1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 *   Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30
31#include <linux/bitfield.h>
32#include <linux/cec.h>
33#include <linux/hdmi.h>
34#include <linux/i2c.h>
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/slab.h>
39#include <linux/vga_switcheroo.h>
40
41#include <drm/drm_displayid.h>
42#include <drm/drm_drv.h>
43#include <drm/drm_edid.h>
44#include <drm/drm_eld.h>
45#include <drm/drm_encoder.h>
46#include <drm/drm_print.h>
47
48#include "drm_crtc_internal.h"
49#include "drm_internal.h"
50
51static int oui(u8 first, u8 second, u8 third)
52{
53	return (first << 16) | (second << 8) | third;
54}
55
56#define EDID_EST_TIMINGS 16
57#define EDID_STD_TIMINGS 8
58#define EDID_DETAILED_TIMINGS 4
59
60/*
61 * EDID blocks out in the wild have a variety of bugs, try to collect
62 * them here (note that userspace may work around broken monitors first,
63 * but fixes should make their way here so that the kernel "just works"
64 * on as many displays as possible).
65 */
66
67/* First detailed mode wrong, use largest 60Hz mode */
68#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
69/* Reported 135MHz pixel clock is too high, needs adjustment */
70#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
71/* Prefer the largest mode at 75 Hz */
72#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
73/* Detail timing is in cm not mm */
74#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
75/* Detailed timing descriptors have bogus size values, so just take the
76 * maximum size and use that.
77 */
78#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
79/* use +hsync +vsync for detailed mode */
80#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
81/* Force reduced-blanking timings for detailed modes */
82#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
83/* Force 8bpc */
84#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
85/* Force 12bpc */
86#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
87/* Force 6bpc */
88#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
89/* Force 10bpc */
90#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
91/* Non desktop display (i.e. HMD) */
92#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
93/* Cap the DSC target bitrate to 15bpp */
94#define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
95
96#define MICROSOFT_IEEE_OUI	0xca125c
97
98struct detailed_mode_closure {
99	struct drm_connector *connector;
100	const struct drm_edid *drm_edid;
101	bool preferred;
102	int modes;
103};
104
105#define LEVEL_DMT	0
106#define LEVEL_GTF	1
107#define LEVEL_GTF2	2
108#define LEVEL_CVT	3
109
110#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
111{ \
112	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
113					     product_id), \
114	.quirks = _quirks \
115}
116
117static const struct edid_quirk {
118	u32 panel_id;
119	u32 quirks;
120} edid_quirk_list[] = {
121	/* Acer AL1706 */
122	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
123	/* Acer F51 */
124	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
125
126	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
127	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
128
129	/* BenQ GW2765 */
130	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
131
132	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
133	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
134
135	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
136	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
137
138	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
139	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
140
141	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
142	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
143
144	/* Belinea 10 15 55 */
145	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
146	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
147
148	/* Envision Peripherals, Inc. EN-7100e */
149	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
150	/* Envision EN2028 */
151	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
152
153	/* Funai Electronics PM36B */
154	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
155				       EDID_QUIRK_DETAILED_IN_CM),
156
157	/* LG 27GP950 */
158	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
159
160	/* LG 27GN950 */
161	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
162
163	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
164	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
165
166	/* LG Philips LCD LP154W01-A5 */
167	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
168	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
169
170	/* Samsung SyncMaster 205BW.  Note: irony */
171	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
172	/* Samsung SyncMaster 22[5-6]BW */
173	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
174	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
175
176	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
177	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
178
179	/* ViewSonic VA2026w */
180	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
181
182	/* Medion MD 30217 PG */
183	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
184
185	/* Lenovo G50 */
186	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
187
188	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
189	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
190
191	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
192	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
193
194	/* Valve Index Headset */
195	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
196	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
197	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
198	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
199	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
200	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
201	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
202	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
203	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
204	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
205	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
206	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
207	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
208	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
209	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
210	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
211	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
212
213	/* HTC Vive and Vive Pro VR Headsets */
214	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
215	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
216
217	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
218	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
219	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
220	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
221	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
222
223	/* Windows Mixed Reality Headsets */
224	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
225	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
226	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
227	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
228	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
229	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
230
231	/* Sony PlayStation VR Headset */
232	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
233
234	/* Sensics VR Headsets */
235	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
236
237	/* OSVR HDK and HDK2 VR Headsets */
238	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
239	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
240};
241
242/*
243 * Autogenerated from the DMT spec.
244 * This table is copied from xfree86/modes/xf86EdidModes.c.
245 */
246static const struct drm_display_mode drm_dmt_modes[] = {
247	/* 0x01 - 640x350@85Hz */
248	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
249		   736, 832, 0, 350, 382, 385, 445, 0,
250		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251	/* 0x02 - 640x400@85Hz */
252	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
253		   736, 832, 0, 400, 401, 404, 445, 0,
254		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255	/* 0x03 - 720x400@85Hz */
256	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
257		   828, 936, 0, 400, 401, 404, 446, 0,
258		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259	/* 0x04 - 640x480@60Hz */
260	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
261		   752, 800, 0, 480, 490, 492, 525, 0,
262		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
263	/* 0x05 - 640x480@72Hz */
264	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
265		   704, 832, 0, 480, 489, 492, 520, 0,
266		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
267	/* 0x06 - 640x480@75Hz */
268	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
269		   720, 840, 0, 480, 481, 484, 500, 0,
270		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
271	/* 0x07 - 640x480@85Hz */
272	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
273		   752, 832, 0, 480, 481, 484, 509, 0,
274		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
275	/* 0x08 - 800x600@56Hz */
276	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
277		   896, 1024, 0, 600, 601, 603, 625, 0,
278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279	/* 0x09 - 800x600@60Hz */
280	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
281		   968, 1056, 0, 600, 601, 605, 628, 0,
282		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283	/* 0x0a - 800x600@72Hz */
284	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
285		   976, 1040, 0, 600, 637, 643, 666, 0,
286		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287	/* 0x0b - 800x600@75Hz */
288	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
289		   896, 1056, 0, 600, 601, 604, 625, 0,
290		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
291	/* 0x0c - 800x600@85Hz */
292	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
293		   896, 1048, 0, 600, 601, 604, 631, 0,
294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295	/* 0x0d - 800x600@120Hz RB */
296	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
297		   880, 960, 0, 600, 603, 607, 636, 0,
298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299	/* 0x0e - 848x480@60Hz */
300	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
301		   976, 1088, 0, 480, 486, 494, 517, 0,
302		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
303	/* 0x0f - 1024x768@43Hz, interlace */
304	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
305		   1208, 1264, 0, 768, 768, 776, 817, 0,
306		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
307		   DRM_MODE_FLAG_INTERLACE) },
308	/* 0x10 - 1024x768@60Hz */
309	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
310		   1184, 1344, 0, 768, 771, 777, 806, 0,
311		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
312	/* 0x11 - 1024x768@70Hz */
313	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
314		   1184, 1328, 0, 768, 771, 777, 806, 0,
315		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
316	/* 0x12 - 1024x768@75Hz */
317	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
318		   1136, 1312, 0, 768, 769, 772, 800, 0,
319		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
320	/* 0x13 - 1024x768@85Hz */
321	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
322		   1168, 1376, 0, 768, 769, 772, 808, 0,
323		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
324	/* 0x14 - 1024x768@120Hz RB */
325	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
326		   1104, 1184, 0, 768, 771, 775, 813, 0,
327		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
328	/* 0x15 - 1152x864@75Hz */
329	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
330		   1344, 1600, 0, 864, 865, 868, 900, 0,
331		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
332	/* 0x55 - 1280x720@60Hz */
333	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
334		   1430, 1650, 0, 720, 725, 730, 750, 0,
335		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
336	/* 0x16 - 1280x768@60Hz RB */
337	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
338		   1360, 1440, 0, 768, 771, 778, 790, 0,
339		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
340	/* 0x17 - 1280x768@60Hz */
341	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
342		   1472, 1664, 0, 768, 771, 778, 798, 0,
343		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
344	/* 0x18 - 1280x768@75Hz */
345	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
346		   1488, 1696, 0, 768, 771, 778, 805, 0,
347		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
348	/* 0x19 - 1280x768@85Hz */
349	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
350		   1496, 1712, 0, 768, 771, 778, 809, 0,
351		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
352	/* 0x1a - 1280x768@120Hz RB */
353	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
354		   1360, 1440, 0, 768, 771, 778, 813, 0,
355		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
356	/* 0x1b - 1280x800@60Hz RB */
357	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
358		   1360, 1440, 0, 800, 803, 809, 823, 0,
359		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360	/* 0x1c - 1280x800@60Hz */
361	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
362		   1480, 1680, 0, 800, 803, 809, 831, 0,
363		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
364	/* 0x1d - 1280x800@75Hz */
365	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
366		   1488, 1696, 0, 800, 803, 809, 838, 0,
367		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368	/* 0x1e - 1280x800@85Hz */
369	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
370		   1496, 1712, 0, 800, 803, 809, 843, 0,
371		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372	/* 0x1f - 1280x800@120Hz RB */
373	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
374		   1360, 1440, 0, 800, 803, 809, 847, 0,
375		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
376	/* 0x20 - 1280x960@60Hz */
377	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
378		   1488, 1800, 0, 960, 961, 964, 1000, 0,
379		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
380	/* 0x21 - 1280x960@85Hz */
381	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
382		   1504, 1728, 0, 960, 961, 964, 1011, 0,
383		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
384	/* 0x22 - 1280x960@120Hz RB */
385	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
386		   1360, 1440, 0, 960, 963, 967, 1017, 0,
387		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
388	/* 0x23 - 1280x1024@60Hz */
389	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
390		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
391		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
392	/* 0x24 - 1280x1024@75Hz */
393	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
394		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
395		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
396	/* 0x25 - 1280x1024@85Hz */
397	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
398		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
399		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
400	/* 0x26 - 1280x1024@120Hz RB */
401	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
402		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
403		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
404	/* 0x27 - 1360x768@60Hz */
405	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
406		   1536, 1792, 0, 768, 771, 777, 795, 0,
407		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
408	/* 0x28 - 1360x768@120Hz RB */
409	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
410		   1440, 1520, 0, 768, 771, 776, 813, 0,
411		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412	/* 0x51 - 1366x768@60Hz */
413	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
414		   1579, 1792, 0, 768, 771, 774, 798, 0,
415		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
416	/* 0x56 - 1366x768@60Hz */
417	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
418		   1436, 1500, 0, 768, 769, 772, 800, 0,
419		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
420	/* 0x29 - 1400x1050@60Hz RB */
421	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
422		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
423		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424	/* 0x2a - 1400x1050@60Hz */
425	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
426		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
427		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428	/* 0x2b - 1400x1050@75Hz */
429	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
430		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
431		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432	/* 0x2c - 1400x1050@85Hz */
433	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
434		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
435		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436	/* 0x2d - 1400x1050@120Hz RB */
437	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
438		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
439		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440	/* 0x2e - 1440x900@60Hz RB */
441	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
442		   1520, 1600, 0, 900, 903, 909, 926, 0,
443		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444	/* 0x2f - 1440x900@60Hz */
445	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
446		   1672, 1904, 0, 900, 903, 909, 934, 0,
447		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448	/* 0x30 - 1440x900@75Hz */
449	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
450		   1688, 1936, 0, 900, 903, 909, 942, 0,
451		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452	/* 0x31 - 1440x900@85Hz */
453	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
454		   1696, 1952, 0, 900, 903, 909, 948, 0,
455		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456	/* 0x32 - 1440x900@120Hz RB */
457	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
458		   1520, 1600, 0, 900, 903, 909, 953, 0,
459		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
460	/* 0x53 - 1600x900@60Hz */
461	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
462		   1704, 1800, 0, 900, 901, 904, 1000, 0,
463		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
464	/* 0x33 - 1600x1200@60Hz */
465	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
466		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
467		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
468	/* 0x34 - 1600x1200@65Hz */
469	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
470		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
471		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
472	/* 0x35 - 1600x1200@70Hz */
473	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
474		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
475		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
476	/* 0x36 - 1600x1200@75Hz */
477	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
478		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
479		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
480	/* 0x37 - 1600x1200@85Hz */
481	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
482		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
483		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
484	/* 0x38 - 1600x1200@120Hz RB */
485	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
486		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
487		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
488	/* 0x39 - 1680x1050@60Hz RB */
489	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
490		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
491		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
492	/* 0x3a - 1680x1050@60Hz */
493	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
494		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
495		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
496	/* 0x3b - 1680x1050@75Hz */
497	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
498		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
499		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
500	/* 0x3c - 1680x1050@85Hz */
501	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
502		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
503		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
504	/* 0x3d - 1680x1050@120Hz RB */
505	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
506		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
507		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
508	/* 0x3e - 1792x1344@60Hz */
509	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
510		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
511		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
512	/* 0x3f - 1792x1344@75Hz */
513	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
514		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
515		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
516	/* 0x40 - 1792x1344@120Hz RB */
517	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
518		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
519		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
520	/* 0x41 - 1856x1392@60Hz */
521	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
522		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
523		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
524	/* 0x42 - 1856x1392@75Hz */
525	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
526		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
527		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
528	/* 0x43 - 1856x1392@120Hz RB */
529	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
530		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
531		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
532	/* 0x52 - 1920x1080@60Hz */
533	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
534		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
535		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
536	/* 0x44 - 1920x1200@60Hz RB */
537	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
538		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
539		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
540	/* 0x45 - 1920x1200@60Hz */
541	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
542		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
543		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
544	/* 0x46 - 1920x1200@75Hz */
545	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
546		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
547		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
548	/* 0x47 - 1920x1200@85Hz */
549	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
550		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
551		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
552	/* 0x48 - 1920x1200@120Hz RB */
553	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
554		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
555		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
556	/* 0x49 - 1920x1440@60Hz */
557	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
558		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
559		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
560	/* 0x4a - 1920x1440@75Hz */
561	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
562		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
563		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
564	/* 0x4b - 1920x1440@120Hz RB */
565	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
566		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
567		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
568	/* 0x54 - 2048x1152@60Hz */
569	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
570		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
571		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
572	/* 0x4c - 2560x1600@60Hz RB */
573	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
574		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
575		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
576	/* 0x4d - 2560x1600@60Hz */
577	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
578		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
579		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
580	/* 0x4e - 2560x1600@75Hz */
581	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
582		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
583		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
584	/* 0x4f - 2560x1600@85Hz */
585	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
586		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
587		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
588	/* 0x50 - 2560x1600@120Hz RB */
589	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
590		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
591		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
592	/* 0x57 - 4096x2160@60Hz RB */
593	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
594		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
595		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
596	/* 0x58 - 4096x2160@59.94Hz RB */
597	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
598		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
599		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
600};
601
602/*
603 * These more or less come from the DMT spec.  The 720x400 modes are
604 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
605 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
606 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
607 * mode.
608 *
609 * The DMT modes have been fact-checked; the rest are mild guesses.
610 */
611static const struct drm_display_mode edid_est_modes[] = {
612	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
613		   968, 1056, 0, 600, 601, 605, 628, 0,
614		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
615	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
616		   896, 1024, 0, 600, 601, 603,  625, 0,
617		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
618	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
619		   720, 840, 0, 480, 481, 484, 500, 0,
620		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
621	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
622		   704,  832, 0, 480, 489, 492, 520, 0,
623		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
624	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
625		   768,  864, 0, 480, 483, 486, 525, 0,
626		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
627	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
628		   752, 800, 0, 480, 490, 492, 525, 0,
629		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
630	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
631		   846, 900, 0, 400, 421, 423,  449, 0,
632		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
633	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
634		   846,  900, 0, 400, 412, 414, 449, 0,
635		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
636	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
637		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
638		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
639	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
640		   1136, 1312, 0,  768, 769, 772, 800, 0,
641		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
642	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
643		   1184, 1328, 0,  768, 771, 777, 806, 0,
644		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
645	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
646		   1184, 1344, 0,  768, 771, 777, 806, 0,
647		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
648	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
649		   1208, 1264, 0, 768, 768, 776, 817, 0,
650		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
651	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
652		   928, 1152, 0, 624, 625, 628, 667, 0,
653		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
654	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
655		   896, 1056, 0, 600, 601, 604,  625, 0,
656		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
657	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
658		   976, 1040, 0, 600, 637, 643, 666, 0,
659		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
660	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
661		   1344, 1600, 0,  864, 865, 868, 900, 0,
662		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
663};
664
665struct minimode {
666	short w;
667	short h;
668	short r;
669	short rb;
670};
671
672static const struct minimode est3_modes[] = {
673	/* byte 6 */
674	{ 640, 350, 85, 0 },
675	{ 640, 400, 85, 0 },
676	{ 720, 400, 85, 0 },
677	{ 640, 480, 85, 0 },
678	{ 848, 480, 60, 0 },
679	{ 800, 600, 85, 0 },
680	{ 1024, 768, 85, 0 },
681	{ 1152, 864, 75, 0 },
682	/* byte 7 */
683	{ 1280, 768, 60, 1 },
684	{ 1280, 768, 60, 0 },
685	{ 1280, 768, 75, 0 },
686	{ 1280, 768, 85, 0 },
687	{ 1280, 960, 60, 0 },
688	{ 1280, 960, 85, 0 },
689	{ 1280, 1024, 60, 0 },
690	{ 1280, 1024, 85, 0 },
691	/* byte 8 */
692	{ 1360, 768, 60, 0 },
693	{ 1440, 900, 60, 1 },
694	{ 1440, 900, 60, 0 },
695	{ 1440, 900, 75, 0 },
696	{ 1440, 900, 85, 0 },
697	{ 1400, 1050, 60, 1 },
698	{ 1400, 1050, 60, 0 },
699	{ 1400, 1050, 75, 0 },
700	/* byte 9 */
701	{ 1400, 1050, 85, 0 },
702	{ 1680, 1050, 60, 1 },
703	{ 1680, 1050, 60, 0 },
704	{ 1680, 1050, 75, 0 },
705	{ 1680, 1050, 85, 0 },
706	{ 1600, 1200, 60, 0 },
707	{ 1600, 1200, 65, 0 },
708	{ 1600, 1200, 70, 0 },
709	/* byte 10 */
710	{ 1600, 1200, 75, 0 },
711	{ 1600, 1200, 85, 0 },
712	{ 1792, 1344, 60, 0 },
713	{ 1792, 1344, 75, 0 },
714	{ 1856, 1392, 60, 0 },
715	{ 1856, 1392, 75, 0 },
716	{ 1920, 1200, 60, 1 },
717	{ 1920, 1200, 60, 0 },
718	/* byte 11 */
719	{ 1920, 1200, 75, 0 },
720	{ 1920, 1200, 85, 0 },
721	{ 1920, 1440, 60, 0 },
722	{ 1920, 1440, 75, 0 },
723};
724
725static const struct minimode extra_modes[] = {
726	{ 1024, 576,  60, 0 },
727	{ 1366, 768,  60, 0 },
728	{ 1600, 900,  60, 0 },
729	{ 1680, 945,  60, 0 },
730	{ 1920, 1080, 60, 0 },
731	{ 2048, 1152, 60, 0 },
732	{ 2048, 1536, 60, 0 },
733};
734
735/*
736 * From CEA/CTA-861 spec.
737 *
738 * Do not access directly, instead always use cea_mode_for_vic().
