1// SPDX-License-Identifier: GPL-2.0-only OR MIT
2/*
3 * Copyright (c) 2022 Red Hat.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 *     Danilo Krummrich <dakr@redhat.com>
25 *
26 */
27
28#include <drm/drm_gpuvm.h>
29
30#include <linux/interval_tree_generic.h>
31#include <linux/mm.h>
32
33/**
34 * DOC: Overview
35 *
36 * The DRM GPU VA Manager, represented by struct drm_gpuvm keeps track of a
37 * GPU's virtual address (VA) space and manages the corresponding virtual
38 * mappings represented by &drm_gpuva objects. It also keeps track of the
39 * mapping's backing &drm_gem_object buffers.
40 *
41 * &drm_gem_object buffers maintain a list of &drm_gpuva objects representing
42 * all existent GPU VA mappings using this &drm_gem_object as backing buffer.
43 *
44 * GPU VAs can be flagged as sparse, such that drivers may use GPU VAs to also
45 * keep track of sparse PTEs in order to support Vulkan 'Sparse Resources'.
46 *
47 * The GPU VA manager internally uses a rb-tree to manage the
48 * &drm_gpuva mappings within a GPU's virtual address space.
49 *
50 * The &drm_gpuvm structure contains a special &drm_gpuva representing the
51 * portion of VA space reserved by the kernel. This node is initialized together
52 * with the GPU VA manager instance and removed when the GPU VA manager is
53 * destroyed.
54 *
55 * In a typical application drivers would embed struct drm_gpuvm and
56 * struct drm_gpuva within their own driver specific structures, there won't be
57 * any memory allocations of its own nor memory allocations of &drm_gpuva
58 * entries.
59 *
60 * The data structures needed to store &drm_gpuvas within the &drm_gpuvm are
61 * contained within struct drm_gpuva already. Hence, for inserting &drm_gpuva
62 * entries from within dma-fence signalling critical sections it is enough to
63 * pre-allocate the &drm_gpuva structures.
64 *
65 * &drm_gem_objects which are private to a single VM can share a common
66 * &dma_resv in order to improve locking efficiency (e.g. with &drm_exec).
67 * For this purpose drivers must pass a &drm_gem_object to drm_gpuvm_init(), in
68 * the following called 'resv object', which serves as the container of the
69 * GPUVM's shared &dma_resv. This resv object can be a driver specific
70 * &drm_gem_object, such as the &drm_gem_object containing the root page table,
71 * but it can also be a 'dummy' object, which can be allocated with
72 * drm_gpuvm_resv_object_alloc().
73 *
74 * In order to connect a struct drm_gpuva its backing &drm_gem_object each
75 * &drm_gem_object maintains a list of &drm_gpuvm_bo structures, and each
76 * &drm_gpuvm_bo contains a list of &drm_gpuva structures.
77 *
78 * A &drm_gpuvm_bo is an abstraction that represents a combination of a
79 * &drm_gpuvm and a &drm_gem_object. Every such combination should be unique.
80 * This is ensured by the API through drm_gpuvm_bo_obtain() and
81 * drm_gpuvm_bo_obtain_prealloc() which first look into the corresponding
82 * &drm_gem_object list of &drm_gpuvm_bos for an existing instance of this
83 * particular combination. If not existent a new instance is created and linked
84 * to the &drm_gem_object.
85 *
86 * &drm_gpuvm_bo structures, since unique for a given &drm_gpuvm, are also used
87 * as entry for the &drm_gpuvm's lists of external and evicted objects. Those
88 * lists are maintained in order to accelerate locking of dma-resv locks and
89 * validation of evicted objects bound in a &drm_gpuvm. For instance, all
90 * &drm_gem_object's &dma_resv of a given &drm_gpuvm can be locked by calling
91 * drm_gpuvm_exec_lock(). Once locked drivers can call drm_gpuvm_validate() in
92 * order to validate all evicted &drm_gem_objects. It is also possible to lock
93 * additional &drm_gem_objects by providing the corresponding parameters to
94 * drm_gpuvm_exec_lock() as well as open code the &drm_exec loop while making
95 * use of helper functions such as drm_gpuvm_prepare_range() or
96 * drm_gpuvm_prepare_objects().
97 *
98 * Every bound &drm_gem_object is treated as external object when its &dma_resv
99 * structure is different than the &drm_gpuvm's common &dma_resv structure.
100 */
101
102/**
103 * DOC: Split and Merge
104 *
105 * Besides its capability to manage and represent a GPU VA space, the
106 * GPU VA manager also provides functions to let the &drm_gpuvm calculate a
107 * sequence of operations to satisfy a given map or unmap request.
108 *
109 * Therefore the DRM GPU VA manager provides an algorithm implementing splitting
110 * and merging of existent GPU VA mappings with the ones that are requested to
111 * be mapped or unmapped. This feature is required by the Vulkan API to
112 * implement Vulkan 'Sparse Memory Bindings' - drivers UAPIs often refer to this
113 * as VM BIND.
114 *
115 * Drivers can call drm_gpuvm_sm_map() to receive a sequence of callbacks
116 * containing map, unmap and remap operations for a given newly requested
117 * mapping. The sequence of callbacks represents the set of operations to
118 * execute in order to integrate the new mapping cleanly into the current state
119 * of the GPU VA space.
120 *
121 * Depending on how the new GPU VA mapping intersects with the existent mappings
122 * of the GPU VA space the &drm_gpuvm_ops callbacks contain an arbitrary amount
123 * of unmap operations, a maximum of two remap operations and a single map
124 * operation. The caller might receive no callback at all if no operation is
125 * required, e.g. if the requested mapping already exists in the exact same way.
126 *
127 * The single map operation represents the original map operation requested by
128 * the caller.
129 *
130 * &drm_gpuva_op_unmap contains a 'keep' field, which indicates whether the
131 * &drm_gpuva to unmap is physically contiguous with the original mapping
132 * request. Optionally, if 'keep' is set, drivers may keep the actual page table
133 * entries for this &drm_gpuva, adding the missing page table entries only and
134 * update the &drm_gpuvm's view of things accordingly.
135 *
136 * Drivers may do the same optimization, namely delta page table updates, also
137 * for remap operations. This is possible since &drm_gpuva_op_remap consists of
138 * one unmap operation and one or two map operations, such that drivers can
139 * derive the page table update delta accordingly.
140 *
141 * Note that there can't be more than two existent mappings to split up, one at
142 * the beginning and one at the end of the new mapping, hence there is a
143 * maximum of two remap operations.
144 *
145 * Analogous to drm_gpuvm_sm_map() drm_gpuvm_sm_unmap() uses &drm_gpuvm_ops to
146 * call back into the driver in order to unmap a range of GPU VA space. The
147 * logic behind this function is way simpler though: For all existent mappings
148 * enclosed by the given range unmap operations are created. For mappings which
149 * are only partically located within the given range, remap operations are
150 * created such that those mappings are split up and re-mapped partically.
151 *
152 * As an alternative to drm_gpuvm_sm_map() and drm_gpuvm_sm_unmap(),
153 * drm_gpuvm_sm_map_ops_create() and drm_gpuvm_sm_unmap_ops_create() can be used
154 * to directly obtain an instance of struct drm_gpuva_ops containing a list of
155 * &drm_gpuva_op, which can be iterated with drm_gpuva_for_each_op(). This list
156 * contains the &drm_gpuva_ops analogous to the callbacks one would receive when
157 * calling drm_gpuvm_sm_map() or drm_gpuvm_sm_unmap(). While this way requires
158 * more memory (to allocate the &drm_gpuva_ops), it provides drivers a way to
159 * iterate the &drm_gpuva_op multiple times, e.g. once in a context where memory
160 * allocations are possible (e.g. to allocate GPU page tables) and once in the
161 * dma-fence signalling critical path.
162 *
163 * To update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert() and
164 * drm_gpuva_remove() may be used. These functions can safely be used from
165 * &drm_gpuvm_ops callbacks originating from drm_gpuvm_sm_map() or
166 * drm_gpuvm_sm_unmap(). However, it might be more convenient to use the
167 * provided helper functions drm_gpuva_map(), drm_gpuva_remap() and
168 * drm_gpuva_unmap() instead.
169 *
170 * The following diagram depicts the basic relationships of existent GPU VA
171 * mappings, a newly requested mapping and the resulting mappings as implemented
172 * by drm_gpuvm_sm_map() - it doesn't cover any arbitrary combinations of these.
173 *
174 * 1) Requested mapping is identical. Replace it, but indicate the backing PTEs
175 *    could be kept.
176 *
177 *    ::
178 *
179 *	     0     a     1
180 *	old: |-----------| (bo_offset=n)
181 *
182 *	     0     a     1
183 *	req: |-----------| (bo_offset=n)
184 *
185 *	     0     a     1
186 *	new: |-----------| (bo_offset=n)
187 *
188 *
189 * 2) Requested mapping is identical, except for the BO offset, hence replace
190 *    the mapping.
191 *
192 *    ::
193 *
194 *	     0     a     1
195 *	old: |-----------| (bo_offset=n)
196 *
197 *	     0     a     1
198 *	req: |-----------| (bo_offset=m)
199 *
200 *	     0     a     1
201 *	new: |-----------| (bo_offset=m)
202 *
203 *
204 * 3) Requested mapping is identical, except for the backing BO, hence replace
205 *    the mapping.
206 *
207 *    ::
208 *
209 *	     0     a     1
210 *	old: |-----------| (bo_offset=n)
211 *
212 *	     0     b     1
213 *	req: |-----------| (bo_offset=n)
214 *
215 *	     0     b     1
216 *	new: |-----------| (bo_offset=n)
217 *
218 *
219 * 4) Existent mapping is a left aligned subset of the requested one, hence
220 *    replace the existent one.
221 *
222 *    ::
223 *
224 *	     0  a  1
225 *	old: |-----|       (bo_offset=n)
226 *
227 *	     0     a     2
228 *	req: |-----------| (bo_offset=n)
229 *
230 *	     0     a     2
231 *	new: |-----------| (bo_offset=n)
232 *
233 *    .. note::
234 *       We expect to see the same result for a request with a different BO
235 *       and/or non-contiguous BO offset.
236 *
237 *
238 * 5) Requested mapping's range is a left aligned subset of the existent one,
239 *    but backed by a different BO. Hence, map the requested mapping and split
240 *    the existent one adjusting its BO offset.
241 *
242 *    ::
243 *
244 *	     0     a     2
245 *	old: |-----------| (bo_offset=n)
246 *
247 *	     0  b  1
248 *	req: |-----|       (bo_offset=n)
249 *
250 *	     0  b  1  a' 2
251 *	new: |-----|-----| (b.bo_offset=n, a.bo_offset=n+1)
252 *
253 *    .. note::
254 *       We expect to see the same result for a request with a different BO
255 *       and/or non-contiguous BO offset.
256 *
257 *
258 * 6) Existent mapping is a superset of the requested mapping. Split it up, but
259 *    indicate that the backing PTEs could be kept.
260 *
261 *    ::
262 *
263 *	     0     a     2
264 *	old: |-----------| (bo_offset=n)
265 *
266 *	     0  a  1
267 *	req: |-----|       (bo_offset=n)
268 *
269 *	     0  a  1  a' 2
270 *	new: |-----|-----| (a.bo_offset=n, a'.bo_offset=n+1)
271 *
272 *
273 * 7) Requested mapping's range is a right aligned subset of the existent one,
274 *    but backed by a different BO. Hence, map the requested mapping and split
275 *    the existent one, without adjusting the BO offset.
276 *
277 *    ::
278 *
279 *	     0     a     2
280 *	old: |-----------| (bo_offset=n)
281 *
282 *	           1  b  2
283 *	req:       |-----| (bo_offset=m)
284 *
285 *	     0  a  1  b  2
286 *	new: |-----|-----| (a.bo_offset=n,b.bo_offset=m)
287 *
288 *
289 * 8) Existent mapping is a superset of the requested mapping. Split it up, but
290 *    indicate that the backing PTEs could be kept.
291 *
292 *    ::
293 *
294 *	      0     a     2
295 *	old: |-----------| (bo_offset=n)
296 *
297 *	           1  a  2
298 *	req:       |-----| (bo_offset=n+1)
299 *
300 *	     0  a' 1  a  2
301 *	new: |-----|-----| (a'.bo_offset=n, a.bo_offset=n+1)
302 *
303 *
304 * 9) Existent mapping is overlapped at the end by the requested mapping backed
305 *    by a different BO. Hence, map the requested mapping and split up the
306 *    existent one, without adjusting the BO offset.
307 *
308 *    ::
309 *
310 *	     0     a     2
311 *	old: |-----------|       (bo_offset=n)
312 *
313 *	           1     b     3
314 *	req:       |-----------| (bo_offset=m)
315 *
316 *	     0  a  1     b     3
317 *	new: |-----|-----------| (a.bo_offset=n,b.bo_offset=m)
318 *
319 *
320 * 10) Existent mapping is overlapped by the requested mapping, both having the
321 *     same backing BO with a contiguous offset. Indicate the backing PTEs of
322 *     the old mapping could be kept.
323 *
324 *     ::
325 *
326 *	      0     a     2
327 *	 old: |-----------|       (bo_offset=n)
328 *
329 *	            1     a     3
330 *	 req:       |-----------| (bo_offset=n+1)
331 *
332 *	      0  a' 1     a     3
333 *	 new: |-----|-----------| (a'.bo_offset=n, a.bo_offset=n+1)
334 *
335 *
336 * 11) Requested mapping's range is a centered subset of the existent one
337 *     having a different backing BO. Hence, map the requested mapping and split
338 *     up the existent one in two mappings, adjusting the BO offset of the right
339 *     one accordingly.
