/* * Copyright © 2006 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eric Anholt * */ #include #include #include #include "i915_drv.h" #include "i915_reg.h" #include "intel_display.h" #include "intel_display_types.h" #include "intel_gmbus.h" #define _INTEL_BIOS_PRIVATE #include "intel_vbt_defs.h" /** * DOC: Video BIOS Table (VBT) * * The Video BIOS Table, or VBT, provides platform and board specific * configuration information to the driver that is not discoverable or available * through other means. The configuration is mostly related to display * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in * the PCI ROM. * * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that * contain the actual configuration information. The VBT Header, and thus the * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the * BDB Header. The data blocks are concatenated after the BDB Header. The data * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of * data. (Block 53, the MIPI Sequence Block is an exception.) * * The driver parses the VBT during load. The relevant information is stored in * driver private data for ease of use, and the actual VBT is not read after * that. */ /* Wrapper for VBT child device config */ struct intel_bios_encoder_data { struct drm_i915_private *i915; struct child_device_config child; struct dsc_compression_parameters_entry *dsc; struct list_head node; }; #define SLAVE_ADDR1 0x70 #define SLAVE_ADDR2 0x72 /* Get BDB block size given a pointer to Block ID. */ static u32 _get_blocksize(const u8 *block_base) { /* The MIPI Sequence Block v3+ has a separate size field. */ if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) return *((const u32 *)(block_base + 4)); else return *((const u16 *)(block_base + 1)); } /* Get BDB block size give a pointer to data after Block ID and Block Size. */ static u32 get_blocksize(const void *block_data) { return _get_blocksize(block_data - 3); } static const void * find_raw_section(const void *_bdb, enum bdb_block_id section_id) { const struct bdb_header *bdb = _bdb; const u8 *base = _bdb; int index = 0; u32 total, current_size; enum bdb_block_id current_id; /* skip to first section */ index += bdb->header_size; total = bdb->bdb_size; /* walk the sections looking for section_id */ while (index + 3 < total) { current_id = *(base + index); current_size = _get_blocksize(base + index); index += 3; if (index + current_size > total) return NULL; if (current_id == section_id) return base + index; index += current_size; } return NULL; } /* * Offset from the start of BDB to the start of the * block data (just past the block header). */ static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) { const void *block; block = find_raw_section(bdb, section_id); if (!block) return 0; return block - bdb; } struct bdb_block_entry { struct list_head node; enum bdb_block_id section_id; u8 data[]; }; static const void * bdb_find_section(struct drm_i915_private *i915, enum bdb_block_id section_id) { struct bdb_block_entry *entry; list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) { if (entry->section_id == section_id) return entry->data + 3; } return NULL; } static const struct { enum bdb_block_id section_id; size_t min_size; } bdb_blocks[] = { { .section_id = BDB_GENERAL_FEATURES, .min_size = sizeof(struct bdb_general_features), }, { .section_id = BDB_GENERAL_DEFINITIONS, .min_size = sizeof(struct bdb_general_definitions), }, { .section_id = BDB_PSR, .min_size = sizeof(struct bdb_psr), }, { .section_id = BDB_DRIVER_FEATURES, .min_size = sizeof(struct bdb_driver_features), }, { .section_id = BDB_SDVO_LVDS_OPTIONS, .min_size = sizeof(struct bdb_sdvo_lvds_options), }, { .section_id = BDB_SDVO_PANEL_DTDS, .min_size = sizeof(struct bdb_sdvo_panel_dtds), }, { .section_id = BDB_EDP, .min_size = sizeof(struct bdb_edp), }, { .section_id = BDB_LVDS_OPTIONS, .min_size = sizeof(struct bdb_lvds_options), }, /* * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS, * so keep the two ordered. */ { .section_id = BDB_LVDS_LFP_DATA_PTRS, .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), }, { .section_id = BDB_LVDS_LFP_DATA, .min_size = 0, /* special case */ }, { .section_id = BDB_LVDS_BACKLIGHT, .min_size = sizeof(struct bdb_lfp_backlight_data), }, { .section_id = BDB_LFP_POWER, .min_size = sizeof(struct bdb_lfp_power), }, { .section_id = BDB_MIPI_CONFIG, .min_size = sizeof(struct bdb_mipi_config), }, { .section_id = BDB_MIPI_SEQUENCE, .min_size = sizeof(struct bdb_mipi_sequence) }, { .section_id = BDB_COMPRESSION_PARAMETERS, .min_size = sizeof(struct bdb_compression_parameters), }, { .section_id = BDB_GENERIC_DTD, .min_size = sizeof(struct bdb_generic_dtd), }, }; static size_t lfp_data_min_size(struct drm_i915_private *i915) { const struct bdb_lvds_lfp_data_ptrs *ptrs; size_t size; ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); if (!ptrs) return 0; size = sizeof(struct bdb_lvds_lfp_data); if (ptrs->panel_name.table_size) size = max(size, ptrs->panel_name.offset + sizeof(struct bdb_lvds_lfp_data_tail)); return size; } static bool validate_lfp_data_ptrs(const void *bdb, const struct bdb_lvds_lfp_data_ptrs *ptrs) { int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; int data_block_size, lfp_data_size; const void *data_block; int i; data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); if (!data_block) return false; data_block_size = get_blocksize(data_block); if (data_block_size == 0) return false; /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ if (ptrs->lvds_entries != 3) return false; fp_timing_size = ptrs->ptr[0].fp_timing.table_size; dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; panel_name_size = ptrs->panel_name.table_size; /* fp_timing has variable size */ if (fp_timing_size < 32 || dvo_timing_size != sizeof(struct lvds_dvo_timing) || panel_pnp_id_size != sizeof(struct lvds_pnp_id)) return false; /* panel_name is not present in old VBTs */ if (panel_name_size != 0 && panel_name_size != sizeof(struct lvds_lfp_panel_name)) return false; lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; if (16 * lfp_data_size > data_block_size) return false; /* make sure the table entries have uniform size */ for (i = 1; i < 16; i++) { if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) return false; if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) return false; } /* * Except for vlv/chv machines all real VBTs seem to have 6 * unaccounted bytes in the fp_timing table. And it doesn't * appear to be a really intentional hole as the fp_timing * 0xffff terminator is always within those 6 missing bytes. */ if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) fp_timing_size += 6; if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) return false; if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) return false; /* make sure the tables fit inside the data block */ for (i = 0; i < 16; i++) { if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) return false; } if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) return false; /* make sure fp_timing terminators are present at expected locations */ for (i = 0; i < 16; i++) { const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + fp_timing_size - 2; if (*t != 0xffff) return false; } return true; } /* make the data table offsets relative to the data block */ static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) { struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block; u32 offset; int i; offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA); for (i = 0; i < 16; i++) { if (ptrs->ptr[i].fp_timing.offset < offset || ptrs->ptr[i].dvo_timing.offset < offset || ptrs->ptr[i].panel_pnp_id.offset < offset) return false; ptrs->ptr[i].fp_timing.offset -= offset; ptrs->ptr[i].dvo_timing.offset -= offset; ptrs->ptr[i].panel_pnp_id.offset -= offset; } if (ptrs->panel_name.table_size) { if (ptrs->panel_name.offset < offset) return false; ptrs->panel_name.offset -= offset; } return validate_lfp_data_ptrs(bdb, ptrs); } static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table, int table_size, int total_size) { if (total_size < table_size) return total_size; table->table_size = table_size; table->offset = total_size - table_size; return total_size - table_size; } static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next, const struct lvds_lfp_data_ptr_table *prev, int size) { next->table_size = prev->table_size; next->offset = prev->offset + size; } static void *generate_lfp_data_ptrs(struct drm_i915_private *i915, const void *bdb) { int i, size, table_size, block_size, offset, fp_timing_size; struct bdb_lvds_lfp_data_ptrs *ptrs; const void *block; void *ptrs_block; /* * The hardcoded fp_timing_size is only valid for * modernish VBTs. All older VBTs definitely should * include block 41 and thus we don't need to * generate one. */ if (i915->display.vbt.version < 155) return NULL; fp_timing_size = 38; block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); if (!block) return NULL; drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n"); block_size = get_blocksize(block); size = fp_timing_size + sizeof(struct lvds_dvo_timing) + sizeof(struct lvds_pnp_id); if (size * 16 > block_size) return NULL; ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); if (!ptrs_block) return NULL; *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS; *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); ptrs = ptrs_block + 3; table_size = sizeof(struct lvds_pnp_id); size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); table_size = sizeof(struct lvds_dvo_timing); size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); table_size = fp_timing_size; size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); if (ptrs->ptr[0].fp_timing.table_size) ptrs->lvds_entries++; if (ptrs->ptr[0].dvo_timing.table_size) ptrs->lvds_entries++; if (ptrs->ptr[0].panel_pnp_id.table_size) ptrs->lvds_entries++; if (size != 0 || ptrs->lvds_entries != 3) { kfree(ptrs_block); return NULL; } size = fp_timing_size + sizeof(struct lvds_dvo_timing) + sizeof(struct lvds_pnp_id); for (i = 1; i < 16; i++) { next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); } table_size = sizeof(struct lvds_lfp_panel_name); if (16 * (size + table_size) <= block_size) { ptrs->panel_name.table_size = table_size; ptrs->panel_name.offset = size * 16; } offset = block - bdb; for (i = 0; i < 16; i++) { ptrs->ptr[i].fp_timing.offset += offset; ptrs->ptr[i].dvo_timing.offset += offset; ptrs->ptr[i].panel_pnp_id.offset += offset; } if (ptrs->panel_name.table_size) ptrs->panel_name.offset += offset; return ptrs_block; } static void init_bdb_block(struct drm_i915_private *i915, const void *bdb, enum bdb_block_id section_id, size_t min_size) { struct bdb_block_entry *entry; void *temp_block = NULL; const void *block; size_t block_size; block = find_raw_section(bdb, section_id); /* Modern VBTs lack the LFP data table pointers block, make one up */ if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) { temp_block = generate_lfp_data_ptrs(i915, bdb); if (temp_block) block = temp_block + 3; } if (!block) return; drm_WARN(&i915->drm, min_size == 0, "Block %d min_size is zero\n", section_id); block_size = get_blocksize(block); /* * Version number and new block size are considered * part of the header for MIPI sequenece block v3+. */ if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) block_size += 5; entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), GFP_KERNEL); if (!entry) { kfree(temp_block); return; } entry->section_id = section_id; memcpy(entry->data, block - 3, block_size + 3); kfree(temp_block); drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n", section_id, block_size, min_size); if (section_id == BDB_LVDS_LFP_DATA_PTRS && !