739 */
740static const struct drm_display_mode edid_cea_modes_1[] = {
741	/* 1 - 640x480@60Hz 4:3 */
742	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
743		   752, 800, 0, 480, 490, 492, 525, 0,
744		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
745	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
746	/* 2 - 720x480@60Hz 4:3 */
747	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
748		   798, 858, 0, 480, 489, 495, 525, 0,
749		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
750	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
751	/* 3 - 720x480@60Hz 16:9 */
752	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
753		   798, 858, 0, 480, 489, 495, 525, 0,
754		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
755	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756	/* 4 - 1280x720@60Hz 16:9 */
757	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
758		   1430, 1650, 0, 720, 725, 730, 750, 0,
759		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761	/* 5 - 1920x1080i@60Hz 16:9 */
762	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
763		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
764		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
765		   DRM_MODE_FLAG_INTERLACE),
766	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
767	/* 6 - 720(1440)x480i@60Hz 4:3 */
768	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769		   801, 858, 0, 480, 488, 494, 525, 0,
770		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
773	/* 7 - 720(1440)x480i@60Hz 16:9 */
774	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775		   801, 858, 0, 480, 488, 494, 525, 0,
776		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
778	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
779	/* 8 - 720(1440)x240@60Hz 4:3 */
780	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781		   801, 858, 0, 240, 244, 247, 262, 0,
782		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783		   DRM_MODE_FLAG_DBLCLK),
784	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
785	/* 9 - 720(1440)x240@60Hz 16:9 */
786	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
787		   801, 858, 0, 240, 244, 247, 262, 0,
788		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789		   DRM_MODE_FLAG_DBLCLK),
790	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
791	/* 10 - 2880x480i@60Hz 4:3 */
792	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793		   3204, 3432, 0, 480, 488, 494, 525, 0,
794		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795		   DRM_MODE_FLAG_INTERLACE),
796	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
797	/* 11 - 2880x480i@60Hz 16:9 */
798	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799		   3204, 3432, 0, 480, 488, 494, 525, 0,
800		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
801		   DRM_MODE_FLAG_INTERLACE),
802	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
803	/* 12 - 2880x240@60Hz 4:3 */
804	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
805		   3204, 3432, 0, 240, 244, 247, 262, 0,
806		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
807	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
808	/* 13 - 2880x240@60Hz 16:9 */
809	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
810		   3204, 3432, 0, 240, 244, 247, 262, 0,
811		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
812	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
813	/* 14 - 1440x480@60Hz 4:3 */
814	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
815		   1596, 1716, 0, 480, 489, 495, 525, 0,
816		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
818	/* 15 - 1440x480@60Hz 16:9 */
819	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
820		   1596, 1716, 0, 480, 489, 495, 525, 0,
821		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
822	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823	/* 16 - 1920x1080@60Hz 16:9 */
824	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
825		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
826		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
827	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
828	/* 17 - 720x576@50Hz 4:3 */
829	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
830		   796, 864, 0, 576, 581, 586, 625, 0,
831		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
832	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
833	/* 18 - 720x576@50Hz 16:9 */
834	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
835		   796, 864, 0, 576, 581, 586, 625, 0,
836		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
837	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
838	/* 19 - 1280x720@50Hz 16:9 */
839	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
840		   1760, 1980, 0, 720, 725, 730, 750, 0,
841		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
842	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843	/* 20 - 1920x1080i@50Hz 16:9 */
844	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
845		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
846		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
847		   DRM_MODE_FLAG_INTERLACE),
848	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849	/* 21 - 720(1440)x576i@50Hz 4:3 */
850	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851		   795, 864, 0, 576, 580, 586, 625, 0,
852		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
855	/* 22 - 720(1440)x576i@50Hz 16:9 */
856	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857		   795, 864, 0, 576, 580, 586, 625, 0,
858		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
860	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
861	/* 23 - 720(1440)x288@50Hz 4:3 */
862	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863		   795, 864, 0, 288, 290, 293, 312, 0,
864		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865		   DRM_MODE_FLAG_DBLCLK),
866	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
867	/* 24 - 720(1440)x288@50Hz 16:9 */
868	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
869		   795, 864, 0, 288, 290, 293, 312, 0,
870		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871		   DRM_MODE_FLAG_DBLCLK),
872	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873	/* 25 - 2880x576i@50Hz 4:3 */
874	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875		   3180, 3456, 0, 576, 580, 586, 625, 0,
876		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877		   DRM_MODE_FLAG_INTERLACE),
878	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879	/* 26 - 2880x576i@50Hz 16:9 */
880	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881		   3180, 3456, 0, 576, 580, 586, 625, 0,
882		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
883		   DRM_MODE_FLAG_INTERLACE),
884	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885	/* 27 - 2880x288@50Hz 4:3 */
886	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
887		   3180, 3456, 0, 288, 290, 293, 312, 0,
888		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
890	/* 28 - 2880x288@50Hz 16:9 */
891	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
892		   3180, 3456, 0, 288, 290, 293, 312, 0,
893		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895	/* 29 - 1440x576@50Hz 4:3 */
896	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
897		   1592, 1728, 0, 576, 581, 586, 625, 0,
898		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
899	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
900	/* 30 - 1440x576@50Hz 16:9 */
901	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
902		   1592, 1728, 0, 576, 581, 586, 625, 0,
903		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
904	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
905	/* 31 - 1920x1080@50Hz 16:9 */
906	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
907		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
908		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
909	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
910	/* 32 - 1920x1080@24Hz 16:9 */
911	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
912		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
913		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
914	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
915	/* 33 - 1920x1080@25Hz 16:9 */
916	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
917		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
918		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
919	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
920	/* 34 - 1920x1080@30Hz 16:9 */
921	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
922		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
923		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
924	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
925	/* 35 - 2880x480@60Hz 4:3 */
926	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
927		   3192, 3432, 0, 480, 489, 495, 525, 0,
928		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
929	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
930	/* 36 - 2880x480@60Hz 16:9 */
931	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
932		   3192, 3432, 0, 480, 489, 495, 525, 0,
933		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
934	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
935	/* 37 - 2880x576@50Hz 4:3 */
936	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
937		   3184, 3456, 0, 576, 581, 586, 625, 0,
938		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
939	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
940	/* 38 - 2880x576@50Hz 16:9 */
941	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
942		   3184, 3456, 0, 576, 581, 586, 625, 0,
943		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945	/* 39 - 1920x1080i@50Hz 16:9 */
946	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
947		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
948		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
949		   DRM_MODE_FLAG_INTERLACE),
950	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951	/* 40 - 1920x1080i@100Hz 16:9 */
952	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
953		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
954		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
955		   DRM_MODE_FLAG_INTERLACE),
956	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
957	/* 41 - 1280x720@100Hz 16:9 */
958	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
959		   1760, 1980, 0, 720, 725, 730, 750, 0,
960		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
961	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962	/* 42 - 720x576@100Hz 4:3 */
963	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
964		   796, 864, 0, 576, 581, 586, 625, 0,
965		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
966	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
967	/* 43 - 720x576@100Hz 16:9 */
968	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
969		   796, 864, 0, 576, 581, 586, 625, 0,
970		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
971	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972	/* 44 - 720(1440)x576i@100Hz 4:3 */
973	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974		   795, 864, 0, 576, 580, 586, 625, 0,
975		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
978	/* 45 - 720(1440)x576i@100Hz 16:9 */
979	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
980		   795, 864, 0, 576, 580, 586, 625, 0,
981		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
982		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
983	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984	/* 46 - 1920x1080i@120Hz 16:9 */
985	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
986		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
987		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
988		   DRM_MODE_FLAG_INTERLACE),
989	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990	/* 47 - 1280x720@120Hz 16:9 */
991	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
992		   1430, 1650, 0, 720, 725, 730, 750, 0,
993		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
994	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995	/* 48 - 720x480@120Hz 4:3 */
996	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
997		   798, 858, 0, 480, 489, 495, 525, 0,
998		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
999	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000	/* 49 - 720x480@120Hz 16:9 */
1001	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002		   798, 858, 0, 480, 489, 495, 525, 0,
1003		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005	/* 50 - 720(1440)x480i@120Hz 4:3 */
1006	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007		   801, 858, 0, 480, 488, 494, 525, 0,
1008		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011	/* 51 - 720(1440)x480i@120Hz 16:9 */
1012	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013		   801, 858, 0, 480, 488, 494, 525, 0,
1014		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017	/* 52 - 720x576@200Hz 4:3 */
1018	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019		   796, 864, 0, 576, 581, 586, 625, 0,
1020		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022	/* 53 - 720x576@200Hz 16:9 */
1023	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024		   796, 864, 0, 576, 581, 586, 625, 0,
1025		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027	/* 54 - 720(1440)x576i@200Hz 4:3 */
1028	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029		   795, 864, 0, 576, 580, 586, 625, 0,
1030		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033	/* 55 - 720(1440)x576i@200Hz 16:9 */
1034	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035		   795, 864, 0, 576, 580, 586, 625, 0,
1036		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039	/* 56 - 720x480@240Hz 4:3 */
1040	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041		   798, 858, 0, 480, 489, 495, 525, 0,
1042		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044	/* 57 - 720x480@240Hz 16:9 */
1045	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046		   798, 858, 0, 480, 489, 495, 525, 0,
1047		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049	/* 58 - 720(1440)x480i@240Hz 4:3 */
1050	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051		   801, 858, 0, 480, 488, 494, 525, 0,
1052		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055	/* 59 - 720(1440)x480i@240Hz 16:9 */
1056	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057		   801, 858, 0, 480, 488, 494, 525, 0,
1058		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061	/* 60 - 1280x720@24Hz 16:9 */
1062	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063		   3080, 3300, 0, 720, 725, 730, 750, 0,
1064		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066	/* 61 - 1280x720@25Hz 16:9 */
1067	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068		   3740, 3960, 0, 720, 725, 730, 750, 0,
1069		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071	/* 62 - 1280x720@30Hz 16:9 */
1072	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073		   3080, 3300, 0, 720, 725, 730, 750, 0,
1074		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076	/* 63 - 1920x1080@120Hz 16:9 */
1077	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081	/* 64 - 1920x1080@100Hz 16:9 */
1082	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086	/* 65 - 1280x720@24Hz 64:27 */
1087	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088		   3080, 3300, 0, 720, 725, 730, 750, 0,
1089		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091	/* 66 - 1280x720@25Hz 64:27 */
1092	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093		   3740, 3960, 0, 720, 725, 730, 750, 0,
1094		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096	/* 67 - 1280x720@30Hz 64:27 */
1097	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098		   3080, 3300, 0, 720, 725, 730, 750, 0,
1099		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101	/* 68 - 1280x720@50Hz 64:27 */
1102	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103		   1760, 1980, 0, 720, 725, 730, 750, 0,
1104		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106	/* 69 - 1280x720@60Hz 64:27 */
1107	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108		   1430, 1650, 0, 720, 725, 730, 750, 0,
1109		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111	/* 70 - 1280x720@100Hz 64:27 */
1112	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113		   1760, 1980, 0, 720, 725, 730, 750, 0,
1114		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116	/* 71 - 1280x720@120Hz 64:27 */
1117	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118		   1430, 1650, 0, 720, 725, 730, 750, 0,
1119		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121	/* 72 - 1920x1080@24Hz 64:27 */
1122	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126	/* 73 - 1920x1080@25Hz 64:27 */
1127	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131	/* 74 - 1920x1080@30Hz 64:27 */
1132	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136	/* 75 - 1920x1080@50Hz 64:27 */
1137	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141	/* 76 - 1920x1080@60Hz 64:27 */
1142	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146	/* 77 - 1920x1080@100Hz 64:27 */
1147	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151	/* 78 - 1920x1080@120Hz 64:27 */
1152	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156	/* 79 - 1680x720@24Hz 64:27 */
1157	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158		   3080, 3300, 0, 720, 725, 730, 750, 0,
1159		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161	/* 80 - 1680x720@25Hz 64:27 */
1162	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163		   2948, 3168, 0, 720, 725, 730, 750, 0,
1164		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166	/* 81 - 1680x720@30Hz 64:27 */
1167	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168		   2420, 2640, 0, 720, 725, 730, 750, 0,
1169		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171	/* 82 - 1680x720@50Hz 64:27 */
1172	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173		   1980, 2200, 0, 720, 725, 730, 750, 0,
1174		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176	/* 83 - 1680x720@60Hz 64:27 */
1177	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178		   1980, 2200, 0, 720, 725, 730, 750, 0,
1179		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181	/* 84 - 1680x720@100Hz 64:27 */
1182	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183		   1780, 2000, 0, 720, 725, 730, 825, 0,
1184		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186	/* 85 - 1680x720@120Hz 64:27 */
1187	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188		   1780, 2000, 0, 720, 725, 730, 825, 0,
1189		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191	/* 86 - 2560x1080@24Hz 64:27 */
1192	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196	/* 87 - 2560x1080@25Hz 64:27 */
1197	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201	/* 88 - 2560x1080@30Hz 64:27 */
1202	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206	/* 89 - 2560x1080@50Hz 64:27 */
1207	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211	/* 90 - 2560x1080@60Hz 64:27 */
1212	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216	/* 91 - 2560x1080@100Hz 64:27 */
1217	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221	/* 92 - 2560x1080@120Hz 64:27 */
1222	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226	/* 93 - 3840x2160@24Hz 16:9 */
1227	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231	/* 94 - 3840x2160@25Hz 16:9 */
1232	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236	/* 95 - 3840x2160@30Hz 16:9 */
1237	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241	/* 96 - 3840x2160@50Hz 16:9 */
1242	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246	/* 97 - 3840x2160@60Hz 16:9 */
1247	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251	/* 98 - 4096x2160@24Hz 256:135 */
1252	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256	/* 99 - 4096x2160@25Hz 256:135 */
1257	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261	/* 100 - 4096x2160@30Hz 256:135 */
1262	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266	/* 101 - 4096x2160@50Hz 256:135 */
1267	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271	/* 102 - 4096x2160@60Hz 256:135 */
1272	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276	/* 103 - 3840x2160@24Hz 64:27 */
1277	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281	/* 104 - 3840x2160@25Hz 64:27 */
1282	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286	/* 105 - 3840x2160@30Hz 64:27 */
1287	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291	/* 106 - 3840x2160@50Hz 64:27 */
1292	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296	/* 107 - 3840x2160@60Hz 64:27 */
1297	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301	/* 108 - 1280x720@48Hz 16:9 */
1302	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303		   2280, 2500, 0, 720, 725, 730, 750, 0,
1304		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306	/* 109 - 1280x720@48Hz 64:27 */
1307	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308		   2280, 2500, 0, 720, 725, 730, 750, 0,
1309		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311	/* 110 - 1680x720@48Hz 64:27 */
1312	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313		   2530, 2750, 0, 720, 725, 730, 750, 0,
1314		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316	/* 111 - 1920x1080@48Hz 16:9 */
1317	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321	/* 112 - 1920x1080@48Hz 64:27 */
1322	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326	/* 113 - 2560x1080@48Hz 64:27 */
1327	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331	/* 114 - 3840x2160@48Hz 16:9 */
1332	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336	/* 115 - 4096x2160@48Hz 256:135 */
1337	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341	/* 116 - 3840x2160@48Hz 64:27 */
1342	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346	/* 117 - 3840x2160@100Hz 16:9 */
1347	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351	/* 118 - 3840x2160@120Hz 16:9 */
1352	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356	/* 119 - 3840x2160@100Hz 64:27 */
1357	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361	/* 120 - 3840x2160@120Hz 64:27 */
1362	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366	/* 121 - 5120x2160@24Hz 64:27 */
1367	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371	/* 122 - 5120x2160@25Hz 64:27 */
1372	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376	/* 123 - 5120x2160@30Hz 64:27 */
1377	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381	/* 124 - 5120x2160@48Hz 64:27 */
1382	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386	/* 125 - 5120x2160@50Hz 64:27 */
1387	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391	/* 126 - 5120x2160@60Hz 64:27 */
1392	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396	/* 127 - 5120x2160@100Hz 64:27 */
1397	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1401};
1402
1403/*
1404 * From CEA/CTA-861 spec.
1405 *
1406 * Do not access directly, instead always use cea_mode_for_vic().
1407 */
1408static const struct drm_display_mode edid_cea_modes_193[] = {
1409	/* 193 - 5120x2160@120Hz 64:27 */
1410	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414	/* 194 - 7680x4320@24Hz 16:9 */
1415	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419	/* 195 - 7680x4320@25Hz 16:9 */
1420	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424	/* 196 - 7680x4320@30Hz 16:9 */
1425	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429	/* 197 - 7680x4320@48Hz 16:9 */
1430	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434	/* 198 - 7680x4320@50Hz 16:9 */
1435	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439	/* 199 - 7680x4320@60Hz 16:9 */
1440	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444	/* 200 - 7680x4320@100Hz 16:9 */
1445	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449	/* 201 - 7680x4320@120Hz 16:9 */
1450	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454	/* 202 - 7680x4320@24Hz 64:27 */
1455	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459	/* 203 - 7680x4320@25Hz 64:27 */
1460	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464	/* 204 - 7680x4320@30Hz 64:27 */
1465	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469	/* 205 - 7680x4320@48Hz 64:27 */
1470	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474	/* 206 - 7680x4320@50Hz 64:27 */
1475	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479	/* 207 - 7680x4320@60Hz 64:27 */
1480	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484	/* 208 - 7680x4320@100Hz 64:27 */
1485	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489	/* 209 - 7680x4320@120Hz 64:27 */
1490	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494	/* 210 - 10240x4320@24Hz 64:27 */
1495	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499	/* 211 - 10240x4320@25Hz 64:27 */
1500	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504	/* 212 - 10240x4320@30Hz 64:27 */
1505	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509	/* 213 - 10240x4320@48Hz 64:27 */
1510	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514	/* 214 - 10240x4320@50Hz 64:27 */
1515	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519	/* 215 - 10240x4320@60Hz 64:27 */
1520	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524	/* 216 - 10240x4320@100Hz 64:27 */
1525	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529	/* 217 - 10240x4320@120Hz 64:27 */
1530	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534	/* 218 - 4096x2160@100Hz 256:135 */
1535	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539	/* 219 - 4096x2160@120Hz 256:135 */
1540	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1544};
1545
1546/*
1547 * HDMI 1.4 4k modes. Index using the VIC.
1548 */
1549static const struct drm_display_mode edid_4k_modes[] = {
1550	/* 0 - dummy, VICs start at 1 */
1551	{ },
1552	/* 1 - 3840x2160@30Hz */
1553	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554		   3840, 4016, 4104, 4400, 0,
1555		   2160, 2168, 2178, 2250, 0,
1556		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558	/* 2 - 3840x2160@25Hz */
1559	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560		   3840, 4896, 4984, 5280, 0,
1561		   2160, 2168, 2178, 2250, 0,
1562		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564	/* 3 - 3840x2160@24Hz */
1565	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566		   3840, 5116, 5204, 5500, 0,
1567		   2160, 2168, 2178, 2250, 0,
1568		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570	/* 4 - 4096x2160@24Hz (SMPTE) */
1571	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572		   4096, 5116, 5204, 5500, 0,
1573		   2160, 2168, 2178, 2250, 0,
1574		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1576};
1577
1578/*** DDC fetch and block validation ***/
1579
1580/*
1581 * The opaque EDID type, internal to drm_edid.c.
1582 */
1583struct drm_edid {
1584	/* Size allocated for edid */
1585	size_t size;
1586	const struct edid *edid;
1587};
1588
1589static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1590
1591static int edid_hfeeodb_block_count(const struct edid *edid)
1592{
1593	int eeodb = edid_hfeeodb_extension_block_count(edid);
1594
1595	return eeodb ? eeodb + 1 : 0;
1596}
1597
1598static int edid_extension_block_count(const struct edid *edid)
1599{
1600	return edid->extensions;
1601}
1602
1603static int edid_block_count(const struct edid *edid)
1604{
1605	return edid_extension_block_count(edid) + 1;
1606}
1607
1608static int edid_size_by_blocks(int num_blocks)
1609{
1610	return num_blocks * EDID_LENGTH;
1611}
1612
1613static int edid_size(const struct edid *edid)
1614{
1615	return edid_size_by_blocks(edid_block_count(edid));
1616}
1617
1618static const void *edid_block_data(const struct edid *edid, int index)
1619{
1620	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1621
1622	return edid + index;
1623}
1624
1625static const void *edid_extension_block_data(const struct edid *edid, int index)
1626{
1627	return edid_block_data(edid, index + 1);
1628}
1629
1630/* EDID block count indicated in EDID, may exceed allocated size */
1631static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1632{
1633	int num_blocks;
1634
1635	/* Starting point */
1636	num_blocks = edid_block_count(drm_edid->edid);
1637
1638	/* HF-EEODB override */
1639	if (drm_edid->size >= edid_size_by_blocks(2)) {
1640		int eeodb;
1641
1642		/*
1643		 * Note: HF-EEODB may specify a smaller extension count than the
1644		 * regular one. Unlike in buffer allocation, here we can use it.
1645		 */
1646		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1647		if (eeodb)
1648			num_blocks = eeodb;
1649	}
1650
1651	return num_blocks;
1652}
1653
1654/* EDID block count, limited by allocated size */
1655static int drm_edid_block_count(const struct drm_edid *drm_edid)
1656{
1657	/* Limit by allocated size */
1658	return min(__drm_edid_block_count(drm_edid),
1659		   (int)drm_edid->size / EDID_LENGTH);
1660}
1661
1662/* EDID extension block count, limited by allocated size */
1663static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1664{
1665	return drm_edid_block_count(drm_edid) - 1;
1666}
1667
1668static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1669{
1670	return edid_block_data(drm_edid->edid, index);
1671}
1672
1673static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1674						 int index)
1675{
1676	return edid_extension_block_data(drm_edid->edid, index);
1677}
1678
1679/*
1680 * Initializer helper for legacy interfaces, where we have no choice but to
1681 * trust edid size. Not for general purpose use.
1682 */
1683static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684						   const struct edid *edid)
1685{
1686	if (!edid)
1687		return NULL;
1688
1689	memset(drm_edid, 0, sizeof(*drm_edid));
1690
1691	drm_edid->edid = edid;
1692	drm_edid->size = edid_size(edid);
1693
1694	return drm_edid;
1695}
1696
1697/*
1698 * EDID base and extension block iterator.
1699 *
1700 * struct drm_edid_iter iter;
1701 * const u8 *block;
1702 *
1703 * drm_edid_iter_begin(drm_edid, &iter);
1704 * drm_edid_iter_for_each(block, &iter) {
1705 *         // do stuff with block
1706 * }
1707 * drm_edid_iter_end(&iter);
1708 */
1709struct drm_edid_iter {
1710	const struct drm_edid *drm_edid;
1711
1712	/* Current block index. */
1713	int index;
1714};
1715
1716static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717				struct drm_edid_iter *iter)
1718{
1719	memset(iter, 0, sizeof(*iter));
1720
1721	iter->drm_edid = drm_edid;
1722}
1723
1724static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1725{
1726	const void *block = NULL;
1727
1728	if (!iter->drm_edid)
1729		return NULL;
1730
1731	if (iter->index < drm_edid_block_count(iter->drm_edid))
1732		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1733
1734	return block;
1735}
1736
1737#define drm_edid_iter_for_each(__block, __iter)			\
1738	while (((__block) = __drm_edid_iter_next(__iter)))
1739
1740static void drm_edid_iter_end(struct drm_edid_iter *iter)
1741{
1742	memset(iter, 0, sizeof(*iter));
1743}
1744
1745static const u8 edid_header[] = {
1746	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1747};
1748
1749static void edid_header_fix(void *edid)
1750{
1751	memcpy(edid, edid_header, sizeof(edid_header));
1752}
1753
1754/**
1755 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756 * @_edid: pointer to raw base EDID block
1757 *
1758 * Sanity check the header of the base EDID block.