340 *
341 *     ::
342 *
343 *	      0        a        3
344 *	 old: |-----------------| (bo_offset=n)
345 *
346 *	            1  b  2
347 *	 req:       |-----|       (bo_offset=m)
348 *
349 *	      0  a  1  b  2  a' 3
350 *	 new: |-----|-----|-----| (a.bo_offset=n,b.bo_offset=m,a'.bo_offset=n+2)
351 *
352 *
353 * 12) Requested mapping is a contiguous subset of the existent one. Split it
354 *     up, but indicate that the backing PTEs could be kept.
355 *
356 *     ::
357 *
358 *	      0        a        3
359 *	 old: |-----------------| (bo_offset=n)
360 *
361 *	            1  a  2
362 *	 req:       |-----|       (bo_offset=n+1)
363 *
364 *	      0  a' 1  a  2 a'' 3
365 *	 old: |-----|-----|-----| (a'.bo_offset=n, a.bo_offset=n+1, a''.bo_offset=n+2)
366 *
367 *
368 * 13) Existent mapping is a right aligned subset of the requested one, hence
369 *     replace the existent one.
370 *
371 *     ::
372 *
373 *	            1  a  2
374 *	 old:       |-----| (bo_offset=n+1)
375 *
376 *	      0     a     2
377 *	 req: |-----------| (bo_offset=n)
378 *
379 *	      0     a     2
380 *	 new: |-----------| (bo_offset=n)
381 *
382 *     .. note::
383 *        We expect to see the same result for a request with a different bo
384 *        and/or non-contiguous bo_offset.
385 *
386 *
387 * 14) Existent mapping is a centered subset of the requested one, hence
388 *     replace the existent one.
389 *
390 *     ::
391 *
392 *	            1  a  2
393 *	 old:       |-----| (bo_offset=n+1)
394 *
395 *	      0        a       3
396 *	 req: |----------------| (bo_offset=n)
397 *
398 *	      0        a       3
399 *	 new: |----------------| (bo_offset=n)
400 *
401 *     .. note::
402 *        We expect to see the same result for a request with a different bo
403 *        and/or non-contiguous bo_offset.
404 *
405 *
406 * 15) Existent mappings is overlapped at the beginning by the requested mapping
407 *     backed by a different BO. Hence, map the requested mapping and split up
408 *     the existent one, adjusting its BO offset accordingly.
409 *
410 *     ::
411 *
412 *	            1     a     3
413 *	 old:       |-----------| (bo_offset=n)
414 *
415 *	      0     b     2
416 *	 req: |-----------|       (bo_offset=m)
417 *
418 *	      0     b     2  a' 3
419 *	 new: |-----------|-----| (b.bo_offset=m,a.bo_offset=n+2)
420 */
421
422/**
423 * DOC: Locking
424 *
425 * In terms of managing &drm_gpuva entries DRM GPUVM does not take care of
426 * locking itself, it is the drivers responsibility to take care about locking.
427 * Drivers might want to protect the following operations: inserting, removing
428 * and iterating &drm_gpuva objects as well as generating all kinds of
429 * operations, such as split / merge or prefetch.
430 *
431 * DRM GPUVM also does not take care of the locking of the backing
432 * &drm_gem_object buffers GPU VA lists and &drm_gpuvm_bo abstractions by
433 * itself; drivers are responsible to enforce mutual exclusion using either the
434 * GEMs dma_resv lock or alternatively a driver specific external lock. For the
435 * latter see also drm_gem_gpuva_set_lock().
436 *
437 * However, DRM GPUVM contains lockdep checks to ensure callers of its API hold
438 * the corresponding lock whenever the &drm_gem_objects GPU VA list is accessed
439 * by functions such as drm_gpuva_link() or drm_gpuva_unlink(), but also
440 * drm_gpuvm_bo_obtain() and drm_gpuvm_bo_put().
441 *
442 * The latter is required since on creation and destruction of a &drm_gpuvm_bo
443 * the &drm_gpuvm_bo is attached / removed from the &drm_gem_objects gpuva list.
444 * Subsequent calls to drm_gpuvm_bo_obtain() for the same &drm_gpuvm and
445 * &drm_gem_object must be able to observe previous creations and destructions
446 * of &drm_gpuvm_bos in order to keep instances unique.
447 *
448 * The &drm_gpuvm's lists for keeping track of external and evicted objects are
449 * protected against concurrent insertion / removal and iteration internally.
450 *
451 * However, drivers still need ensure to protect concurrent calls to functions
452 * iterating those lists, namely drm_gpuvm_prepare_objects() and
453 * drm_gpuvm_validate().
454 *
455 * Alternatively, drivers can set the &DRM_GPUVM_RESV_PROTECTED flag to indicate
456 * that the corresponding &dma_resv locks are held in order to protect the
457 * lists. If &DRM_GPUVM_RESV_PROTECTED is set, internal locking is disabled and
458 * the corresponding lockdep checks are enabled. This is an optimization for
459 * drivers which are capable of taking the corresponding &dma_resv locks and
460 * hence do not require internal locking.
461 */
462
463/**
464 * DOC: Examples
465 *
466 * This section gives two examples on how to let the DRM GPUVA Manager generate
467 * &drm_gpuva_op in order to satisfy a given map or unmap request and how to
468 * make use of them.
469 *
470 * The below code is strictly limited to illustrate the generic usage pattern.
471 * To maintain simplicitly, it doesn't make use of any abstractions for common
472 * code, different (asyncronous) stages with fence signalling critical paths,
473 * any other helpers or error handling in terms of freeing memory and dropping
474 * previously taken locks.
475 *
476 * 1) Obtain a list of &drm_gpuva_op to create a new mapping::
477 *
478 *	// Allocates a new &drm_gpuva.
479 *	struct drm_gpuva * driver_gpuva_alloc(void);
480 *
481 *	// Typically drivers would embedd the &drm_gpuvm and &drm_gpuva
482 *	// structure in individual driver structures and lock the dma-resv with
483 *	// drm_exec or similar helpers.
484 *	int driver_mapping_create(struct drm_gpuvm *gpuvm,
485 *				  u64 addr, u64 range,
486 *				  struct drm_gem_object *obj, u64 offset)
487 *	{
488 *		struct drm_gpuva_ops *ops;
489 *		struct drm_gpuva_op *op
490 *		struct drm_gpuvm_bo *vm_bo;
491 *
492 *		driver_lock_va_space();
493 *		ops = drm_gpuvm_sm_map_ops_create(gpuvm, addr, range,
494 *						  obj, offset);
495 *		if (IS_ERR(ops))
496 *			return PTR_ERR(ops);
497 *
498 *		vm_bo = drm_gpuvm_bo_obtain(gpuvm, obj);
499 *		if (IS_ERR(vm_bo))
500 *			return PTR_ERR(vm_bo);
501 *
502 *		drm_gpuva_for_each_op(op, ops) {
503 *			struct drm_gpuva *va;
504 *
505 *			switch (op->op) {
506 *			case DRM_GPUVA_OP_MAP:
507 *				va = driver_gpuva_alloc();
508 *				if (!va)
509 *					; // unwind previous VA space updates,
510 *					  // free memory and unlock
511 *
512 *				driver_vm_map();
513 *				drm_gpuva_map(gpuvm, va, &op->map);
514 *				drm_gpuva_link(va, vm_bo);
515 *
516 *				break;
517 *			case DRM_GPUVA_OP_REMAP: {
518 *				struct drm_gpuva *prev = NULL, *next = NULL;
519 *
520 *				va = op->remap.unmap->va;
521 *
522 *				if (op->remap.prev) {
523 *					prev = driver_gpuva_alloc();
524 *					if (!prev)
525 *						; // unwind previous VA space
526 *						  // updates, free memory and
527 *						  // unlock
528 *				}
529 *
530 *				if (op->remap.next) {
531 *					next = driver_gpuva_alloc();
532 *					if (!next)
533 *						; // unwind previous VA space
534 *						  // updates, free memory and
535 *						  // unlock
536 *				}
537 *
538 *				driver_vm_remap();
539 *				drm_gpuva_remap(prev, next, &op->remap);
540 *
541 *				if (prev)
542 *					drm_gpuva_link(prev, va->vm_bo);
543 *				if (next)
544 *					drm_gpuva_link(next, va->vm_bo);
545 *				drm_gpuva_unlink(va);
546 *
547 *				break;
548 *			}
549 *			case DRM_GPUVA_OP_UNMAP:
550 *				va = op->unmap->va;
551 *
552 *				driver_vm_unmap();
553 *				drm_gpuva_unlink(va);
554 *				drm_gpuva_unmap(&op->unmap);
555 *
556 *				break;
557 *			default:
558 *				break;
559 *			}
560 *		}
561 *		drm_gpuvm_bo_put(vm_bo);
562 *		driver_unlock_va_space();
563 *
564 *		return 0;
565 *	}
566 *
567 * 2) Receive a callback for each &drm_gpuva_op to create a new mapping::
568 *
569 *	struct driver_context {
570 *		struct drm_gpuvm *gpuvm;
571 *		struct drm_gpuvm_bo *vm_bo;
572 *		struct drm_gpuva *new_va;
573 *		struct drm_gpuva *prev_va;
574 *		struct drm_gpuva *next_va;
575 *	};
576 *
577 *	// ops to pass to drm_gpuvm_init()
578 *	static const struct drm_gpuvm_ops driver_gpuvm_ops = {
579 *		.sm_step_map = driver_gpuva_map,
580 *		.sm_step_remap = driver_gpuva_remap,
581 *		.sm_step_unmap = driver_gpuva_unmap,
582 *	};
583 *
584 *	// Typically drivers would embedd the &drm_gpuvm and &drm_gpuva
585 *	// structure in individual driver structures and lock the dma-resv with
586 *	// drm_exec or similar helpers.
587 *	int driver_mapping_create(struct drm_gpuvm *gpuvm,
588 *				  u64 addr, u64 range,
589 *				  struct drm_gem_object *obj, u64 offset)
590 *	{
591 *		struct driver_context ctx;
592 *		struct drm_gpuvm_bo *vm_bo;
593 *		struct drm_gpuva_ops *ops;
594 *		struct drm_gpuva_op *op;
595 *		int ret = 0;
596 *
597 *		ctx.gpuvm = gpuvm;
598 *
599 *		ctx.new_va = kzalloc(sizeof(*ctx.new_va), GFP_KERNEL);
600 *		ctx.prev_va = kzalloc(sizeof(*ctx.prev_va), GFP_KERNEL);
601 *		ctx.next_va = kzalloc(sizeof(*ctx.next_va), GFP_KERNEL);
602 *		ctx.vm_bo = drm_gpuvm_bo_create(gpuvm, obj);
603 *		if (!ctx.new_va || !ctx.prev_va || !ctx.next_va || !vm_bo) {
604 *			ret = -ENOMEM;
605 *			goto out;
606 *		}
607 *
608 *		// Typically protected with a driver specific GEM gpuva lock
609 *		// used in the fence signaling path for drm_gpuva_link() and
610 *		// drm_gpuva_unlink(), hence pre-allocate.
611 *		ctx.vm_bo = drm_gpuvm_bo_obtain_prealloc(ctx.vm_bo);
612 *
613 *		driver_lock_va_space();
614 *		ret = drm_gpuvm_sm_map(gpuvm, &ctx, addr, range, obj, offset);
615 *		driver_unlock_va_space();
616 *
617 *	out:
618 *		drm_gpuvm_bo_put(ctx.vm_bo);
619 *		kfree(ctx.new_va);
620 *		kfree(ctx.prev_va);
621 *		kfree(ctx.next_va);
622 *		return ret;
623 *	}
624 *
625 *	int driver_gpuva_map(struct drm_gpuva_op *op, void *__ctx)
626 *	{
627 *		struct driver_context *ctx = __ctx;
628 *
629 *		drm_gpuva_map(ctx->vm, ctx->new_va, &op->map);
630 *
631 *		drm_gpuva_link(ctx->new_va, ctx->vm_bo);
632 *
633 *		// prevent the new GPUVA from being freed in
634 *		// driver_mapping_create()
635 *		ctx->new_va = NULL;
636 *
637 *		return 0;
638 *	}
639 *
640 *	int driver_gpuva_remap(struct drm_gpuva_op *op, void *__ctx)
641 *	{
642 *		struct driver_context *ctx = __ctx;
643 *		struct drm_gpuva *va = op->remap.unmap->va;
644 *
645 *		drm_gpuva_remap(ctx->prev_va, ctx->next_va, &op->remap);
646 *
647 *		if (op->remap.prev) {
648 *			drm_gpuva_link(ctx->prev_va, va->vm_bo);
649 *			ctx->prev_va = NULL;
650 *		}
651 *
652 *		if (op->remap.next) {
653 *			drm_gpuva_link(ctx->next_va, va->vm_bo);
654 *			ctx->next_va = NULL;
655 *		}
656 *
657 *		drm_gpuva_unlink(va);
658 *		kfree(va);
659 *
660 *		return 0;
661 *	}
662 *
663 *	int driver_gpuva_unmap(struct drm_gpuva_op *op, void *__ctx)
664 *	{
665 *		drm_gpuva_unlink(op->unmap.va);
666 *		drm_gpuva_unmap(&op->unmap);
667 *		kfree(op->unmap.va);
668 *
669 *		return 0;
670 *	}
671 */
672
673/**
674 * get_next_vm_bo_from_list() - get the next vm_bo element
675 * @__gpuvm: the &drm_gpuvm
676 * @__list_name: the name of the list we're iterating on
677 * @__local_list: a pointer to the local list used to store already iterated items
678 * @__prev_vm_bo: the previous element we got from get_next_vm_bo_from_list()
679 *
680 * This helper is here to provide lockless list iteration. Lockless as in, the
681 * iterator releases the lock immediately after picking the first element from
682 * the list, so list insertion deletion can happen concurrently.