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n"); kfree(entry); return; } list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks); } static void init_bdb_blocks(struct drm_i915_private *i915, const void *bdb) { int i; for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { enum bdb_block_id section_id = bdb_blocks[i].section_id; size_t min_size = bdb_blocks[i].min_size; if (section_id == BDB_LVDS_LFP_DATA) min_size = lfp_data_min_size(i915); init_bdb_block(i915, bdb, section_id, min_size); } } static void fill_detail_timing_data(struct drm_i915_private *i915, struct drm_display_mode *panel_fixed_mode, const struct lvds_dvo_timing *dvo_timing) { panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | dvo_timing->hactive_lo; panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + ((dvo_timing->hsync_pulse_width_hi << 8) | dvo_timing->hsync_pulse_width_lo); panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | dvo_timing->vactive_lo; panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + ((dvo_timing->vsync_pulse_width_hi << 4) | dvo_timing->vsync_pulse_width_lo); panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); panel_fixed_mode->clock = dvo_timing->clock * 10; panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; if (dvo_timing->hsync_positive) panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; if (dvo_timing->vsync_positive) panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | dvo_timing->himage_lo; panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | dvo_timing->vimage_lo; /* Some VBTs have bogus h/vsync_end values */ if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) { drm_dbg_kms(&i915->drm, "reducing hsync_end %d->%d\n", panel_fixed_mode->hsync_end, panel_fixed_mode->htotal); panel_fixed_mode->hsync_end = panel_fixed_mode->htotal; } if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) { drm_dbg_kms(&i915->drm, "reducing vsync_end %d->%d\n", panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal); panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal; } drm_mode_set_name(panel_fixed_mode); } static const struct lvds_dvo_timing * get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data, const struct bdb_lvds_lfp_data_ptrs *ptrs, int index) { return (const void *)data + ptrs->ptr[index].dvo_timing.offset; } static const struct lvds_fp_timing * get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data, const struct bdb_lvds_lfp_data_ptrs *ptrs, int index) { return (const void *)data + ptrs->ptr[index].fp_timing.offset; } static const struct lvds_pnp_id * get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data, const struct bdb_lvds_lfp_data_ptrs *ptrs, int index) { return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; } static const struct bdb_lvds_lfp_data_tail * get_lfp_data_tail(const struct bdb_lvds_lfp_data *data, const struct bdb_lvds_lfp_data_ptrs *ptrs) { if (ptrs->panel_name.table_size) return (const void *)data + ptrs->panel_name.offset; else return NULL; } static void dump_pnp_id(struct drm_i915_private *i915, const struct lvds_pnp_id *pnp_id, const char *name) { u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name); char vend[4]; drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n", name, drm_edid_decode_mfg_id(mfg_name, vend), pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial, pnp_id->mfg_week, pnp_id->mfg_year + 1990); } static int opregion_get_panel_type(struct drm_i915_private *i915, const struct intel_bios_encoder_data *devdata, const struct drm_edid *drm_edid, bool use_fallback) { return intel_opregion_get_panel_type(i915); } static int vbt_get_panel_type(struct drm_i915_private *i915, const struct intel_bios_encoder_data *devdata, const struct drm_edid *drm_edid, bool use_fallback) { const struct bdb_lvds_options *lvds_options; lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS); if (!lvds_options) return -1; if (lvds_options->panel_type > 0xf && lvds_options->panel_type != 0xff) { drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n", lvds_options->panel_type); return -1; } if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) return lvds_options->panel_type2; drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); return lvds_options->panel_type; } static int pnpid_get_panel_type(struct drm_i915_private *i915, const struct intel_bios_encoder_data *devdata, const struct drm_edid *drm_edid, bool use_fallback) { const struct bdb_lvds_lfp_data *data; const struct bdb_lvds_lfp_data_ptrs *ptrs; const struct lvds_pnp_id *edid_id; struct lvds_pnp_id edid_id_nodate; const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */ int i, best = -1; if (!edid) return -1; edid_id = (const void *)&edid->mfg_id[0]; edid_id_nodate = *edid_id; edid_id_nodate.mfg_week = 0; edid_id_nodate.mfg_year = 0; dump_pnp_id(i915, edid_id, "EDID"); ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); if (!ptrs) return -1; data = bdb_find_section(i915, BDB_LVDS_LFP_DATA); if (!data) return -1; for (i = 0; i < 16; i++) { const struct lvds_pnp_id *vbt_id = get_lvds_pnp_id(data, ptrs, i); /* full match? */ if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id))) return i; /* * Accept a match w/o date if no full match is found, * and the VBT entry does not specify a date. */ if (best < 0 && !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id))) best = i; } return best; } static int fallback_get_panel_type(struct drm_i915_private *i915, const struct intel_bios_encoder_data *devdata, const struct drm_edid *drm_edid, bool use_fallback) { return use_fallback ? 0 : -1; } enum panel_type { PANEL_TYPE_OPREGION, PANEL_TYPE_VBT, PANEL_TYPE_PNPID, PANEL_TYPE_FALLBACK, }; static int get_panel_type(struct drm_i915_private *i915, const struct intel_bios_encoder_data *devdata, const struct drm_edid *drm_edid, bool use_fallback) { struct { const char *name; int (*get_panel_type)(struct drm_i915_private *i915, const struct intel_bios_encoder_data *devdata, const struct drm_edid *drm_edid, bool use_fallback); int panel_type; } panel_types[] = { [PANEL_TYPE_OPREGION] = { .name = "OpRegion", .get_panel_type = opregion_get_panel_type, }, [PANEL_TYPE_VBT] = { .name = "VBT", .get_panel_type = vbt_get_panel_type, }, [PANEL_TYPE_PNPID] = { .name = "PNPID", .get_panel_type = pnpid_get_panel_type, }, [PANEL_TYPE_FALLBACK] = { .name = "fallback", .get_panel_type = fallback_get_panel_type, }, }; int i; for (i = 0; i < ARRAY_SIZE(panel_types); i++) { panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, drm_edid, use_fallback); drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf && panel_types[i].panel_type != 0xff); if (panel_types[i].panel_type >= 0) drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n", panel_types[i].name, panel_types[i].panel_type); } if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) i = PANEL_TYPE_OPREGION; else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && panel_types[PANEL_TYPE_PNPID].panel_type >= 0) i = PANEL_TYPE_PNPID; else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && panel_types[PANEL_TYPE_VBT].panel_type >= 0) i = PANEL_TYPE_VBT; else i = PANEL_TYPE_FALLBACK; drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n", panel_types[i].name, panel_types[i].panel_type); return panel_types[i].panel_type; } static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) { return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); } static bool panel_bool(unsigned int value, int panel_type) { return panel_bits(value, panel_type, 1); } /* Parse general panel options */ static void parse_panel_options(struct drm_i915_private *i915, struct intel_panel *panel) { const struct bdb_lvds_options *lvds_options; int panel_type = panel->vbt.panel_type; int drrs_mode; lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS); if (!lvds_options) return; panel->vbt.lvds_dither = lvds_options->pixel_dither; /* * Empirical evidence indicates the block size can be * either 4,14,16,24+ bytes. For older VBTs no clear * relationship between the block size vs. BDB version. */ if (get_blocksize(lvds_options) < 16) return; drrs_mode = panel_bits(lvds_options->dps_panel_type_bits, panel_type, 2); /* * VBT has static DRRS = 0 and seamless DRRS = 2. * The below piece of code is required to adjust vbt.drrs_type * to match the enum drrs_support_type. */ switch (drrs_mode) { case 0: panel->vbt.drrs_type = DRRS_TYPE_STATIC; drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n"); break; case 2: panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; drm_dbg_kms(&i915->drm, "DRRS supported mode is seamless\n"); break; default: panel->vbt.drrs_type = DRRS_TYPE_NONE; drm_dbg_kms(&i915->drm, "DRRS not supported (VBT input)\n"); break; } } static void parse_lfp_panel_dtd(struct drm_i915_private *i915, struct intel_panel *panel, const struct bdb_lvds_lfp_data *lvds_lfp_data, const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs) { const struct lvds_dvo_timing *panel_dvo_timing; const struct lvds_fp_timing *fp_timing; struct drm_display_mode *panel_fixed_mode; int panel_type = panel->vbt.panel_type; panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, lvds_lfp_data_ptrs, panel_type); panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); if (!panel_fixed_mode) return; fill_detail_timing_data(i915, panel_fixed_mode, panel_dvo_timing); panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; drm_dbg_kms(&i915->drm, "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", DRM_MODE_ARG(panel_fixed_mode)); fp_timing = get_lvds_fp_timing(lvds_lfp_data, lvds_lfp_data_ptrs, panel_type); /* check the resolution, just to be sure */ if (fp_timing->x_res == panel_fixed_mode->hdisplay && fp_timing->y_res == panel_fixed_mode->vdisplay) { panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; drm_dbg_kms(&i915->drm, "VBT initial LVDS value %x\n", panel->vbt.bios_lvds_val); } } static void parse_lfp_data(struct drm_i915_private *i915, struct intel_panel *panel) { const struct bdb_lvds_lfp_data *data; const struct bdb_lvds_lfp_data_tail *tail; const struct bdb_lvds_lfp_data_ptrs *ptrs; const struct lvds_pnp_id *pnp_id; int panel_type = panel->vbt.panel_type; ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS); if (!ptrs) return; data = bdb_find_section(i915, BDB_LVDS_LFP_DATA); if (!data) return; if (!panel->vbt.lfp_lvds_vbt_mode) parse_lfp_panel_dtd(i915, panel, data, ptrs); pnp_id = get_lvds_pnp_id(data, ptrs, panel_type); dump_pnp_id(i915, pnp_id, "Panel"); tail = get_lfp_data_tail(data, ptrs); if (!tail) return; drm_dbg_kms(&i915->drm, "Panel name: %.