1759 *
1760 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1761 */
1762int drm_edid_header_is_valid(const void *_edid)
1763{
1764	const struct edid *edid = _edid;
1765	int i, score = 0;
1766
1767	for (i = 0; i < sizeof(edid_header); i++) {
1768		if (edid->header[i] == edid_header[i])
1769			score++;
1770	}
1771
1772	return score;
1773}
1774EXPORT_SYMBOL(drm_edid_header_is_valid);
1775
1776static int edid_fixup __read_mostly = 6;
1777module_param_named(edid_fixup, edid_fixup, int, 0400);
1778MODULE_PARM_DESC(edid_fixup,
1779		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1780
1781static int edid_block_compute_checksum(const void *_block)
1782{
1783	const u8 *block = _block;
1784	int i;
1785	u8 csum = 0, crc = 0;
1786
1787	for (i = 0; i < EDID_LENGTH - 1; i++)
1788		csum += block[i];
1789
1790	crc = 0x100 - csum;
1791
1792	return crc;
1793}
1794
1795static int edid_block_get_checksum(const void *_block)
1796{
1797	const struct edid *block = _block;
1798
1799	return block->checksum;
1800}
1801
1802static int edid_block_tag(const void *_block)
1803{
1804	const u8 *block = _block;
1805
1806	return block[0];
1807}
1808
1809static bool edid_block_is_zero(const void *edid)
1810{
1811	return !memchr_inv(edid, 0, EDID_LENGTH);
1812}
1813
1814/**
1815 * drm_edid_are_equal - compare two edid blobs.
1816 * @edid1: pointer to first blob
1817 * @edid2: pointer to second blob
1818 * This helper can be used during probing to determine if
1819 * edid had changed.
1820 */
1821bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1822{
1823	int edid1_len, edid2_len;
1824	bool edid1_present = edid1 != NULL;
1825	bool edid2_present = edid2 != NULL;
1826
1827	if (edid1_present != edid2_present)
1828		return false;
1829
1830	if (edid1) {
1831		edid1_len = edid_size(edid1);
1832		edid2_len = edid_size(edid2);
1833
1834		if (edid1_len != edid2_len)
1835			return false;
1836
1837		if (memcmp(edid1, edid2, edid1_len))
1838			return false;
1839	}
1840
1841	return true;
1842}
1843EXPORT_SYMBOL(drm_edid_are_equal);
1844
1845enum edid_block_status {
1846	EDID_BLOCK_OK = 0,
1847	EDID_BLOCK_READ_FAIL,
1848	EDID_BLOCK_NULL,
1849	EDID_BLOCK_ZERO,
1850	EDID_BLOCK_HEADER_CORRUPT,
1851	EDID_BLOCK_HEADER_REPAIR,
1852	EDID_BLOCK_HEADER_FIXED,
1853	EDID_BLOCK_CHECKSUM,
1854	EDID_BLOCK_VERSION,
1855};
1856
1857static enum edid_block_status edid_block_check(const void *_block,
1858					       bool is_base_block)
1859{
1860	const struct edid *block = _block;
1861
1862	if (!block)
1863		return EDID_BLOCK_NULL;
1864
1865	if (is_base_block) {
1866		int score = drm_edid_header_is_valid(block);
1867
1868		if (score < clamp(edid_fixup, 0, 8)) {
1869			if (edid_block_is_zero(block))
1870				return EDID_BLOCK_ZERO;
1871			else
1872				return EDID_BLOCK_HEADER_CORRUPT;
1873		}
1874
1875		if (score < 8)
1876			return EDID_BLOCK_HEADER_REPAIR;
1877	}
1878
1879	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880		if (edid_block_is_zero(block))
1881			return EDID_BLOCK_ZERO;
1882		else
1883			return EDID_BLOCK_CHECKSUM;
1884	}
1885
1886	if (is_base_block) {
1887		if (block->version != 1)
1888			return EDID_BLOCK_VERSION;
1889	}
1890
1891	return EDID_BLOCK_OK;
1892}
1893
1894static bool edid_block_status_valid(enum edid_block_status status, int tag)
1895{
1896	return status == EDID_BLOCK_OK ||
1897		status == EDID_BLOCK_HEADER_FIXED ||
1898		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1899}
1900
1901static bool edid_block_valid(const void *block, bool base)
1902{
1903	return edid_block_status_valid(edid_block_check(block, base),
1904				       edid_block_tag(block));
1905}
1906
1907static void edid_block_status_print(enum edid_block_status status,
1908				    const struct edid *block,
1909				    int block_num)
1910{
1911	switch (status) {
1912	case EDID_BLOCK_OK:
1913		break;
1914	case EDID_BLOCK_READ_FAIL:
1915		pr_debug("EDID block %d read failed\n", block_num);
1916		break;
1917	case EDID_BLOCK_NULL:
1918		pr_debug("EDID block %d pointer is NULL\n", block_num);
1919		break;
1920	case EDID_BLOCK_ZERO:
1921		pr_notice("EDID block %d is all zeroes\n", block_num);
1922		break;
1923	case EDID_BLOCK_HEADER_CORRUPT:
1924		pr_notice("EDID has corrupt header\n");
1925		break;
1926	case EDID_BLOCK_HEADER_REPAIR:
1927		pr_debug("EDID corrupt header needs repair\n");
1928		break;
1929	case EDID_BLOCK_HEADER_FIXED:
1930		pr_debug("EDID corrupt header fixed\n");
1931		break;
1932	case EDID_BLOCK_CHECKSUM:
1933		if (edid_block_status_valid(status, edid_block_tag(block))) {
1934			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935				 block_num, edid_block_tag(block),
1936				 edid_block_compute_checksum(block));
1937		} else {
1938			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939				  block_num, edid_block_tag(block),
1940				  edid_block_compute_checksum(block));
1941		}
1942		break;
1943	case EDID_BLOCK_VERSION:
1944		pr_notice("EDID has major version %d, instead of 1\n",
1945			  block->version);
1946		break;
1947	default:
1948		WARN(1, "EDID block %d unknown edid block status code %d\n",
1949		     block_num, status);
1950		break;
1951	}
1952}
1953
1954static void edid_block_dump(const char *level, const void *block, int block_num)
1955{
1956	enum edid_block_status status;
1957	char prefix[20];
1958
1959	status = edid_block_check(block, block_num == 0);
1960	if (status == EDID_BLOCK_ZERO)
1961		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1964	else
1965		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1966
1967	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968		       block, EDID_LENGTH, false);
1969}
1970
1971/**
1972 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973 * @_block: pointer to raw EDID block
1974 * @block_num: type of block to validate (0 for base, extension otherwise)
1975 * @print_bad_edid: if true, dump bad EDID blocks to the console
1976 * @edid_corrupt: if true, the header or checksum is invalid
1977 *
1978 * Validate a base or extension EDID block and optionally dump bad blocks to
1979 * the console.
1980 *
1981 * Return: True if the block is valid, false otherwise.
1982 */
1983bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1984			  bool *edid_corrupt)
1985{
1986	struct edid *block = (struct edid *)_block;
1987	enum edid_block_status status;
1988	bool is_base_block = block_num == 0;
1989	bool valid;
1990
1991	if (WARN_ON(!block))
1992		return false;
1993
1994	status = edid_block_check(block, is_base_block);
1995	if (status == EDID_BLOCK_HEADER_REPAIR) {
1996		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997		edid_header_fix(block);
1998
1999		/* Retry with fixed header, update status if that worked. */
2000		status = edid_block_check(block, is_base_block);
2001		if (status == EDID_BLOCK_OK)
2002			status = EDID_BLOCK_HEADER_FIXED;
2003	}
2004
2005	if (edid_corrupt) {
2006		/*
2007		 * Unknown major version isn't corrupt but we can't use it. Only
2008		 * the base block can reset edid_corrupt to false.
2009		 */
2010		if (is_base_block &&
2011		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012			*edid_corrupt = false;
2013		else if (status != EDID_BLOCK_OK)
2014			*edid_corrupt = true;
2015	}
2016
2017	edid_block_status_print(status, block, block_num);
2018
2019	/* Determine whether we can use this block with this status. */
2020	valid = edid_block_status_valid(status, edid_block_tag(block));
2021
2022	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023		pr_notice("Raw EDID:\n");
2024		edid_block_dump(KERN_NOTICE, block, block_num);
2025	}
2026
2027	return valid;
2028}
2029EXPORT_SYMBOL(drm_edid_block_valid);
2030
2031/**
2032 * drm_edid_is_valid - sanity check EDID data
2033 * @edid: EDID data
2034 *
2035 * Sanity-check an entire EDID record (including extensions)
2036 *
2037 * Return: True if the EDID data is valid, false otherwise.
2038 */
2039bool drm_edid_is_valid(struct edid *edid)
2040{
2041	int i;
2042
2043	if (!edid)
2044		return false;
2045
2046	for (i = 0; i < edid_block_count(edid); i++) {
2047		void *block = (void *)edid_block_data(edid, i);
2048
2049		if (!drm_edid_block_valid(block, i, true, NULL))
2050			return false;
2051	}
2052
2053	return true;
2054}
2055EXPORT_SYMBOL(drm_edid_is_valid);
2056
2057/**
2058 * drm_edid_valid - sanity check EDID data
2059 * @drm_edid: EDID data
2060 *
2061 * Sanity check an EDID. Cross check block count against allocated size and
2062 * checksum the blocks.
2063 *
2064 * Return: True if the EDID data is valid, false otherwise.
2065 */
2066bool drm_edid_valid(const struct drm_edid *drm_edid)
2067{
2068	int i;
2069
2070	if (!drm_edid)
2071		return false;
2072
2073	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2074		return false;
2075
2076	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077		const void *block = drm_edid_block_data(drm_edid, i);
2078
2079		if (!edid_block_valid(block, i == 0))
2080			return false;
2081	}
2082
2083	return true;
2084}
2085EXPORT_SYMBOL(drm_edid_valid);
2086
2087static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2088					       size_t *alloc_size)
2089{
2090	struct edid *new;
2091	int i, valid_blocks = 0;
2092
2093	/*
2094	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095	 * back to regular extension count here. We don't want to start
2096	 * modifying the HF-EEODB extension too.
2097	 */
2098	for (i = 0; i < edid_block_count(edid); i++) {
2099		const void *src_block = edid_block_data(edid, i);
2100
2101		if (edid_block_valid(src_block, i == 0)) {
2102			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2103
2104			memmove(dst_block, src_block, EDID_LENGTH);
2105			valid_blocks++;
2106		}
2107	}
2108
2109	/* We already trusted the base block to be valid here... */
2110	if (WARN_ON(!valid_blocks)) {
2111		kfree(edid);
2112		return NULL;
2113	}
2114
2115	edid->extensions = valid_blocks - 1;
2116	edid->checksum = edid_block_compute_checksum(edid);
2117
2118	*alloc_size = edid_size_by_blocks(valid_blocks);
2119
2120	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121	if (!new)
2122		kfree(edid);
2123
2124	return new;
2125}
2126
2127#define DDC_SEGMENT_ADDR 0x30
2128/**
2129 * drm_do_probe_ddc_edid() - get EDID information via I2C
2130 * @data: I2C device adapter
2131 * @buf: EDID data buffer to be filled
2132 * @block: 128 byte EDID block to start fetching from
2133 * @len: EDID data buffer length to fetch
2134 *
2135 * Try to fetch EDID information by calling I2C driver functions.
2136 *
2137 * Return: 0 on success or -1 on failure.
2138 */
2139static int
2140drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2141{
2142	struct i2c_adapter *adapter = data;
2143	unsigned char start = block * EDID_LENGTH;
2144	unsigned char segment = block >> 1;
2145	unsigned char xfers = segment ? 3 : 2;
2146	int ret, retries = 5;
2147
2148	/*
2149	 * The core I2C driver will automatically retry the transfer if the
2150	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151	 * are susceptible to errors under a heavily loaded machine and
2152	 * generate spurious NAKs and timeouts. Retrying the transfer
2153	 * of the individual block a few times seems to overcome this.
2154	 */
2155	do {
2156		struct i2c_msg msgs[] = {
2157			{
2158				.addr	= DDC_SEGMENT_ADDR,
2159				.flags	= 0,
2160				.len	= 1,
2161				.buf	= &segment,
2162			}, {
2163				.addr	= DDC_ADDR,
2164				.flags	= 0,
2165				.len	= 1,
2166				.buf	= &start,
2167			}, {
2168				.addr	= DDC_ADDR,
2169				.flags	= I2C_M_RD,
2170				.len	= len,
2171				.buf	= buf,
2172			}
2173		};
2174
2175		/*
2176		 * Avoid sending the segment addr to not upset non-compliant
2177		 * DDC monitors.
2178		 */
2179		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2180
2181		if (ret == -ENXIO) {
2182			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2183					adapter->name);
2184			break;
2185		}
2186	} while (ret != xfers && --retries);
2187
2188	return ret == xfers ? 0 : -1;
2189}
2190
2191static void connector_bad_edid(struct drm_connector *connector,
2192			       const struct edid *edid, int num_blocks)
2193{
2194	int i;
2195	u8 last_block;
2196
2197	/*
2198	 * 0x7e in the EDID is the number of extension blocks. The EDID
2199	 * is 1 (base block) + num_ext_blocks big. That means we can think
2200	 * of 0x7e in the EDID of the _index_ of the last block in the
2201	 * combined chunk of memory.
2202	 */
2203	last_block = edid->extensions;
2204
2205	/* Calculate real checksum for the last edid extension block data */
2206	if (last_block < num_blocks)
2207		connector->real_edid_checksum =
2208			edid_block_compute_checksum(edid + last_block);
2209
2210	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2211		return;
2212
2213	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214		    connector->base.id, connector->name);
2215	for (i = 0; i < num_blocks; i++)
2216		edid_block_dump(KERN_DEBUG, edid + i, i);
2217}
2218
2219/* Get override or firmware EDID */
2220static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2221{
2222	const struct drm_edid *override = NULL;
2223
2224	mutex_lock(&connector->edid_override_mutex);
2225
2226	if (connector->edid_override)
2227		override = drm_edid_dup(connector->edid_override);
2228
2229	mutex_unlock(&connector->edid_override_mutex);
2230
2231	if (!override)
2232		override = drm_edid_load_firmware(connector);
2233
2234	return IS_ERR(override) ? NULL : override;
2235}
2236
2237/* For debugfs edid_override implementation */
2238int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2239{
2240	const struct drm_edid *drm_edid;
2241
2242	mutex_lock(&connector->edid_override_mutex);
2243
2244	drm_edid = connector->edid_override;
2245	if (drm_edid)
2246		seq_write(m, drm_edid->edid, drm_edid->size);
2247
2248	mutex_unlock(&connector->edid_override_mutex);
2249
2250	return 0;
2251}
2252
2253/* For debugfs edid_override implementation */
2254int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2255			  size_t size)
2256{
2257	const struct drm_edid *drm_edid;
2258
2259	drm_edid = drm_edid_alloc(edid, size);
2260	if (!drm_edid_valid(drm_edid)) {
2261		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262			    connector->base.id, connector->name);
2263		drm_edid_free(drm_edid);
2264		return -EINVAL;
2265	}
2266
2267	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268		    connector->base.id, connector->name);
2269
2270	mutex_lock(&connector->edid_override_mutex);
2271
2272	drm_edid_free(connector->edid_override);
2273	connector->edid_override = drm_edid;
2274
2275	mutex_unlock(&connector->edid_override_mutex);
2276
2277	return 0;
2278}
2279
2280/* For debugfs edid_override implementation */
2281int drm_edid_override_reset(struct drm_connector *connector)
2282{
2283	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284		    connector->base.id, connector->name);
2285
2286	mutex_lock(&connector->edid_override_mutex);
2287
2288	drm_edid_free(connector->edid_override);
2289	connector->edid_override = NULL;
2290
2291	mutex_unlock(&connector->edid_override_mutex);
2292
2293	return 0;
2294}
2295
2296/**
2297 * drm_edid_override_connector_update - add modes from override/firmware EDID
2298 * @connector: connector we're probing
2299 *
2300 * Add modes from the override/firmware EDID, if available. Only to be used from
2301 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302 * failed during drm_get_edid() and caused the override/firmware EDID to be
2303 * skipped.
2304 *
2305 * Return: The number of modes added or 0 if we couldn't find any.
2306 */
2307int drm_edid_override_connector_update(struct drm_connector *connector)
2308{
2309	const struct drm_edid *override;
2310	int num_modes = 0;
2311
2312	override = drm_edid_override_get(connector);
2313	if (override) {
2314		if (drm_edid_connector_update(connector, override) == 0)
2315			num_modes = drm_edid_connector_add_modes(connector);
2316
2317		drm_edid_free(override);
2318
2319		drm_dbg_kms(connector->dev,
2320			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2321			    connector->base.id, connector->name, num_modes);
2322	}
2323
2324	return num_modes;
2325}
2326EXPORT_SYMBOL(drm_edid_override_connector_update);
2327
2328typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2329
2330static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2331					      read_block_fn read_block,
2332					      void *context)
2333{
2334	enum edid_block_status status;
2335	bool is_base_block = block_num == 0;
2336	int try;
2337
2338	for (try = 0; try < 4; try++) {
2339		if (read_block(context, block, block_num, EDID_LENGTH))
2340			return EDID_BLOCK_READ_FAIL;
2341
2342		status = edid_block_check(block, is_base_block);
2343		if (status == EDID_BLOCK_HEADER_REPAIR) {
2344			edid_header_fix(block);
2345
2346			/* Retry with fixed header, update status if that worked. */
2347			status = edid_block_check(block, is_base_block);
2348			if (status == EDID_BLOCK_OK)
2349				status = EDID_BLOCK_HEADER_FIXED;
2350		}
2351
2352		if (edid_block_status_valid(status, edid_block_tag(block)))
2353			break;
2354
2355		/* Fail early for unrepairable base block all zeros. */
2356		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2357			break;
2358	}
2359
2360	return status;
2361}
2362
2363static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2364				     read_block_fn read_block, void *context,
2365				     size_t *size)
2366{
2367	enum edid_block_status status;
2368	int i, num_blocks, invalid_blocks = 0;
2369	const struct drm_edid *override;
2370	struct edid *edid, *new;
2371	size_t alloc_size = EDID_LENGTH;
2372
2373	override = drm_edid_override_get(connector);
2374	if (override) {
2375		alloc_size = override->size;
2376		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2377		drm_edid_free(override);
2378		if (!edid)
2379			return NULL;
2380		goto ok;
2381	}
2382
2383	edid = kmalloc(alloc_size, GFP_KERNEL);
2384	if (!edid)
2385		return NULL;
2386
2387	status = edid_block_read(edid, 0, read_block, context);
2388
2389	edid_block_status_print(status, edid, 0);
2390
2391	if (status == EDID_BLOCK_READ_FAIL)
2392		goto fail;
2393
2394	/* FIXME: Clarify what a corrupt EDID actually means. */
2395	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2396		connector->edid_corrupt = false;
2397	else
2398		connector->edid_corrupt = true;
2399
2400	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2401		if (status == EDID_BLOCK_ZERO)
2402			connector->null_edid_counter++;
2403
2404		connector_bad_edid(connector, edid, 1);
2405		goto fail;
2406	}
2407
2408	if (!edid_extension_block_count(edid))
2409		goto ok;
2410
2411	alloc_size = edid_size(edid);
2412	new = krealloc(edid, alloc_size, GFP_KERNEL);
2413	if (!new)
2414		goto fail;
2415	edid = new;
2416
2417	num_blocks = edid_block_count(edid);
2418	for (i = 1; i < num_blocks; i++) {
2419		void *block = (void *)edid_block_data(edid, i);
2420
2421		status = edid_block_read(block, i, read_block, context);
2422
2423		edid_block_status_print(status, block, i);
2424
2425		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2426			if (status == EDID_BLOCK_READ_FAIL)
2427				goto fail;
2428			invalid_blocks++;
2429		} else if (i == 1) {
2430			/*
2431			 * If the first EDID extension is a CTA extension, and
2432			 * the first Data Block is HF-EEODB, override the
2433			 * extension block count.
2434			 *
2435			 * Note: HF-EEODB could specify a smaller extension
2436			 * count too, but we can't risk allocating a smaller
2437			 * amount.
2438			 */
2439			int eeodb = edid_hfeeodb_block_count(edid);
2440
2441			if (eeodb > num_blocks) {
2442				num_blocks = eeodb;
2443				alloc_size = edid_size_by_blocks(num_blocks);
2444				new = krealloc(edid, alloc_size, GFP_KERNEL);
2445				if (!new)
2446					goto fail;
2447				edid = new;
2448			}
2449		}
2450	}
2451
2452	if (invalid_blocks) {
2453		connector_bad_edid(connector, edid, num_blocks);
2454
2455		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2456	}
2457
2458ok:
2459	if (size)
2460		*size = alloc_size;
2461
2462	return edid;
2463
2464fail:
2465	kfree(edid);
2466	return NULL;
2467}
2468
2469/**
2470 * drm_do_get_edid - get EDID data using a custom EDID block read function
2471 * @connector: connector we're probing
2472 * @read_block: EDID block read function
2473 * @context: private data passed to the block read function
2474 *
2475 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2476 * exposes a different interface to read EDID blocks this function can be used
2477 * to get EDID data using a custom block read function.