683 *
684 * Elements popped from the original list are kept in a local list, so removal
685 * and is_empty checks can still happen while we're iterating the list.
686 */
687#define get_next_vm_bo_from_list(__gpuvm, __list_name, __local_list, __prev_vm_bo)	\
688	({										\
689		struct drm_gpuvm_bo *__vm_bo = NULL;					\
690											\
691		drm_gpuvm_bo_put(__prev_vm_bo);						\
692											\
693		spin_lock(&(__gpuvm)->__list_name.lock);				\
694		if (!(__gpuvm)->__list_name.local_list)					\
695			(__gpuvm)->__list_name.local_list = __local_list;		\
696		else									\
697			drm_WARN_ON((__gpuvm)->drm,					\
698				    (__gpuvm)->__list_name.local_list != __local_list);	\
699											\
700		while (!list_empty(&(__gpuvm)->__list_name.list)) {			\
701			__vm_bo = list_first_entry(&(__gpuvm)->__list_name.list,	\
702						   struct drm_gpuvm_bo,			\
703						   list.entry.__list_name);		\
704			if (kref_get_unless_zero(&__vm_bo->kref)) {			\
705				list_move_tail(&(__vm_bo)->list.entry.__list_name,	\
706					       __local_list);				\
707				break;							\
708			} else {							\
709				list_del_init(&(__vm_bo)->list.entry.__list_name);	\
710				__vm_bo = NULL;						\
711			}								\
712		}									\
713		spin_unlock(&(__gpuvm)->__list_name.lock);				\
714											\
715		__vm_bo;								\
716	})
717
718/**
719 * for_each_vm_bo_in_list() - internal vm_bo list iterator
720 * @__gpuvm: the &drm_gpuvm
721 * @__list_name: the name of the list we're iterating on
722 * @__local_list: a pointer to the local list used to store already iterated items
723 * @__vm_bo: the struct drm_gpuvm_bo to assign in each iteration step
724 *
725 * This helper is here to provide lockless list iteration. Lockless as in, the
726 * iterator releases the lock immediately after picking the first element from the
727 * list, hence list insertion and deletion can happen concurrently.
728 *
729 * It is not allowed to re-assign the vm_bo pointer from inside this loop.
730 *
731 * Typical use:
732 *
733 *	struct drm_gpuvm_bo *vm_bo;
734 *	LIST_HEAD(my_local_list);
735 *
736 *	ret = 0;
737 *	for_each_vm_bo_in_list(gpuvm, <list_name>, &my_local_list, vm_bo) {
738 *		ret = do_something_with_vm_bo(..., vm_bo);
739 *		if (ret)
740 *			break;
741 *	}
742 *	// Drop ref in case we break out of the loop.
743 *	drm_gpuvm_bo_put(vm_bo);
744 *	restore_vm_bo_list(gpuvm, <list_name>, &my_local_list);
745 *
746 *
747 * Only used for internal list iterations, not meant to be exposed to the outside
748 * world.
749 */
750#define for_each_vm_bo_in_list(__gpuvm, __list_name, __local_list, __vm_bo)	\
751	for (__vm_bo = get_next_vm_bo_from_list(__gpuvm, __list_name,		\
752						__local_list, NULL);		\
753	     __vm_bo;								\
754	     __vm_bo = get_next_vm_bo_from_list(__gpuvm, __list_name,		\
755						__local_list, __vm_bo))
756
757static void
758__restore_vm_bo_list(struct drm_gpuvm *gpuvm, spinlock_t *lock,
759		     struct list_head *list, struct list_head **local_list)
760{
761	/* Merge back the two lists, moving local list elements to the
762	 * head to preserve previous ordering, in case it matters.
763	 */
764	spin_lock(lock);
765	if (*local_list) {
766		list_splice(*local_list, list);
767		*local_list = NULL;
768	}
769	spin_unlock(lock);
770}
771
772/**
773 * restore_vm_bo_list() - move vm_bo elements back to their original list
774 * @__gpuvm: the &drm_gpuvm
775 * @__list_name: the name of the list we're iterating on
776 *
777 * When we're done iterating a vm_bo list, we should call restore_vm_bo_list()
778 * to restore the original state and let new iterations take place.
779 */
780#define restore_vm_bo_list(__gpuvm, __list_name)			\
781	__restore_vm_bo_list((__gpuvm), &(__gpuvm)->__list_name.lock,	\
782			     &(__gpuvm)->__list_name.list,		\
783			     &(__gpuvm)->__list_name.local_list)
784
785static void
786cond_spin_lock(spinlock_t *lock, bool cond)
787{
788	if (cond)
789		spin_lock(lock);
790}
791
792static void
793cond_spin_unlock(spinlock_t *lock, bool cond)
794{
795	if (cond)
796		spin_unlock(lock);
797}
798
799static void
800__drm_gpuvm_bo_list_add(struct drm_gpuvm *gpuvm, spinlock_t *lock,
801			struct list_head *entry, struct list_head *list)
802{
803	cond_spin_lock(lock, !!lock);
804	if (list_empty(entry))
805		list_add_tail(entry, list);
806	cond_spin_unlock(lock, !!lock);
807}
808
809/**
810 * drm_gpuvm_bo_list_add() - insert a vm_bo into the given list
811 * @__vm_bo: the &drm_gpuvm_bo
812 * @__list_name: the name of the list to insert into
813 * @__lock: whether to lock with the internal spinlock
814 *
815 * Inserts the given @__vm_bo into the list specified by @__list_name.
816 */
817#define drm_gpuvm_bo_list_add(__vm_bo, __list_name, __lock)			\
818	__drm_gpuvm_bo_list_add((__vm_bo)->vm,					\
819				__lock ? &(__vm_bo)->vm->__list_name.lock :	\
820					 NULL,					\
821				&(__vm_bo)->list.entry.__list_name,		\
822				&(__vm_bo)->vm->__list_name.list)
823
824static void
825__drm_gpuvm_bo_list_del(struct drm_gpuvm *gpuvm, spinlock_t *lock,
826			struct list_head *entry, bool init)
827{
828	cond_spin_lock(lock, !!lock);
829	if (init) {
830		if (!list_empty(entry))
831			list_del_init(entry);
832	} else {
833		list_del(entry);
834	}
835	cond_spin_unlock(lock, !!lock);
836}
837
838/**
839 * drm_gpuvm_bo_list_del_init() - remove a vm_bo from the given list
840 * @__vm_bo: the &drm_gpuvm_bo
841 * @__list_name: the name of the list to insert into
842 * @__lock: whether to lock with the internal spinlock
843 *
844 * Removes the given @__vm_bo from the list specified by @__list_name.
845 */
846#define drm_gpuvm_bo_list_del_init(__vm_bo, __list_name, __lock)		\
847	__drm_gpuvm_bo_list_del((__vm_bo)->vm,					\
848				__lock ? &(__vm_bo)->vm->__list_name.lock :	\
849					 NULL,					\
850				&(__vm_bo)->list.entry.__list_name,		\
851				true)
852
853/**
854 * drm_gpuvm_bo_list_del() - remove a vm_bo from the given list
855 * @__vm_bo: the &drm_gpuvm_bo
856 * @__list_name: the name of the list to insert into
857 * @__lock: whether to lock with the internal spinlock
858 *
859 * Removes the given @__vm_bo from the list specified by @__list_name.
860 */
861#define drm_gpuvm_bo_list_del(__vm_bo, __list_name, __lock)			\
862	__drm_gpuvm_bo_list_del((__vm_bo)->vm,					\
863				__lock ? &(__vm_bo)->vm->__list_name.lock :	\
864					 NULL,					\
865				&(__vm_bo)->list.entry.__list_name,		\
866				false)
867
868#define to_drm_gpuva(__node)	container_of((__node), struct drm_gpuva, rb.node)
869
870#define GPUVA_START(node) ((node)->va.addr)
871#define GPUVA_LAST(node) ((node)->va.addr + (node)->va.range - 1)
872
873/* We do not actually use drm_gpuva_it_next(), tell the compiler to not complain
874 * about this.
875 */
876INTERVAL_TREE_DEFINE(struct drm_gpuva, rb.node, u64, rb.__subtree_last,
877		     GPUVA_START, GPUVA_LAST, static __maybe_unused,
878		     drm_gpuva_it)
879
880static int __drm_gpuva_insert(struct drm_gpuvm *gpuvm,
881			      struct drm_gpuva *va);
882static void __drm_gpuva_remove(struct drm_gpuva *va);
883
884static bool
885drm_gpuvm_check_overflow(u64 addr, u64 range)
886{
887	u64 end;
888
889	return check_add_overflow(addr, range, &end);
890}
891
892static bool
893drm_gpuvm_warn_check_overflow(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
894{
895	return drm_WARN(gpuvm->drm, drm_gpuvm_check_overflow(addr, range),
896			"GPUVA address limited to %zu bytes.\n", sizeof(addr));
897}
898
899static bool
900drm_gpuvm_in_mm_range(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
901{
902	u64 end = addr + range;
903	u64 mm_start = gpuvm->mm_start;
904	u64 mm_end = mm_start + gpuvm->mm_range;
905
906	return addr >= mm_start && end <= mm_end;
907}
908
909static bool
910drm_gpuvm_in_kernel_node(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
911{
912	u64 end = addr + range;
913	u64 kstart = gpuvm->kernel_alloc_node.va.addr;
914	u64 krange = gpuvm->kernel_alloc_node.va.range;
915	u64 kend = kstart + krange;
916
917	return krange && addr < kend && kstart < end;
918}
919
920/**
921 * drm_gpuvm_range_valid() - checks whether the given range is valid for the
922 * given &drm_gpuvm
923 * @gpuvm: the GPUVM to check the range for
924 * @addr: the base address
925 * @range: the range starting from the base address
926 *
927 * Checks whether the range is within the GPUVM's managed boundaries.
928 *
929 * Returns: true for a valid range, false otherwise
930 */
931bool
932drm_gpuvm_range_valid(struct drm_gpuvm *gpuvm,
933		      u64 addr, u64 range)
934{
935	return !drm_gpuvm_check_overflow(addr, range) &&
936	       drm_gpuvm_in_mm_range(gpuvm, addr, range) &&
937	       !drm_gpuvm_in_kernel_node(gpuvm, addr, range);
938}
939EXPORT_SYMBOL_GPL(drm_gpuvm_range_valid);
940
941static void
942drm_gpuvm_gem_object_free(struct drm_gem_object *obj)
943{
944	drm_gem_object_release(obj);
945	kfree(obj);
946}
947
948static const struct drm_gem_object_funcs drm_gpuvm_object_funcs = {
949	.free = drm_gpuvm_gem_object_free,
950};
951
952/**
953 * drm_gpuvm_resv_object_alloc() - allocate a dummy &drm_gem_object
954 * @drm: the drivers &drm_device
955 *
956 * Allocates a dummy &drm_gem_object which can be passed to drm_gpuvm_init() in
957 * order to serve as root GEM object providing the &drm_resv shared across
958 * &drm_gem_objects local to a single GPUVM.
959 *
960 * Returns: the &drm_gem_object on success, NULL on failure
961 */
962struct drm_gem_object *
963drm_gpuvm_resv_object_alloc(struct drm_device *drm)
964{
965	struct drm_gem_object *obj;
966
967	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
968	if (!obj)
969		return NULL;
970
971	obj->funcs = &drm_gpuvm_object_funcs;
972	drm_gem_private_object_init(drm, obj, 0);
973
974	return obj;
975}
976EXPORT_SYMBOL_GPL(drm_gpuvm_resv_object_alloc);
977
978/**
979 * drm_gpuvm_init() - initialize a &drm_gpuvm
980 * @gpuvm: pointer to the &drm_gpuvm to initialize
981 * @name: the name of the GPU VA space
982 * @flags: the &drm_gpuvm_flags for this GPUVM
983 * @drm: the &drm_device this VM resides in
984 * @r_obj: the resv &drm_gem_object providing the GPUVM's common &dma_resv
985 * @start_offset: the start offset of the GPU VA space
986 * @range: the size of the GPU VA space
987 * @reserve_offset: the start of the kernel reserved GPU VA area
988 * @reserve_range: the size of the kernel reserved GPU VA area
989 * @ops: &drm_gpuvm_ops called on &drm_gpuvm_sm_map / &drm_gpuvm_sm_unmap
990 *
991 * The &drm_gpuvm must be initialized with this function before use.
992 *
993 * Note that @gpuvm must be cleared to 0 before calling this function. The given
994 * &name is expected to be managed by the surrounding driver structures.
