXME: DSI spec says bpc + 1 for this one */
3495	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3496
3497	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3498
3499	vdsc_cfg->slice_height = dsc->slice_height;
3500}
3501
3502/* FIXME: initially DSI specific */
3503bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3504			       struct intel_crtc_state *crtc_state,
3505			       int dsc_max_bpc)
3506{
3507	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3508	const struct intel_bios_encoder_data *devdata;
3509
3510	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3511		const struct child_device_config *child = &devdata->child;
3512
3513		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3514			continue;
3515
3516		if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3517			if (!devdata->dsc)
3518				return false;
3519
3520			fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3521
3522			return true;
3523		}
3524	}
3525
3526	return false;
3527}
3528
3529static const u8 adlp_aux_ch_map[] = {
3530	[AUX_CH_A] = DP_AUX_A,
3531	[AUX_CH_B] = DP_AUX_B,
3532	[AUX_CH_C] = DP_AUX_C,
3533	[AUX_CH_D_XELPD] = DP_AUX_D,
3534	[AUX_CH_E_XELPD] = DP_AUX_E,
3535	[AUX_CH_USBC1] = DP_AUX_F,
3536	[AUX_CH_USBC2] = DP_AUX_G,
3537	[AUX_CH_USBC3] = DP_AUX_H,
3538	[AUX_CH_USBC4] = DP_AUX_I,
3539};
3540
3541/*
3542 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3543 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3544 */
3545static const u8 adls_aux_ch_map[] = {
3546	[AUX_CH_A] = DP_AUX_A,
3547	[AUX_CH_USBC1] = DP_AUX_B,
3548	[AUX_CH_USBC2] = DP_AUX_C,
3549	[AUX_CH_USBC3] = DP_AUX_D,
3550	[AUX_CH_USBC4] = DP_AUX_E,
3551};
3552
3553/*
3554 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3555 * map to DDI A,B,TC1,TC2 respectively.
3556 */
3557static const u8 rkl_aux_ch_map[] = {
3558	[AUX_CH_A] = DP_AUX_A,
3559	[AUX_CH_B] = DP_AUX_B,
3560	[AUX_CH_USBC1] = DP_AUX_C,
3561	[AUX_CH_USBC2] = DP_AUX_D,
3562};
3563
3564static const u8 direct_aux_ch_map[] = {
3565	[AUX_CH_A] = DP_AUX_A,
3566	[AUX_CH_B] = DP_AUX_B,
3567	[AUX_CH_C] = DP_AUX_C,
3568	[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3569	[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3570	[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3571	[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3572	[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3573	[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3574};
3575
3576static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel)
3577{
3578	const u8 *aux_ch_map;
3579	int i, n_entries;
3580
3581	if (DISPLAY_VER(i915) >= 13) {
3582		aux_ch_map = adlp_aux_ch_map;
3583		n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3584	} else if (IS_ALDERLAKE_S(i915)) {
3585		aux_ch_map = adls_aux_ch_map;
3586		n_entries = ARRAY_SIZE(adls_aux_ch_map);
3587	} else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
3588		aux_ch_map = rkl_aux_ch_map;
3589		n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3590	} else {
3591		aux_ch_map = direct_aux_ch_map;
3592		n_entries = ARRAY_SIZE(direct_aux_ch_map);
3593	}
3594
3595	for (i = 0; i < n_entries; i++) {
3596		if (aux_ch_map[i] == aux_channel)
3597			return i;
3598	}
3599
3600	drm_dbg_kms(&i915->drm,
3601		    "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3602		    aux_channel);
3603
3604	return AUX_CH_NONE;
3605}
3606
3607enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3608{
3609	if (!devdata || !devdata->child.aux_channel)
3610		return AUX_CH_NONE;
3611
3612	return map_aux_ch(devdata->i915, devdata->child.aux_channel);
3613}
3614
3615bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3616{
3617	struct drm_i915_private *i915;
3618	u8 aux_channel;
3619	int count = 0;
3620
3621	if (!devdata || !devdata->child.aux_channel)
3622		return false;
3623
3624	i915 = devdata->i915;
3625	aux_channel = devdata->child.aux_channel;
3626
3627	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3628		if (intel_bios_encoder_supports_dp(devdata) &&
3629		    aux_channel == devdata->child.aux_channel)
3630			count++;
3631	}
3632
3633	return count > 1;
3634}
3635
3636int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3637{
3638	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3639		return 0;
3640
3641	return translate_iboost(devdata->i915, devdata->child.dp_iboost_level);
3642}
3643
3644int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3645{
3646	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3647		return 0;
3648
3649	return translate_iboost(devdata->i915, devdata->child.hdmi_iboost_level);
3650}
3651
3652int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3653{
3654	if (!devdata || !devdata->child.ddc_pin)
3655		return 0;
3656
3657	return map_ddc_pin(devdata->i915, devdata->child.ddc_pin);
3658}
3659
3660bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3661{
3662	return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3663}
3664
3665bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3666{
3667	return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3668}
3669
3670bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3671{
3672	return devdata && devdata->child.lane_reversal;
3673}
3674
3675bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3676{
3677	return devdata && devdata->child.hpd_invert;
3678}
3679
3680const struct intel_bios_encoder_data *
3681intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3682{
3683	struct intel_bios_encoder_data *devdata;
3684
3685	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3686		if (intel_bios_encoder_port(devdata) == port)
3687			return devdata;
3688	}
3689
3690	return NULL;
3691}
3692
3693void intel_bios_for_each_encoder(struct drm_i915_private *i915,
3694				 void (*func)(struct drm_i915_private *i915,
3695					      const struct intel_bios_encoder_data *devdata))
3696{
3697	struct intel_bios_encoder_data *devdata;
3698
3699	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
3700		func(i915, devdata);
3701}
3702
3703static int intel_bios_vbt_show(struct seq_file *m, void *unused)
3704{
3705	struct drm_i915_private *i915 = m->private;
3706	const void *vbt;
3707	size_t vbt_size;
3708
3709	/*
3710	 * FIXME: VBT might originate from other places than opregion, and then
3711	 * this would be incorrect.
3712	 */
3713	vbt = intel_opregion_get_vbt(i915, &vbt_size);
3714	if (vbt)
3715		seq_write(m, vbt, vbt_size);
3716
3717	return 0;
3718}
3719
3720DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt);
3721
3722void intel_bios_debugfs_register(struct drm_i915_private *i915)
3723{
3724	struct drm_minor *minor = i915->drm.primary;
3725
3726	debugfs_create_file("i915_vbt", 0444, minor->debugfs_root,
3727			    i915, &intel_bios_vbt_fops);
3728}
3729