2478 *
2479 * As in the general case the DDC bus is accessible by the kernel at the I2C
2480 * level, drivers must make all reasonable efforts to expose it as an I2C
2481 * adapter and use drm_get_edid() instead of abusing this function.
2482 *
2483 * The EDID may be overridden using debugfs override_edid or firmware EDID
2484 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2485 * order. Having either of them bypasses actual EDID reads.
2486 *
2487 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2488 */
2489struct edid *drm_do_get_edid(struct drm_connector *connector,
2490			     read_block_fn read_block,
2491			     void *context)
2492{
2493	return _drm_do_get_edid(connector, read_block, context, NULL);
2494}
2495EXPORT_SYMBOL_GPL(drm_do_get_edid);
2496
2497/**
2498 * drm_edid_raw - Get a pointer to the raw EDID data.
2499 * @drm_edid: drm_edid container
2500 *
2501 * Get a pointer to the raw EDID data.
2502 *
2503 * This is for transition only. Avoid using this like the plague.
2504 *
2505 * Return: Pointer to raw EDID data.
2506 */
2507const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2508{
2509	if (!drm_edid || !drm_edid->size)
2510		return NULL;
2511
2512	/*
2513	 * Do not return pointers where relying on EDID extension count would
2514	 * lead to buffer overflow.
2515	 */
2516	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2517		return NULL;
2518
2519	return drm_edid->edid;
2520}
2521EXPORT_SYMBOL(drm_edid_raw);
2522
2523/* Allocate struct drm_edid container *without* duplicating the edid data */
2524static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2525{
2526	struct drm_edid *drm_edid;
2527
2528	if (!edid || !size || size < EDID_LENGTH)
2529		return NULL;
2530
2531	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2532	if (drm_edid) {
2533		drm_edid->edid = edid;
2534		drm_edid->size = size;
2535	}
2536
2537	return drm_edid;
2538}
2539
2540/**
2541 * drm_edid_alloc - Allocate a new drm_edid container
2542 * @edid: Pointer to raw EDID data
2543 * @size: Size of memory allocated for EDID
2544 *
2545 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2546 * the actual size that has been allocated for the data. There is no validation
2547 * of the raw EDID data against the size, but at least the EDID base block must
2548 * fit in the buffer.
2549 *
2550 * The returned pointer must be freed using drm_edid_free().
2551 *
2552 * Return: drm_edid container, or NULL on errors
2553 */
2554const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2555{
2556	const struct drm_edid *drm_edid;
2557
2558	if (!edid || !size || size < EDID_LENGTH)
2559		return NULL;
2560
2561	edid = kmemdup(edid, size, GFP_KERNEL);
2562	if (!edid)
2563		return NULL;
2564
2565	drm_edid = _drm_edid_alloc(edid, size);
2566	if (!drm_edid)
2567		kfree(edid);
2568
2569	return drm_edid;
2570}
2571EXPORT_SYMBOL(drm_edid_alloc);
2572
2573/**
2574 * drm_edid_dup - Duplicate a drm_edid container
2575 * @drm_edid: EDID to duplicate
2576 *
2577 * The returned pointer must be freed using drm_edid_free().
2578 *
2579 * Returns: drm_edid container copy, or NULL on errors
2580 */
2581const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2582{
2583	if (!drm_edid)
2584		return NULL;
2585
2586	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2587}
2588EXPORT_SYMBOL(drm_edid_dup);
2589
2590/**
2591 * drm_edid_free - Free the drm_edid container
2592 * @drm_edid: EDID to free
2593 */
2594void drm_edid_free(const struct drm_edid *drm_edid)
2595{
2596	if (!drm_edid)
2597		return;
2598
2599	kfree(drm_edid->edid);
2600	kfree(drm_edid);
2601}
2602EXPORT_SYMBOL(drm_edid_free);
2603
2604/**
2605 * drm_probe_ddc() - probe DDC presence
2606 * @adapter: I2C adapter to probe
2607 *
2608 * Return: True on success, false on failure.
2609 */
2610bool
2611drm_probe_ddc(struct i2c_adapter *adapter)
2612{
2613	unsigned char out;
2614
2615	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2616}
2617EXPORT_SYMBOL(drm_probe_ddc);
2618
2619/**
2620 * drm_get_edid - get EDID data, if available
2621 * @connector: connector we're probing
2622 * @adapter: I2C adapter to use for DDC
2623 *
2624 * Poke the given I2C channel to grab EDID data if possible.  If found,
2625 * attach it to the connector.
2626 *
2627 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2628 */
2629struct edid *drm_get_edid(struct drm_connector *connector,
2630			  struct i2c_adapter *adapter)
2631{
2632	struct edid *edid;
2633
2634	if (connector->force == DRM_FORCE_OFF)
2635		return NULL;
2636
2637	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2638		return NULL;
2639
2640	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2641	drm_connector_update_edid_property(connector, edid);
2642	return edid;
2643}
2644EXPORT_SYMBOL(drm_get_edid);
2645
2646/**
2647 * drm_edid_read_custom - Read EDID data using given EDID block read function
2648 * @connector: Connector to use
2649 * @read_block: EDID block read function
2650 * @context: Private data passed to the block read function
2651 *
2652 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2653 * exposes a different interface to read EDID blocks this function can be used
2654 * to get EDID data using a custom block read function.
2655 *
2656 * As in the general case the DDC bus is accessible by the kernel at the I2C
2657 * level, drivers must make all reasonable efforts to expose it as an I2C
2658 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2659 * this function.
2660 *
2661 * The EDID may be overridden using debugfs override_edid or firmware EDID
2662 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2663 * order. Having either of them bypasses actual EDID reads.
2664 *
2665 * The returned pointer must be freed using drm_edid_free().
2666 *
2667 * Return: Pointer to EDID, or NULL if probe/read failed.
2668 */
2669const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2670					    read_block_fn read_block,
2671					    void *context)
2672{
2673	const struct drm_edid *drm_edid;
2674	struct edid *edid;
2675	size_t size = 0;
2676
2677	edid = _drm_do_get_edid(connector, read_block, context, &size);
2678	if (!edid)
2679		return NULL;
2680
2681	/* Sanity check for now */
2682	drm_WARN_ON(connector->dev, !size);
2683
2684	drm_edid = _drm_edid_alloc(edid, size);
2685	if (!drm_edid)
2686		kfree(edid);
2687
2688	return drm_edid;
2689}
2690EXPORT_SYMBOL(drm_edid_read_custom);
2691
2692/**
2693 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2694 * @connector: Connector to use
2695 * @adapter: I2C adapter to use for DDC
2696 *
2697 * Read EDID using the given I2C adapter.
2698 *
2699 * The EDID may be overridden using debugfs override_edid or firmware EDID
2700 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2701 * order. Having either of them bypasses actual EDID reads.
2702 *
2703 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2704 * using drm_edid_read() instead of this function.
2705 *
2706 * The returned pointer must be freed using drm_edid_free().
2707 *
2708 * Return: Pointer to EDID, or NULL if probe/read failed.
2709 */
2710const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2711					 struct i2c_adapter *adapter)
2712{
2713	const struct drm_edid *drm_edid;
2714
2715	if (connector->force == DRM_FORCE_OFF)
2716		return NULL;
2717
2718	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2719		return NULL;
2720
2721	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2722
2723	/* Note: Do *not* call connector updates here. */
2724
2725	return drm_edid;
2726}
2727EXPORT_SYMBOL(drm_edid_read_ddc);
2728
2729/**
2730 * drm_edid_read - Read EDID data using connector's I2C adapter
2731 * @connector: Connector to use
2732 *
2733 * Read EDID using the connector's I2C adapter.
2734 *
2735 * The EDID may be overridden using debugfs override_edid or firmware EDID
2736 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2737 * order. Having either of them bypasses actual EDID reads.
2738 *
2739 * The returned pointer must be freed using drm_edid_free().
2740 *
2741 * Return: Pointer to EDID, or NULL if probe/read failed.
2742 */
2743const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2744{
2745	if (drm_WARN_ON(connector->dev, !connector->ddc))
2746		return NULL;
2747
2748	return drm_edid_read_ddc(connector, connector->ddc);
2749}
2750EXPORT_SYMBOL(drm_edid_read);
2751
2752static u32 edid_extract_panel_id(const struct edid *edid)
2753{
2754	/*
2755	 * We represent the ID as a 32-bit number so it can easily be compared
2756	 * with "==".
2757	 *
2758	 * NOTE that we deal with endianness differently for the top half
2759	 * of this ID than for the bottom half. The bottom half (the product
2760	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2761	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2762	 * gets stored as big endian because that makes
2763	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2764	 * to write (it's easier to extract the ASCII). It doesn't really
2765	 * matter, though, as long as the number here is unique.
2766	 */
2767	return (u32)edid->mfg_id[0] << 24   |
2768	       (u32)edid->mfg_id[1] << 16   |
2769	       (u32)EDID_PRODUCT_ID(edid);
2770}
2771
2772/**
2773 * drm_edid_get_panel_id - Get a panel's ID through DDC
2774 * @adapter: I2C adapter to use for DDC
2775 *
2776 * This function reads the first block of the EDID of a panel and (assuming
2777 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2778 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2779 * supposed to be different for each different modem of panel.
2780 *
2781 * This function is intended to be used during early probing on devices where
2782 * more than one panel might be present. Because of its intended use it must
2783 * assume that the EDID of the panel is correct, at least as far as the ID
2784 * is concerned (in other words, we don't process any overrides here).
2785 *
2786 * NOTE: it's expected that this function and drm_do_get_edid() will both
2787 * be read the EDID, but there is no caching between them. Since we're only
2788 * reading the first block, hopefully this extra overhead won't be too big.
2789 *
2790 * Return: A 32-bit ID that should be different for each make/model of panel.
2791 *         See the functions drm_edid_encode_panel_id() and
2792 *         drm_edid_decode_panel_id() for some details on the structure of this
2793 *         ID.
2794 */
2795
2796u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2797{
2798	enum edid_block_status status;
2799	void *base_block;
2800	u32 panel_id = 0;
2801
2802	/*
2803	 * There are no manufacturer IDs of 0, so if there is a problem reading
2804	 * the EDID then we'll just return 0.
2805	 */
2806
2807	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2808	if (!base_block)
2809		return 0;
2810
2811	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2812
2813	edid_block_status_print(status, base_block, 0);
2814
2815	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2816		panel_id = edid_extract_panel_id(base_block);
2817	else
2818		edid_block_dump(KERN_NOTICE, base_block, 0);
2819
2820	kfree(base_block);
2821
2822	return panel_id;
2823}
2824EXPORT_SYMBOL(drm_edid_get_panel_id);
2825
2826/**
2827 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2828 * @connector: connector we're probing
2829 * @adapter: I2C adapter to use for DDC
2830 *
2831 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2832 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2833 * switch DDC to the GPU which is retrieving EDID.
2834 *
2835 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2836 */
2837struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2838				     struct i2c_adapter *adapter)
2839{
2840	struct drm_device *dev = connector->dev;
2841	struct pci_dev *pdev = to_pci_dev(dev->dev);
2842	struct edid *edid;
2843
2844	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2845		return NULL;
2846
2847	vga_switcheroo_lock_ddc(pdev);
2848	edid = drm_get_edid(connector, adapter);
2849	vga_switcheroo_unlock_ddc(pdev);
2850
2851	return edid;
2852}
2853EXPORT_SYMBOL(drm_get_edid_switcheroo);
2854
2855/**
2856 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2857 * @connector: connector we're probing
2858 * @adapter: I2C adapter to use for DDC
2859 *
2860 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2861 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2862 * temporarily switch DDC to the GPU which is retrieving EDID.
2863 *
2864 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2865 */
2866const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2867						struct i2c_adapter *adapter)
2868{
2869	struct drm_device *dev = connector->dev;
2870	struct pci_dev *pdev = to_pci_dev(dev->dev);
2871	const struct drm_edid *drm_edid;
2872
2873	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2874		return NULL;
2875
2876	vga_switcheroo_lock_ddc(pdev);
2877	drm_edid = drm_edid_read_ddc(connector, adapter);
2878	vga_switcheroo_unlock_ddc(pdev);
2879
2880	return drm_edid;
2881}
2882EXPORT_SYMBOL(drm_edid_read_switcheroo);
2883
2884/**
2885 * drm_edid_duplicate - duplicate an EDID and the extensions
2886 * @edid: EDID to duplicate
2887 *
2888 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2889 */
2890struct edid *drm_edid_duplicate(const struct edid *edid)
2891{
2892	if (!edid)
2893		return NULL;
2894
2895	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2896}
2897EXPORT_SYMBOL(drm_edid_duplicate);
2898
2899/*** EDID parsing ***/
2900
2901/**
2902 * edid_get_quirks - return quirk flags for a given EDID
2903 * @drm_edid: EDID to process
2904 *
2905 * This tells subsequent routines what fixes they need to apply.
2906 */
2907static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2908{
2909	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2910	const struct edid_quirk *quirk;
2911	int i;
2912
2913	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2914		quirk = &edid_quirk_list[i];
2915		if (quirk->panel_id == panel_id)
2916			return quirk->quirks;
2917	}
2918
2919	return 0;
2920}
2921
2922#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2923#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2924
2925/*
2926 * Walk the mode list for connector, clearing the preferred status on existing
2927 * modes and setting it anew for the right mode ala quirks.
2928 */
2929static void edid_fixup_preferred(struct drm_connector *connector)
2930{
2931	const struct drm_display_info *info = &connector->display_info;
2932	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2933	int target_refresh = 0;
2934	int cur_vrefresh, preferred_vrefresh;
2935
2936	if (list_empty(&connector->probed_modes))
2937		return;
2938
2939	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2940		target_refresh = 60;
2941	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2942		target_refresh = 75;
2943
2944	preferred_mode = list_first_entry(&connector->probed_modes,
2945					  struct drm_display_mode, head);
2946
2947	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2948		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2949
2950		if (cur_mode == preferred_mode)
2951			continue;
2952
2953		/* Largest mode is preferred */
2954		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2955			preferred_mode = cur_mode;
2956
2957		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2958		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2959		/* At a given size, try to get closest to target refresh */
2960		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2961		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2962		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2963			preferred_mode = cur_mode;
2964		}
2965	}
2966
2967	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2968}
2969
2970static bool
2971mode_is_rb(const struct drm_display_mode *mode)
2972{
2973	return (mode->htotal - mode->hdisplay == 160) &&
2974	       (mode->hsync_end - mode->hdisplay == 80) &&
2975	       (mode->hsync_end - mode->hsync_start == 32) &&
2976	       (mode->vsync_start - mode->vdisplay == 3);
2977}
2978
2979/*
2980 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2981 * @dev: Device to duplicate against
2982 * @hsize: Mode width
2983 * @vsize: Mode height
2984 * @fresh: Mode refresh rate
2985 * @rb: Mode reduced-blanking-ness
2986 *
2987 * Walk the DMT mode list looking for a match for the given parameters.
2988 *
2989 * Return: A newly allocated copy of the mode, or NULL if not found.
2990 */
2991struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2992					   int hsize, int vsize, int fresh,
2993					   bool rb)
2994{
2995	int i;
2996
2997	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2998		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2999
3000		if (hsize != ptr->hdisplay)
3001			continue;
3002		if (vsize != ptr->vdisplay)
3003			continue;
3004		if (fresh != drm_mode_vrefresh(ptr))
3005			continue;
3006		if (rb != mode_is_rb(ptr))
3007			continue;
3008
3009		return drm_mode_duplicate(dev, ptr);
3010	}
3011
3012	return NULL;
3013}
3014EXPORT_SYMBOL(drm_mode_find_dmt);
3015
3016static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3017{
3018	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3019	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3020	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3021
3022	return descriptor->pixel_clock == 0 &&
3023		descriptor->data.other_data.pad1 == 0 &&
3024		descriptor->data.other_data.type == type;
3025}
3026
3027static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3028{
3029	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3030
3031	return descriptor->pixel_clock != 0;
3032}
3033
3034typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3035
3036static void
3037cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3038{
3039	int i, n;
3040	u8 d = ext[0x02];
3041	const u8 *det_base = ext + d;
3042
3043	if (d < 4 || d > 127)
3044		return;
3045
3046	n = (127 - d) / 18;
3047	for (i = 0; i < n; i++)
3048		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3049}
3050
3051static void
3052vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3053{
3054	unsigned int i, n = min((int)ext[0x02], 6);
3055	const u8 *det_base = ext + 5;
3056
3057	if (ext[0x01] != 1)
3058		return; /* unknown version */
3059
3060	for (i = 0; i < n; i++)
3061		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3062}
3063
3064static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3065					detailed_cb *cb, void *closure)
3066{
3067	struct drm_edid_iter edid_iter;
3068	const u8 *ext;
3069	int i;
3070
3071	if (!drm_edid)
3072		return;
3073
3074	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3075		cb(&drm_edid->edid->detailed_timings[i], closure);
3076
3077	drm_edid_iter_begin(drm_edid, &edid_iter);
3078	drm_edid_iter_for_each(ext, &edid_iter) {
3079		switch (*ext) {
3080		case CEA_EXT:
3081			cea_for_each_detailed_block(ext, cb, closure);
3082			break;
3083		case VTB_EXT:
3084			vtb_for_each_detailed_block(ext, cb, closure);
3085			break;
3086		default:
3087			break;
3088		}
3089	}
3090	drm_edid_iter_end(&edid_iter);
3091}
3092
3093static void
3094is_rb(const struct detailed_timing *descriptor, void *data)
3095{
3096	bool *res = data;
3097
3098	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3099		return;
3100
3101	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3102	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3103
3104	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3105	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3106		*res = true;
3107}
3108
3109/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3110static bool
3111drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3112{
3113	if (drm_edid->edid->revision >= 4) {
3114		bool ret = false;
3115
3116		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3117		return ret;
3118	}
3119
3120	return drm_edid_is_digital(drm_edid);
3121}
3122
3123static void
3124find_gtf2(const struct detailed_timing *descriptor, void *data)
3125{
3126	const struct detailed_timing **res = data;
3127
3128	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3129		return;
3130
3131	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3132
3133	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3134		*res = descriptor;
3135}
3136
3137/* Secondary GTF curve kicks in above some break frequency */
3138static int
3139drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3140{
3141	const struct detailed_timing *descriptor = NULL;
3142
3143	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3144
3145	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3146
3147	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3148}
3149
3150static int
3151drm_gtf2_2c(const struct drm_edid *drm_edid)
3152{
3153	const struct detailed_timing *descriptor = NULL;
3154
3155	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3156
3157	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3158
3159	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3160}
3161
3162static int
3163drm_gtf2_m(const struct drm_edid *drm_edid)
3164{
3165	const struct detailed_timing *descriptor = NULL;
3166
3167	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3168
3169	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3170
3171	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3172}
3173
3174static int
3175drm_gtf2_k(const struct drm_edid *drm_edid)
3176{
3177	const struct detailed_timing *descriptor = NULL;
3178
3179	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3180
3181	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3182
3183	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3184}
3185
3186static int
3187drm_gtf2_2j(const struct drm_edid *drm_edid)
3188{
3189	const struct detailed_timing *descriptor = NULL;
3190
3191	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3192
3193	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3194
3195	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3196}
3197
3198static void
3199get_timing_level(const struct detailed_timing *descriptor, void *data)
3200{
3201	int *res = data;
3202
3203	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3204		return;
3205
3206	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3207
3208	switch (descriptor->data.other_data.data.range.flags) {
3209	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3210		*res = LEVEL_GTF;
3211		break;
3212	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3213		*res = LEVEL_GTF2;
3214		break;
3215	case DRM_EDID_CVT_SUPPORT_FLAG:
3216		*res = LEVEL_CVT;
3217		break;
3218	default:
3219		break;
3220	}
3221}
3222
3223/* Get standard timing level (CVT/GTF/DMT). */
3224static int standard_timing_level(const struct drm_edid *drm_edid)
3225{
3226	const struct edid *edid = drm_edid->edid;
3227
3228	if (edid->revision >= 4) {
3229		/*
3230		 * If the range descriptor doesn't
3231		 * indicate otherwise default to CVT
3232		 */
3233		int ret = LEVEL_CVT;
3234
3235		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3236
3237		return ret;
3238	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3239		return LEVEL_GTF2;
3240	} else if (edid->revision >= 2) {
3241		return LEVEL_GTF;
3242	} else {
3243		return LEVEL_DMT;
3244	}
3245}
3246
3247/*
3248 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3249 * monitors fill with ascii space (0x20) instead.