995 */
996void
997drm_gpuvm_init(struct drm_gpuvm *gpuvm, const char *name,
998	       enum drm_gpuvm_flags flags,
999	       struct drm_device *drm,
1000	       struct drm_gem_object *r_obj,
1001	       u64 start_offset, u64 range,
1002	       u64 reserve_offset, u64 reserve_range,
1003	       const struct drm_gpuvm_ops *ops)
1004{
1005	gpuvm->rb.tree = RB_ROOT_CACHED;
1006	INIT_LIST_HEAD(&gpuvm->rb.list);
1007
1008	INIT_LIST_HEAD(&gpuvm->extobj.list);
1009	spin_lock_init(&gpuvm->extobj.lock);
1010
1011	INIT_LIST_HEAD(&gpuvm->evict.list);
1012	spin_lock_init(&gpuvm->evict.lock);
1013
1014	kref_init(&gpuvm->kref);
1015
1016	gpuvm->name = name ? name : "unknown";
1017	gpuvm->flags = flags;
1018	gpuvm->ops = ops;
1019	gpuvm->drm = drm;
1020	gpuvm->r_obj = r_obj;
1021
1022	drm_gem_object_get(r_obj);
1023
1024	drm_gpuvm_warn_check_overflow(gpuvm, start_offset, range);
1025	gpuvm->mm_start = start_offset;
1026	gpuvm->mm_range = range;
1027
1028	memset(&gpuvm->kernel_alloc_node, 0, sizeof(struct drm_gpuva));
1029	if (reserve_range) {
1030		gpuvm->kernel_alloc_node.va.addr = reserve_offset;
1031		gpuvm->kernel_alloc_node.va.range = reserve_range;
1032
1033		if (likely(!drm_gpuvm_warn_check_overflow(gpuvm, reserve_offset,
1034							  reserve_range)))
1035			__drm_gpuva_insert(gpuvm, &gpuvm->kernel_alloc_node);
1036	}
1037}
1038EXPORT_SYMBOL_GPL(drm_gpuvm_init);
1039
1040static void
1041drm_gpuvm_fini(struct drm_gpuvm *gpuvm)
1042{
1043	gpuvm->name = NULL;
1044
1045	if (gpuvm->kernel_alloc_node.va.range)
1046		__drm_gpuva_remove(&gpuvm->kernel_alloc_node);
1047
1048	drm_WARN(gpuvm->drm, !RB_EMPTY_ROOT(&gpuvm->rb.tree.rb_root),
1049		 "GPUVA tree is not empty, potentially leaking memory.\n");
1050
1051	drm_WARN(gpuvm->drm, !list_empty(&gpuvm->extobj.list),
1052		 "Extobj list should be empty.\n");
1053	drm_WARN(gpuvm->drm, !list_empty(&gpuvm->evict.list),
1054		 "Evict list should be empty.\n");
1055
1056	drm_gem_object_put(gpuvm->r_obj);
1057}
1058
1059static void
1060drm_gpuvm_free(struct kref *kref)
1061{
1062	struct drm_gpuvm *gpuvm = container_of(kref, struct drm_gpuvm, kref);
1063
1064	drm_gpuvm_fini(gpuvm);
1065
1066	if (drm_WARN_ON(gpuvm->drm, !gpuvm->ops->vm_free))
1067		return;
1068
1069	gpuvm->ops->vm_free(gpuvm);
1070}
1071
1072/**
1073 * drm_gpuvm_put() - drop a struct drm_gpuvm reference
1074 * @gpuvm: the &drm_gpuvm to release the reference of
1075 *
1076 * This releases a reference to @gpuvm.
1077 *
1078 * This function may be called from atomic context.
1079 */
1080void
1081drm_gpuvm_put(struct drm_gpuvm *gpuvm)
1082{
1083	if (gpuvm)
1084		kref_put(&gpuvm->kref, drm_gpuvm_free);
1085}
1086EXPORT_SYMBOL_GPL(drm_gpuvm_put);
1087
1088static int
1089exec_prepare_obj(struct drm_exec *exec, struct drm_gem_object *obj,
1090		 unsigned int num_fences)
1091{
1092	return num_fences ? drm_exec_prepare_obj(exec, obj, num_fences) :
1093			    drm_exec_lock_obj(exec, obj);
1094}
1095
1096/**
1097 * drm_gpuvm_prepare_vm() - prepare the GPUVMs common dma-resv
1098 * @gpuvm: the &drm_gpuvm
1099 * @exec: the &drm_exec context
1100 * @num_fences: the amount of &dma_fences to reserve
1101 *
1102 * Calls drm_exec_prepare_obj() for the GPUVMs dummy &drm_gem_object; if
1103 * @num_fences is zero drm_exec_lock_obj() is called instead.
1104 *
1105 * Using this function directly, it is the drivers responsibility to call
1106 * drm_exec_init() and drm_exec_fini() accordingly.
1107 *
1108 * Returns: 0 on success, negative error code on failure.
1109 */
1110int
1111drm_gpuvm_prepare_vm(struct drm_gpuvm *gpuvm,
1112		     struct drm_exec *exec,
1113		     unsigned int num_fences)
1114{
1115	return exec_prepare_obj(exec, gpuvm->r_obj, num_fences);
1116}
1117EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_vm);
1118
1119static int
1120__drm_gpuvm_prepare_objects(struct drm_gpuvm *gpuvm,
1121			    struct drm_exec *exec,
1122			    unsigned int num_fences)
1123{
1124	struct drm_gpuvm_bo *vm_bo;
1125	LIST_HEAD(extobjs);
1126	int ret = 0;
1127
1128	for_each_vm_bo_in_list(gpuvm, extobj, &extobjs, vm_bo) {
1129		ret = exec_prepare_obj(exec, vm_bo->obj, num_fences);
1130		if (ret)
1131			break;
1132	}
1133	/* Drop ref in case we break out of the loop. */
1134	drm_gpuvm_bo_put(vm_bo);
1135	restore_vm_bo_list(gpuvm, extobj);
1136
1137	return ret;
1138}
1139
1140static int
1141drm_gpuvm_prepare_objects_locked(struct drm_gpuvm *gpuvm,
1142				 struct drm_exec *exec,
1143				 unsigned int num_fences)
1144{
1145	struct drm_gpuvm_bo *vm_bo;
1146	int ret = 0;
1147
1148	drm_gpuvm_resv_assert_held(gpuvm);
1149	list_for_each_entry(vm_bo, &gpuvm->extobj.list, list.entry.extobj) {
1150		ret = exec_prepare_obj(exec, vm_bo->obj, num_fences);
1151		if (ret)
1152			break;
1153
1154		if (vm_bo->evicted)
1155			drm_gpuvm_bo_list_add(vm_bo, evict, false);
1156	}
1157
1158	return ret;
1159}
1160
1161/**
1162 * drm_gpuvm_prepare_objects() - prepare all assoiciated BOs
1163 * @gpuvm: the &drm_gpuvm
1164 * @exec: the &drm_exec locking context
1165 * @num_fences: the amount of &dma_fences to reserve
1166 *
1167 * Calls drm_exec_prepare_obj() for all &drm_gem_objects the given
1168 * &drm_gpuvm contains mappings of; if @num_fences is zero drm_exec_lock_obj()
1169 * is called instead.
1170 *
1171 * Using this function directly, it is the drivers responsibility to call
1172 * drm_exec_init() and drm_exec_fini() accordingly.
1173 *
1174 * Note: This function is safe against concurrent insertion and removal of
1175 * external objects, however it is not safe against concurrent usage itself.
1176 *
1177 * Drivers need to make sure to protect this case with either an outer VM lock
1178 * or by calling drm_gpuvm_prepare_vm() before this function within the
1179 * drm_exec_until_all_locked() loop, such that the GPUVM's dma-resv lock ensures
1180 * mutual exclusion.
1181 *
1182 * Returns: 0 on success, negative error code on failure.
1183 */
1184int
1185drm_gpuvm_prepare_objects(struct drm_gpuvm *gpuvm,
1186			  struct drm_exec *exec,
1187			  unsigned int num_fences)
1188{
1189	if (drm_gpuvm_resv_protected(gpuvm))
1190		return drm_gpuvm_prepare_objects_locked(gpuvm, exec,
1191							num_fences);
1192	else
1193		return __drm_gpuvm_prepare_objects(gpuvm, exec, num_fences);
1194}
1195EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_objects);
1196
1197/**
1198 * drm_gpuvm_prepare_range() - prepare all BOs mapped within a given range
1199 * @gpuvm: the &drm_gpuvm
1200 * @exec: the &drm_exec locking context
1201 * @addr: the start address within the VA space
1202 * @range: the range to iterate within the VA space
1203 * @num_fences: the amount of &dma_fences to reserve
1204 *
1205 * Calls drm_exec_prepare_obj() for all &drm_gem_objects mapped between @addr
1206 * and @addr + @range; if @num_fences is zero drm_exec_lock_obj() is called
1207 * instead.
1208 *
1209 * Returns: 0 on success, negative error code on failure.
1210 */
1211int
1212drm_gpuvm_prepare_range(struct drm_gpuvm *gpuvm, struct drm_exec *exec,
1213			u64 addr, u64 range, unsigned int num_fences)
1214{
1215	struct drm_gpuva *va;
1216	u64 end = addr + range;
1217	int ret;
1218
1219	drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) {
1220		struct drm_gem_object *obj = va->gem.obj;
1221
1222		ret = exec_prepare_obj(exec, obj, num_fences);
1223		if (ret)
1224			return ret;
1225	}
1226
1227	return 0;
1228}
1229EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_range);
1230
1231/**
1232 * drm_gpuvm_exec_lock() - lock all dma-resv of all assoiciated BOs
1233 * @vm_exec: the &drm_gpuvm_exec wrapper
1234 *
1235 * Acquires all dma-resv locks of all &drm_gem_objects the given
1236 * &drm_gpuvm contains mappings of.
1237 *
1238 * Addionally, when calling this function with struct drm_gpuvm_exec::extra
1239 * being set the driver receives the given @fn callback to lock additional
1240 * dma-resv in the context of the &drm_gpuvm_exec instance. Typically, drivers
1241 * would call drm_exec_prepare_obj() from within this callback.
1242 *
1243 * Returns: 0 on success, negative error code on failure.
1244 */
1245int
1246drm_gpuvm_exec_lock(struct drm_gpuvm_exec *vm_exec)
1247{
1248	struct drm_gpuvm *gpuvm = vm_exec->vm;
1249	struct drm_exec *exec = &vm_exec->exec;
1250	unsigned int num_fences = vm_exec->num_fences;
1251	int ret;
1252
1253	drm_exec_init(exec, vm_exec->flags, 0);
1254
1255	drm_exec_until_all_locked(exec) {
1256		ret = drm_gpuvm_prepare_vm(gpuvm, exec, num_fences);
1257		drm_exec_retry_on_contention(exec);
1258		if (ret)
1259			goto err;
1260
1261		ret = drm_gpuvm_prepare_objects(gpuvm, exec, num_fences);
1262		drm_exec_retry_on_contention(exec);
1263		if (ret)
1264			goto err;
1265
1266		if (vm_exec->extra.fn) {
1267			ret = vm_exec->extra.fn(vm_exec);
1268			drm_exec_retry_on_contention(exec);
1269			if (ret)
1270				goto err;
1271		}
1272	}
1273
1274	return 0;
1275
1276err:
1277	drm_exec_fini(exec);
1278	return ret;
1279}
1280EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock);
1281
1282static int
1283fn_lock_array(struct drm_gpuvm_exec *vm_exec)
1284{
1285	struct {
1286		struct drm_gem_object **objs;
1287		unsigned int num_objs;
1288	} *args = vm_exec->extra.priv;
1289
1290	return drm_exec_prepare_array(&vm_exec->exec, args->objs,
1291				      args->num_objs, vm_exec->num_fences);
1292}
1293
1294/**
1295 * drm_gpuvm_exec_lock_array() - lock all dma-resv of all assoiciated BOs
1296 * @vm_exec: the &drm_gpuvm_exec wrapper
1297 * @objs: additional &drm_gem_objects to lock
1298 * @num_objs: the number of additional &drm_gem_objects to lock
1299 *
1300 * Acquires all dma-resv locks of all &drm_gem_objects the given &drm_gpuvm
1301 * contains mappings of, plus the ones given through @objs.
1302 *
1303 * Returns: 0 on success, negative error code on failure.
1304 */
1305int
1306drm_gpuvm_exec_lock_array(struct drm_gpuvm_exec *vm_exec,
1307			  struct drm_gem_object **objs,
1308			  unsigned int num_objs)
1309{
1310	struct {
1311		struct drm_gem_object **objs;
1312		unsigned int num_objs;
1313	} args;
1314
1315	args.objs = objs;
1316	args.num_objs = num_objs;
1317
1318	vm_exec->extra.fn = fn_lock_array;
1319	vm_exec->extra.priv = &args;
1320
1321	return drm_gpuvm_exec_lock(vm_exec);
1322}
1323EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock_array);
1324
1325/**
1326 * drm_gpuvm_exec_lock_range() - prepare all BOs mapped within a given range
1327 * @vm_exec: the &drm_gpuvm_exec wrapper
1328 * @addr: the start address within the VA space
1329 * @range: the range to iterate within the VA space
1330 *
1331 * Acquires all dma-resv locks of all &drm_gem_objects mapped between @addr and
1332 * @addr + @range.
1333 *
1334 * Returns: 0 on success, negative error code on failure.