*s\n", (int)sizeof(tail->panel_name[0].name), tail->panel_name[panel_type].name); if (i915->display.vbt.version >= 188) { panel->vbt.seamless_drrs_min_refresh_rate = tail->seamless_drrs_min_refresh_rate[panel_type]; drm_dbg_kms(&i915->drm, "Seamless DRRS min refresh rate: %d Hz\n", panel->vbt.seamless_drrs_min_refresh_rate); } } static void parse_generic_dtd(struct drm_i915_private *i915, struct intel_panel *panel) { const struct bdb_generic_dtd *generic_dtd; const struct generic_dtd_entry *dtd; struct drm_display_mode *panel_fixed_mode; int num_dtd; /* * Older VBTs provided DTD information for internal displays through * the "LFP panel tables" block (42). As of VBT revision 229 the * DTD information should be provided via a newer "generic DTD" * block (58). Just to be safe, we'll try the new generic DTD block * first on VBT >= 229, but still fall back to trying the old LFP * block if that fails. */ if (i915->display.vbt.version < 229) return; generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD); if (!generic_dtd) return; if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { drm_err(&i915->drm, "GDTD size %u is too small.\n", generic_dtd->gdtd_size); return; } else if (generic_dtd->gdtd_size != sizeof(struct generic_dtd_entry)) { drm_err(&i915->drm, "Unexpected GDTD size %u\n", generic_dtd->gdtd_size); /* DTD has unknown fields, but keep going */ } num_dtd = (get_blocksize(generic_dtd) - sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; if (panel->vbt.panel_type >= num_dtd) { drm_err(&i915->drm, "Panel type %d not found in table of %d DTD's\n", panel->vbt.panel_type, num_dtd); return; } dtd = &generic_dtd->dtd[panel->vbt.panel_type]; panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); if (!panel_fixed_mode) return; panel_fixed_mode->hdisplay = dtd->hactive; panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + dtd->hfront_porch; panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + dtd->hsync; panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + dtd->hblank; panel_fixed_mode->vdisplay = dtd->vactive; panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + dtd->vfront_porch; panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + dtd->vsync; panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + dtd->vblank; panel_fixed_mode->clock = dtd->pixel_clock; panel_fixed_mode->width_mm = dtd->width_mm; panel_fixed_mode->height_mm = dtd->height_mm; panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; drm_mode_set_name(panel_fixed_mode); if (dtd->hsync_positive_polarity) panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; if (dtd->vsync_positive_polarity) panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; drm_dbg_kms(&i915->drm, "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", DRM_MODE_ARG(panel_fixed_mode)); panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; } static void parse_lfp_backlight(struct drm_i915_private *i915, struct intel_panel *panel) { const struct bdb_lfp_backlight_data *backlight_data; const struct lfp_backlight_data_entry *entry; int panel_type = panel->vbt.panel_type; u16 level; backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT); if (!backlight_data) return; if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { drm_dbg_kms(&i915->drm, "Unsupported backlight data entry size %u\n", backlight_data->entry_size); return; } entry = &backlight_data->data[panel_type]; panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; if (!panel->vbt.backlight.present) { drm_dbg_kms(&i915->drm, "PWM backlight not present in VBT (type %u)\n", entry->type); return; } panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; panel->vbt.backlight.controller = 0; if (i915->display.vbt.version >= 191) { const struct lfp_backlight_control_method *method; method = &backlight_data->backlight_control[panel_type]; panel->vbt.backlight.type = method->type; panel->vbt.backlight.controller = method->controller; } panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; if (i915->display.vbt.version >= 234) { u16 min_level; bool scale; level = backlight_data->brightness_level[panel_type].level; min_level = backlight_data->brightness_min_level[panel_type].level; if (i915->display.vbt.version >= 236) scale = backlight_data->brightness_precision_bits[panel_type] == 16; else scale = level > 255; if (scale) min_level = min_level / 255; if (min_level > 255) { drm_warn(&i915->drm, "Brightness min level > 255\n"); level = 255; } panel->vbt.backlight.min_brightness = min_level; panel->vbt.backlight.brightness_precision_bits = backlight_data->brightness_precision_bits[panel_type]; } else { level = backlight_data->level[panel_type]; panel->vbt.backlight.min_brightness = entry->min_brightness; } if (i915->display.vbt.version >= 239) panel->vbt.backlight.hdr_dpcd_refresh_timeout = DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100); else panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30; drm_dbg_kms(&i915->drm, "VBT backlight PWM modulation frequency %u Hz, " "active %s, min brightness %u, level %u, controller %u\n", panel->vbt.backlight.pwm_freq_hz, panel->vbt.backlight.active_low_pwm ? "low" : "high", panel->vbt.backlight.min_brightness, level, panel->vbt.backlight.controller); } /* Try to find sdvo panel data */ static void parse_sdvo_panel_data(struct drm_i915_private *i915, struct intel_panel *panel) { const struct bdb_sdvo_panel_dtds *dtds; struct drm_display_mode *panel_fixed_mode; int index; index = i915->display.params.vbt_sdvo_panel_type; if (index == -2) { drm_dbg_kms(&i915->drm, "Ignore SDVO panel mode from BIOS VBT tables.\n"); return; } if (index == -1) { const struct bdb_sdvo_lvds_options *sdvo_lvds_options; sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS); if (!sdvo_lvds_options) return; index = sdvo_lvds_options->panel_type; } dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS); if (!dtds) return; panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); if (!panel_fixed_mode) return; fill_detail_timing_data(i915, panel_fixed_mode, &dtds->dtds[index]); panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; drm_dbg_kms(&i915->drm, "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n", DRM_MODE_ARG(panel_fixed_mode)); } static int intel_bios_ssc_frequency(struct drm_i915_private *i915, bool alternate) { switch (DISPLAY_VER(i915)) { case 2: return alternate ? 66667 : 48000; case 3: case 4: return alternate ? 100000 : 96000; default: return alternate ? 100000 : 120000; } } static void parse_general_features(struct drm_i915_private *i915) { const struct bdb_general_features *general; general = bdb_find_section(i915, BDB_GENERAL_FEATURES); if (!general) return; i915->display.vbt.int_tv_support = general->int_tv_support; /* int_crt_support can't be trusted on earlier platforms */ if (i915->display.vbt.version >= 155 && (HAS_DDI(i915) || IS_VALLEYVIEW(i915))) i915->display.vbt.int_crt_support = general->int_crt_support; i915->display.vbt.lvds_use_ssc = general->enable_ssc; i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, general->ssc_freq); i915->display.vbt.display_clock_mode = general->display_clock_mode; i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; if (i915->display.vbt.version >= 181) { i915->display.vbt.orientation = general->rotate_180 ? DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : DRM_MODE_PANEL_ORIENTATION_NORMAL; } else { i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; } if (i915->display.vbt.version >= 249 && general->afc_startup_config) { i915->display.vbt.override_afc_startup = true; i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7; } drm_dbg_kms(&i915->drm, "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", i915->display.vbt.int_tv_support, i915->display.vbt.int_crt_support, i915->display.vbt.lvds_use_ssc, i915->display.vbt.lvds_ssc_freq, i915->display.vbt.display_clock_mode, i915->display.vbt.fdi_rx_polarity_inverted); } static const struct child_device_config * child_device_ptr(const struct bdb_general_definitions *defs, int i) { return (const void *) &defs->devices[i * defs->child_dev_size]; } static void parse_sdvo_device_mapping(struct drm_i915_private *i915) { const struct intel_bios_encoder_data *devdata; int count = 0; /* * Only parse SDVO mappings on gens that could have SDVO. This isn't * accurate and doesn't have to be, as long as it's not too strict. */ if (!IS_DISPLAY_VER(i915, 3, 7)) { drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n"); return; } list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { const struct child_device_config *child = &devdata->child; struct sdvo_device_mapping *mapping; if (child->slave_addr != SLAVE_ADDR1 && child->slave_addr != SLAVE_ADDR2) { /* * If the slave address is neither 0x70 nor 0x72, * it is not a SDVO device. Skip it. */ continue; } if (child->dvo_port != DEVICE_PORT_DVOB && child->dvo_port != DEVICE_PORT_DVOC) { /* skip the incorrect SDVO port */ drm_dbg_kms(&i915->drm, "Incorrect SDVO port. Skip it\n"); continue; } drm_dbg_kms(&i915->drm, "the SDVO device with slave addr %2x is found on" " %s port\n", child->slave_addr, (child->dvo_port == DEVICE_PORT_DVOB) ? "SDVOB" : "SDVOC"); mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1]; if (!mapping->initialized) { mapping->dvo_port = child->dvo_port; mapping->slave_addr = child->slave_addr; mapping->dvo_wiring = child->dvo_wiring; mapping->ddc_pin = child->ddc_pin; mapping->i2c_pin = child->i2c_pin; mapping->initialized = 1; drm_dbg_kms(&i915->drm, "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", mapping->dvo_port, mapping->slave_addr, mapping->dvo_wiring, mapping->ddc_pin, mapping->i2c_pin); } else { drm_dbg_kms(&i915->drm, "Maybe one SDVO port is shared by " "two SDVO device.\n"); } if (child->slave2_addr) { /* Maybe this is a SDVO device with multiple inputs */ /* And the mapping info is not added */ drm_dbg_kms(&i915->drm, "there exists the slave2_addr. Maybe this" " is a SDVO device with multiple inputs.\n"); } count++; } if (!count) { /* No SDVO device info is found */ drm_dbg_kms(&i915->drm, "No SDVO device info is found in VBT\n"); } } static void parse_driver_features(struct drm_i915_private *i915) { const struct bdb_driver_features *driver; driver = bdb_find_section(i915, BDB_DRIVER_FEATURES); if (!driver) return; if (DISPLAY_VER(i915) >= 5) { /* * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS * to mean "eDP". The VBT spec doesn't agree with that * interpretation, but real world VBTs seem to. */ if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) i915->display.vbt.int_lvds_support = 0; } else { /* * FIXME it's not clear which BDB version has the LVDS config * bits defined. Revision history in the VBT spec says: * "0.92 | Add two definitions for VBT value of LVDS Active * Config (00b and 11b values defined) | 06/13/2005" * but does not the specify the BDB version. * * So far version 134 (on i945gm) is the oldest VBT observed * in the wild with the bits correctly populated. Version * 108 (on i85x) does not have the bits correctly populated. */ if (i915->display.vbt.version >= 134 && driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) i915->display.vbt.int_lvds_support = 0; } } static void parse_panel_driver_features(struct drm_i915_private *i915, struct intel_panel *panel) { const struct bdb_driver_features *driver; driver = bdb_find_section(i915, BDB_DRIVER_FEATURES); if (!driver) return; if (i915->display.vbt.version < 228) { drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n", driver->drrs_enabled); /* * If DRRS is not supported, drrs_type has to be set to 0. * This is because, VBT is configured in such a way that * static DRRS is 0 and DRRS not supported is represented by * driver->drrs_enabled=false */ if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { /* * FIXME Should DMRRS perhaps be treated as seamless * but without the automatic downclocking? */ if (driver->dmrrs_enabled) panel->vbt.drrs_type = DRRS_TYPE_STATIC; else panel->vbt.drrs_type = DRRS_TYPE_NONE; } panel->vbt.psr.enable = driver->psr_enabled; } } static void parse_power_conservation_features(struct drm_i915_private *i915, struct intel_panel *panel) { const struct bdb_lfp_power *power; u8 panel_type = panel->vbt.panel_type; panel->vbt.vrr = true; /* matches Windows behaviour */ if (i915->display.vbt.version < 228) return; power = bdb_find_section(i915, BDB_LFP_POWER); if (!power) return; panel->vbt.psr.enable = panel_bool(power->psr, panel_type); /* * If DRRS is not supported, drrs_type has to be set to 0. * This is because, VBT is configured in such a way that * static DRRS is 0 and DRRS not supported is represented by * power->drrs & BIT(panel_type)=false */ if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { /* * FIXME Should DMRRS perhaps be treated as seamless * but without the automatic downclocking? */ if (panel_bool(power->dmrrs, panel_type)) panel->vbt.drrs_type = DRRS_TYPE_STATIC; else panel->vbt.drrs_type = DRRS_TYPE_NONE; } if (i915->display.vbt.version >= 232) panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); if (i915->display.vbt.version >= 233) panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, panel_type); } static void parse_edp(struct drm_i915_private *i915, struct intel_panel *panel) { const struct bdb_edp *edp; const struct edp_power_seq *edp_pps; const struct edp_fast_link_params *edp_link_params; int panel_type = panel->vbt.panel_type; edp = bdb_find_section(i915, BDB_EDP); if (!edp) return; switch (panel_bits(edp->color_depth, panel_type, 2)) { case EDP_18BPP: panel->vbt.edp.bpp = 18; break; case EDP_24BPP: panel->vbt.edp.bpp = 24; break; case EDP_30BPP: panel->vbt.edp.bpp = 30; break; } /* Get the eDP sequencing and link info */ edp_pps = &edp->power_seqs[panel_type]; edp_link_params = &edp->fast_link_params[panel_type]; panel->vbt.edp.pps = *edp_pps; if (i915->display.vbt.version >= 224) { panel->vbt.edp.rate = edp->edp_fast_link_training_rate[panel_type] * 20; } else { switch (edp_link_params->rate) { case EDP_RATE_1_62: panel->vbt.edp.rate = 162000; break; case EDP_RATE_2_7: panel->vbt.edp.rate = 270000; break; case EDP_RATE_5_4: panel->vbt.edp.rate = 540000; break; default: drm_dbg_kms(&i915->drm, "VBT has unknown eDP link rate value %u\n", edp_link_params->rate); break; } } switch (edp_link_params->lanes) { case EDP_LANE_1: panel->vbt.edp.lanes = 1; break; case EDP_LANE_2: panel->vbt.edp.lanes = 2; break; case EDP_LANE_4: panel->vbt.edp.lanes = 4; break; default: drm_dbg_kms(&i915->drm, "VBT has unknown eDP lane count value %u\n", edp_link_params->lanes); break; } switch (edp_link_params->preemphasis) { case EDP_PREEMPHASIS_NONE: panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; break; case EDP_PREEMPHASIS_3_5dB: panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; break; case EDP_PREEMPHASIS_6dB: panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; break; case EDP_PREEMPHASIS_9_5dB: panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; break; default: drm_dbg_kms(&i915->drm, "VBT has unknown eDP pre-emphasis value %u\n", edp_link_params->preemphasis); break; } switch (edp_link_params->vswing) { case EDP_VSWING_0_4V: panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; break; case EDP_VSWING_0_6V: panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; break; case EDP_VSWING_0_8V: panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; break; case EDP_VSWING_1_2V: panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; break; default: drm_dbg_kms(&i915->drm, "VBT has unknown eDP voltage swing value %u\n", edp_link_params->vswing); break; } if (i915->display.vbt.version >= 173) { u8 vswing; /* Don't read from VBT if module parameter has valid value*/ if (i915->display.params.edp_vswing) { panel->vbt.edp.low_vswing = i915->display.params.edp_vswing == 1; } else { vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; panel->vbt.edp.low_vswing = vswing == 0; } } panel->vbt.edp.drrs_msa_timing_delay = panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); if (i915->display.vbt.version >= 244) panel->vbt.edp.max_link_rate = edp->edp_max_port_link_rate[panel_type] * 20; } static void parse_psr(struct drm_i915_private *i915, struct intel_panel *panel) { const struct bdb_psr *psr; const struct psr_table *psr_table; int panel_type = panel->vbt.panel_type; psr = bdb_find_section(i915, BDB_PSR); if (!psr) { drm_dbg_kms(&i915->drm, "No PSR BDB found.\n"); return; } psr_table = &psr->psr_table[panel_type]; panel->vbt.psr.full_link = psr_table->full_link; panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; /* Allowed VBT values goes from 0 to 15 */ panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; /* * New psr options 0=500us, 1=100us, 2=2500us, 3=0us * Old decimal value is wake up time in multiples of 100 us. */ if (i915->display.vbt.version >= 205 && (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) { switch (psr_table->tp1_wakeup_time) { case 0: panel->vbt.psr.tp1_wakeup_time_us = 500; break; case 1: panel->vbt.psr.tp1_wakeup_time_us = 100; break; case 3: panel->vbt.psr.tp1_wakeup_time_us = 0; break; default: drm_dbg_kms(&i915->drm, "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", psr_table->tp1_wakeup_time); fallthrough; case 2: panel->vbt.psr.tp1_wakeup_time_us = 2500; break; } switch (psr_table->tp2_tp3_wakeup_time) { case 0: panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; break; case 1: panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; break; case 3: panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; break; default: drm_dbg_kms(&i915->drm, "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", psr_table->tp2_tp3_wakeup_time); fallthrough; case 2: panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; break; } } else { panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; } if (i915->display.vbt.version >= 226) { u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; wakeup_time = panel_bits(wakeup_time, panel_type, 2); switch (wakeup_time) { case 0: wakeup_time = 500; break; case 1: wakeup_time = 100; break; case 3: wakeup_time = 50; break; default: case 2: wakeup_time = 2500; break; } panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; } else { /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; } } static void parse_dsi_backlight_ports(struct drm_i915_private *i915, struct intel_panel *panel, enum port port) { enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C; if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) { panel->vbt.dsi.bl_ports = BIT(port); if (panel->vbt.dsi.config->cabc_supported) panel->vbt.dsi.cabc_ports = BIT(port); return; } switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { case DL_DCS_PORT_A: panel->vbt.dsi.bl_ports = BIT(PORT_A); break; case DL_DCS_PORT_C: panel->vbt.dsi.bl_ports = BIT(port_bc); break; default: case DL_DCS_PORT_A_AND_C: panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); break; } if (!panel->vbt.dsi.config->cabc_supported) return; switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { case DL_DCS_PORT_A: panel->vbt.dsi.cabc_ports = BIT(PORT_A); break; case DL_DCS_PORT_C: panel->vbt.dsi.cabc_ports = BIT(port_bc); break; default: case DL_DCS_PORT_A_AND_C: panel->vbt.dsi.cabc_ports = BIT(PORT_A) | BIT(port_bc); break; } } static void parse_mipi_config(struct drm_i915_private *i915, struct intel_panel *panel) { const struct bdb_mipi_config *start; const struct mipi_config *config; const struct mipi_pps_data *pps; int panel_type = panel->vbt.panel_type; enum port port; /* parse MIPI blocks only if LFP type is MIPI */ if (!intel_bios_is_dsi_present(i915, &port)) return; /* Initialize this to undefined indicating no generic MIPI support */ panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; /* Block #40 is already parsed and panel_fixed_mode is * stored in i915->lfp_lvds_vbt_mode * resuse this when needed */ /* Parse #52 for panel index used from panel_type already * parsed */ start = bdb_find_section(i915, BDB_MIPI_CONFIG); if (!start) { drm_dbg_kms(&i915->drm, "No MIPI config BDB found"); return; } drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n", panel_type); /* * get hold of the correct configuration block and pps data as per * the panel_type as index */ config = &start->config[panel_type]; pps = &start->pps[panel_type]; /* store as of now full data. Trim when we realise all is not needed */ panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); if (!panel->vbt.dsi.config) return; panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); if (!panel->vbt.dsi.pps) { kfree(panel->vbt.dsi.config); return; } parse_dsi_backlight_ports(i915, panel, port); /* FIXME is the 90 vs. 270 correct? */ switch (config->rotation) { case ENABLE_ROTATION_0: /* * Most (all?) VBTs claim 0 degrees despite having * an upside down panel, thus we do not trust this. */ panel->vbt.dsi.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; break; case ENABLE_ROTATION_90: panel->vbt.dsi.orientation = DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; break; case ENABLE_ROTATION_180: panel->vbt.dsi.orientation = DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; break; case ENABLE_ROTATION_270: panel->vbt.dsi.orientation = DRM_MODE_PANEL_ORIENTATION_LEFT_UP; break; } /* We have mandatory mipi config blocks. Initialize as generic panel */ panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; } /* Find the sequence block and size for the given panel. */ static const u8 * find_panel_sequence_block(struct drm_i915_private *i915, const struct bdb_mipi_sequence *sequence, u16 panel_id, u32 *seq_size) { u32 total = get_blocksize(sequence); const u8 *data = &sequence->data[0]; u8 current_id; u32 current_size; int header_size = sequence->version >= 3 ? 