3250 */
3251static int
3252bad_std_timing(u8 a, u8 b)
3253{
3254	return (a == 0x00 && b == 0x00) ||
3255	       (a == 0x01 && b == 0x01) ||
3256	       (a == 0x20 && b == 0x20);
3257}
3258
3259static int drm_mode_hsync(const struct drm_display_mode *mode)
3260{
3261	if (mode->htotal <= 0)
3262		return 0;
3263
3264	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3265}
3266
3267static struct drm_display_mode *
3268drm_gtf2_mode(struct drm_device *dev,
3269	      const struct drm_edid *drm_edid,
3270	      int hsize, int vsize, int vrefresh_rate)
3271{
3272	struct drm_display_mode *mode;
3273
3274	/*
3275	 * This is potentially wrong if there's ever a monitor with
3276	 * more than one ranges section, each claiming a different
3277	 * secondary GTF curve.  Please don't do that.
3278	 */
3279	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3280	if (!mode)
3281		return NULL;
3282
3283	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3284		drm_mode_destroy(dev, mode);
3285		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3286					    vrefresh_rate, 0, 0,
3287					    drm_gtf2_m(drm_edid),
3288					    drm_gtf2_2c(drm_edid),
3289					    drm_gtf2_k(drm_edid),
3290					    drm_gtf2_2j(drm_edid));
3291	}
3292
3293	return mode;
3294}
3295
3296/*
3297 * Take the standard timing params (in this case width, aspect, and refresh)
3298 * and convert them into a real mode using CVT/GTF/DMT.
3299 */
3300static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3301					     const struct drm_edid *drm_edid,
3302					     const struct std_timing *t)
3303{
3304	struct drm_device *dev = connector->dev;
3305	struct drm_display_mode *m, *mode = NULL;
3306	int hsize, vsize;
3307	int vrefresh_rate;
3308	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3309		>> EDID_TIMING_ASPECT_SHIFT;
3310	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3311		>> EDID_TIMING_VFREQ_SHIFT;
3312	int timing_level = standard_timing_level(drm_edid);
3313
3314	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3315		return NULL;
3316
3317	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3318	hsize = t->hsize * 8 + 248;
3319	/* vrefresh_rate = vfreq + 60 */
3320	vrefresh_rate = vfreq + 60;
3321	/* the vdisplay is calculated based on the aspect ratio */
3322	if (aspect_ratio == 0) {
3323		if (drm_edid->edid->revision < 3)
3324			vsize = hsize;
3325		else
3326			vsize = (hsize * 10) / 16;
3327	} else if (aspect_ratio == 1)
3328		vsize = (hsize * 3) / 4;
3329	else if (aspect_ratio == 2)
3330		vsize = (hsize * 4) / 5;
3331	else
3332		vsize = (hsize * 9) / 16;
3333
3334	/* HDTV hack, part 1 */
3335	if (vrefresh_rate == 60 &&
3336	    ((hsize == 1360 && vsize == 765) ||
3337	     (hsize == 1368 && vsize == 769))) {
3338		hsize = 1366;
3339		vsize = 768;
3340	}
3341
3342	/*
3343	 * If this connector already has a mode for this size and refresh
3344	 * rate (because it came from detailed or CVT info), use that
3345	 * instead.  This way we don't have to guess at interlace or
3346	 * reduced blanking.
3347	 */
3348	list_for_each_entry(m, &connector->probed_modes, head)
3349		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3350		    drm_mode_vrefresh(m) == vrefresh_rate)
3351			return NULL;
3352
3353	/* HDTV hack, part 2 */
3354	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3355		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3356				    false);
3357		if (!mode)
3358			return NULL;
3359		mode->hdisplay = 1366;
3360		mode->hsync_start = mode->hsync_start - 1;
3361		mode->hsync_end = mode->hsync_end - 1;
3362		return mode;
3363	}
3364
3365	/* check whether it can be found in default mode table */
3366	if (drm_monitor_supports_rb(drm_edid)) {
3367		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3368					 true);
3369		if (mode)
3370			return mode;
3371	}
3372	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3373	if (mode)
3374		return mode;
3375
3376	/* okay, generate it */
3377	switch (timing_level) {
3378	case LEVEL_DMT:
3379		break;
3380	case LEVEL_GTF:
3381		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3382		break;
3383	case LEVEL_GTF2:
3384		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3385		break;
3386	case LEVEL_CVT:
3387		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3388				    false);
3389		break;
3390	}
3391	return mode;
3392}
3393
3394/*
3395 * EDID is delightfully ambiguous about how interlaced modes are to be
3396 * encoded.  Our internal representation is of frame height, but some
3397 * HDTV detailed timings are encoded as field height.
3398 *
3399 * The format list here is from CEA, in frame size.  Technically we
3400 * should be checking refresh rate too.  Whatever.
3401 */
3402static void
3403drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3404			    const struct detailed_pixel_timing *pt)
3405{
3406	int i;
3407	static const struct {
3408		int w, h;
3409	} cea_interlaced[] = {
3410		{ 1920, 1080 },
3411		{  720,  480 },
3412		{ 1440,  480 },
3413		{ 2880,  480 },
3414		{  720,  576 },
3415		{ 1440,  576 },
3416		{ 2880,  576 },
3417	};
3418
3419	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3420		return;
3421
3422	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3423		if ((mode->hdisplay == cea_interlaced[i].w) &&
3424		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3425			mode->vdisplay *= 2;
3426			mode->vsync_start *= 2;
3427			mode->vsync_end *= 2;
3428			mode->vtotal *= 2;
3429			mode->vtotal |= 1;
3430		}
3431	}
3432
3433	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3434}
3435
3436/*
3437 * Create a new mode from an EDID detailed timing section. An EDID detailed
3438 * timing block contains enough info for us to create and return a new struct
3439 * drm_display_mode.
3440 */
3441static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3442						  const struct drm_edid *drm_edid,
3443						  const struct detailed_timing *timing)
3444{
3445	const struct drm_display_info *info = &connector->display_info;
3446	struct drm_device *dev = connector->dev;
3447	struct drm_display_mode *mode;
3448	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3449	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3450	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3451	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3452	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3453	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3454	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3455	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3456	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3457
3458	/* ignore tiny modes */
3459	if (hactive < 64 || vactive < 64)
3460		return NULL;
3461
3462	if (pt->misc & DRM_EDID_PT_STEREO) {
3463		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3464			    connector->base.id, connector->name);
3465		return NULL;
3466	}
3467	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3468		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3469			    connector->base.id, connector->name);
3470	}
3471
3472	/* it is incorrect if hsync/vsync width is zero */
3473	if (!hsync_pulse_width || !vsync_pulse_width) {
3474		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3475			    connector->base.id, connector->name);
3476		return NULL;
3477	}
3478
3479	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3480		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3481		if (!mode)
3482			return NULL;
3483
3484		goto set_size;
3485	}
3486
3487	mode = drm_mode_create(dev);
3488	if (!mode)
3489		return NULL;
3490
3491	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3492		mode->clock = 1088 * 10;
3493	else
3494		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3495
3496	mode->hdisplay = hactive;
3497	mode->hsync_start = mode->hdisplay + hsync_offset;
3498	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3499	mode->htotal = mode->hdisplay + hblank;
3500
3501	mode->vdisplay = vactive;
3502	mode->vsync_start = mode->vdisplay + vsync_offset;
3503	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3504	mode->vtotal = mode->vdisplay + vblank;
3505
3506	/* Some EDIDs have bogus h/vsync_end values */
3507	if (mode->hsync_end > mode->htotal) {
3508		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3509			    connector->base.id, connector->name,
3510			    mode->hsync_end, mode->htotal);
3511		mode->hsync_end = mode->htotal;
3512	}
3513	if (mode->vsync_end > mode->vtotal) {
3514		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3515			    connector->base.id, connector->name,
3516			    mode->vsync_end, mode->vtotal);
3517		mode->vsync_end = mode->vtotal;
3518	}
3519
3520	drm_mode_do_interlace_quirk(mode, pt);
3521
3522	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3523		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3524	} else {
3525		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3526			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3527		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3528			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3529	}
3530
3531set_size:
3532	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3533	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3534
3535	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3536		mode->width_mm *= 10;
3537		mode->height_mm *= 10;
3538	}
3539
3540	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3541		mode->width_mm = drm_edid->edid->width_cm * 10;
3542		mode->height_mm = drm_edid->edid->height_cm * 10;
3543	}
3544
3545	mode->type = DRM_MODE_TYPE_DRIVER;
3546	drm_mode_set_name(mode);
3547
3548	return mode;
3549}
3550
3551static bool
3552mode_in_hsync_range(const struct drm_display_mode *mode,
3553		    const struct edid *edid, const u8 *t)
3554{
3555	int hsync, hmin, hmax;
3556
3557	hmin = t[7];
3558	if (edid->revision >= 4)
3559	    hmin += ((t[4] & 0x04) ? 255 : 0);
3560	hmax = t[8];
3561	if (edid->revision >= 4)
3562	    hmax += ((t[4] & 0x08) ? 255 : 0);
3563	hsync = drm_mode_hsync(mode);
3564
3565	return (hsync <= hmax && hsync >= hmin);
3566}
3567
3568static bool
3569mode_in_vsync_range(const struct drm_display_mode *mode,
3570		    const struct edid *edid, const u8 *t)
3571{
3572	int vsync, vmin, vmax;
3573
3574	vmin = t[5];
3575	if (edid->revision >= 4)
3576	    vmin += ((t[4] & 0x01) ? 255 : 0);
3577	vmax = t[6];
3578	if (edid->revision >= 4)
3579	    vmax += ((t[4] & 0x02) ? 255 : 0);
3580	vsync = drm_mode_vrefresh(mode);
3581
3582	return (vsync <= vmax && vsync >= vmin);
3583}
3584
3585static u32
3586range_pixel_clock(const struct edid *edid, const u8 *t)
3587{
3588	/* unspecified */
3589	if (t[9] == 0 || t[9] == 255)
3590		return 0;
3591
3592	/* 1.4 with CVT support gives us real precision, yay */
3593	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3594		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3595
3596	/* 1.3 is pathetic, so fuzz up a bit */
3597	return t[9] * 10000 + 5001;
3598}
3599
3600static bool mode_in_range(const struct drm_display_mode *mode,
3601			  const struct drm_edid *drm_edid,
3602			  const struct detailed_timing *timing)
3603{
3604	const struct edid *edid = drm_edid->edid;
3605	u32 max_clock;
3606	const u8 *t = (const u8 *)timing;
3607
3608	if (!mode_in_hsync_range(mode, edid, t))
3609		return false;
3610
3611	if (!mode_in_vsync_range(mode, edid, t))
3612		return false;
3613
3614	max_clock = range_pixel_clock(edid, t);
3615	if (max_clock)
3616		if (mode->clock > max_clock)
3617			return false;
3618
3619	/* 1.4 max horizontal check */
3620	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3621		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3622			return false;
3623
3624	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3625		return false;
3626
3627	return true;
3628}
3629
3630static bool valid_inferred_mode(const struct drm_connector *connector,
3631				const struct drm_display_mode *mode)
3632{
3633	const struct drm_display_mode *m;
3634	bool ok = false;
3635
3636	list_for_each_entry(m, &connector->probed_modes, head) {
3637		if (mode->hdisplay == m->hdisplay &&
3638		    mode->vdisplay == m->vdisplay &&
3639		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3640			return false; /* duplicated */
3641		if (mode->hdisplay <= m->hdisplay &&
3642		    mode->vdisplay <= m->vdisplay)
3643			ok = true;
3644	}
3645	return ok;
3646}
3647
3648static int drm_dmt_modes_for_range(struct drm_connector *connector,
3649				   const struct drm_edid *drm_edid,
3650				   const struct detailed_timing *timing)
3651{
3652	int i, modes = 0;
3653	struct drm_display_mode *newmode;
3654	struct drm_device *dev = connector->dev;
3655
3656	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3657		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3658		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3659			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3660			if (newmode) {
3661				drm_mode_probed_add(connector, newmode);
3662				modes++;
3663			}
3664		}
3665	}
3666
3667	return modes;
3668}
3669
3670/* fix up 1366x768 mode from 1368x768;
3671 * GFT/CVT can't express 1366 width which isn't dividable by 8
3672 */
3673void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3674{
3675	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3676		mode->hdisplay = 1366;
3677		mode->hsync_start--;
3678		mode->hsync_end--;
3679		drm_mode_set_name(mode);
3680	}
3681}
3682
3683static int drm_gtf_modes_for_range(struct drm_connector *connector,
3684				   const struct drm_edid *drm_edid,
3685				   const struct detailed_timing *timing)
3686{
3687	int i, modes = 0;
3688	struct drm_display_mode *newmode;
3689	struct drm_device *dev = connector->dev;
3690
3691	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3692		const struct minimode *m = &extra_modes[i];
3693
3694		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3695		if (!newmode)
3696			return modes;
3697
3698		drm_mode_fixup_1366x768(newmode);
3699		if (!mode_in_range(newmode, drm_edid, timing) ||
3700		    !valid_inferred_mode(connector, newmode)) {
3701			drm_mode_destroy(dev, newmode);
3702			continue;
3703		}
3704
3705		drm_mode_probed_add(connector, newmode);
3706		modes++;
3707	}
3708
3709	return modes;
3710}
3711
3712static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3713				    const struct drm_edid *drm_edid,
3714				    const struct detailed_timing *timing)
3715{
3716	int i, modes = 0;
3717	struct drm_display_mode *newmode;
3718	struct drm_device *dev = connector->dev;
3719
3720	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3721		const struct minimode *m = &extra_modes[i];
3722
3723		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3724		if (!newmode)
3725			return modes;
3726
3727		drm_mode_fixup_1366x768(newmode);
3728		if (!mode_in_range(newmode, drm_edid, timing) ||
3729		    !valid_inferred_mode(connector, newmode)) {
3730			drm_mode_destroy(dev, newmode);
3731			continue;
3732		}
3733
3734		drm_mode_probed_add(connector, newmode);
3735		modes++;
3736	}
3737
3738	return modes;
3739}
3740
3741static int drm_cvt_modes_for_range(struct drm_connector *connector,
3742				   const struct drm_edid *drm_edid,
3743				   const struct detailed_timing *timing)
3744{
3745	int i, modes = 0;
3746	struct drm_display_mode *newmode;
3747	struct drm_device *dev = connector->dev;
3748	bool rb = drm_monitor_supports_rb(drm_edid);
3749
3750	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3751		const struct minimode *m = &extra_modes[i];
3752
3753		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3754		if (!newmode)
3755			return modes;
3756
3757		drm_mode_fixup_1366x768(newmode);
3758		if (!mode_in_range(newmode, drm_edid, timing) ||
3759		    !valid_inferred_mode(connector, newmode)) {
3760			drm_mode_destroy(dev, newmode);
3761			continue;
3762		}
3763
3764		drm_mode_probed_add(connector, newmode);
3765		modes++;
3766	}
3767
3768	return modes;
3769}
3770
3771static void
3772do_inferred_modes(const struct detailed_timing *timing, void *c)
3773{
3774	struct detailed_mode_closure *closure = c;
3775	const struct detailed_non_pixel *data = &timing->data.other_data;
3776	const struct detailed_data_monitor_range *range = &data->data.range;
3777
3778	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3779		return;
3780
3781	closure->modes += drm_dmt_modes_for_range(closure->connector,
3782						  closure->drm_edid,
3783						  timing);
3784
3785	if (closure->drm_edid->edid->revision < 2)
3786		return; /* GTF not defined yet */
3787
3788	switch (range->flags) {
3789	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3790		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3791							   closure->drm_edid,
3792							   timing);
3793		break;
3794	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3795		closure->modes += drm_gtf_modes_for_range(closure->connector,
3796							  closure->drm_edid,
3797							  timing);
3798		break;
3799	case DRM_EDID_CVT_SUPPORT_FLAG:
3800		if (closure->drm_edid->edid->revision < 4)
3801			break;
3802
3803		closure->modes += drm_cvt_modes_for_range(closure->connector,
3804							  closure->drm_edid,
3805							  timing);
3806		break;
3807	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3808	default:
3809		break;
3810	}
3811}
3812
3813static int add_inferred_modes(struct drm_connector *connector,
3814			      const struct drm_edid *drm_edid)
3815{
3816	struct detailed_mode_closure closure = {
3817		.connector = connector,
3818		.drm_edid = drm_edid,
3819	};
3820
3821	if (drm_edid->edid->revision >= 1)
3822		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3823
3824	return closure.modes;
3825}
3826
3827static int
3828drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3829{
3830	int i, j, m, modes = 0;
3831	struct drm_display_mode *mode;
3832	const u8 *est = ((const u8 *)timing) + 6;
3833
3834	for (i = 0; i < 6; i++) {
3835		for (j = 7; j >= 0; j--) {
3836			m = (i * 8) + (7 - j);
3837			if (m >= ARRAY_SIZE(est3_modes))
3838				break;
3839			if (est[i] & (1 << j)) {
3840				mode = drm_mode_find_dmt(connector->dev,
3841							 est3_modes[m].w,
3842							 est3_modes[m].h,
3843							 est3_modes[m].r,
3844							 est3_modes[m].rb);
3845				if (mode) {
3846					drm_mode_probed_add(connector, mode);
3847					modes++;
3848				}
3849			}
3850		}
3851	}
3852
3853	return modes;
3854}
3855
3856static void
3857do_established_modes(const struct detailed_timing *timing, void *c)
3858{
3859	struct detailed_mode_closure *closure = c;
3860
3861	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3862		return;
3863
3864	closure->modes += drm_est3_modes(closure->connector, timing);
3865}
3866
3867/*
3868 * Get established modes from EDID and add them. Each EDID block contains a
3869 * bitmap of the supported "established modes" list (defined above). Tease them
3870 * out and add them to the global modes list.
3871 */
3872static int add_established_modes(struct drm_connector *connector,
3873				 const struct drm_edid *drm_edid)
3874{
3875	struct drm_device *dev = connector->dev;
3876	const struct edid *edid = drm_edid->edid;
3877	unsigned long est_bits = edid->established_timings.t1 |
3878		(edid->established_timings.t2 << 8) |
3879		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3880	int i, modes = 0;
3881	struct detailed_mode_closure closure = {
3882		.connector = connector,
3883		.drm_edid = drm_edid,
3884	};
3885
3886	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3887		if (est_bits & (1<<i)) {
3888			struct drm_display_mode *newmode;
3889
3890			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3891			if (newmode) {
3892				drm_mode_probed_add(connector, newmode);
3893				modes++;
3894			}
3895		}
3896	}
3897
3898	if (edid->revision >= 1)
3899		drm_for_each_detailed_block(drm_edid, do_established_modes,
3900					    &closure);
3901
3902	return modes + closure.modes;
3903}
3904
3905static void
3906do_standard_modes(const struct detailed_timing *timing, void *c)
3907{
3908	struct detailed_mode_closure *closure = c;
3909	const struct detailed_non_pixel *data = &timing->data.other_data;
3910	struct drm_connector *connector = closure->connector;
3911	int i;
3912
3913	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3914		return;
3915
3916	for (i = 0; i < 6; i++) {
3917		const struct std_timing *std = &data->data.timings[i];
3918		struct drm_display_mode *newmode;
3919
3920		newmode = drm_mode_std(connector, closure->drm_edid, std);
3921		if (newmode) {
3922			drm_mode_probed_add(connector, newmode);
3923			closure->modes++;
3924		}
3925	}
3926}
3927
3928/*
3929 * Get standard modes from EDID and add them. Standard modes can be calculated
3930 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3931 * add them to the list.
3932 */
3933static int add_standard_modes(struct drm_connector *connector,
3934			      const struct drm_edid *drm_edid)
3935{
3936	int i, modes = 0;
3937	struct detailed_mode_closure closure = {
3938		.connector = connector,
3939		.drm_edid = drm_edid,
3940	};
3941
3942	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3943		struct drm_display_mode *newmode;
3944
3945		newmode = drm_mode_std(connector, drm_edid,
3946				       &drm_edid->edid->standard_timings[i]);
3947		if (newmode) {
3948			drm_mode_probed_add(connector, newmode);
3949			modes++;
3950		}
3951	}
3952
3953	if (drm_edid->edid->revision >= 1)
3954		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3955					    &closure);
3956
3957	/* XXX should also look for standard codes in VTB blocks */
3958
3959	return modes + closure.modes;
3960}
3961
3962static int drm_cvt_modes(struct drm_connector *connector,
3963			 const struct detailed_timing *timing)
3964{
3965	int i, j, modes = 0;
3966	struct drm_display_mode *newmode;
3967	struct drm_device *dev = connector->dev;
3968	const struct cvt_timing *cvt;
3969	static const int rates[] = { 60, 85, 75, 60, 50 };
3970	const u8 empty[3] = { 0, 0, 0 };
3971
3972	for (i = 0; i < 4; i++) {
3973		int width, height;
3974
3975		cvt = &(timing->data.other_data.data.cvt[i]);
3976
3977		if (!memcmp(cvt->code, empty, 3))
3978			continue;
3979
3980		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3981		switch (cvt->code[1] & 0x0c) {
3982		/* default - because compiler doesn't see that we've enumerated all cases */
3983		default:
3984		case 0x00:
3985			width = height * 4 / 3;
3986			break;
3987		case 0x04:
3988			width = height * 16 / 9;
3989			break;
3990		case 0x08:
3991			width = height * 16 / 10;
3992			break;
3993		case 0x0c:
3994			width = height * 15 / 9;
3995			break;
3996		}
3997
3998		for (j = 1; j < 5; j++) {
3999			if (cvt->code[2] & (1 << j)) {
4000				newmode = drm_cvt_mode(dev, width, height,
4001						       rates[j], j == 0,
4002						       false, false);
4003				if (newmode) {
4004					drm_mode_probed_add(connector, newmode);
4005					modes++;
4006				}
4007			}
4008		}
4009	}
4010
4011	return modes;
4012}
4013
4014static void
4015do_cvt_mode(const struct detailed_timing *timing, void *c)
4016{
4017	struct detailed_mode_closure *closure = c;
4018
4019	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4020		return;
4021
4022	closure->modes += drm_cvt_modes(closure->connector, timing);
4023}
4024
4025static int
4026add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4027{
4028	struct detailed_mode_closure closure = {
4029		.connector = connector,
4030		.drm_edid = drm_edid,
4031	};
4032
4033	if (drm_edid->edid->revision >= 3)
4034		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4035
4036	/* XXX should also look for CVT codes in VTB blocks */
4037
4038	return closure.modes;
4039}
4040
4041static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4042					  struct drm_display_mode *mode);
4043
4044static void
4045do_detailed_mode(const struct detailed_timing *timing, void *c)
4046{
4047	struct detailed_mode_closure *closure = c;
4048	struct drm_display_mode *newmode;
4049
4050	if (!is_detailed_timing_descriptor(timing))
4051		return;
4052
4053	newmode = drm_mode_detailed(closure->connector,
4054				    closure->drm_edid, timing);
4055	if (!newmode)
4056		return;
4057
4058	if (closure->preferred)
4059		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4060
4061	/*
4062	 * Detailed modes are limited to 10kHz pixel clock resolution,
4063	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4064	 * is just slightly off.