1335 */
1336int
1337drm_gpuvm_exec_lock_range(struct drm_gpuvm_exec *vm_exec,
1338			  u64 addr, u64 range)
1339{
1340	struct drm_gpuvm *gpuvm = vm_exec->vm;
1341	struct drm_exec *exec = &vm_exec->exec;
1342	int ret;
1343
1344	drm_exec_init(exec, vm_exec->flags, 0);
1345
1346	drm_exec_until_all_locked(exec) {
1347		ret = drm_gpuvm_prepare_range(gpuvm, exec, addr, range,
1348					      vm_exec->num_fences);
1349		drm_exec_retry_on_contention(exec);
1350		if (ret)
1351			goto err;
1352	}
1353
1354	return ret;
1355
1356err:
1357	drm_exec_fini(exec);
1358	return ret;
1359}
1360EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock_range);
1361
1362static int
1363__drm_gpuvm_validate(struct drm_gpuvm *gpuvm, struct drm_exec *exec)
1364{
1365	const struct drm_gpuvm_ops *ops = gpuvm->ops;
1366	struct drm_gpuvm_bo *vm_bo;
1367	LIST_HEAD(evict);
1368	int ret = 0;
1369
1370	for_each_vm_bo_in_list(gpuvm, evict, &evict, vm_bo) {
1371		ret = ops->vm_bo_validate(vm_bo, exec);
1372		if (ret)
1373			break;
1374	}
1375	/* Drop ref in case we break out of the loop. */
1376	drm_gpuvm_bo_put(vm_bo);
1377	restore_vm_bo_list(gpuvm, evict);
1378
1379	return ret;
1380}
1381
1382static int
1383drm_gpuvm_validate_locked(struct drm_gpuvm *gpuvm, struct drm_exec *exec)
1384{
1385	const struct drm_gpuvm_ops *ops = gpuvm->ops;
1386	struct drm_gpuvm_bo *vm_bo, *next;
1387	int ret = 0;
1388
1389	drm_gpuvm_resv_assert_held(gpuvm);
1390
1391	list_for_each_entry_safe(vm_bo, next, &gpuvm->evict.list,
1392				 list.entry.evict) {
1393		ret = ops->vm_bo_validate(vm_bo, exec);
1394		if (ret)
1395			break;
1396
1397		dma_resv_assert_held(vm_bo->obj->resv);
1398		if (!vm_bo->evicted)
1399			drm_gpuvm_bo_list_del_init(vm_bo, evict, false);
1400	}
1401
1402	return ret;
1403}
1404
1405/**
1406 * drm_gpuvm_validate() - validate all BOs marked as evicted
1407 * @gpuvm: the &drm_gpuvm to validate evicted BOs
1408 * @exec: the &drm_exec instance used for locking the GPUVM
1409 *
1410 * Calls the &drm_gpuvm_ops::vm_bo_validate callback for all evicted buffer
1411 * objects being mapped in the given &drm_gpuvm.
1412 *
1413 * Returns: 0 on success, negative error code on failure.
1414 */
1415int
1416drm_gpuvm_validate(struct drm_gpuvm *gpuvm, struct drm_exec *exec)
1417{
1418	const struct drm_gpuvm_ops *ops = gpuvm->ops;
1419
1420	if (unlikely(!ops || !ops->vm_bo_validate))
1421		return -EOPNOTSUPP;
1422
1423	if (drm_gpuvm_resv_protected(gpuvm))
1424		return drm_gpuvm_validate_locked(gpuvm, exec);
1425	else
1426		return __drm_gpuvm_validate(gpuvm, exec);
1427}
1428EXPORT_SYMBOL_GPL(drm_gpuvm_validate);
1429
1430/**
1431 * drm_gpuvm_resv_add_fence - add fence to private and all extobj
1432 * dma-resv
1433 * @gpuvm: the &drm_gpuvm to add a fence to
1434 * @exec: the &drm_exec locking context
1435 * @fence: fence to add
1436 * @private_usage: private dma-resv usage
1437 * @extobj_usage: extobj dma-resv usage
1438 */
1439void
1440drm_gpuvm_resv_add_fence(struct drm_gpuvm *gpuvm,
1441			 struct drm_exec *exec,
1442			 struct dma_fence *fence,
1443			 enum dma_resv_usage private_usage,
1444			 enum dma_resv_usage extobj_usage)
1445{
1446	struct drm_gem_object *obj;
1447	unsigned long index;
1448
1449	drm_exec_for_each_locked_object(exec, index, obj) {
1450		dma_resv_assert_held(obj->resv);
1451		dma_resv_add_fence(obj->resv, fence,
1452				   drm_gpuvm_is_extobj(gpuvm, obj) ?
1453				   extobj_usage : private_usage);
1454	}
1455}
1456EXPORT_SYMBOL_GPL(drm_gpuvm_resv_add_fence);
1457
1458/**
1459 * drm_gpuvm_bo_create() - create a new instance of struct drm_gpuvm_bo
1460 * @gpuvm: The &drm_gpuvm the @obj is mapped in.
1461 * @obj: The &drm_gem_object being mapped in the @gpuvm.
1462 *
1463 * If provided by the driver, this function uses the &drm_gpuvm_ops
1464 * vm_bo_alloc() callback to allocate.
1465 *
1466 * Returns: a pointer to the &drm_gpuvm_bo on success, NULL on failure
1467 */
1468struct drm_gpuvm_bo *
1469drm_gpuvm_bo_create(struct drm_gpuvm *gpuvm,
1470		    struct drm_gem_object *obj)
1471{
1472	const struct drm_gpuvm_ops *ops = gpuvm->ops;
1473	struct drm_gpuvm_bo *vm_bo;
1474
1475	if (ops && ops->vm_bo_alloc)
1476		vm_bo = ops->vm_bo_alloc();
1477	else
1478		vm_bo = kzalloc(sizeof(*vm_bo), GFP_KERNEL);
1479
1480	if (unlikely(!vm_bo))
1481		return NULL;
1482
1483	vm_bo->vm = drm_gpuvm_get(gpuvm);
1484	vm_bo->obj = obj;
1485	drm_gem_object_get(obj);
1486
1487	kref_init(&vm_bo->kref);
1488	INIT_LIST_HEAD(&vm_bo->list.gpuva);
1489	INIT_LIST_HEAD(&vm_bo->list.entry.gem);
1490
1491	INIT_LIST_HEAD(&vm_bo->list.entry.extobj);
1492	INIT_LIST_HEAD(&vm_bo->list.entry.evict);
1493
1494	return vm_bo;
1495}
1496EXPORT_SYMBOL_GPL(drm_gpuvm_bo_create);
1497
1498static void
1499drm_gpuvm_bo_destroy(struct kref *kref)
1500{
1501	struct drm_gpuvm_bo *vm_bo = container_of(kref, struct drm_gpuvm_bo,
1502						  kref);
1503	struct drm_gpuvm *gpuvm = vm_bo->vm;
1504	const struct drm_gpuvm_ops *ops = gpuvm->ops;
1505	struct drm_gem_object *obj = vm_bo->obj;
1506	bool lock = !drm_gpuvm_resv_protected(gpuvm);
1507
1508	if (!lock)
1509		drm_gpuvm_resv_assert_held(gpuvm);
1510
1511	drm_gpuvm_bo_list_del(vm_bo, extobj, lock);
1512	drm_gpuvm_bo_list_del(vm_bo, evict, lock);
1513
1514	drm_gem_gpuva_assert_lock_held(obj);
1515	list_del(&vm_bo->list.entry.gem);
1516
1517	if (ops && ops->vm_bo_free)
1518		ops->vm_bo_free(vm_bo);
1519	else
1520		kfree(vm_bo);
1521
1522	drm_gpuvm_put(gpuvm);
1523	drm_gem_object_put(obj);
1524}
1525
1526/**
1527 * drm_gpuvm_bo_put() - drop a struct drm_gpuvm_bo reference
1528 * @vm_bo: the &drm_gpuvm_bo to release the reference of
1529 *
1530 * This releases a reference to @vm_bo.
1531 *
1532 * If the reference count drops to zero, the &gpuvm_bo is destroyed, which
1533 * includes removing it from the GEMs gpuva list. Hence, if a call to this
1534 * function can potentially let the reference count drop to zero the caller must
1535 * hold the dma-resv or driver specific GEM gpuva lock.
1536 *
1537 * This function may only be called from non-atomic context.
1538 *
1539 * Returns: true if vm_bo was destroyed, false otherwise.
1540 */
1541bool
1542drm_gpuvm_bo_put(struct drm_gpuvm_bo *vm_bo)
1543{
1544	might_sleep();
1545
1546	if (vm_bo)
1547		return !!kref_put(&vm_bo->kref, drm_gpuvm_bo_destroy);
1548
1549	return false;
1550}
1551EXPORT_SYMBOL_GPL(drm_gpuvm_bo_put);
1552
1553static struct drm_gpuvm_bo *
1554__drm_gpuvm_bo_find(struct drm_gpuvm *gpuvm,
1555		    struct drm_gem_object *obj)
1556{
1557	struct drm_gpuvm_bo *vm_bo;
1558
1559	drm_gem_gpuva_assert_lock_held(obj);
1560	drm_gem_for_each_gpuvm_bo(vm_bo, obj)
1561		if (vm_bo->vm == gpuvm)
1562			return vm_bo;
1563
1564	return NULL;
1565}
1566
1567/**
1568 * drm_gpuvm_bo_find() - find the &drm_gpuvm_bo for the given
1569 * &drm_gpuvm and &drm_gem_object
1570 * @gpuvm: The &drm_gpuvm the @obj is mapped in.
1571 * @obj: The &drm_gem_object being mapped in the @gpuvm.
1572 *
1573 * Find the &drm_gpuvm_bo representing the combination of the given
1574 * &drm_gpuvm and &drm_gem_object. If found, increases the reference
1575 * count of the &drm_gpuvm_bo accordingly.
1576 *
1577 * Returns: a pointer to the &drm_gpuvm_bo on success, NULL on failure
1578 */
1579struct drm_gpuvm_bo *
1580drm_gpuvm_bo_find(struct drm_gpuvm *gpuvm,
1581		  struct drm_gem_object *obj)
1582{
1583	struct drm_gpuvm_bo *vm_bo = __drm_gpuvm_bo_find(gpuvm, obj);
1584
1585	return vm_bo ? drm_gpuvm_bo_get(vm_bo) : NULL;
1586}
1587EXPORT_SYMBOL_GPL(drm_gpuvm_bo_find);
1588
1589/**
1590 * drm_gpuvm_bo_obtain() - obtains and instance of the &drm_gpuvm_bo for the
1591 * given &drm_gpuvm and &drm_gem_object
1592 * @gpuvm: The &drm_gpuvm the @obj is mapped in.
1593 * @obj: The &drm_gem_object being mapped in the @gpuvm.
1594 *
1595 * Find the &drm_gpuvm_bo representing the combination of the given
1596 * &drm_gpuvm and &drm_gem_object. If found, increases the reference
1597 * count of the &drm_gpuvm_bo accordingly. If not found, allocates a new
1598 * &drm_gpuvm_bo.
1599 *
1600 * A new &drm_gpuvm_bo is added to the GEMs gpuva list.
1601 *
1602 * Returns: a pointer to the &drm_gpuvm_bo on success, an ERR_PTR on failure
1603 */
1604struct drm_gpuvm_bo *
1605drm_gpuvm_bo_obtain(struct drm_gpuvm *gpuvm,
1606		    struct drm_gem_object *obj)
1607{
1608	struct drm_gpuvm_bo *vm_bo;
1609
1610	vm_bo = drm_gpuvm_bo_find(gpuvm, obj);
1611	if (vm_bo)
1612		return vm_bo;
1613
1614	vm_bo = drm_gpuvm_bo_create(gpuvm, obj);
1615	if (!vm_bo)
1616		return ERR_PTR(-ENOMEM);
1617
1618	drm_gem_gpuva_assert_lock_held(obj);
1619	list_add_tail(&vm_bo->list.entry.gem, &obj->gpuva.list);
1620
1621	return vm_bo;
1622}
1623EXPORT_SYMBOL_GPL(drm_gpuvm_bo_obtain);
1624
1625/**
1626 * drm_gpuvm_bo_obtain_prealloc() - obtains and instance of the &drm_gpuvm_bo
1627 * for the given &drm_gpuvm and &drm_gem_object
1628 * @__vm_bo: A pre-allocated struct drm_gpuvm_bo.
1629 *
1630 * Find the &drm_gpuvm_bo representing the combination of the given
1631 * &drm_gpuvm and &drm_gem_object. If found, increases the reference
1632 * count of the found &drm_gpuvm_bo accordingly, while the @__vm_bo reference
1633 * count is decreased. If not found @__vm_bo is returned without further
1634 * increase of the reference count.
1635 *
1636 * A new &drm_gpuvm_bo is added to the GEMs gpuva list.
1637 *
1638 * Returns: a pointer to the found &drm_gpuvm_bo or @__vm_bo if no existing
1639 * &drm_gpuvm_bo was found
1640 */
1641struct drm_gpuvm_bo *
1642drm_gpuvm_bo_obtain_prealloc(struct drm_gpuvm_bo *__vm_bo)
1643{
1644	struct drm_gpuvm *gpuvm = __vm_bo->vm;
1645	struct drm_gem_object *obj = __vm_bo->obj;
1646	struct drm_gpuvm_bo *vm_bo;
1647
1648	vm_bo = drm_gpuvm_bo_find(gpuvm, obj);
1649	if (vm_bo) {
1650		drm_gpuvm_bo_put(__vm_bo);
1651		return vm_bo;
1652	}
1653
1654	drm_gem_gpuva_assert_lock_held(obj);
1655	list_add_tail(&__vm_bo->list.entry.gem, &obj->gpuva.list);
1656
1657	return __vm_bo;
1658}
1659EXPORT_SYMBOL_GPL(drm_gpuvm_bo_obtain_prealloc);
1660
1661/**
1662 * drm_gpuvm_bo_extobj_add() - adds the &drm_gpuvm_bo to its &drm_gpuvm's
1663 * extobj list
1664 * @vm_bo: The &drm_gpuvm_bo to add to its &drm_gpuvm's the extobj list.