5 : 3; int index = 0; int i; /* skip new block size */ if (sequence->version >= 3) data += 4; for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { if (index + header_size > total) { drm_err(&i915->drm, "Invalid sequence block (header)\n"); return NULL; } current_id = *(data + index); if (sequence->version >= 3) current_size = *((const u32 *)(data + index + 1)); else current_size = *((const u16 *)(data + index + 1)); index += header_size; if (index + current_size > total) { drm_err(&i915->drm, "Invalid sequence block\n"); return NULL; } if (current_id == panel_id) { *seq_size = current_size; return data + index; } index += current_size; } drm_err(&i915->drm, "Sequence block detected but no valid configuration\n"); return NULL; } static int goto_next_sequence(struct drm_i915_private *i915, const u8 *data, int index, int total) { u16 len; /* Skip Sequence Byte. */ for (index = index + 1; index < total; index += len) { u8 operation_byte = *(data + index); index++; switch (operation_byte) { case MIPI_SEQ_ELEM_END: return index; case MIPI_SEQ_ELEM_SEND_PKT: if (index + 4 > total) return 0; len = *((const u16 *)(data + index + 2)) + 4; break; case MIPI_SEQ_ELEM_DELAY: len = 4; break; case MIPI_SEQ_ELEM_GPIO: len = 2; break; case MIPI_SEQ_ELEM_I2C: if (index + 7 > total) return 0; len = *(data + index + 6) + 7; break; default: drm_err(&i915->drm, "Unknown operation byte\n"); return 0; } } return 0; } static int goto_next_sequence_v3(struct drm_i915_private *i915, const u8 *data, int index, int total) { int seq_end; u16 len; u32 size_of_sequence; /* * Could skip sequence based on Size of Sequence alone, but also do some * checking on the structure. */ if (total < 5) { drm_err(&i915->drm, "Too small sequence size\n"); return 0; } /* Skip Sequence Byte. */ index++; /* * Size of Sequence. Excludes the Sequence Byte and the size itself, * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END * byte. */ size_of_sequence = *((const u32 *)(data + index)); index += 4; seq_end = index + size_of_sequence; if (seq_end > total) { drm_err(&i915->drm, "Invalid sequence size\n"); return 0; } for (; index < total; index += len) { u8 operation_byte = *(data + index); index++; if (operation_byte == MIPI_SEQ_ELEM_END) { if (index != seq_end) { drm_err(&i915->drm, "Invalid element structure\n"); return 0; } return index; } len = *(data + index); index++; /* * FIXME: Would be nice to check elements like for v1/v2 in * goto_next_sequence() above. */ switch (operation_byte) { case MIPI_SEQ_ELEM_SEND_PKT: case MIPI_SEQ_ELEM_DELAY: case MIPI_SEQ_ELEM_GPIO: case MIPI_SEQ_ELEM_I2C: case MIPI_SEQ_ELEM_SPI: case MIPI_SEQ_ELEM_PMIC: break; default: drm_err(&i915->drm, "Unknown operation byte %u\n", operation_byte); break; } } return 0; } /* * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, * skip all delay + gpio operands and stop at the first DSI packet op. */ static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915, struct intel_panel *panel) { const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; int index, len; if (drm_WARN_ON(&i915->drm, !data || panel->vbt.dsi.seq_version != 1)) return 0; /* index = 1 to skip sequence byte */ for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { switch (data[index]) { case MIPI_SEQ_ELEM_SEND_PKT: return index == 1 ? 0 : index; case MIPI_SEQ_ELEM_DELAY: len = 5; /* 1 byte for operand + uint32 */ break; case MIPI_SEQ_ELEM_GPIO: len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ break; default: return 0; } } return 0; } /* * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. * The deassert must be done before calling intel_dsi_device_ready, so for * these devices we split the init OTP sequence into a deassert sequence and * the actual init OTP part. */ static void vlv_fixup_mipi_sequences(struct drm_i915_private *i915, struct intel_panel *panel) { u8 *init_otp; int len; /* Limit this to v1 vid-mode sequences */ if (panel->vbt.dsi.config->is_cmd_mode || panel->vbt.dsi.seq_version != 1) return; /* Only do this if there are otp and assert seqs and no deassert seq */ if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) return; /* The deassert-sequence ends at the first DSI packet */ len = get_init_otp_deassert_fragment_len(i915, panel); if (!len) return; drm_dbg_kms(&i915->drm, "Using init OTP fragment to deassert reset\n"); /* Copy the fragment, update seq byte and terminate it */ init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); if (!panel->vbt.dsi.deassert_seq) return; panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; /* Use the copy for deassert */ panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = panel->vbt.dsi.deassert_seq; /* Replace the last byte of the fragment with init OTP seq byte */ init_otp[len - 1] = MIPI_SEQ_INIT_OTP; /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; } /* * Some machines (eg. Lenovo 82TQ) appear to have broken * VBT sequences: * - INIT_OTP is not present at all * - what should be in INIT_OTP is in DISPLAY_ON * - what should be in DISPLAY_ON is in BACKLIGHT_ON * (along with the actual backlight stuff) * * To make those work we simply swap DISPLAY_ON and INIT_OTP. * * TODO: Do we need to limit this to specific machines, * or examine the contents of the sequences to * avoid false positives? */ static void icl_fixup_mipi_sequences(struct drm_i915_private *i915, struct intel_panel *panel) { if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] && panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) { drm_dbg_kms(&i915->drm, "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n"); swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP], panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]); } } static void fixup_mipi_sequences(struct drm_i915_private *i915, struct intel_panel *panel) { if (DISPLAY_VER(i915) >= 11) icl_fixup_mipi_sequences(i915, panel); else if (IS_VALLEYVIEW(i915)) vlv_fixup_mipi_sequences(i915, panel); } static void parse_mipi_sequence(struct drm_i915_private *i915, struct intel_panel *panel) { int panel_type = panel->vbt.panel_type; const struct bdb_mipi_sequence *sequence; const u8 *seq_data; u32 seq_size; u8 *data; int index = 0; /* Only our generic panel driver uses the sequence block. */ if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) return; sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE); if (!sequence) { drm_dbg_kms(&i915->drm, "No MIPI Sequence found, parsing complete\n"); return; } /* Fail gracefully for forward incompatible sequence block. */ if (sequence->version >= 4) { drm_err(&i915->drm, "Unable to parse MIPI Sequence Block v%u\n", sequence->version); return; } drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n", sequence->version); seq_data = find_panel_sequence_block(i915, sequence, panel_type, &seq_size); if (!seq_data) return; data = kmemdup(seq_data, seq_size, GFP_KERNEL); if (!data) return; /* Parse the sequences, store pointers to each sequence. */ for (;;) { u8 seq_id = *(data + index); if (seq_id == MIPI_SEQ_END) break; if (seq_id >= MIPI_SEQ_MAX) { drm_err(&i915->drm, "Unknown sequence %u\n", seq_id); goto err; } /* Log about presence of sequences we won't run. */ if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) drm_dbg_kms(&i915->drm, "Unsupported sequence %u\n", seq_id); panel->vbt.dsi.sequence[seq_id] = data + index; if (sequence->version >= 3) index = goto_next_sequence_v3(i915, data, index, seq_size); else index = goto_next_sequence(i915, data, index, seq_size); if (!index) { drm_err(&i915->drm, "Invalid sequence %u\n", seq_id); goto err; } } panel->vbt.dsi.data = data; panel->vbt.dsi.size = seq_size; panel->vbt.dsi.seq_version = sequence->version; fixup_mipi_sequences(i915, panel); drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n"); return; err: kfree(data); memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); } static void parse_compression_parameters(struct drm_i915_private *i915) { const struct bdb_compression_parameters *params; struct intel_bios_encoder_data *devdata; u16 block_size; int index; if (i915->display.vbt.version < 198) return; params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS); if (params) { /* Sanity checks */ if (params->entry_size != sizeof(params->data[0])) { drm_dbg_kms(&i915->drm, "VBT: unsupported compression param entry size\n"); return; } block_size = get_blocksize(params); if (block_size < sizeof(*params)) { drm_dbg_kms(&i915->drm, "VBT: expected 16 compression param entries\n"); return; } } list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { const struct child_device_config *child = &devdata->child; if (!child->compression_enable) continue; if (!params) { drm_dbg_kms(&i915->drm, "VBT: compression params not available\n"); continue; } if (child->compression_method_cps) { drm_dbg_kms(&i915->drm, "VBT: CPS compression not supported\n"); continue; } index = child->compression_structure_index; devdata->dsc = kmemdup(¶ms->data[index], sizeof(*devdata->dsc), GFP_KERNEL); } } static u8 translate_iboost(struct drm_i915_private *i915, u8 val) { static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ if (val >= ARRAY_SIZE(mapping)) { drm_dbg_kms(&i915->drm, "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); return 0; } return mapping[val]; } static const u8 cnp_ddc_pin_map[] = { [0] = 0, /* N/A */ [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B, [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C, [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */ [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */ }; static const u8 icp_ddc_pin_map[] = { [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C, [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1, [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2, [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3, [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4, [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5, [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6, }; static const u8 rkl_pch_tgp_ddc_pin_map[] = { [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D, [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E, }; static const u8 adls_ddc_pin_map[] = { [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1, [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2, [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3, [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4, }; static const u8 gen9bc_tgp_ddc_pin_map[] = { [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B, [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C, [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D, }; static const u8 adlp_ddc_pin_map[] = { [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1, [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2, [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3, [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4, }; static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin) { const u8 *ddc_pin_map; int i, n_entries; if (IS_DGFX(i915)) return vbt_pin; if (INTEL_PCH_TYPE(i915) >= PCH_MTL || IS_ALDERLAKE_P(i915)) { ddc_pin_map = adlp_ddc_pin_map; n_entries = ARRAY_SIZE(adlp_ddc_pin_map); } else if (IS_ALDERLAKE_S(i915)) { ddc_pin_map = adls_ddc_pin_map; n_entries = ARRAY_SIZE(adls_ddc_pin_map); } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { ddc_pin_map = rkl_pch_tgp_ddc_pin_map; n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) { ddc_pin_map = gen9bc_tgp_ddc_pin_map; n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { ddc_pin_map = icp_ddc_pin_map; n_entries = ARRAY_SIZE(icp_ddc_pin_map); } else if (HAS_PCH_CNP(i915)) { ddc_pin_map = cnp_ddc_pin_map; n_entries = ARRAY_SIZE(cnp_ddc_pin_map); } else { /* Assuming direct map */ return vbt_pin; } for (i = 0; i < n_entries; i++) { if (ddc_pin_map[i] == vbt_pin) return i; } drm_dbg_kms(&i915->drm, "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", vbt_pin); return 0; } static u8 dvo_port_type(u8 dvo_port) { switch (dvo_port) { case DVO_PORT_HDMIA: case DVO_PORT_HDMIB: case DVO_PORT_HDMIC: case DVO_PORT_HDMID: case DVO_PORT_HDMIE: case DVO_PORT_HDMIF: case DVO_PORT_HDMIG: case DVO_PORT_HDMIH: case DVO_PORT_HDMII: return DVO_PORT_HDMIA; case DVO_PORT_DPA: case DVO_PORT_DPB: case DVO_PORT_DPC: case DVO_PORT_DPD: case DVO_PORT_DPE: case DVO_PORT_DPF: case DVO_PORT_DPG: case DVO_PORT_DPH: case DVO_PORT_DPI: return DVO_PORT_DPA; case DVO_PORT_MIPIA: case DVO_PORT_MIPIB: case DVO_PORT_MIPIC: case DVO_PORT_MIPID: return DVO_PORT_MIPIA; default: return dvo_port; } } static enum port __dvo_port_to_port(int n_ports, int n_dvo, const int port_mapping[][3], u8 dvo_port) { enum