4065	 */
4066	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4067
4068	drm_mode_probed_add(closure->connector, newmode);
4069	closure->modes++;
4070	closure->preferred = false;
4071}
4072
4073/*
4074 * add_detailed_modes - Add modes from detailed timings
4075 * @connector: attached connector
4076 * @drm_edid: EDID block to scan
4077 */
4078static int add_detailed_modes(struct drm_connector *connector,
4079			      const struct drm_edid *drm_edid)
4080{
4081	struct detailed_mode_closure closure = {
4082		.connector = connector,
4083		.drm_edid = drm_edid,
4084	};
4085
4086	if (drm_edid->edid->revision >= 4)
4087		closure.preferred = true; /* first detailed timing is always preferred */
4088	else
4089		closure.preferred =
4090			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4091
4092	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4093
4094	return closure.modes;
4095}
4096
4097/* CTA-861-H Table 60 - CTA Tag Codes */
4098#define CTA_DB_AUDIO			1
4099#define CTA_DB_VIDEO			2
4100#define CTA_DB_VENDOR			3
4101#define CTA_DB_SPEAKER			4
4102#define CTA_DB_EXTENDED_TAG		7
4103
4104/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4105#define CTA_EXT_DB_VIDEO_CAP		0
4106#define CTA_EXT_DB_VENDOR		1
4107#define CTA_EXT_DB_HDR_STATIC_METADATA	6
4108#define CTA_EXT_DB_420_VIDEO_DATA	14
4109#define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4110#define CTA_EXT_DB_HF_EEODB		0x78
4111#define CTA_EXT_DB_HF_SCDB		0x79
4112
4113#define EDID_BASIC_AUDIO	(1 << 6)
4114#define EDID_CEA_YCRCB444	(1 << 5)
4115#define EDID_CEA_YCRCB422	(1 << 4)
4116#define EDID_CEA_VCDB_QS	(1 << 6)
4117
4118/*
4119 * Search EDID for CEA extension block.
4120 *
4121 * FIXME: Prefer not returning pointers to raw EDID data.
4122 */
4123const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4124				  int ext_id, int *ext_index)
4125{
4126	const u8 *edid_ext = NULL;
4127	int i;
4128
4129	/* No EDID or EDID extensions */
4130	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4131		return NULL;
4132
4133	/* Find CEA extension */
4134	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4135		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4136		if (edid_block_tag(edid_ext) == ext_id)
4137			break;
4138	}
4139
4140	if (i >= drm_edid_extension_block_count(drm_edid))
4141		return NULL;
4142
4143	*ext_index = i + 1;
4144
4145	return edid_ext;
4146}
4147
4148/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4149static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4150{
4151	const struct displayid_block *block;
4152	struct displayid_iter iter;
4153	int ext_index = 0;
4154	bool found = false;
4155
4156	/* Look for a top level CEA extension block */
4157	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4158		return true;
4159
4160	/* CEA blocks can also be found embedded in a DisplayID block */
4161	displayid_iter_edid_begin(drm_edid, &iter);
4162	displayid_iter_for_each(block, &iter) {
4163		if (block->tag == DATA_BLOCK_CTA) {
4164			found = true;
4165			break;
4166		}
4167	}
4168	displayid_iter_end(&iter);
4169
4170	return found;
4171}
4172
4173static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4174{
4175	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4176	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4177
4178	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4179		return &edid_cea_modes_1[vic - 1];
4180	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4181		return &edid_cea_modes_193[vic - 193];
4182	return NULL;
4183}
4184
4185static u8 cea_num_vics(void)
4186{
4187	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4188}
4189
4190static u8 cea_next_vic(u8 vic)
4191{
4192	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4193		vic = 193;
4194	return vic;
4195}
4196
4197/*
4198 * Calculate the alternate clock for the CEA mode
4199 * (60Hz vs. 59.94Hz etc.)
4200 */
4201static unsigned int
4202cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4203{
4204	unsigned int clock = cea_mode->clock;
4205
4206	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4207		return clock;
4208
4209	/*
4210	 * edid_cea_modes contains the 59.94Hz
4211	 * variant for 240 and 480 line modes,
4212	 * and the 60Hz variant otherwise.
4213	 */
4214	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4215		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4216	else
4217		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4218
4219	return clock;
4220}
4221
4222static bool
4223cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4224{
4225	/*
4226	 * For certain VICs the spec allows the vertical
4227	 * front porch to vary by one or two lines.
4228	 *
4229	 * cea_modes[] stores the variant with the shortest
4230	 * vertical front porch. We can adjust the mode to
4231	 * get the other variants by simply increasing the
4232	 * vertical front porch length.
4233	 */
4234	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4235		     cea_mode_for_vic(9)->vtotal != 262 ||
4236		     cea_mode_for_vic(12)->vtotal != 262 ||
4237		     cea_mode_for_vic(13)->vtotal != 262 ||
4238		     cea_mode_for_vic(23)->vtotal != 312 ||
4239		     cea_mode_for_vic(24)->vtotal != 312 ||
4240		     cea_mode_for_vic(27)->vtotal != 312 ||
4241		     cea_mode_for_vic(28)->vtotal != 312);
4242
4243	if (((vic == 8 || vic == 9 ||
4244	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4245	    ((vic == 23 || vic == 24 ||
4246	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4247		mode->vsync_start++;
4248		mode->vsync_end++;
4249		mode->vtotal++;
4250
4251		return true;
4252	}
4253
4254	return false;
4255}
4256
4257static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4258					     unsigned int clock_tolerance)
4259{
4260	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4261	u8 vic;
4262
4263	if (!to_match->clock)
4264		return 0;
4265
4266	if (to_match->picture_aspect_ratio)
4267		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4268
4269	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4270		struct drm_display_mode cea_mode;
4271		unsigned int clock1, clock2;
4272
4273		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4274
4275		/* Check both 60Hz and 59.94Hz */
4276		clock1 = cea_mode.clock;
4277		clock2 = cea_mode_alternate_clock(&cea_mode);
4278
4279		if (abs(to_match->clock - clock1) > clock_tolerance &&
4280		    abs(to_match->clock - clock2) > clock_tolerance)
4281			continue;
4282
4283		do {
4284			if (drm_mode_match(to_match, &cea_mode, match_flags))
4285				return vic;
4286		} while (cea_mode_alternate_timings(vic, &cea_mode));
4287	}
4288
4289	return 0;
4290}
4291
4292/**
4293 * drm_match_cea_mode - look for a CEA mode matching given mode
4294 * @to_match: display mode
4295 *
4296 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4297 * mode.
4298 */
4299u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4300{
4301	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4302	u8 vic;
4303
4304	if (!to_match->clock)
4305		return 0;
4306
4307	if (to_match->picture_aspect_ratio)
4308		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4309
4310	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4311		struct drm_display_mode cea_mode;
4312		unsigned int clock1, clock2;
4313
4314		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4315
4316		/* Check both 60Hz and 59.94Hz */
4317		clock1 = cea_mode.clock;
4318		clock2 = cea_mode_alternate_clock(&cea_mode);
4319
4320		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4321		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4322			continue;
4323
4324		do {
4325			if (drm_mode_match(to_match, &cea_mode, match_flags))
4326				return vic;
4327		} while (cea_mode_alternate_timings(vic, &cea_mode));
4328	}
4329
4330	return 0;
4331}
4332EXPORT_SYMBOL(drm_match_cea_mode);
4333
4334static bool drm_valid_cea_vic(u8 vic)
4335{
4336	return cea_mode_for_vic(vic) != NULL;
4337}
4338
4339static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4340{
4341	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4342
4343	if (mode)
4344		return mode->picture_aspect_ratio;
4345
4346	return HDMI_PICTURE_ASPECT_NONE;
4347}
4348
4349static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4350{
4351	return edid_4k_modes[video_code].picture_aspect_ratio;
4352}
4353
4354/*
4355 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4356 * specific block).
4357 */
4358static unsigned int
4359hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4360{
4361	return cea_mode_alternate_clock(hdmi_mode);
4362}
4363
4364static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4365					      unsigned int clock_tolerance)
4366{
4367	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4368	u8 vic;
4369
4370	if (!to_match->clock)
4371		return 0;
4372
4373	if (to_match->picture_aspect_ratio)
4374		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4375
4376	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4377		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4378		unsigned int clock1, clock2;
4379
4380		/* Make sure to also match alternate clocks */
4381		clock1 = hdmi_mode->clock;
4382		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4383
4384		if (abs(to_match->clock - clock1) > clock_tolerance &&
4385		    abs(to_match->clock - clock2) > clock_tolerance)
4386			continue;
4387
4388		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4389			return vic;
4390	}
4391
4392	return 0;
4393}
4394
4395/*
4396 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4397 * @to_match: display mode
4398 *
4399 * An HDMI mode is one defined in the HDMI vendor specific block.
4400 *
4401 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4402 */
4403static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4404{
4405	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4406	u8 vic;
4407
4408	if (!to_match->clock)
4409		return 0;
4410
4411	if (to_match->picture_aspect_ratio)
4412		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4413
4414	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4415		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4416		unsigned int clock1, clock2;
4417
4418		/* Make sure to also match alternate clocks */
4419		clock1 = hdmi_mode->clock;
4420		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4421
4422		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4423		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4424		    drm_mode_match(to_match, hdmi_mode, match_flags))
4425			return vic;
4426	}
4427	return 0;
4428}
4429
4430static bool drm_valid_hdmi_vic(u8 vic)
4431{
4432	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4433}
4434
4435static int add_alternate_cea_modes(struct drm_connector *connector,
4436				   const struct drm_edid *drm_edid)
4437{
4438	struct drm_device *dev = connector->dev;
4439	struct drm_display_mode *mode, *tmp;
4440	LIST_HEAD(list);
4441	int modes = 0;
4442
4443	/* Don't add CTA modes if the CTA extension block is missing */
4444	if (!drm_edid_has_cta_extension(drm_edid))
4445		return 0;
4446
4447	/*
4448	 * Go through all probed modes and create a new mode
4449	 * with the alternate clock for certain CEA modes.
4450	 */
4451	list_for_each_entry(mode, &connector->probed_modes, head) {
4452		const struct drm_display_mode *cea_mode = NULL;
4453		struct drm_display_mode *newmode;
4454		u8 vic = drm_match_cea_mode(mode);
4455		unsigned int clock1, clock2;
4456
4457		if (drm_valid_cea_vic(vic)) {
4458			cea_mode = cea_mode_for_vic(vic);
4459			clock2 = cea_mode_alternate_clock(cea_mode);
4460		} else {
4461			vic = drm_match_hdmi_mode(mode);
4462			if (drm_valid_hdmi_vic(vic)) {
4463				cea_mode = &edid_4k_modes[vic];
4464				clock2 = hdmi_mode_alternate_clock(cea_mode);
4465			}
4466		}
4467
4468		if (!cea_mode)
4469			continue;
4470
4471		clock1 = cea_mode->clock;
4472
4473		if (clock1 == clock2)
4474			continue;
4475
4476		if (mode->clock != clock1 && mode->clock != clock2)
4477			continue;
4478
4479		newmode = drm_mode_duplicate(dev, cea_mode);
4480		if (!newmode)
4481			continue;
4482
4483		/* Carry over the stereo flags */
4484		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4485
4486		/*
4487		 * The current mode could be either variant. Make
4488		 * sure to pick the "other" clock for the new mode.
4489		 */
4490		if (mode->clock != clock1)
4491			newmode->clock = clock1;
4492		else
4493			newmode->clock = clock2;
4494
4495		list_add_tail(&newmode->head, &list);
4496	}
4497
4498	list_for_each_entry_safe(mode, tmp, &list, head) {
4499		list_del(&mode->head);
4500		drm_mode_probed_add(connector, mode);
4501		modes++;
4502	}
4503
4504	return modes;
4505}
4506
4507static u8 svd_to_vic(u8 svd)
4508{
4509	/* 0-6 bit vic, 7th bit native mode indicator */
4510	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4511		return svd & 127;
4512
4513	return svd;
4514}
4515
4516/*
4517 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4518 * the EDID, or NULL on errors.
4519 */
4520static struct drm_display_mode *
4521drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4522{
4523	const struct drm_display_info *info = &connector->display_info;
4524	struct drm_device *dev = connector->dev;
4525
4526	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4527		return NULL;
4528
4529	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4530}
4531
4532/*
4533 * do_y420vdb_modes - Parse YCBCR 420 only modes
4534 * @connector: connector corresponding to the HDMI sink
4535 * @svds: start of the data block of CEA YCBCR 420 VDB
4536 * @len: length of the CEA YCBCR 420 VDB
4537 *
4538 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4539 * which contains modes which can be supported in YCBCR 420
4540 * output format only.
4541 */
4542static int do_y420vdb_modes(struct drm_connector *connector,
4543			    const u8 *svds, u8 svds_len)
4544{
4545	struct drm_device *dev = connector->dev;
4546	int modes = 0, i;
4547
4548	for (i = 0; i < svds_len; i++) {
4549		u8 vic = svd_to_vic(svds[i]);
4550		struct drm_display_mode *newmode;
4551
4552		if (!drm_valid_cea_vic(vic))
4553			continue;
4554
4555		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4556		if (!newmode)
4557			break;
4558		drm_mode_probed_add(connector, newmode);
4559		modes++;
4560	}
4561
4562	return modes;
4563}
4564
4565/**
4566 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4567 * @dev: DRM device
4568 * @video_code: CEA VIC of the mode
4569 *
4570 * Creates a new mode matching the specified CEA VIC.
4571 *
4572 * Returns: A new drm_display_mode on success or NULL on failure
4573 */
4574struct drm_display_mode *
4575drm_display_mode_from_cea_vic(struct drm_device *dev,
4576			      u8 video_code)
4577{
4578	const struct drm_display_mode *cea_mode;
4579	struct drm_display_mode *newmode;
4580
4581	cea_mode = cea_mode_for_vic(video_code);
4582	if (!cea_mode)
4583		return NULL;
4584
4585	newmode = drm_mode_duplicate(dev, cea_mode);
4586	if (!newmode)
4587		return NULL;
4588
4589	return newmode;
4590}
4591EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4592
4593/* Add modes based on VICs parsed in parse_cta_vdb() */
4594static int add_cta_vdb_modes(struct drm_connector *connector)
4595{
4596	const struct drm_display_info *info = &connector->display_info;
4597	int i, modes = 0;
4598
4599	if (!info->vics)
4600		return 0;
4601
4602	for (i = 0; i < info->vics_len; i++) {
4603		struct drm_display_mode *mode;
4604
4605		mode = drm_display_mode_from_vic_index(connector, i);
4606		if (mode) {
4607			drm_mode_probed_add(connector, mode);
4608			modes++;
4609		}
4610	}
4611
4612	return modes;
4613}
4614
4615struct stereo_mandatory_mode {
4616	int width, height, vrefresh;
4617	unsigned int flags;
4618};
4619
4620static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4621	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4622	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4623	{ 1920, 1080, 50,
4624	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4625	{ 1920, 1080, 60,
4626	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4627	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4628	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4629	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4630	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4631};
4632
4633static bool
4634stereo_match_mandatory(const struct drm_display_mode *mode,
4635		       const struct stereo_mandatory_mode *stereo_mode)
4636{
4637	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4638
4639	return mode->hdisplay == stereo_mode->width &&
4640	       mode->vdisplay == stereo_mode->height &&
4641	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4642	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4643}
4644
4645static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4646{
4647	struct drm_device *dev = connector->dev;
4648	const struct drm_display_mode *mode;
4649	struct list_head stereo_modes;
4650	int modes = 0, i;
4651
4652	INIT_LIST_HEAD(&stereo_modes);
4653
4654	list_for_each_entry(mode, &connector->probed_modes, head) {
4655		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4656			const struct stereo_mandatory_mode *mandatory;
4657			struct drm_display_mode *new_mode;
4658
4659			if (!stereo_match_mandatory(mode,
4660						    &stereo_mandatory_modes[i]))
4661				continue;
4662
4663			mandatory = &stereo_mandatory_modes[i];
4664			new_mode = drm_mode_duplicate(dev, mode);
4665			if (!new_mode)
4666				continue;
4667
4668			new_mode->flags |= mandatory->flags;
4669			list_add_tail(&new_mode->head, &stereo_modes);
4670			modes++;
4671		}
4672	}
4673
4674	list_splice_tail(&stereo_modes, &connector->probed_modes);
4675
4676	return modes;
4677}
4678
4679static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4680{
4681	struct drm_device *dev = connector->dev;
4682	struct drm_display_mode *newmode;
4683
4684	if (!drm_valid_hdmi_vic(vic)) {
4685		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4686			connector->base.id, connector->name, vic);
4687		return 0;
4688	}
4689
4690	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4691	if (!newmode)
4692		return 0;
4693
4694	drm_mode_probed_add(connector, newmode);
4695
4696	return 1;
4697}
4698
4699static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4700			       int vic_index)
4701{
4702	struct drm_display_mode *newmode;
4703	int modes = 0;
4704
4705	if (structure & (1 << 0)) {
4706		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4707		if (newmode) {
4708			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4709			drm_mode_probed_add(connector, newmode);
4710			modes++;
4711		}
4712	}
4713	if (structure & (1 << 6)) {
4714		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4715		if (newmode) {
4716			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4717			drm_mode_probed_add(connector, newmode);
4718			modes++;
4719		}
4720	}
4721	if (structure & (1 << 8)) {
4722		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4723		if (newmode) {
4724			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4725			drm_mode_probed_add(connector, newmode);
4726			modes++;
4727		}
4728	}
4729
4730	return modes;
4731}
4732
4733static bool hdmi_vsdb_latency_present(const u8 *db)
4734{
4735	return db[8] & BIT(7);
4736}
4737
4738static bool hdmi_vsdb_i_latency_present(const u8 *db)
4739{
4740	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4741}
4742
4743static int hdmi_vsdb_latency_length(const u8 *db)
4744{
4745	if (hdmi_vsdb_i_latency_present(db))
4746		return 4;
4747	else if (hdmi_vsdb_latency_present(db))
4748		return 2;
4749	else
4750		return 0;
4751}
4752
4753/*
4754 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4755 * @connector: connector corresponding to the HDMI sink
4756 * @db: start of the CEA vendor specific block
4757 * @len: length of the CEA block payload, ie. one can access up to db[len]
4758 *
4759 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4760 * also adds the stereo 3d modes when applicable.