1665 *
1666 * Adds the given @vm_bo to its &drm_gpuvm's extobj list if not on the list
1667 * already and if the corresponding &drm_gem_object is an external object,
1668 * actually.
1669 */
1670void
1671drm_gpuvm_bo_extobj_add(struct drm_gpuvm_bo *vm_bo)
1672{
1673	struct drm_gpuvm *gpuvm = vm_bo->vm;
1674	bool lock = !drm_gpuvm_resv_protected(gpuvm);
1675
1676	if (!lock)
1677		drm_gpuvm_resv_assert_held(gpuvm);
1678
1679	if (drm_gpuvm_is_extobj(gpuvm, vm_bo->obj))
1680		drm_gpuvm_bo_list_add(vm_bo, extobj, lock);
1681}
1682EXPORT_SYMBOL_GPL(drm_gpuvm_bo_extobj_add);
1683
1684/**
1685 * drm_gpuvm_bo_evict() - add / remove a &drm_gpuvm_bo to / from the &drm_gpuvms
1686 * evicted list
1687 * @vm_bo: the &drm_gpuvm_bo to add or remove
1688 * @evict: indicates whether the object is evicted
1689 *
1690 * Adds a &drm_gpuvm_bo to or removes it from the &drm_gpuvms evicted list.
1691 */
1692void
1693drm_gpuvm_bo_evict(struct drm_gpuvm_bo *vm_bo, bool evict)
1694{
1695	struct drm_gpuvm *gpuvm = vm_bo->vm;
1696	struct drm_gem_object *obj = vm_bo->obj;
1697	bool lock = !drm_gpuvm_resv_protected(gpuvm);
1698
1699	dma_resv_assert_held(obj->resv);
1700	vm_bo->evicted = evict;
1701
1702	/* Can't add external objects to the evicted list directly if not using
1703	 * internal spinlocks, since in this case the evicted list is protected
1704	 * with the VM's common dma-resv lock.
1705	 */
1706	if (drm_gpuvm_is_extobj(gpuvm, obj) && !lock)
1707		return;
1708
1709	if (evict)
1710		drm_gpuvm_bo_list_add(vm_bo, evict, lock);
1711	else
1712		drm_gpuvm_bo_list_del_init(vm_bo, evict, lock);
1713}
1714EXPORT_SYMBOL_GPL(drm_gpuvm_bo_evict);
1715
1716static int
1717__drm_gpuva_insert(struct drm_gpuvm *gpuvm,
1718		   struct drm_gpuva *va)
1719{
1720	struct rb_node *node;
1721	struct list_head *head;
1722
1723	if (drm_gpuva_it_iter_first(&gpuvm->rb.tree,
1724				    GPUVA_START(va),
1725				    GPUVA_LAST(va)))
1726		return -EEXIST;
1727
1728	va->vm = gpuvm;
1729
1730	drm_gpuva_it_insert(va, &gpuvm->rb.tree);
1731
1732	node = rb_prev(&va->rb.node);
1733	if (node)
1734		head = &(to_drm_gpuva(node))->rb.entry;
1735	else
1736		head = &gpuvm->rb.list;
1737
1738	list_add(&va->rb.entry, head);
1739
1740	return 0;
1741}
1742
1743/**
1744 * drm_gpuva_insert() - insert a &drm_gpuva
1745 * @gpuvm: the &drm_gpuvm to insert the &drm_gpuva in
1746 * @va: the &drm_gpuva to insert
1747 *
1748 * Insert a &drm_gpuva with a given address and range into a
1749 * &drm_gpuvm.
1750 *
1751 * It is safe to use this function using the safe versions of iterating the GPU
1752 * VA space, such as drm_gpuvm_for_each_va_safe() and
1753 * drm_gpuvm_for_each_va_range_safe().
1754 *
1755 * Returns: 0 on success, negative error code on failure.
1756 */
1757int
1758drm_gpuva_insert(struct drm_gpuvm *gpuvm,
1759		 struct drm_gpuva *va)
1760{
1761	u64 addr = va->va.addr;
1762	u64 range = va->va.range;
1763	int ret;
1764
1765	if (unlikely(!drm_gpuvm_range_valid(gpuvm, addr, range)))
1766		return -EINVAL;
1767
1768	ret = __drm_gpuva_insert(gpuvm, va);
1769	if (likely(!ret))
1770		/* Take a reference of the GPUVM for the successfully inserted
1771		 * drm_gpuva. We can't take the reference in
1772		 * __drm_gpuva_insert() itself, since we don't want to increse
1773		 * the reference count for the GPUVM's kernel_alloc_node.
1774		 */
1775		drm_gpuvm_get(gpuvm);
1776
1777	return ret;
1778}
1779EXPORT_SYMBOL_GPL(drm_gpuva_insert);
1780
1781static void
1782__drm_gpuva_remove(struct drm_gpuva *va)
1783{
1784	drm_gpuva_it_remove(va, &va->vm->rb.tree);
1785	list_del_init(&va->rb.entry);
1786}
1787
1788/**
1789 * drm_gpuva_remove() - remove a &drm_gpuva
1790 * @va: the &drm_gpuva to remove
1791 *
1792 * This removes the given &va from the underlaying tree.
1793 *
1794 * It is safe to use this function using the safe versions of iterating the GPU
1795 * VA space, such as drm_gpuvm_for_each_va_safe() and
1796 * drm_gpuvm_for_each_va_range_safe().
1797 */
1798void
1799drm_gpuva_remove(struct drm_gpuva *va)
1800{
1801	struct drm_gpuvm *gpuvm = va->vm;
1802
1803	if (unlikely(va == &gpuvm->kernel_alloc_node)) {
1804		drm_WARN(gpuvm->drm, 1,
1805			 "Can't destroy kernel reserved node.\n");
1806		return;
1807	}
1808
1809	__drm_gpuva_remove(va);
1810	drm_gpuvm_put(va->vm);
1811}
1812EXPORT_SYMBOL_GPL(drm_gpuva_remove);
1813
1814/**
1815 * drm_gpuva_link() - link a &drm_gpuva
1816 * @va: the &drm_gpuva to link
1817 * @vm_bo: the &drm_gpuvm_bo to add the &drm_gpuva to
1818 *
1819 * This adds the given &va to the GPU VA list of the &drm_gpuvm_bo and the
1820 * &drm_gpuvm_bo to the &drm_gem_object it is associated with.
1821 *
1822 * For every &drm_gpuva entry added to the &drm_gpuvm_bo an additional
1823 * reference of the latter is taken.
1824 *
1825 * This function expects the caller to protect the GEM's GPUVA list against
1826 * concurrent access using either the GEMs dma_resv lock or a driver specific
1827 * lock set through drm_gem_gpuva_set_lock().
1828 */
1829void
1830drm_gpuva_link(struct drm_gpuva *va, struct drm_gpuvm_bo *vm_bo)
1831{
1832	struct drm_gem_object *obj = va->gem.obj;
1833	struct drm_gpuvm *gpuvm = va->vm;
1834
1835	if (unlikely(!obj))
1836		return;
1837
1838	drm_WARN_ON(gpuvm->drm, obj != vm_bo->obj);
1839
1840	va->vm_bo = drm_gpuvm_bo_get(vm_bo);
1841
1842	drm_gem_gpuva_assert_lock_held(obj);
1843	list_add_tail(&va->gem.entry, &vm_bo->list.gpuva);
1844}
1845EXPORT_SYMBOL_GPL(drm_gpuva_link);
1846
1847/**
1848 * drm_gpuva_unlink() - unlink a &drm_gpuva
1849 * @va: the &drm_gpuva to unlink
1850 *
1851 * This removes the given &va from the GPU VA list of the &drm_gem_object it is
1852 * associated with.
1853 *
1854 * This removes the given &va from the GPU VA list of the &drm_gpuvm_bo and
1855 * the &drm_gpuvm_bo from the &drm_gem_object it is associated with in case
1856 * this call unlinks the last &drm_gpuva from the &drm_gpuvm_bo.
1857 *
1858 * For every &drm_gpuva entry removed from the &drm_gpuvm_bo a reference of
1859 * the latter is dropped.
1860 *
1861 * This function expects the caller to protect the GEM's GPUVA list against
1862 * concurrent access using either the GEMs dma_resv lock or a driver specific
1863 * lock set through drm_gem_gpuva_set_lock().
1864 */
1865void
1866drm_gpuva_unlink(struct drm_gpuva *va)
1867{
1868	struct drm_gem_object *obj = va->gem.obj;
1869	struct drm_gpuvm_bo *vm_bo = va->vm_bo;
1870
1871	if (unlikely(!obj))
1872		return;
1873
1874	drm_gem_gpuva_assert_lock_held(obj);
1875	list_del_init(&va->gem.entry);
1876
1877	va->vm_bo = NULL;
1878	drm_gpuvm_bo_put(vm_bo);
1879}
1880EXPORT_SYMBOL_GPL(drm_gpuva_unlink);
1881
1882/**
1883 * drm_gpuva_find_first() - find the first &drm_gpuva in the given range
1884 * @gpuvm: the &drm_gpuvm to search in
1885 * @addr: the &drm_gpuvas address
1886 * @range: the &drm_gpuvas range
1887 *
1888 * Returns: the first &drm_gpuva within the given range
1889 */
1890struct drm_gpuva *
1891drm_gpuva_find_first(struct drm_gpuvm *gpuvm,
1892		     u64 addr, u64 range)
1893{
1894	u64 last = addr + range - 1;
1895
1896	return drm_gpuva_it_iter_first(&gpuvm->rb.tree, addr, last);
1897}
1898EXPORT_SYMBOL_GPL(drm_gpuva_find_first);
1899
1900/**
1901 * drm_gpuva_find() - find a &drm_gpuva
1902 * @gpuvm: the &drm_gpuvm to search in
1903 * @addr: the &drm_gpuvas address
1904 * @range: the &drm_gpuvas range
1905 *
1906 * Returns: the &drm_gpuva at a given &addr and with a given &range
1907 */
1908struct drm_gpuva *
1909drm_gpuva_find(struct drm_gpuvm *gpuvm,
1910	       u64 addr, u64 range)
1911{
1912	struct drm_gpuva *va;
1913
1914	va = drm_gpuva_find_first(gpuvm, addr, range);
1915	if (!va)
1916		goto out;
1917
1918	if (va->va.addr != addr ||
1919	    va->va.range != range)
1920		goto out;
1921
1922	return va;
1923
1924out:
1925	return NULL;
1926}
1927EXPORT_SYMBOL_GPL(drm_gpuva_find);
1928
1929/**
1930 * drm_gpuva_find_prev() - find the &drm_gpuva before the given address
1931 * @gpuvm: the &drm_gpuvm to search in
1932 * @start: the given GPU VA's start address
1933 *
1934 * Find the adjacent &drm_gpuva before the GPU VA with given &start address.
1935 *
1936 * Note that if there is any free space between the GPU VA mappings no mapping
1937 * is returned.
1938 *
1939 * Returns: a pointer to the found &drm_gpuva or NULL if none was found
1940 */
1941struct drm_gpuva *
1942drm_gpuva_find_prev(struct drm_gpuvm *gpuvm, u64 start)
1943{
1944	if (!drm_gpuvm_range_valid(gpuvm, start - 1, 1))
1945		return NULL;
1946
1947	return drm_gpuva_it_iter_first(&gpuvm->rb.tree, start - 1, start);
1948}
1949EXPORT_SYMBOL_GPL(drm_gpuva_find_prev);
1950
1951/**
1952 * drm_gpuva_find_next() - find the &drm_gpuva after the given address
1953 * @gpuvm: the &drm_gpuvm to search in
1954 * @end: the given GPU VA's end address
1955 *
1956 * Find the adjacent &drm_gpuva after the GPU VA with given &end address.
1957 *
1958 * Note that if there is any free space between the GPU VA mappings no mapping
1959 * is returned.
1960 *
1961 * Returns: a pointer to the found &drm_gpuva or NULL if none was found
1962 */
1963struct drm_gpuva *
1964drm_gpuva_find_next(struct drm_gpuvm *gpuvm, u64 end)
1965{
1966	if (!drm_gpuvm_range_valid(gpuvm, end, 1))
1967		return NULL;
1968
1969	return drm_gpuva_it_iter_first(&gpuvm->rb.tree, end, end + 1);
1970}
1971EXPORT_SYMBOL_GPL(drm_gpuva_find_next);
1972
1973/**
1974 * drm_gpuvm_interval_empty() - indicate whether a given interval of the VA space
1975 * is empty
1976 * @gpuvm: the &drm_gpuvm to check the range for
1977 * @addr: the start address of the range
1978 * @range: the range of the interval
1979 *
1980 * Returns: true if the interval is empty, false otherwise
1981 */
1982bool
1983drm_gpuvm_interval_empty(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
1984{
1985	return !drm_gpuva_find_first(gpuvm, addr, range);
1986}
1987EXPORT_SYMBOL_GPL(drm_gpuvm_interval_empty);
1988
1989/**
1990 * drm_gpuva_map() - helper to insert a &drm_gpuva according to a
1991 * &drm_gpuva_op_map
1992 * @gpuvm: the &drm_gpuvm
1993 * @va: the &drm_gpuva to insert
1994 * @op: the &drm_gpuva_op_map to initialize @va with
1995 *
1996 * Initializes the @va from the @op and inserts it into the given @gpuvm.