port port; int i; for (port = PORT_A; port < n_ports; port++) { for (i = 0; i < n_dvo; i++) { if (port_mapping[port][i] == -1) break; if (dvo_port == port_mapping[port][i]) return port; } } return PORT_NONE; } static enum port dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port) { /* * Each DDI port can have more than one value on the "DVO Port" field, * so look for all the possible values for each port. */ static const int port_mapping[][3] = { [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, }; /* * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D * map to DDI A,B,TC1,TC2 respectively. */ static const int rkl_port_mapping[][3] = { [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, [PORT_C] = { -1 }, [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, }; /* * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, * PORT_F and PORT_G, we need to map that to correct VBT sections. */ static const int adls_port_mapping[][3] = { [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, [PORT_B] = { -1 }, [PORT_C] = { -1 }, [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, }; static const int xelpd_port_mapping[][3] = { [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, }; if (DISPLAY_VER(i915) >= 13) return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), ARRAY_SIZE(xelpd_port_mapping[0]), xelpd_port_mapping, dvo_port); else if (IS_ALDERLAKE_S(i915)) return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), ARRAY_SIZE(adls_port_mapping[0]), adls_port_mapping, dvo_port); else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), ARRAY_SIZE(rkl_port_mapping[0]), rkl_port_mapping, dvo_port); else return __dvo_port_to_port(ARRAY_SIZE(port_mapping), ARRAY_SIZE(port_mapping[0]), port_mapping, dvo_port); } static enum port dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port) { switch (dvo_port) { case DVO_PORT_MIPIA: return PORT_A; case DVO_PORT_MIPIC: if (DISPLAY_VER(i915) >= 11) return PORT_B; else return PORT_C; default: return PORT_NONE; } } enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata) { struct drm_i915_private *i915 = devdata->i915; const struct child_device_config *child = &devdata->child; enum port port; port = dvo_port_to_port(i915, child->dvo_port); if (port == PORT_NONE && DISPLAY_VER(i915) >= 11) port = dsi_dvo_port_to_port(i915, child->dvo_port); return port; } static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) { switch (vbt_max_link_rate) { default: case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: return 0; case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: return 2000000; case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: return 1350000; case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: return 1000000; case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: return 810000; case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: return 540000; case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: return 270000; case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: return 162000; } } static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) { switch (vbt_max_link_rate) { default: case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: return 810000; case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: return 540000; case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: return 270000; case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: return 162000; } } int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) { if (!devdata || devdata->i915->display.vbt.version < 216) return 0; if (devdata->i915->display.vbt.version >= 230) return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); else return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); } int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) { if (!devdata || devdata->i915->display.vbt.version < 244) return 0; return devdata->child.dp_max_lane_count + 1; } static void sanitize_device_type(struct intel_bios_encoder_data *devdata, enum port port) { struct drm_i915_private *i915 = devdata->i915; bool is_hdmi; if (port != PORT_A || DISPLAY_VER(i915) >= 12) return; if (!intel_bios_encoder_supports_dvi(devdata)) return; is_hdmi = intel_bios_encoder_supports_hdmi(devdata); drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n", is_hdmi ? "/HDMI" : ""); devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; } static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata, enum port port) { struct drm_i915_private *i915 = devdata->i915; if (!intel_bios_encoder_supports_dvi(devdata)) return; /* * Some BDW machines (eg. HP Pavilion 15-ab) shipped * with a HSW VBT where the level shifter value goes * up to 11, whereas the BDW max is 9. */ if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) { drm_dbg_kms(&i915->drm, "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n", port_name(port), devdata->child.hdmi_level_shifter_value, 9); devdata->child.hdmi_level_shifter_value = 9; } } static bool intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) { return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; } bool intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) { return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; } bool intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) { return intel_bios_encoder_supports_dvi(devdata) && (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; } bool intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) { return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; } bool intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) { return intel_bios_encoder_supports_dp(devdata) && devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; } bool intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) { return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; } bool intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata) { return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon; } /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) { if (!devdata || devdata->i915->display.vbt.version < 158 || DISPLAY_VER(devdata->i915) >= 14) return -1; return devdata->child.hdmi_level_shifter_value; } int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata) { if (!devdata || devdata->i915->display.vbt.version < 204) return 0; switch (devdata->child.hdmi_max_data_rate) { default: MISSING_CASE(devdata->child.hdmi_max_data_rate); fallthrough; case HDMI_MAX_DATA_RATE_PLATFORM: return 0; case HDMI_MAX_DATA_RATE_594: return 594000; case HDMI_MAX_DATA_RATE_340: return 340000; case HDMI_MAX_DATA_RATE_300: return 300000; case HDMI_MAX_DATA_RATE_297: return 297000; case HDMI_MAX_DATA_RATE_165: return 165000; } } static bool is_port_valid(struct drm_i915_private *i915, enum port port) { /* * On some ICL SKUs port F is not present, but broken VBTs mark * the port as present. Only try to initialize port F for the * SKUs that may actually have it. */ if (port == PORT_F && IS_ICELAKE(i915)) return IS_ICL_WITH_PORT_F(i915); return true; } static void print_ddi_port(const struct intel_bios_encoder_data *devdata) { struct drm_i915_private *i915 = devdata->i915; const struct child_device_config *child = &devdata->child; bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; enum port port; port = intel_bios_encoder_port(devdata); if (port == PORT_NONE) return; is_dvi = intel_bios_encoder_supports_dvi(devdata); is_dp = intel_bios_encoder_supports_dp(devdata); is_crt = intel_bios_encoder_supports_crt(devdata); is_hdmi = intel_bios_encoder_supports_hdmi(devdata); is_edp = intel_bios_encoder_supports_edp(devdata); is_dsi = intel_bios_encoder_supports_dsi(devdata); supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); supports_tbt = intel_bios_encoder_supports_tbt(devdata); drm_dbg_kms(&i915->drm, "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, intel_bios_encoder_supports_dp_dual_mode(devdata), intel_bios_encoder_is_lspcon(devdata), supports_typec_usb, supports_tbt, devdata->dsc != NULL); hdmi_level_shift = intel_bios_hdmi_level_shift(devdata); if (hdmi_level_shift >= 0) { drm_dbg_kms(&i915->drm, "Port %c VBT HDMI level shift: %d\n", port_name(port), hdmi_level_shift); } max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata); if (max_tmds_clock) drm_dbg_kms(&i915->drm, "Port %c VBT HDMI max TMDS clock: %d kHz\n", port_name(port), max_tmds_clock); /* I_boost config for SKL and above */ dp_boost_level = intel_bios_dp_boost_level(devdata); if (dp_boost_level) drm_dbg_kms(&i915->drm, "Port %c VBT (e)DP boost level: %d\n", port_name(port), dp_boost_level); hdmi_boost_level = intel_bios_hdmi_boost_level(devdata); if (hdmi_boost_level) drm_dbg_kms(&i915->drm, "Port %c VBT HDMI boost level: %d\n", port_name(port), hdmi_boost_level); dp_max_link_rate = intel_bios_dp_max_link_rate(devdata); if (dp_max_link_rate) drm_dbg_kms(&i915->drm, "Port %c VBT DP max link rate: %d\n", port_name(port), dp_max_link_rate); /* * FIXME need to implement support for VBT * vswing/preemph tables should this ever trigger. */ drm_WARN(&i915->drm, child->use_vbt_vswing, "Port %c asks to use VBT vswing/preemph tables\n", port_name(port)); } static void parse_ddi_port(struct intel_bios_encoder_data *devdata) { struct drm_i915_private *i915 = devdata->i915; enum port port; port = intel_bios_encoder_port(devdata); if (port == PORT_NONE) return; if (!is_port_valid(i915, port)) { drm_dbg_kms(&i915->drm, "VBT reports port %c as supported, but that can't be true: skipping\n", port_name(port)); return; } sanitize_device_type(devdata, port); sanitize_hdmi_level_shift(devdata, port); } static bool has_ddi_port_info(struct drm_i915_private *i915) { return DISPLAY_VER(i915) >= 5 || IS_G4X(i915); } static void parse_ddi_ports(struct drm_i915_private *i915) { struct intel_bios_encoder_data *devdata; if (!has_ddi_port_info(i915)) return; list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) parse_ddi_port(devdata); list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) print_ddi_port(devdata); } static void parse_general_definitions(struct drm_i915_private *i915) { const struct bdb_general_definitions *defs; struct intel_bios_encoder_data *devdata; const struct child_device_config *child; int i, child_device_num; u8 expected_size; u16 block_size; int bus_pin; defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS); if (!defs) { drm_dbg_kms(&i915->drm, "No general definition block is found, no devices defined.\n"); return; } block_size = get_blocksize(defs); if (block_size < sizeof(*defs)) { drm_dbg_kms(&i915->drm, "General definitions block too small (%u)\n", block_size); return; } bus_pin = defs->crt_ddc_gmbus_pin; drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin); if (intel_gmbus_is_valid_pin(i915, bus_pin)) i915->display.vbt.crt_ddc_pin = bus_pin; if (i915->display.vbt.version < 106) { expected_size = 22; } else if (i915->display.vbt.version < 111) { expected_size = 27; } else if (i915->display.vbt.version < 195) { expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE; } else if (i915->display.vbt.version == 195) { expected_size = 37; } else if (i915->display.vbt.version <= 215) { expected_size = 38; } else if (i915->display.vbt.version <= 250) { expected_size = 39; } else { expected_size = sizeof(*child); BUILD_BUG_ON(sizeof(*child) < 39); drm_dbg(&i915->drm, "Expected child device config size for VBT version %u not known; assuming %u\n", i915->display.vbt.version, expected_size); } /* Flag an error for unexpected size, but continue anyway. */ if (defs->child_dev_size != expected_size) drm_err(&i915->drm, "Unexpected child device config size %u (expected %u for VBT version %u)\n", defs->child_dev_size, expected_size, i915->display.vbt.version); /* The legacy sized child device config is the minimum we need. */ if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { drm_dbg_kms(&i915->drm, "Child device config size %u is too small.