4761 */
4762static int
4763do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4764{
4765	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4766	u8 vic_len, hdmi_3d_len = 0;
4767	u16 mask;
4768	u16 structure_all;
4769
4770	if (len < 8)
4771		goto out;
4772
4773	/* no HDMI_Video_Present */
4774	if (!(db[8] & (1 << 5)))
4775		goto out;
4776
4777	offset += hdmi_vsdb_latency_length(db);
4778
4779	/* the declared length is not long enough for the 2 first bytes
4780	 * of additional video format capabilities */
4781	if (len < (8 + offset + 2))
4782		goto out;
4783
4784	/* 3D_Present */
4785	offset++;
4786	if (db[8 + offset] & (1 << 7)) {
4787		modes += add_hdmi_mandatory_stereo_modes(connector);
4788
4789		/* 3D_Multi_present */
4790		multi_present = (db[8 + offset] & 0x60) >> 5;
4791	}
4792
4793	offset++;
4794	vic_len = db[8 + offset] >> 5;
4795	hdmi_3d_len = db[8 + offset] & 0x1f;
4796
4797	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4798		u8 vic;
4799
4800		vic = db[9 + offset + i];
4801		modes += add_hdmi_mode(connector, vic);
4802	}
4803	offset += 1 + vic_len;
4804
4805	if (multi_present == 1)
4806		multi_len = 2;
4807	else if (multi_present == 2)
4808		multi_len = 4;
4809	else
4810		multi_len = 0;
4811
4812	if (len < (8 + offset + hdmi_3d_len - 1))
4813		goto out;
4814
4815	if (hdmi_3d_len < multi_len)
4816		goto out;
4817
4818	if (multi_present == 1 || multi_present == 2) {
4819		/* 3D_Structure_ALL */
4820		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4821
4822		/* check if 3D_MASK is present */
4823		if (multi_present == 2)
4824			mask = (db[10 + offset] << 8) | db[11 + offset];
4825		else
4826			mask = 0xffff;
4827
4828		for (i = 0; i < 16; i++) {
4829			if (mask & (1 << i))
4830				modes += add_3d_struct_modes(connector,
4831							     structure_all, i);
4832		}
4833	}
4834
4835	offset += multi_len;
4836
4837	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4838		int vic_index;
4839		struct drm_display_mode *newmode = NULL;
4840		unsigned int newflag = 0;
4841		bool detail_present;
4842
4843		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4844
4845		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4846			break;
4847
4848		/* 2D_VIC_order_X */
4849		vic_index = db[8 + offset + i] >> 4;
4850
4851		/* 3D_Structure_X */
4852		switch (db[8 + offset + i] & 0x0f) {
4853		case 0:
4854			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4855			break;
4856		case 6:
4857			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4858			break;
4859		case 8:
4860			/* 3D_Detail_X */
4861			if ((db[9 + offset + i] >> 4) == 1)
4862				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4863			break;
4864		}
4865
4866		if (newflag != 0) {
4867			newmode = drm_display_mode_from_vic_index(connector,
4868								  vic_index);
4869
4870			if (newmode) {
4871				newmode->flags |= newflag;
4872				drm_mode_probed_add(connector, newmode);
4873				modes++;
4874			}
4875		}
4876
4877		if (detail_present)
4878			i++;
4879	}
4880
4881out:
4882	return modes;
4883}
4884
4885static int
4886cea_revision(const u8 *cea)
4887{
4888	/*
4889	 * FIXME is this correct for the DispID variant?
4890	 * The DispID spec doesn't really specify whether
4891	 * this is the revision of the CEA extension or
4892	 * the DispID CEA data block. And the only value
4893	 * given as an example is 0.
4894	 */
4895	return cea[1];
4896}
4897
4898/*
4899 * CTA Data Block iterator.
4900 *
4901 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4902 * CTA Data Blocks.
4903 *
4904 * struct cea_db *db:
4905 * struct cea_db_iter iter;
4906 *
4907 * cea_db_iter_edid_begin(edid, &iter);
4908 * cea_db_iter_for_each(db, &iter) {
4909 *         // do stuff with db
4910 * }
4911 * cea_db_iter_end(&iter);
4912 */
4913struct cea_db_iter {
4914	struct drm_edid_iter edid_iter;
4915	struct displayid_iter displayid_iter;
4916
4917	/* Current Data Block Collection. */
4918	const u8 *collection;
4919
4920	/* Current Data Block index in current collection. */
4921	int index;
4922
4923	/* End index in current collection. */
4924	int end;
4925};
4926
4927/* CTA-861-H section 7.4 CTA Data BLock Collection */
4928struct cea_db {
4929	u8 tag_length;
4930	u8 data[];
4931} __packed;
4932
4933static int cea_db_tag(const struct cea_db *db)
4934{
4935	return db->tag_length >> 5;
4936}
4937
4938static int cea_db_payload_len(const void *_db)
4939{
4940	/* FIXME: Transition to passing struct cea_db * everywhere. */
4941	const struct cea_db *db = _db;
4942
4943	return db->tag_length & 0x1f;
4944}
4945
4946static const void *cea_db_data(const struct cea_db *db)
4947{
4948	return db->data;
4949}
4950
4951static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4952{
4953	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4954		cea_db_payload_len(db) >= 1 &&
4955		db->data[0] == tag;
4956}
4957
4958static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4959{
4960	const u8 *data = cea_db_data(db);
4961
4962	return cea_db_tag(db) == CTA_DB_VENDOR &&
4963		cea_db_payload_len(db) >= 3 &&
4964		oui(data[2], data[1], data[0]) == vendor_oui;
4965}
4966
4967static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4968				   struct cea_db_iter *iter)
4969{
4970	memset(iter, 0, sizeof(*iter));
4971
4972	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4973	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4974}
4975
4976static const struct cea_db *
4977__cea_db_iter_current_block(const struct cea_db_iter *iter)
4978{
4979	const struct cea_db *db;
4980
4981	if (!iter->collection)
4982		return NULL;
4983
4984	db = (const struct cea_db *)&iter->collection[iter->index];
4985
4986	if (iter->index + sizeof(*db) <= iter->end &&
4987	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4988		return db;
4989
4990	return NULL;
4991}
4992
4993/*
4994 * References:
4995 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4996 */
4997static int cea_db_collection_size(const u8 *cta)
4998{
4999	u8 d = cta[2];
5000
5001	if (d < 4 || d > 127)
5002		return 0;
5003
5004	return d - 4;
5005}
5006
5007/*
5008 * References:
5009 * - VESA E-EDID v1.4
5010 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5011 */
5012static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5013{
5014	const u8 *ext;
5015
5016	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5017		int size;
5018
5019		/* Only support CTA Extension revision 3+ */
5020		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5021			continue;
5022
5023		size = cea_db_collection_size(ext);
5024		if (!size)
5025			continue;
5026
5027		iter->index = 4;
5028		iter->end = iter->index + size;
5029
5030		return ext;
5031	}
5032
5033	return NULL;
5034}
5035
5036/*
5037 * References:
5038 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5039 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5040 *
5041 * Note that the above do not specify any connection between DisplayID Data
5042 * Block revision and CTA Extension versions.
5043 */
5044static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5045{
5046	const struct displayid_block *block;
5047
5048	displayid_iter_for_each(block, &iter->displayid_iter) {
5049		if (block->tag != DATA_BLOCK_CTA)
5050			continue;
5051
5052		/*
5053		 * The displayid iterator has already verified the block bounds
5054		 * in displayid_iter_block().
5055		 */
5056		iter->index = sizeof(*block);
5057		iter->end = iter->index + block->num_bytes;
5058
5059		return block;
5060	}
5061
5062	return NULL;
5063}
5064
5065static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5066{
5067	const struct cea_db *db;
5068
5069	if (iter->collection) {
5070		/* Current collection should always be valid. */
5071		db = __cea_db_iter_current_block(iter);
5072		if (WARN_ON(!db)) {
5073			iter->collection = NULL;
5074			return NULL;
5075		}
5076
5077		/* Next block in CTA Data Block Collection */
5078		iter->index += sizeof(*db) + cea_db_payload_len(db);
5079
5080		db = __cea_db_iter_current_block(iter);
5081		if (db)
5082			return db;
5083	}
5084
5085	for (;;) {
5086		/*
5087		 * Find the next CTA Data Block Collection. First iterate all
5088		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5089		 *
5090		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5091		 * Extension, it's recommended that DisplayID extensions are
5092		 * exposed after all of the CTA Extensions.
5093		 */
5094		iter->collection = __cea_db_iter_edid_next(iter);
5095		if (!iter->collection)
5096			iter->collection = __cea_db_iter_displayid_next(iter);
5097
5098		if (!iter->collection)
5099			return NULL;
5100
5101		db = __cea_db_iter_current_block(iter);
5102		if (db)
5103			return db;
5104	}
5105}
5106
5107#define cea_db_iter_for_each(__db, __iter) \
5108	while (((__db) = __cea_db_iter_next(__iter)))
5109
5110static void cea_db_iter_end(struct cea_db_iter *iter)
5111{
5112	displayid_iter_end(&iter->displayid_iter);
5113	drm_edid_iter_end(&iter->edid_iter);
5114
5115	memset(iter, 0, sizeof(*iter));
5116}
5117
5118static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5119{
5120	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5121		cea_db_payload_len(db) >= 5;
5122}
5123
5124static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5125{
5126	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5127		cea_db_payload_len(db) >= 7;
5128}
5129
5130static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5131{
5132	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5133		cea_db_payload_len(db) >= 2;
5134}
5135
5136static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5137{
5138	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5139		cea_db_payload_len(db) == 21;
5140}
5141
5142static bool cea_db_is_vcdb(const struct cea_db *db)
5143{
5144	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5145		cea_db_payload_len(db) == 2;
5146}
5147
5148static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5149{
5150	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5151		cea_db_payload_len(db) >= 7;
5152}
5153
5154static bool cea_db_is_y420cmdb(const struct cea_db *db)
5155{
5156	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5157}
5158
5159static bool cea_db_is_y420vdb(const struct cea_db *db)
5160{
5161	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5162}
5163
5164static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5165{
5166	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5167		cea_db_payload_len(db) >= 3;
5168}
5169
5170/*
5171 * Get the HF-EEODB override extension block count from EDID.
5172 *
5173 * The passed in EDID may be partially read, as long as it has at least two
5174 * blocks (base block and one extension block) if EDID extension count is > 0.
5175 *
5176 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5177 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5178 * iterators instead.
5179 *
5180 * References:
5181 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5182 */
5183static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5184{
5185	const u8 *cta;
5186
5187	/* No extensions according to base block, no HF-EEODB. */
5188	if (!edid_extension_block_count(edid))
5189		return 0;
5190
5191	/* HF-EEODB is always in the first EDID extension block only */
5192	cta = edid_extension_block_data(edid, 0);
5193	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5194		return 0;
5195
5196	/* Need to have the data block collection, and at least 3 bytes. */
5197	if (cea_db_collection_size(cta) < 3)
5198		return 0;
5199
5200	/*
5201	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5202	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5203	 * through 6 of Block 1 of the E-EDID.
5204	 */
5205	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5206		return 0;
5207
5208	return cta[4 + 2];
5209}
5210
5211/*
5212 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5213 *
5214 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5215 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5216 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5217 * support YCBCR420 output too.
5218 */
5219static void parse_cta_y420cmdb(struct drm_connector *connector,
5220			       const struct cea_db *db, u64 *y420cmdb_map)
5221{
5222	struct drm_display_info *info = &connector->display_info;
5223	int i, map_len = cea_db_payload_len(db) - 1;
5224	const u8 *data = cea_db_data(db) + 1;
5225	u64 map = 0;
5226
5227	if (map_len == 0) {
5228		/* All CEA modes support ycbcr420 sampling also.*/
5229		map = U64_MAX;
5230		goto out;
5231	}
5232
5233	/*
5234	 * This map indicates which of the existing CEA block modes
5235	 * from VDB can support YCBCR420 output too. So if bit=0 is
5236	 * set, first mode from VDB can support YCBCR420 output too.
5237	 * We will parse and keep this map, before parsing VDB itself
5238	 * to avoid going through the same block again and again.
5239	 *
5240	 * Spec is not clear about max possible size of this block.
5241	 * Clamping max bitmap block size at 8 bytes. Every byte can
5242	 * address 8 CEA modes, in this way this map can address
5243	 * 8*8 = first 64 SVDs.
5244	 */
5245	if (WARN_ON_ONCE(map_len > 8))
5246		map_len = 8;
5247
5248	for (i = 0; i < map_len; i++)
5249		map |= (u64)data[i] << (8 * i);
5250
5251out:
5252	if (map)
5253		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5254
5255	*y420cmdb_map = map;
5256}
5257
5258static int add_cea_modes(struct drm_connector *connector,
5259			 const struct drm_edid *drm_edid)
5260{
5261	const struct cea_db *db;
5262	struct cea_db_iter iter;
5263	int modes;
5264
5265	/* CTA VDB block VICs parsed earlier */
5266	modes = add_cta_vdb_modes(connector);
5267
5268	cea_db_iter_edid_begin(drm_edid, &iter);
5269	cea_db_iter_for_each(db, &iter) {
5270		if (cea_db_is_hdmi_vsdb(db)) {
5271			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5272						    cea_db_payload_len(db));
5273		} else if (cea_db_is_y420vdb(db)) {
5274			const u8 *vdb420 = cea_db_data(db) + 1;
5275
5276			/* Add 4:2:0(only) modes present in EDID */
5277			modes += do_y420vdb_modes(connector, vdb420,
5278						  cea_db_payload_len(db) - 1);
5279		}
5280	}
5281	cea_db_iter_end(&iter);
5282
5283	return modes;
5284}
5285
5286static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5287					  struct drm_display_mode *mode)
5288{
5289	const struct drm_display_mode *cea_mode;
5290	int clock1, clock2, clock;
5291	u8 vic;
5292	const char *type;
5293
5294	/*
5295	 * allow 5kHz clock difference either way to account for
5296	 * the 10kHz clock resolution limit of detailed timings.
5297	 */
5298	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5299	if (drm_valid_cea_vic(vic)) {
5300		type = "CEA";
5301		cea_mode = cea_mode_for_vic(vic);
5302		clock1 = cea_mode->clock;
5303		clock2 = cea_mode_alternate_clock(cea_mode);
5304	} else {
5305		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5306		if (drm_valid_hdmi_vic(vic)) {
5307			type = "HDMI";
5308			cea_mode = &edid_4k_modes[vic];
5309			clock1 = cea_mode->clock;
5310			clock2 = hdmi_mode_alternate_clock(cea_mode);
5311		} else {
5312			return;
5313		}
5314	}
5315
5316	/* pick whichever is closest */
5317	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5318		clock = clock1;
5319	else
5320		clock = clock2;
5321
5322	if (mode->clock == clock)
5323		return;
5324
5325	drm_dbg_kms(connector->dev,
5326		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5327		    connector->base.id, connector->name,
5328		    type, vic, mode->clock, clock);
5329	mode->clock = clock;
5330}
5331
5332static void drm_calculate_luminance_range(struct drm_connector *connector)
5333{
5334	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5335	struct drm_luminance_range_info *luminance_range =
5336		&connector->display_info.luminance_range;
5337	static const u8 pre_computed_values[] = {
5338		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5339		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5340	};
5341	u32 max_avg, min_cll, max, min, q, r;
5342
5343	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5344		return;
5345
5346	max_avg = hdr_metadata->max_fall;
5347	min_cll = hdr_metadata->min_cll;
5348
5349	/*
5350	 * From the specification (CTA-861-G), for calculating the maximum
5351	 * luminance we need to use:
5352	 *	Luminance = 50*2**(CV/32)
5353	 * Where CV is a one-byte value.
5354	 * For calculating this expression we may need float point precision;
5355	 * to avoid this complexity level, we take advantage that CV is divided
5356	 * by a constant. From the Euclids division algorithm, we know that CV
5357	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5358	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5359	 * need to pre-compute the value of r/32. For pre-computing the values
5360	 * We just used the following Ruby line:
5361	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5362	 * The results of the above expressions can be verified at
5363	 * pre_computed_values.
5364	 */
5365	q = max_avg >> 5;
5366	r = max_avg % 32;
5367	max = (1 << q) * pre_computed_values[r];
5368
5369	/* min luminance: maxLum * (CV/255)^2 / 100 */
5370	q = DIV_ROUND_CLOSEST(min_cll, 255);
5371	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5372
5373	luminance_range->min_luminance = min;
5374	luminance_range->max_luminance = max;
5375}
5376
5377static uint8_t eotf_supported(const u8 *edid_ext)
5378{
5379	return edid_ext[2] &
5380		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5381		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5382		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5383		 BIT(HDMI_EOTF_BT_2100_HLG));
5384}
5385
5386static uint8_t hdr_metadata_type(const u8 *edid_ext)
5387{
5388	return edid_ext[3] &
5389		BIT(HDMI_STATIC_METADATA_TYPE1);
5390}
5391
5392static void
5393drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5394{
5395	u16 len;
5396
5397	len = cea_db_payload_len(db);
5398
5399	connector->hdr_sink_metadata.hdmi_type1.eotf =
5400						eotf_supported(db);
5401	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5402						hdr_metadata_type(db);
5403
5404	if (len >= 4)
5405		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5406	if (len >= 5)
5407		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5408	if (len >= 6) {
5409		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5410
5411		/* Calculate only when all values are available */
5412		drm_calculate_luminance_range(connector);
5413	}
5414}
5415
5416/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5417static void
5418drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5419{
5420	u8 len = cea_db_payload_len(db);
5421
5422	if (len >= 6 && (db[6] & (1 << 7)))
5423		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5424
5425	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5426		connector->latency_present[0] = true;
5427		connector->video_latency[0] = db[9];
5428		connector->audio_latency[0] = db[10];
5429	}
5430
5431	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5432		connector->latency_present[1] = true;
5433		connector->video_latency[1] = db[11];
5434		connector->audio_latency[1] = db[12];
5435	}
5436
5437	drm_dbg_kms(connector->dev,
5438		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5439		    connector->base.id, connector->name,
5440		    connector->latency_present[0], connector->latency_present[1],
5441		    connector->video_latency[0], connector->video_latency[1],
5442		    connector->audio_latency[0], connector->audio_latency[1]);
5443}
5444
5445static void
5446monitor_name(const struct detailed_timing *timing, void *data)
5447{
5448	const char **res = data;
5449
5450	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5451		return;
5452
5453	*res = timing->data.other_data.data.str.str;
5454}
5455
5456static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5457{
5458	const char *edid_name = NULL;
5459	int mnl;
5460
5461	if (!drm_edid || !name)
5462		return 0;
5463
5464	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5465	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5466		if (edid_name[mnl] == 0x0a)
5467			break;
5468
5469		name[mnl] = edid_name[mnl];
5470	}
5471
5472	return mnl;
5473}
5474
5475/**
5476 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5477 * @edid: monitor EDID information
5478 * @name: pointer to a character array to hold the name of the monitor
5479 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5480 *
5481 */
5482void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5483{
5484	int name_length = 0;
5485
5486	if (bufsize <= 0)
5487		return;
5488
5489	if (edid) {
5490		char buf[13];
5491		struct drm_edid drm_edid = {
5492			.edid = edid,
5493			.size = edid_size(edid),
5494		};
5495
5496		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5497		memcpy(name, buf, name_length);
5498	}
5499
5500	name[name_length] = '\0';
5501}
5502EXPORT_SYMBOL(drm_edid_get_monitor_name);
5503
5504static void clear_eld(struct drm_connector *connector)
5505{
5506	memset(connector->eld, 0, sizeof(connector->eld));
5507
5508	connector->latency_present[0] = false;
5509	connector->latency_present[1] = false;
5510	connector->video_latency[0] = 0;
5511	connector->audio_latency[0] = 0;
5512	connector->video_latency[1] = 0;
5513	connector->audio_latency[1] = 0;
5514}
5515
5516/*
5517 * Get 3-byte SAD buffer from struct cea_sad.
5518 */
5519void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5520{
5521	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5522	sad[1] = cta_sad->freq;
5523	sad[2] = cta_sad->byte2;
5524}
5525
5526/*
5527 * Set struct cea_sad from 3-byte SAD buffer.
5528 */
5529void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5530{
5531	cta_sad->format = (sad[0] & 0x78) >> 3;
5532	cta_sad->channels = sad[0] & 0x07;
5533	cta_sad->freq = sad[1] & 0x7f;
5534	cta_sad->byte2 = sad[2];
5535}
5536
5537/*
5538 * drm_edid_to_eld - build ELD from EDID
5539 * @connector: connector corresponding to the HDMI/DP sink
5540 * @drm_edid: EDID to parse
5541 *
5542 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5543 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5544 */
5545static void drm_edid_to_eld(struct drm_connector *connector,
5546			    const struct drm_edid *drm_edid)
5547{
5548	const struct drm_display_info *info = &connector->display_info;
5549	const struct cea_db *db;
5550	struct cea_db_iter iter;
5551	uint8_t *eld = connector->eld;
5552	int total_sad_count = 0;
5553	int mnl;
5554
5555	if (!drm_edid)
5556		return;
5557
5558	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5559	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5560		    connector->base.id, connector->name,
5561		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5562
5563	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5564	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5565
5566	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5567
5568	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5569	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5570	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5571	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5572
5573	cea_db_iter_edid_begin(drm_edid, &iter);
5574	cea_db_iter_for_each(db, &iter) {
5575		const u8 *data = cea_db_data(db);
5576		int len = cea_db_payload_len(db);
5577		int sad_count;
5578
5579		switch (cea_db_tag(db)) {
5580		case CTA_DB_AUDIO:
5581			/* Audio Data Block, contains SADs */
5582			sad_count = min(len / 3, 15 - total_sad_count);
5583			if (sad_count >= 1)
5584				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5585				       data, sad_count * 3);
5586			total_sad_count += sad_count;
5587			break;
5588		case CTA_DB_SPEAKER:
5589			/* Speaker Allocation Data Block */
5590			if (len >= 1)
5591				eld[DRM_ELD_SPEAKER] = data[0];
5592			break;
5593		case CTA_DB_VENDOR:
5594			/* HDMI Vendor-Specific Data Block */
5595			if (cea_db_is_hdmi_vsdb(db))
5596				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5597			break;
5598		default:
5599			break;
5600		}
5601	}
5602	cea_db_iter_end(&iter);
5603
5604	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5605
5606	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5607	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5608		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5609	else
5610		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5611
5612	eld[DRM_ELD_BASELINE_ELD_LEN] =
5613		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5614
5615	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5616		    connector->base.id, connector->name,
5617		    drm_eld_size(eld), total_sad_count);
5618}
5619
5620static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5621			    struct cea_sad **psads)
5622{
5623	const struct cea_db *db;
5624	struct cea_db_iter iter;
5625	int count = 0;
5626
5627	cea_db_iter_edid_begin(drm_edid, &iter);
5628	cea_db_iter_for_each(db, &iter) {
5629		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5630			struct cea_sad *sads;
5631			int i;
5632
5633			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5634			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5635			*psads = sads;
5636			if (!sads)
5637				return -ENOMEM;
5638			for (i = 0; i < count; i++)
5639				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5640			break;
5641		}
5642	}
5643	cea_db_iter_end(&iter);
5644
5645	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5646
5647	return count;
5648}
5649
5650/**
5651 * drm_edid_to_sad - extracts SADs from EDID
5652 * @edid: EDID to parse
5653 * @sads: pointer that will be set to the extracted SADs
5654 *
5655 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5656 *
5657 * Note: The returned pointer needs to be freed using kfree().