1997 */
1998void
1999drm_gpuva_map(struct drm_gpuvm *gpuvm,
2000	      struct drm_gpuva *va,
2001	      struct drm_gpuva_op_map *op)
2002{
2003	drm_gpuva_init_from_op(va, op);
2004	drm_gpuva_insert(gpuvm, va);
2005}
2006EXPORT_SYMBOL_GPL(drm_gpuva_map);
2007
2008/**
2009 * drm_gpuva_remap() - helper to remap a &drm_gpuva according to a
2010 * &drm_gpuva_op_remap
2011 * @prev: the &drm_gpuva to remap when keeping the start of a mapping
2012 * @next: the &drm_gpuva to remap when keeping the end of a mapping
2013 * @op: the &drm_gpuva_op_remap to initialize @prev and @next with
2014 *
2015 * Removes the currently mapped &drm_gpuva and remaps it using @prev and/or
2016 * @next.
2017 */
2018void
2019drm_gpuva_remap(struct drm_gpuva *prev,
2020		struct drm_gpuva *next,
2021		struct drm_gpuva_op_remap *op)
2022{
2023	struct drm_gpuva *va = op->unmap->va;
2024	struct drm_gpuvm *gpuvm = va->vm;
2025
2026	drm_gpuva_remove(va);
2027
2028	if (op->prev) {
2029		drm_gpuva_init_from_op(prev, op->prev);
2030		drm_gpuva_insert(gpuvm, prev);
2031	}
2032
2033	if (op->next) {
2034		drm_gpuva_init_from_op(next, op->next);
2035		drm_gpuva_insert(gpuvm, next);
2036	}
2037}
2038EXPORT_SYMBOL_GPL(drm_gpuva_remap);
2039
2040/**
2041 * drm_gpuva_unmap() - helper to remove a &drm_gpuva according to a
2042 * &drm_gpuva_op_unmap
2043 * @op: the &drm_gpuva_op_unmap specifying the &drm_gpuva to remove
2044 *
2045 * Removes the &drm_gpuva associated with the &drm_gpuva_op_unmap.
2046 */
2047void
2048drm_gpuva_unmap(struct drm_gpuva_op_unmap *op)
2049{
2050	drm_gpuva_remove(op->va);
2051}
2052EXPORT_SYMBOL_GPL(drm_gpuva_unmap);
2053
2054static int
2055op_map_cb(const struct drm_gpuvm_ops *fn, void *priv,
2056	  u64 addr, u64 range,
2057	  struct drm_gem_object *obj, u64 offset)
2058{
2059	struct drm_gpuva_op op = {};
2060
2061	op.op = DRM_GPUVA_OP_MAP;
2062	op.map.va.addr = addr;
2063	op.map.va.range = range;
2064	op.map.gem.obj = obj;
2065	op.map.gem.offset = offset;
2066
2067	return fn->sm_step_map(&op, priv);
2068}
2069
2070static int
2071op_remap_cb(const struct drm_gpuvm_ops *fn, void *priv,
2072	    struct drm_gpuva_op_map *prev,
2073	    struct drm_gpuva_op_map *next,
2074	    struct drm_gpuva_op_unmap *unmap)
2075{
2076	struct drm_gpuva_op op = {};
2077	struct drm_gpuva_op_remap *r;
2078
2079	op.op = DRM_GPUVA_OP_REMAP;
2080	r = &op.remap;
2081	r->prev = prev;
2082	r->next = next;
2083	r->unmap = unmap;
2084
2085	return fn->sm_step_remap(&op, priv);
2086}
2087
2088static int
2089op_unmap_cb(const struct drm_gpuvm_ops *fn, void *priv,
2090	    struct drm_gpuva *va, bool merge)
2091{
2092	struct drm_gpuva_op op = {};
2093
2094	op.op = DRM_GPUVA_OP_UNMAP;
2095	op.unmap.va = va;
2096	op.unmap.keep = merge;
2097
2098	return fn->sm_step_unmap(&op, priv);
2099}
2100
2101static int
2102__drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm,
2103		   const struct drm_gpuvm_ops *ops, void *priv,
2104		   u64 req_addr, u64 req_range,
2105		   struct drm_gem_object *req_obj, u64 req_offset)
2106{
2107	struct drm_gpuva *va, *next;
2108	u64 req_end = req_addr + req_range;
2109	int ret;
2110
2111	if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
2112		return -EINVAL;
2113
2114	drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
2115		struct drm_gem_object *obj = va->gem.obj;
2116		u64 offset = va->gem.offset;
2117		u64 addr = va->va.addr;
2118		u64 range = va->va.range;
2119		u64 end = addr + range;
2120		bool merge = !!va->gem.obj;
2121
2122		if (addr == req_addr) {
2123			merge &= obj == req_obj &&
2124				 offset == req_offset;
2125
2126			if (end == req_end) {
2127				ret = op_unmap_cb(ops, priv, va, merge);
2128				if (ret)
2129					return ret;
2130				break;
2131			}
2132
2133			if (end < req_end) {
2134				ret = op_unmap_cb(ops, priv, va, merge);
2135				if (ret)
2136					return ret;
2137				continue;
2138			}
2139
2140			if (end > req_end) {
2141				struct drm_gpuva_op_map n = {
2142					.va.addr = req_end,
2143					.va.range = range - req_range,
2144					.gem.obj = obj,
2145					.gem.offset = offset + req_range,
2146				};
2147				struct drm_gpuva_op_unmap u = {
2148					.va = va,
2149					.keep = merge,
2150				};
2151
2152				ret = op_remap_cb(ops, priv, NULL, &n, &u);
2153				if (ret)
2154					return ret;
2155				break;
2156			}
2157		} else if (addr < req_addr) {
2158			u64 ls_range = req_addr - addr;
2159			struct drm_gpuva_op_map p = {
2160				.va.addr = addr,
2161				.va.range = ls_range,
2162				.gem.obj = obj,
2163				.gem.offset = offset,
2164			};
2165			struct drm_gpuva_op_unmap u = { .va = va };
2166
2167			merge &= obj == req_obj &&
2168				 offset + ls_range == req_offset;
2169			u.keep = merge;
2170
2171			if (end == req_end) {
2172				ret = op_remap_cb(ops, priv, &p, NULL, &u);
2173				if (ret)
2174					return ret;
2175				break;
2176			}
2177
2178			if (end < req_end) {
2179				ret = op_remap_cb(ops, priv, &p, NULL, &u);
2180				if (ret)
2181					return ret;
2182				continue;
2183			}
2184
2185			if (end > req_end) {
2186				struct drm_gpuva_op_map n = {
2187					.va.addr = req_end,
2188					.va.range = end - req_end,
2189					.gem.obj = obj,
2190					.gem.offset = offset + ls_range +
2191						      req_range,
2192				};
2193
2194				ret = op_remap_cb(ops, priv, &p, &n, &u);
2195				if (ret)
2196					return ret;
2197				break;
2198			}
2199		} else if (addr > req_addr) {
2200			merge &= obj == req_obj &&
2201				 offset == req_offset +
2202					   (addr - req_addr);
2203
2204			if (end == req_end) {
2205				ret = op_unmap_cb(ops, priv, va, merge);
2206				if (ret)
2207					return ret;
2208				break;
2209			}
2210
2211			if (end < req_end) {
2212				ret = op_unmap_cb(ops, priv, va, merge);
2213				if (ret)
2214					return ret;
2215				continue;
2216			}
2217
2218			if (end > req_end) {
2219				struct drm_gpuva_op_map n = {
2220					.va.addr = req_end,
2221					.va.range = end - req_end,
2222					.gem.obj = obj,
2223					.gem.offset = offset + req_end - addr,
2224				};
2225				struct drm_gpuva_op_unmap u = {
2226					.va = va,
2227					.keep = merge,
2228				};
2229
2230				ret = op_remap_cb(ops, priv, NULL, &n, &u);
2231				if (ret)
2232					return ret;
2233				break;
2234			}
2235		}
2236	}
2237
2238	return op_map_cb(ops, priv,
2239			 req_addr, req_range,
2240			 req_obj, req_offset);
2241}
2242
2243static int
2244__drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm,
2245		     const struct drm_gpuvm_ops *ops, void *priv,
2246		     u64 req_addr, u64 req_range)
2247{
2248	struct drm_gpuva *va, *next;
2249	u64 req_end = req_addr + req_range;
2250	int ret;
2251
2252	if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
2253		return -EINVAL;
2254
2255	drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
2256		struct drm_gpuva_op_map prev = {}, next = {};
2257		bool prev_split = false, next_split = false;
2258		struct drm_gem_object *obj = va->gem.obj;
2259		u64 offset = va->gem.offset;
2260		u64 addr = va->va.addr;
2261		u64 range = va->va.range;
2262		u64 end = addr + range;
2263
2264		if (addr < req_addr) {
2265			prev.va.addr = addr;
2266			prev.va.range = req_addr - addr;
2267			prev.gem.obj = obj;
2268			prev.gem.offset = offset;
2269
2270			prev_split = true;
2271		}
2272
2273		if (end > req_end) {
2274			next.va.addr = req_end;
2275			next.va.range = end - req_end;
2276			next.gem.obj = obj;
2277			next.gem.offset = offset + (req_end - addr);
2278
2279			next_split = true;
2280		}
2281
2282		if (prev_split || next_split) {
2283			struct drm_gpuva_op_unmap unmap = { .va = va };
2284
2285			ret = op_remap_cb(ops, priv,
2286					  prev_split ? &prev : NULL,
2287					  next_split ? &next : NULL,
2288					  &unmap);
2289			if (ret)
2290				return ret;
2291		} else {
2292			ret = op_unmap_cb(ops, priv, va, false);
2293			if (ret)
2294				return ret;
2295		}
2296	}
2297
2298	return 0;
2299}
2300
2301/**
2302 * drm_gpuvm_sm_map() - creates the &drm_gpuva_op split/merge steps
2303 * @gpuvm: the &drm_gpuvm representing the GPU VA space
2304 * @req_addr: the start address of the new mapping
2305 * @req_range: the range of the new mapping
2306 * @req_obj: the &drm_gem_object to map
2307 * @req_offset: the offset within the &drm_gem_object
2308 * @priv: pointer to a driver private data structure
2309 *
2310 * This function iterates the given range of the GPU VA space. It utilizes the
2311 * &drm_gpuvm_ops to call back into the driver providing the split and merge
2312 * steps.
2313 *
2314 * Drivers may use these callbacks to update the GPU VA space right away within
2315 * the callback. In case the driver decides to copy and store the operations for
2316 * later processing neither this function nor &drm_gpuvm_sm_unmap is allowed to
2317 * be called before the &drm_gpuvm's view of the GPU VA space was
2318 * updated with the previous set of operations. To update the
2319 * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
2320 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
2321 * used.
2322 *
2323 * A sequence of callbacks can contain map, unmap and remap operations, but
2324 * the sequence of callbacks might also be empty if no operation is required,
2325 * e.g. if the requested mapping already exists in the exact same way.
2326 *
2327 * There can be an arbitrary amount of unmap operations, a maximum of two remap
2328 * operations and a single map operation. The latter one represents the original
2329 * map operation requested by the caller.
2330 *
2331 * Returns: 0 on success or a negative error code
2332 */
2333int
2334drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm, void *priv,
2335		 u64 req_addr, u64 req_range,
2336		 struct drm_gem_object *req_obj, u64 req_offset)
2337{
2338	const struct drm_gpuvm_ops *ops = gpuvm->ops;
2339
2340	if (unlikely(!(ops && ops->sm_step_map &&
2341		       ops->sm_step_remap &&
2342		       ops->sm_step_unmap)))
2343		return -EINVAL;
2344
2345	return __drm_gpuvm_sm_map(gpuvm, ops, priv,
2346				  req_addr, req_range,
2347				  req_obj, req_offset);
2348}
2349EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map);
2350
2351/**
2352 * drm_gpuvm_sm_unmap() - creates the &drm_gpuva_ops to split on unmap
2353 * @gpuvm: the &drm_gpuvm representing the GPU VA space
2354 * @priv: pointer to a driver private data structure
2355 * @req_addr: the start address of the range to unmap
2356 * @req_range: the range of the mappings to unmap
2357 *
2358 * This function iterates the given range of the GPU VA space. It utilizes the
2359 * &drm_gpuvm_ops to call back into the driver providing the operations to
2360 * unmap and, if required, split existent mappings.
2361 *
2362 * Drivers may use these callbacks to update the GPU VA space right away within
2363 * the callback. In case the driver decides to copy and store the operations for
2364 * later processing neither this function nor &drm_gpuvm_sm_map is allowed to be
2365 * called before the &drm_gpuvm's view of the GPU VA space was updated
2366 * with the previous set of operations. To update the &drm_gpuvm's view
2367 * of the GPU VA space drm_gpuva_insert(), drm_gpuva_destroy_locked() and/or
2368 * drm_gpuva_destroy_unlocked() should be used.
2369 *
2370 * A sequence of callbacks can contain unmap and remap operations, depending on
2371 * whether there are actual overlapping mappings to split.
2372 *
2373 * There can be an arbitrary amount of unmap operations and a maximum of two
2374 * remap operations.