\n", defs->child_dev_size); return; } /* get the number of child device */ child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; for (i = 0; i < child_device_num; i++) { child = child_device_ptr(defs, i); if (!child->device_type) continue; drm_dbg_kms(&i915->drm, "Found VBT child device with type 0x%x\n", child->device_type); devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); if (!devdata) break; devdata->i915 = i915; /* * Copy as much as we know (sizeof) and is available * (child_dev_size) of the child device config. Accessing the * data must depend on VBT version. */ memcpy(&devdata->child, child, min_t(size_t, defs->child_dev_size, sizeof(*child))); list_add_tail(&devdata->node, &i915->display.vbt.display_devices); } if (list_empty(&i915->display.vbt.display_devices)) drm_dbg_kms(&i915->drm, "no child dev is parsed from VBT\n"); } /* Common defaults which may be overridden by VBT. */ static void init_vbt_defaults(struct drm_i915_private *i915) { i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; /* general features */ i915->display.vbt.int_tv_support = 1; i915->display.vbt.int_crt_support = 1; /* driver features */ i915->display.vbt.int_lvds_support = 1; /* Default to using SSC */ i915->display.vbt.lvds_use_ssc = 1; /* * Core/SandyBridge/IvyBridge use alternative (120MHz) reference * clock for LVDS. */ i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, !HAS_PCH_SPLIT(i915)); drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n", i915->display.vbt.lvds_ssc_freq); } /* Common defaults which may be overridden by VBT. */ static void init_vbt_panel_defaults(struct intel_panel *panel) { /* Default to having backlight */ panel->vbt.backlight.present = true; /* LFP panel data */ panel->vbt.lvds_dither = true; } /* Defaults to initialize only if there is no VBT. */ static void init_vbt_missing_defaults(struct drm_i915_private *i915) { enum port port; int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) | BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F); if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) return; for_each_port_masked(port, ports) { struct intel_bios_encoder_data *devdata; struct child_device_config *child; enum phy phy = intel_port_to_phy(i915, port); /* * VBT has the TypeC mode (native,TBT/USB) and we don't want * to detect it. */ if (intel_phy_is_tc(i915, phy)) continue; /* Create fake child device config */ devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); if (!devdata) break; devdata->i915 = i915; child = &devdata->child; if (port == PORT_F) child->dvo_port = DVO_PORT_HDMIF; else if (port == PORT_E) child->dvo_port = DVO_PORT_HDMIE; else child->dvo_port = DVO_PORT_HDMIA + port; if (port != PORT_A && port != PORT_E) child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; if (port != PORT_E) child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; if (port == PORT_A) child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; list_add_tail(&devdata->node, &i915->display.vbt.display_devices); drm_dbg_kms(&i915->drm, "Generating default VBT child device with type 0x04%x on port %c\n", child->device_type, port_name(port)); } /* Bypass some minimum baseline VBT version checks */ i915->display.vbt.version = 155; } static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) { const void *_vbt = vbt; return _vbt + vbt->bdb_offset; } /** * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT * @i915: the device * @buf: pointer to a buffer to validate * @size: size of the buffer * * Returns true on valid VBT. */ bool intel_bios_is_valid_vbt(struct drm_i915_private *i915, const void *buf, size_t size) { const struct vbt_header *vbt = buf; const struct bdb_header *bdb; if (!vbt) return false; if (sizeof(struct vbt_header) > size) { drm_dbg_kms(&i915->drm, "VBT header incomplete\n"); return false; } if (memcmp(vbt->signature, "$VBT", 4)) { drm_dbg_kms(&i915->drm, "VBT invalid signature\n"); return false; } if (vbt->vbt_size > size) { drm_dbg_kms(&i915->drm, "VBT incomplete (vbt_size overflows)\n"); return false; } size = vbt->vbt_size; if (range_overflows_t(size_t, vbt->bdb_offset, sizeof(struct bdb_header), size)) { drm_dbg_kms(&i915->drm, "BDB header incomplete\n"); return false; } bdb = get_bdb_header(vbt); if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { drm_dbg_kms(&i915->drm, "BDB incomplete\n"); return false; } return vbt; } static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset) { intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset); return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER); } static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915) { u32 count, data, found, store = 0; u32 static_region, oprom_offset; u32 oprom_size = 0x200000; u16 vbt_size; u32 *vbt; static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS); static_region &= OPTIONROM_SPI_REGIONID_MASK; intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region); oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET); oprom_offset &= OROM_OFFSET_MASK; for (count = 0; count < oprom_size; count += 4) { data = intel_spi_read(&i915->uncore, oprom_offset + count); if (data == *((const u32 *)"$VBT")) { found = oprom_offset + count; break; } } if (count >= oprom_size) goto err_not_found; /* Get VBT size and allocate space for the VBT */ vbt_size = intel_spi_read(&i915->uncore, found + offsetof(struct vbt_header, vbt_size)); vbt_size &= 0xffff; vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); if (!vbt) goto err_not_found; for (count = 0; count < vbt_size; count += 4) *(vbt + store++) = intel_spi_read(&i915->uncore, found + count); if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size)) goto err_free_vbt; drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n"); return (struct vbt_header *)vbt; err_free_vbt: kfree(vbt); err_not_found: return NULL; } static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915) { struct pci_dev *pdev = to_pci_dev(i915->drm.dev); void __iomem *p = NULL, *oprom; struct vbt_header *vbt; u16 vbt_size; size_t i, size; oprom = pci_map_rom(pdev, &size); if (!oprom) return NULL; /* Scour memory looking for the VBT signature. */ for (i = 0; i + 4 < size; i += 4) { if (ioread32(oprom + i) != *((const u32 *)"$VBT")) continue; p = oprom + i; size -= i; break; } if (!p) goto err_unmap_oprom; if (sizeof(struct vbt_header) > size) { drm_dbg(&i915->drm, "VBT header incomplete\n"); goto err_unmap_oprom; } vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); if (vbt_size > size) { drm_dbg(&i915->drm, "VBT incomplete (vbt_size overflows)\n"); goto err_unmap_oprom; } /* The rest will be validated by intel_bios_is_valid_vbt() */ vbt = kmalloc(vbt_size, GFP_KERNEL); if (!vbt) goto err_unmap_oprom; memcpy_fromio(vbt, p, vbt_size); if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size)) goto err_free_vbt; pci_unmap_rom(pdev, oprom); drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n"); return vbt; err_free_vbt: kfree(vbt); err_unmap_oprom: pci_unmap_rom(pdev, oprom); return NULL; } /** * intel_bios_init - find VBT and initialize settings from the BIOS * @i915: i915 device instance * * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also * initialize some defaults if the VBT is not present at all. */ void intel_bios_init(struct drm_i915_private *i915) { const struct vbt_header *vbt; struct vbt_header *oprom_vbt = NULL; const struct bdb_header *bdb; INIT_LIST_HEAD(&i915->display.vbt.display_devices); INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks); if (!HAS_DISPLAY(i915)) { drm_dbg_kms(&i915->drm, "Skipping VBT init due to disabled display.\n"); return; } init_vbt_defaults(i915); vbt = intel_opregion_get_vbt(i915, NULL); /* * If the OpRegion does not have VBT, look in SPI flash through MMIO or * PCI mapping */ if (!vbt && IS_DGFX(i915)) { oprom_vbt = spi_oprom_get_vbt(i915); vbt = oprom_vbt; } if (!vbt) { oprom_vbt = oprom_get_vbt(i915); vbt = oprom_vbt; } if (!vbt) goto out; bdb = get_bdb_header(vbt); i915->display.vbt.version = bdb->version; drm_dbg_kms(&i915->drm, "VBT signature \"%.*s\", BDB version %d\n", (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version); init_bdb_blocks(i915, bdb); /* Grab useful general definitions */ parse_general_features(i915); parse_general_definitions(i915); parse_driver_features(i915); /* Depends on child device list */ parse_compression_parameters(i915); out: if (!vbt) { drm_info(&i915->drm, "Failed to find VBIOS tables (VBT)\n"); init_vbt_missing_defaults(i915); } /* Further processing on pre-parsed or generated child device data */ parse_sdvo_device_mapping(i915); parse_ddi_ports(i915); kfree(oprom_vbt); } static void intel_bios_init_panel(struct drm_i915_private *i915, struct intel_panel *panel, const struct intel_bios_encoder_data *devdata, const struct drm_edid *drm_edid, bool use_fallback) { /* already have it? */ if (panel->vbt.panel_type >= 0) { drm_WARN_ON(&i915->drm, !use_fallback); return; } panel->vbt.panel_type = get_panel_type(i915, devdata, drm_edid, use_fallback); if (panel->vbt.panel_type < 0) { drm_WARN_ON(&i915->drm, use_fallback); return; } init_vbt_panel_defaults(panel); parse_panel_options(i915, panel); parse_generic_dtd(i915, panel); parse_lfp_data(i915, panel); parse_lfp_backlight(i915, panel); parse_sdvo_panel_data(i915, panel); parse_panel_driver_features(i915, panel); parse_power_conservation_features(i915, panel); parse_edp(i915, panel); parse_psr(i915, panel); parse_mipi_config(i915, panel); parse_mipi_sequence(i915, panel); } void intel_bios_init_panel_early(struct drm_i915_private *i915, struct intel_panel *panel, const struct intel_bios_encoder_data *devdata) { intel_bios_init_panel(i915, panel, devdata, NULL, false); } void intel_bios_init_panel_late(struct drm_i915_private *i915, struct intel_panel *panel, const struct intel_bios_encoder_data *devdata, const struct drm_edid *drm_edid) { intel_bios_init_panel(i915, panel, devdata, drm_edid, true); } /** * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() * @i915: i915 device instance */ void intel_bios_driver_remove(struct drm_i915_private *i915) { struct intel_bios_encoder_data *devdata, *nd; struct bdb_block_entry *entry, *ne; list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) { list_del(&devdata->node); kfree(devdata->dsc); kfree(devdata); } list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) { list_del(&entry->node); kfree(entry); } } void intel_bios_fini_panel(struct intel_panel *panel) { kfree(panel->vbt.sdvo_lvds_vbt_mode); panel->vbt.sdvo_lvds_vbt_mode = NULL; kfree(panel->vbt.lfp_lvds_vbt_mode); panel->vbt.lfp_lvds_vbt_mode = NULL; kfree(panel->vbt.dsi.data); panel->vbt.dsi.data = NULL; kfree(panel->vbt.dsi.pps); panel->vbt.dsi.pps = NULL; kfree(panel->vbt.dsi.config); panel->vbt.dsi.config = NULL; kfree(panel->vbt.dsi.deassert_seq); panel->vbt.dsi.deassert_seq = NULL; } /** * intel_bios_is_tv_present - is integrated TV present in VBT * @i915: i915 device instance * * Return true if TV is present. If no child devices were parsed from VBT, * assume TV is present. */ bool intel_bios_is_tv_present(struct drm_i915_private *i915) { const struct intel_bios_encoder_data *devdata; if (!i915->display.vbt.int_tv_support) return false; if (list_empty(&i915->display.vbt.display_devices)) return true; list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { const struct child_device_config *child = &devdata->child; /* * If the device type is not TV, continue. */ switch (child->device_type) { case DEVICE_TYPE_INT_TV: case DEVICE_TYPE_TV: case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: break; default: continue; } /* Only when the addin_offset is non-zero, it is regarded * as present. */ if (child->addin_offset) return true; } return false; } /** * intel_bios_is_lvds_present - is LVDS present in VBT * @i915: i915 device instance * @i2c_pin: i2c pin for LVDS if present * * Return true if LVDS is present. If no child devices were parsed from VBT, * assume LVDS is present. */ bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin) { const struct intel_bios_encoder_data *devdata; if (list_empty(&i915->display.vbt.display_devices)) return true; list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { const struct child_device_config *child = &devdata->child; /* If the device type is not LFP, continue. * We have to check both the new identifiers as well as the * old for compatibility with some BIOSes. */ if (child->device_type != DEVICE_TYPE_INT_LFP && child->device_type != DEVICE_TYPE_LFP) continue; if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) *i2c_pin = child->i2c_pin; /* However, we cannot trust the BIOS writers to populate * the VBT correctly. Since LVDS requires additional * information from AIM blocks, a non-zero addin offset is * a good indicator that the LVDS is actually present. */ if (child->addin_offset) return true; /* But even then some BIOS writers perform some black magic * and instantiate the device without reference to any * additional data. Trust that if the VBT was written into * the OpRegion then they have validated the LVDS's existence. */ if (intel_opregion_get_vbt(i915, NULL)) return true; } return false; } /** * intel_bios_is_port_present - is the specified digital port present * @i915: i915 device instance * @port: port to check * * Return true if the device in %port is present. */ bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port) { const struct intel_bios_encoder_data *devdata; if (WARN_ON(!has_ddi_port_info(i915))) return true; if (!is_port_valid(i915, port)) return false; list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { const struct child_device_config *child = &devdata->child; if (dvo_port_to_port(i915, child->dvo_port) == port) return true; } return false; } bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) { const struct child_device_config *child = &devdata->child; if (!devdata) return false; if (!intel_bios_encoder_supports_dp(devdata) || !intel_bios_encoder_supports_hdmi(devdata)) return false; if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) return true; /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && child->aux_channel != 0) return true; return false; } /** * intel_bios_is_dsi_present - is DSI present in VBT * @i915: i915 device instance * @port: port for DSI if present * * Return true if DSI is present, and return the port in %port. */ bool intel_bios_is_dsi_present(struct drm_i915_private *i915, enum port *port) { const struct intel_bios_encoder_data *devdata; list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { const struct child_device_config *child = &devdata->child; u8 dvo_port = child->dvo_port; if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) continue; if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) { drm_dbg_kms(&i915->drm, "VBT has unsupported DSI port %c\n", port_name(dvo_port - DVO_PORT_MIPIA)); continue; } if (port) *port = dsi_dvo_port_to_port(i915, dvo_port); return true; } return false; } static void fill_dsc(struct intel_crtc_state *crtc_state, struct dsc_compression_parameters_entry *dsc, int dsc_max_bpc) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; int bpc = 8; vdsc_cfg->dsc_version_major = dsc->version_major; vdsc_cfg->dsc_version_minor = dsc->version_minor; if (dsc->support_12bpc && dsc_max_bpc >= 12) bpc = 12; else if (dsc->support_10bpc && dsc_max_bpc >= 10) bpc = 10; else if (dsc->support_8bpc && dsc_max_bpc >= 8) bpc = 8; else drm_dbg_kms(&i915->drm, "VBT: Unsupported BPC %d for DCS\n", dsc_max_bpc); crtc_state->pipe_bpp = bpc * 3; crtc_state->dsc.compressed_bpp_x16 = to_bpp_x16(min(crtc_state->pipe_bpp, VBT_DSC_MAX_BPP(dsc->max_bpp))); /* * FIXME: This is ugly, and slice count should take DSC engine * throughput etc. into account. * * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. */ if (dsc->slices_per_line & BIT(2)) { crtc_state->dsc.slice_count = 4; } else if (dsc->slices_per_line & BIT(1)) { crtc_state->dsc.slice_count = 2; } else { /* FIXME */ if (!(dsc->slices_per_line & BIT(0))) drm_dbg_kms(&i915->drm, "VBT: Unsupported DSC slice count for DSI\n"); crtc_state->dsc.slice_count = 1; } if (crtc_state->hw.adjusted_mode.crtc_hdisplay % crtc_state->dsc.slice_count != 0) drm_dbg_kms(&i915->drm, "VBT: DSC hdisplay %d not divisible by slice count %d\n", crtc_state->hw.adjusted_mode.crtc_hdisplay, crtc_state->dsc.slice_count); /* * The VBT rc_buffer_block_size and rc_buffer_size definitions * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. */ vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, dsc->rc_buffer_size); /* FIXME: DSI spec says bpc + 1 for this one */ vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; vdsc_cfg->slice_height = dsc->slice_height; } /* FIXME: initially DSI specific */ bool intel_bios_get_dsc_params(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, int dsc_max_bpc) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); const struct intel_bios_encoder_data *devdata; list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { const struct child_device_config *child = &devdata->child; if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) continue; if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) { if (!devdata->dsc) return false; fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); return true; } } return false; } static const u8 adlp_aux_ch_map[] = { [AUX_CH_A] = DP_AUX_A, [AUX_CH_B] = DP_AUX_B, [AUX_CH_C] = DP_AUX_C, [AUX_CH_D_XELPD] = DP_AUX_D, [AUX_CH_E_XELPD] = DP_AUX_E, [AUX_CH_USBC1] = DP_AUX_F, [AUX_CH_USBC2] = DP_AUX_G, [AUX_CH_USBC3] = DP_AUX_H, [AUX_CH_USBC4] = DP_AUX_I, }; /* * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E * map to DDI A,TC1,TC2,TC3,TC4 respectively. */ static const u8 adls_aux_ch_map[] = { [AUX_CH_A] = DP_AUX_A, [AUX_CH_USBC1] = DP_AUX_B, [AUX_CH_USBC2] = DP_AUX_C, [AUX_CH_USBC3] = DP_AUX_D, [AUX_CH_USBC4] = DP_AUX_E, }; /* * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D * map to DDI A,B,TC1,TC2 respectively. */ static const u8 rkl_aux_ch_map[] = { [AUX_CH_A] = DP_AUX_A, [AUX_CH_B] = DP_AUX_B, [AUX_CH_USBC1] = DP_AUX_C, [AUX_CH_USBC2] = DP_AUX_D, }; static const u8 direct_aux_ch_map[] = { [AUX_CH_A] = DP_AUX_A, [AUX_CH_B] = DP_AUX_B, [AUX_CH_C] = DP_AUX_C, [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */ [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */ [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */ [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */ [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */ [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */ }; static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel) { const u8 *aux_ch_map; int i, n_entries; if (DISPLAY_VER(i915) >= 13) { aux_ch_map = adlp_aux_ch_map; n_entries = ARRAY_SIZE(adlp_aux_ch_map); } else if (IS_ALDERLAKE_S(i915)) { aux_ch_map = adls_aux_ch_map; n_entries = ARRAY_SIZE(adls_aux_ch_map); } else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) { aux_ch_map = rkl_aux_ch_map; n_entries = ARRAY_SIZE(rkl_aux_ch_map); } else { aux_ch_map = direct_aux_ch_map; n_entries = ARRAY_SIZE(direct_aux_ch_map); } for (i = 0; i < n_entries; i++) { if (aux_ch_map[i] == aux_channel) return i; } drm_dbg_kms(&i915->drm, "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n", aux_channel); return AUX_CH_NONE; } enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata) { if (!devdata || !devdata->child.aux_channel) return AUX_CH_NONE; return map_aux_ch(devdata->i915, devdata->child.aux_channel); } bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata) { struct drm_i915_private *i915; u8 aux_channel; int count = 0; if (!devdata || !devdata->child.aux_channel) return false; i915 = devdata->i915; aux_channel = devdata->child.aux_channel; list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { if (intel_bios_encoder_supports_dp(devdata) && aux_channel == devdata->child.aux_channel) count++; } return count > 1; } int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata) { if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) return 0; return translate_iboost(devdata->i915, devdata->child.dp_iboost_level); } int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) { if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) return 0; return translate_iboost(devdata->i915, devdata->child.hdmi_iboost_level); } int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata) { if (!devdata || !devdata->child.ddc_pin) return 0; return map_ddc_pin(devdata->i915, devdata->child.ddc_pin); } bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) { return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c; } bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) { return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt; } bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata) { return devdata && devdata->child.lane_reversal; } bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata) { return devdata && devdata->child.hpd_invert; } const struct intel_bios_encoder_data * intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port) { struct intel_bios_encoder_data *devdata; list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { if (intel_bios_encoder_port(devdata) == port) return devdata; } return NULL; } void intel_bios_for_each_encoder(struct drm_i915_private *i915, void (*func)(struct drm_i915_private *i915, const struct intel_bios_encoder_data *devdata)) { struct intel_bios_encoder_data *devdata; list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) func(i915, devdata); } static int intel_bios_vbt_show(struct seq_file *m, void *unused) { struct drm_i915_private *i915 = m->private; const void *vbt; size_t vbt_size; /* * FIXME: VBT might originate from other places than opregion, and then * this would be incorrect. */ vbt = intel_opregion_get_vbt(i915, &vbt_size); if (vbt) seq_write(m, vbt, vbt_size); return 0; } DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt); void intel_bios_debugfs_register(struct drm_i915_private *i915) { struct drm_minor *minor = i915->drm.primary; debugfs_create_file("i915_vbt", 0444, minor->debugfs_root, i915, &intel_bios_vbt_fops); }