2375 *
2376 * Returns: 0 on success or a negative error code
2377 */
2378int
2379drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm, void *priv,
2380		   u64 req_addr, u64 req_range)
2381{
2382	const struct drm_gpuvm_ops *ops = gpuvm->ops;
2383
2384	if (unlikely(!(ops && ops->sm_step_remap &&
2385		       ops->sm_step_unmap)))
2386		return -EINVAL;
2387
2388	return __drm_gpuvm_sm_unmap(gpuvm, ops, priv,
2389				    req_addr, req_range);
2390}
2391EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap);
2392
2393static struct drm_gpuva_op *
2394gpuva_op_alloc(struct drm_gpuvm *gpuvm)
2395{
2396	const struct drm_gpuvm_ops *fn = gpuvm->ops;
2397	struct drm_gpuva_op *op;
2398
2399	if (fn && fn->op_alloc)
2400		op = fn->op_alloc();
2401	else
2402		op = kzalloc(sizeof(*op), GFP_KERNEL);
2403
2404	if (unlikely(!op))
2405		return NULL;
2406
2407	return op;
2408}
2409
2410static void
2411gpuva_op_free(struct drm_gpuvm *gpuvm,
2412	      struct drm_gpuva_op *op)
2413{
2414	const struct drm_gpuvm_ops *fn = gpuvm->ops;
2415
2416	if (fn && fn->op_free)
2417		fn->op_free(op);
2418	else
2419		kfree(op);
2420}
2421
2422static int
2423drm_gpuva_sm_step(struct drm_gpuva_op *__op,
2424		  void *priv)
2425{
2426	struct {
2427		struct drm_gpuvm *vm;
2428		struct drm_gpuva_ops *ops;
2429	} *args = priv;
2430	struct drm_gpuvm *gpuvm = args->vm;
2431	struct drm_gpuva_ops *ops = args->ops;
2432	struct drm_gpuva_op *op;
2433
2434	op = gpuva_op_alloc(gpuvm);
2435	if (unlikely(!op))
2436		goto err;
2437
2438	memcpy(op, __op, sizeof(*op));
2439
2440	if (op->op == DRM_GPUVA_OP_REMAP) {
2441		struct drm_gpuva_op_remap *__r = &__op->remap;
2442		struct drm_gpuva_op_remap *r = &op->remap;
2443
2444		r->unmap = kmemdup(__r->unmap, sizeof(*r->unmap),
2445				   GFP_KERNEL);
2446		if (unlikely(!r->unmap))
2447			goto err_free_op;
2448
2449		if (__r->prev) {
2450			r->prev = kmemdup(__r->prev, sizeof(*r->prev),
2451					  GFP_KERNEL);
2452			if (unlikely(!r->prev))
2453				goto err_free_unmap;
2454		}
2455
2456		if (__r->next) {
2457			r->next = kmemdup(__r->next, sizeof(*r->next),
2458					  GFP_KERNEL);
2459			if (unlikely(!r->next))
2460				goto err_free_prev;
2461		}
2462	}
2463
2464	list_add_tail(&op->entry, &ops->list);
2465
2466	return 0;
2467
2468err_free_unmap:
2469	kfree(op->remap.unmap);
2470err_free_prev:
2471	kfree(op->remap.prev);
2472err_free_op:
2473	gpuva_op_free(gpuvm, op);
2474err:
2475	return -ENOMEM;
2476}
2477
2478static const struct drm_gpuvm_ops gpuvm_list_ops = {
2479	.sm_step_map = drm_gpuva_sm_step,
2480	.sm_step_remap = drm_gpuva_sm_step,
2481	.sm_step_unmap = drm_gpuva_sm_step,
2482};
2483
2484/**
2485 * drm_gpuvm_sm_map_ops_create() - creates the &drm_gpuva_ops to split and merge
2486 * @gpuvm: the &drm_gpuvm representing the GPU VA space
2487 * @req_addr: the start address of the new mapping
2488 * @req_range: the range of the new mapping
2489 * @req_obj: the &drm_gem_object to map
2490 * @req_offset: the offset within the &drm_gem_object
2491 *
2492 * This function creates a list of operations to perform splitting and merging
2493 * of existent mapping(s) with the newly requested one.
2494 *
2495 * The list can be iterated with &drm_gpuva_for_each_op and must be processed
2496 * in the given order. It can contain map, unmap and remap operations, but it
2497 * also can be empty if no operation is required, e.g. if the requested mapping
2498 * already exists is the exact same way.
2499 *
2500 * There can be an arbitrary amount of unmap operations, a maximum of two remap
2501 * operations and a single map operation. The latter one represents the original
2502 * map operation requested by the caller.
2503 *
2504 * Note that before calling this function again with another mapping request it
2505 * is necessary to update the &drm_gpuvm's view of the GPU VA space. The
2506 * previously obtained operations must be either processed or abandoned. To
2507 * update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
2508 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
2509 * used.
2510 *
2511 * After the caller finished processing the returned &drm_gpuva_ops, they must
2512 * be freed with &drm_gpuva_ops_free.
2513 *
2514 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
2515 */
2516struct drm_gpuva_ops *
2517drm_gpuvm_sm_map_ops_create(struct drm_gpuvm *gpuvm,
2518			    u64 req_addr, u64 req_range,
2519			    struct drm_gem_object *req_obj, u64 req_offset)
2520{
2521	struct drm_gpuva_ops *ops;
2522	struct {
2523		struct drm_gpuvm *vm;
2524		struct drm_gpuva_ops *ops;
2525	} args;
2526	int ret;
2527
2528	ops = kzalloc(sizeof(*ops), GFP_KERNEL);
2529	if (unlikely(!ops))
2530		return ERR_PTR(-ENOMEM);
2531
2532	INIT_LIST_HEAD(&ops->list);
2533
2534	args.vm = gpuvm;
2535	args.ops = ops;
2536
2537	ret = __drm_gpuvm_sm_map(gpuvm, &gpuvm_list_ops, &args,
2538				 req_addr, req_range,
2539				 req_obj, req_offset);
2540	if (ret)
2541		goto err_free_ops;
2542
2543	return ops;
2544
2545err_free_ops:
2546	drm_gpuva_ops_free(gpuvm, ops);
2547	return ERR_PTR(ret);
2548}
2549EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map_ops_create);
2550
2551/**
2552 * drm_gpuvm_sm_unmap_ops_create() - creates the &drm_gpuva_ops to split on
2553 * unmap
2554 * @gpuvm: the &drm_gpuvm representing the GPU VA space
2555 * @req_addr: the start address of the range to unmap
2556 * @req_range: the range of the mappings to unmap
2557 *
2558 * This function creates a list of operations to perform unmapping and, if
2559 * required, splitting of the mappings overlapping the unmap range.
2560 *
2561 * The list can be iterated with &drm_gpuva_for_each_op and must be processed
2562 * in the given order. It can contain unmap and remap operations, depending on
2563 * whether there are actual overlapping mappings to split.
2564 *
2565 * There can be an arbitrary amount of unmap operations and a maximum of two
2566 * remap operations.
2567 *
2568 * Note that before calling this function again with another range to unmap it
2569 * is necessary to update the &drm_gpuvm's view of the GPU VA space. The
2570 * previously obtained operations must be processed or abandoned. To update the
2571 * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
2572 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
2573 * used.
2574 *
2575 * After the caller finished processing the returned &drm_gpuva_ops, they must
2576 * be freed with &drm_gpuva_ops_free.
2577 *
2578 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
2579 */
2580struct drm_gpuva_ops *
2581drm_gpuvm_sm_unmap_ops_create(struct drm_gpuvm *gpuvm,
2582			      u64 req_addr, u64 req_range)
2583{
2584	struct drm_gpuva_ops *ops;
2585	struct {
2586		struct drm_gpuvm *vm;
2587		struct drm_gpuva_ops *ops;
2588	} args;
2589	int ret;
2590
2591	ops = kzalloc(sizeof(*ops), GFP_KERNEL);
2592	if (unlikely(!ops))
2593		return ERR_PTR(-ENOMEM);
2594
2595	INIT_LIST_HEAD(&ops->list);
2596
2597	args.vm = gpuvm;
2598	args.ops = ops;
2599
2600	ret = __drm_gpuvm_sm_unmap(gpuvm, &gpuvm_list_ops, &args,
2601				   req_addr, req_range);
2602	if (ret)
2603		goto err_free_ops;
2604
2605	return ops;
2606
2607err_free_ops:
2608	drm_gpuva_ops_free(gpuvm, ops);
2609	return ERR_PTR(ret);
2610}
2611EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap_ops_create);
2612
2613/**
2614 * drm_gpuvm_prefetch_ops_create() - creates the &drm_gpuva_ops to prefetch
2615 * @gpuvm: the &drm_gpuvm representing the GPU VA space
2616 * @addr: the start address of the range to prefetch
2617 * @range: the range of the mappings to prefetch
2618 *
2619 * This function creates a list of operations to perform prefetching.
2620 *
2621 * The list can be iterated with &drm_gpuva_for_each_op and must be processed
2622 * in the given order. It can contain prefetch operations.
2623 *
2624 * There can be an arbitrary amount of prefetch operations.
2625 *
2626 * After the caller finished processing the returned &drm_gpuva_ops, they must
2627 * be freed with &drm_gpuva_ops_free.
2628 *
2629 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
2630 */
2631struct drm_gpuva_ops *
2632drm_gpuvm_prefetch_ops_create(struct drm_gpuvm *gpuvm,
2633			      u64 addr, u64 range)
2634{
2635	struct drm_gpuva_ops *ops;
2636	struct drm_gpuva_op *op;
2637	struct drm_gpuva *va;
2638	u64 end = addr + range;
2639	int ret;
2640
2641	ops = kzalloc(sizeof(*ops), GFP_KERNEL);
2642	if (!ops)
2643		return ERR_PTR(-ENOMEM);
2644
2645	INIT_LIST_HEAD(&ops->list);
2646
2647	drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) {
2648		op = gpuva_op_alloc(gpuvm);
2649		if (!op) {
2650			ret = -ENOMEM;
2651			goto err_free_ops;
2652		}
2653
2654		op->op = DRM_GPUVA_OP_PREFETCH;
2655		op->prefetch.va = va;
2656		list_add_tail(&op->entry, &ops->list);
2657	}
2658
2659	return ops;
2660
2661err_free_ops:
2662	drm_gpuva_ops_free(gpuvm, ops);
2663	return ERR_PTR(ret);
2664}
2665EXPORT_SYMBOL_GPL(drm_gpuvm_prefetch_ops_create);
2666
2667/**
2668 * drm_gpuvm_bo_unmap_ops_create() - creates the &drm_gpuva_ops to unmap a GEM
2669 * @vm_bo: the &drm_gpuvm_bo abstraction
2670 *
2671 * This function creates a list of operations to perform unmapping for every
2672 * GPUVA attached to a GEM.
2673 *
2674 * The list can be iterated with &drm_gpuva_for_each_op and consists out of an
2675 * arbitrary amount of unmap operations.
2676 *
2677 * After the caller finished processing the returned &drm_gpuva_ops, they must
2678 * be freed with &drm_gpuva_ops_free.
2679 *
2680 * It is the callers responsibility to protect the GEMs GPUVA list against
2681 * concurrent access using the GEMs dma_resv lock.
2682 *
2683 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
2684 */
2685struct drm_gpuva_ops *
2686drm_gpuvm_bo_unmap_ops_create(struct drm_gpuvm_bo *vm_bo)
2687{
2688	struct drm_gpuva_ops *ops;
2689	struct drm_gpuva_op *op;
2690	struct drm_gpuva *va;
2691	int ret;
2692
2693	drm_gem_gpuva_assert_lock_held(vm_bo->obj);
2694
2695	ops = kzalloc(sizeof(*ops), GFP_KERNEL);
2696	if (!ops)
2697		return ERR_PTR(-ENOMEM);
2698
2699	INIT_LIST_HEAD(&ops->list);
2700
2701	drm_gpuvm_bo_for_each_va(va, vm_bo) {
2702		op = gpuva_op_alloc(vm_bo->vm);
2703		if (!op) {
2704			ret = -ENOMEM;
2705			goto err_free_ops;
2706		}
2707
2708		op->op = DRM_GPUVA_OP_UNMAP;
2709		op->unmap.va = va;
2710		list_add_tail(&op->entry, &ops->list);
2711	}
2712
2713	return ops;
2714
2715err_free_ops:
2716	drm_gpuva_ops_free(vm_bo->vm, ops);
2717	return ERR_PTR(ret);
2718}
2719EXPORT_SYMBOL_GPL(drm_gpuvm_bo_unmap_ops_create);
2720
2721/**
2722 * drm_gpuva_ops_free() - free the given &drm_gpuva_ops
2723 * @gpuvm: the &drm_gpuvm the ops were created for
2724 * @ops: the &drm_gpuva_ops to free
2725 *
2726 * Frees the given &drm_gpuva_ops structure including all the ops associated
2727 * with it.
2728 */
2729void
2730drm_gpuva_ops_free(struct drm_gpuvm *gpuvm,
2731		   struct drm_gpuva_ops *ops)
2732{
2733	struct drm_gpuva_op *op, *next;
2734
2735	drm_gpuva_for_each_op_safe(op, next, ops) {
2736		list_del(&op->entry);
2737
2738		if (op->op == DRM_GPUVA_OP_REMAP) {
2739			kfree(op->remap.prev);
2740			kfree(op->remap.next);
2741			kfree(op->remap.unmap);
2742		}
2743
2744		gpuva_op_free(gpuvm, op);
2745	}
2746
2747	kfree(ops);
2748}
2749EXPORT_SYMBOL_GPL(drm_gpuva_ops_free);
2750
2751MODULE_DESCRIPTION("DRM GPUVM");
2752MODULE_LICENSE("GPL");
2753