5658 *
5659 * Return: The number of found SADs or negative number on error.
5660 */
5661int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5662{
5663	struct drm_edid drm_edid;
5664
5665	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5666}
5667EXPORT_SYMBOL(drm_edid_to_sad);
5668
5669static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5670					   u8 **sadb)
5671{
5672	const struct cea_db *db;
5673	struct cea_db_iter iter;
5674	int count = 0;
5675
5676	cea_db_iter_edid_begin(drm_edid, &iter);
5677	cea_db_iter_for_each(db, &iter) {
5678		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5679		    cea_db_payload_len(db) == 3) {
5680			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5681					GFP_KERNEL);
5682			if (!*sadb)
5683				return -ENOMEM;
5684			count = cea_db_payload_len(db);
5685			break;
5686		}
5687	}
5688	cea_db_iter_end(&iter);
5689
5690	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5691
5692	return count;
5693}
5694
5695/**
5696 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5697 * @edid: EDID to parse
5698 * @sadb: pointer to the speaker block
5699 *
5700 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5701 *
5702 * Note: The returned pointer needs to be freed using kfree().
5703 *
5704 * Return: The number of found Speaker Allocation Blocks or negative number on
5705 * error.
5706 */
5707int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5708{
5709	struct drm_edid drm_edid;
5710
5711	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5712					       sadb);
5713}
5714EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5715
5716/**
5717 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5718 * @connector: connector associated with the HDMI/DP sink
5719 * @mode: the display mode
5720 *
5721 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5722 * the sink doesn't support audio or video.
5723 */
5724int drm_av_sync_delay(struct drm_connector *connector,
5725		      const struct drm_display_mode *mode)
5726{
5727	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5728	int a, v;
5729
5730	if (!connector->latency_present[0])
5731		return 0;
5732	if (!connector->latency_present[1])
5733		i = 0;
5734
5735	a = connector->audio_latency[i];
5736	v = connector->video_latency[i];
5737
5738	/*
5739	 * HDMI/DP sink doesn't support audio or video?
5740	 */
5741	if (a == 255 || v == 255)
5742		return 0;
5743
5744	/*
5745	 * Convert raw EDID values to millisecond.
5746	 * Treat unknown latency as 0ms.
5747	 */
5748	if (a)
5749		a = min(2 * (a - 1), 500);
5750	if (v)
5751		v = min(2 * (v - 1), 500);
5752
5753	return max(v - a, 0);
5754}
5755EXPORT_SYMBOL(drm_av_sync_delay);
5756
5757static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5758{
5759	const struct cea_db *db;
5760	struct cea_db_iter iter;
5761	bool hdmi = false;
5762
5763	/*
5764	 * Because HDMI identifier is in Vendor Specific Block,
5765	 * search it from all data blocks of CEA extension.
5766	 */
5767	cea_db_iter_edid_begin(drm_edid, &iter);
5768	cea_db_iter_for_each(db, &iter) {
5769		if (cea_db_is_hdmi_vsdb(db)) {
5770			hdmi = true;
5771			break;
5772		}
5773	}
5774	cea_db_iter_end(&iter);
5775
5776	return hdmi;
5777}
5778
5779/**
5780 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5781 * @edid: monitor EDID information
5782 *
5783 * Parse the CEA extension according to CEA-861-B.
5784 *
5785 * Drivers that have added the modes parsed from EDID to drm_display_info
5786 * should use &drm_display_info.is_hdmi instead of calling this function.
5787 *
5788 * Return: True if the monitor is HDMI, false if not or unknown.
5789 */
5790bool drm_detect_hdmi_monitor(const struct edid *edid)
5791{
5792	struct drm_edid drm_edid;
5793
5794	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5795}
5796EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5797
5798static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5799{
5800	struct drm_edid_iter edid_iter;
5801	const struct cea_db *db;
5802	struct cea_db_iter iter;
5803	const u8 *edid_ext;
5804	bool has_audio = false;
5805
5806	drm_edid_iter_begin(drm_edid, &edid_iter);
5807	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5808		if (edid_ext[0] == CEA_EXT) {
5809			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5810			if (has_audio)
5811				break;
5812		}
5813	}
5814	drm_edid_iter_end(&edid_iter);
5815
5816	if (has_audio) {
5817		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5818		goto end;
5819	}
5820
5821	cea_db_iter_edid_begin(drm_edid, &iter);
5822	cea_db_iter_for_each(db, &iter) {
5823		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5824			const u8 *data = cea_db_data(db);
5825			int i;
5826
5827			for (i = 0; i < cea_db_payload_len(db); i += 3)
5828				DRM_DEBUG_KMS("CEA audio format %d\n",
5829					      (data[i] >> 3) & 0xf);
5830			has_audio = true;
5831			break;
5832		}
5833	}
5834	cea_db_iter_end(&iter);
5835
5836end:
5837	return has_audio;
5838}
5839
5840/**
5841 * drm_detect_monitor_audio - check monitor audio capability
5842 * @edid: EDID block to scan
5843 *
5844 * Monitor should have CEA extension block.
5845 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5846 * audio' only. If there is any audio extension block and supported
5847 * audio format, assume at least 'basic audio' support, even if 'basic
5848 * audio' is not defined in EDID.
5849 *
5850 * Return: True if the monitor supports audio, false otherwise.
5851 */
5852bool drm_detect_monitor_audio(const struct edid *edid)
5853{
5854	struct drm_edid drm_edid;
5855
5856	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5857}
5858EXPORT_SYMBOL(drm_detect_monitor_audio);
5859
5860
5861/**
5862 * drm_default_rgb_quant_range - default RGB quantization range
5863 * @mode: display mode
5864 *
5865 * Determine the default RGB quantization range for the mode,
5866 * as specified in CEA-861.
5867 *
5868 * Return: The default RGB quantization range for the mode
5869 */
5870enum hdmi_quantization_range
5871drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5872{
5873	/* All CEA modes other than VIC 1 use limited quantization range. */
5874	return drm_match_cea_mode(mode) > 1 ?
5875		HDMI_QUANTIZATION_RANGE_LIMITED :
5876		HDMI_QUANTIZATION_RANGE_FULL;
5877}
5878EXPORT_SYMBOL(drm_default_rgb_quant_range);
5879
5880/* CTA-861 Video Data Block (CTA VDB) */
5881static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5882{
5883	struct drm_display_info *info = &connector->display_info;
5884	int i, vic_index, len = cea_db_payload_len(db);
5885	const u8 *svds = cea_db_data(db);
5886	u8 *vics;
5887
5888	if (!len)
5889		return;
5890
5891	/* Gracefully handle multiple VDBs, however unlikely that is */
5892	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5893	if (!vics)
5894		return;
5895
5896	vic_index = info->vics_len;
5897	info->vics_len += len;
5898	info->vics = vics;
5899
5900	for (i = 0; i < len; i++) {
5901		u8 vic = svd_to_vic(svds[i]);
5902
5903		if (!drm_valid_cea_vic(vic))
5904			vic = 0;
5905
5906		info->vics[vic_index++] = vic;
5907	}
5908}
5909
5910/*
5911 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5912 *
5913 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5914 * using the VICs themselves.
5915 */
5916static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5917{
5918	struct drm_display_info *info = &connector->display_info;
5919	struct drm_hdmi_info *hdmi = &info->hdmi;
5920	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5921
5922	for (i = 0; i < len; i++) {
5923		u8 vic = info->vics[i];
5924
5925		if (vic && y420cmdb_map & BIT_ULL(i))
5926			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5927	}
5928}
5929
5930static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5931{
5932	const struct drm_display_info *info = &connector->display_info;
5933	int i;
5934
5935	if (!vic || !info->vics)
5936		return false;
5937
5938	for (i = 0; i < info->vics_len; i++) {
5939		if (info->vics[i] == vic)
5940			return true;
5941	}
5942
5943	return false;
5944}
5945
5946/* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5947static void parse_cta_y420vdb(struct drm_connector *connector,
5948			      const struct cea_db *db)
5949{
5950	struct drm_display_info *info = &connector->display_info;
5951	struct drm_hdmi_info *hdmi = &info->hdmi;
5952	const u8 *svds = cea_db_data(db) + 1;
5953	int i;
5954
5955	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5956		u8 vic = svd_to_vic(svds[i]);
5957
5958		if (!drm_valid_cea_vic(vic))
5959			continue;
5960
5961		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5962		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5963	}
5964}
5965
5966static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5967{
5968	struct drm_display_info *info = &connector->display_info;
5969
5970	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5971		    connector->base.id, connector->name, db[2]);
5972
5973	if (db[2] & EDID_CEA_VCDB_QS)
5974		info->rgb_quant_range_selectable = true;
5975}
5976
5977static
5978void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5979{
5980	switch (max_frl_rate) {
5981	case 1:
5982		*max_lanes = 3;
5983		*max_rate_per_lane = 3;
5984		break;
5985	case 2:
5986		*max_lanes = 3;
5987		*max_rate_per_lane = 6;
5988		break;
5989	case 3:
5990		*max_lanes = 4;
5991		*max_rate_per_lane = 6;
5992		break;
5993	case 4:
5994		*max_lanes = 4;
5995		*max_rate_per_lane = 8;
5996		break;
5997	case 5:
5998		*max_lanes = 4;
5999		*max_rate_per_lane = 10;
6000		break;
6001	case 6:
6002		*max_lanes = 4;
6003		*max_rate_per_lane = 12;
6004		break;
6005	case 0:
6006	default:
6007		*max_lanes = 0;
6008		*max_rate_per_lane = 0;
6009	}
6010}
6011
6012static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6013					       const u8 *db)
6014{
6015	u8 dc_mask;
6016	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6017
6018	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6019	hdmi->y420_dc_modes = dc_mask;
6020}
6021
6022static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6023			       const u8 *hf_scds)
6024{
6025	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6026
6027	if (!hdmi_dsc->v_1p2)
6028		return;
6029
6030	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6031	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6032
6033	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6034		hdmi_dsc->bpc_supported = 16;
6035	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6036		hdmi_dsc->bpc_supported = 12;
6037	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6038		hdmi_dsc->bpc_supported = 10;
6039	else
6040		/* Supports min 8 BPC if DSC 1.2 is supported*/
6041		hdmi_dsc->bpc_supported = 8;
6042
6043	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6044		u8 dsc_max_slices;
6045		u8 dsc_max_frl_rate;
6046
6047		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6048		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6049				     &hdmi_dsc->max_frl_rate_per_lane);
6050
6051		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6052
6053		switch (dsc_max_slices) {
6054		case 1:
6055			hdmi_dsc->max_slices = 1;
6056			hdmi_dsc->clk_per_slice = 340;
6057			break;
6058		case 2:
6059			hdmi_dsc->max_slices = 2;
6060			hdmi_dsc->clk_per_slice = 340;
6061			break;
6062		case 3:
6063			hdmi_dsc->max_slices = 4;
6064			hdmi_dsc->clk_per_slice = 340;
6065			break;
6066		case 4:
6067			hdmi_dsc->max_slices = 8;
6068			hdmi_dsc->clk_per_slice = 340;
6069			break;
6070		case 5:
6071			hdmi_dsc->max_slices = 8;
6072			hdmi_dsc->clk_per_slice = 400;
6073			break;
6074		case 6:
6075			hdmi_dsc->max_slices = 12;
6076			hdmi_dsc->clk_per_slice = 400;
6077			break;
6078		case 7:
6079			hdmi_dsc->max_slices = 16;
6080			hdmi_dsc->clk_per_slice = 400;
6081			break;
6082		case 0:
6083		default:
6084			hdmi_dsc->max_slices = 0;
6085			hdmi_dsc->clk_per_slice = 0;
6086		}
6087	}
6088
6089	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6090		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6091}
6092
6093/* Sink Capability Data Structure */
6094static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6095				      const u8 *hf_scds)
6096{
6097	struct drm_display_info *info = &connector->display_info;
6098	struct drm_hdmi_info *hdmi = &info->hdmi;
6099	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6100	int max_tmds_clock = 0;
6101	u8 max_frl_rate = 0;
6102	bool dsc_support = false;
6103
6104	info->has_hdmi_infoframe = true;
6105
6106	if (hf_scds[6] & 0x80) {
6107		hdmi->scdc.supported = true;
6108		if (hf_scds[6] & 0x40)
6109			hdmi->scdc.read_request = true;
6110	}
6111
6112	/*
6113	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6114	 * And as per the spec, three factors confirm this:
6115	 * * Availability of a HF-VSDB block in EDID (check)
6116	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6117	 * * SCDC support available (let's check)
6118	 * Lets check it out.
6119	 */
6120
6121	if (hf_scds[5]) {
6122		struct drm_scdc *scdc = &hdmi->scdc;
6123
6124		/* max clock is 5000 KHz times block value */
6125		max_tmds_clock = hf_scds[5] * 5000;
6126
6127		if (max_tmds_clock > 340000) {
6128			info->max_tmds_clock = max_tmds_clock;
6129		}
6130
6131		if (scdc->supported) {
6132			scdc->scrambling.supported = true;
6133
6134			/* Few sinks support scrambling for clocks < 340M */
6135			if ((hf_scds[6] & 0x8))
6136				scdc->scrambling.low_rates = true;
6137		}
6138	}
6139
6140	if (hf_scds[7]) {
6141		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6142		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6143				     &hdmi->max_frl_rate_per_lane);
6144	}
6145
6146	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6147
6148	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6149		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6150		dsc_support = true;
6151	}
6152
6153	drm_dbg_kms(connector->dev,
6154		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6155		    connector->base.id, connector->name,
6156		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6157}
6158
6159static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6160					   const u8 *hdmi)
6161{
6162	struct drm_display_info *info = &connector->display_info;
6163	unsigned int dc_bpc = 0;
6164
6165	/* HDMI supports at least 8 bpc */
6166	info->bpc = 8;
6167
6168	if (cea_db_payload_len(hdmi) < 6)
6169		return;
6170
6171	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6172		dc_bpc = 10;
6173		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6174		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6175			    connector->base.id, connector->name);
6176	}
6177
6178	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6179		dc_bpc = 12;
6180		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6181		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6182			    connector->base.id, connector->name);
6183	}
6184
6185	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6186		dc_bpc = 16;
6187		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6188		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6189			    connector->base.id, connector->name);
6190	}
6191
6192	if (dc_bpc == 0) {
6193		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6194			    connector->base.id, connector->name);
6195		return;
6196	}
6197
6198	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6199		    connector->base.id, connector->name, dc_bpc);
6200	info->bpc = dc_bpc;
6201
6202	/* YCRCB444 is optional according to spec. */
6203	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6204		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6205		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6206			    connector->base.id, connector->name);
6207	}
6208
6209	/*
6210	 * Spec says that if any deep color mode is supported at all,
6211	 * then deep color 36 bit must be supported.
6212	 */
6213	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6214		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6215			    connector->base.id, connector->name);
6216	}
6217}
6218
6219/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6220static void
6221drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6222{
6223	struct drm_display_info *info = &connector->display_info;
6224	u8 len = cea_db_payload_len(db);
6225
6226	info->is_hdmi = true;
6227
6228	info->source_physical_address = (db[4] << 8) | db[5];
6229
6230	if (len >= 6)
6231		info->dvi_dual = db[6] & 1;
6232	if (len >= 7)
6233		info->max_tmds_clock = db[7] * 5000;
6234
6235	/*
6236	 * Try to infer whether the sink supports HDMI infoframes.
6237	 *
6238	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6239	 * supports infoframes if HDMI_Video_present is set.
6240	 */
6241	if (len >= 8 && db[8] & BIT(5))
6242		info->has_hdmi_infoframe = true;
6243
6244	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6245		    connector->base.id, connector->name,
6246		    info->dvi_dual, info->max_tmds_clock);
6247
6248	drm_parse_hdmi_deep_color_info(connector, db);
6249}
6250
6251/*
6252 * See EDID extension for head-mounted and specialized monitors, specified at:
6253 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6254 */
6255static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6256				     const u8 *db)
6257{
6258	struct drm_display_info *info = &connector->display_info;
6259	u8 version = db[4];
6260	bool desktop_usage = db[5] & BIT(6);
6261
6262	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6263	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6264		info->non_desktop = true;
6265
6266	drm_dbg_kms(connector->dev,
6267		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6268		    connector->base.id, connector->name, version, db[5]);
6269}
6270
6271static void drm_parse_cea_ext(struct drm_connector *connector,
6272			      const struct drm_edid *drm_edid)
6273{
6274	struct drm_display_info *info = &connector->display_info;
6275	struct drm_edid_iter edid_iter;
6276	const struct cea_db *db;
6277	struct cea_db_iter iter;
6278	const u8 *edid_ext;
6279	u64 y420cmdb_map = 0;
6280
6281	drm_edid_iter_begin(drm_edid, &edid_iter);
6282	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6283		if (edid_ext[0] != CEA_EXT)
6284			continue;
6285
6286		if (!info->cea_rev)
6287			info->cea_rev = edid_ext[1];
6288
6289		if (info->cea_rev != edid_ext[1])
6290			drm_dbg_kms(connector->dev,
6291				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6292				    connector->base.id, connector->name,
6293				    info->cea_rev, edid_ext[1]);
6294
6295		/* The existence of a CTA extension should imply RGB support */
6296		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6297		if (edid_ext[3] & EDID_CEA_YCRCB444)
6298			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6299		if (edid_ext[3] & EDID_CEA_YCRCB422)
6300			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6301		if (edid_ext[3] & EDID_BASIC_AUDIO)
6302			info->has_audio = true;
6303
6304	}
6305	drm_edid_iter_end(&edid_iter);
6306
6307	cea_db_iter_edid_begin(drm_edid, &iter);
6308	cea_db_iter_for_each(db, &iter) {
6309		/* FIXME: convert parsers to use struct cea_db */
6310		const u8 *data = (const u8 *)db;
6311
6312		if (cea_db_is_hdmi_vsdb(db))
6313			drm_parse_hdmi_vsdb_video(connector, data);
6314		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6315			 cea_db_is_hdmi_forum_scdb(db))
6316			drm_parse_hdmi_forum_scds(connector, data);
6317		else if (cea_db_is_microsoft_vsdb(db))
6318			drm_parse_microsoft_vsdb(connector, data);
6319		else if (cea_db_is_y420cmdb(db))
6320			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6321		else if (cea_db_is_y420vdb(db))
6322			parse_cta_y420vdb(connector, db);
6323		else if (cea_db_is_vcdb(db))
6324			drm_parse_vcdb(connector, data);
6325		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6326			drm_parse_hdr_metadata_block(connector, data);
6327		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6328			parse_cta_vdb(connector, db);
6329		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6330			info->has_audio = true;
6331	}
6332	cea_db_iter_end(&iter);
6333
6334	if (y420cmdb_map)
6335		update_cta_y420cmdb(connector, y420cmdb_map);
6336}
6337
6338static
6339void get_monitor_range(const struct detailed_timing *timing, void *c)
6340{
6341	struct detailed_mode_closure *closure = c;
6342	struct drm_display_info *info = &closure->connector->display_info;
6343	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6344	const struct detailed_non_pixel *data = &timing->data.other_data;
6345	const struct detailed_data_monitor_range *range = &data->data.range;
6346	const struct edid *edid = closure->drm_edid->edid;
6347
6348	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6349		return;
6350
6351	/*
6352	 * These limits are used to determine the VRR refresh
6353	 * rate range. Only the "range limits only" variant
6354	 * of the range descriptor seems to guarantee that
6355	 * any and all timings are accepted by the sink, as
6356	 * opposed to just timings conforming to the indicated
6357	 * formula (GTF/GTF2/CVT). Thus other variants of the
6358	 * range descriptor are not accepted here.
6359	 */
6360	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6361		return;
6362
6363	monitor_range->min_vfreq = range->min_vfreq;
6364	monitor_range->max_vfreq = range->max_vfreq;
6365
6366	if (edid->revision >= 4) {
6367		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6368			monitor_range->min_vfreq += 255;
6369		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6370			monitor_range->max_vfreq += 255;
6371	}
6372}
6373
6374static void drm_get_monitor_range(struct drm_connector *connector,
6375				  const struct drm_edid *drm_edid)
6376{
6377	const struct drm_display_info *info = &connector->display_info;
6378	struct detailed_mode_closure closure = {
6379		.connector = connector,
6380		.drm_edid = drm_edid,
6381	};
6382
6383	if (drm_edid->edid->revision < 4)
6384		return;
6385
6386	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6387		return;
6388
6389	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6390
6391	drm_dbg_kms(connector->dev,
6392		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6393		    connector->base.id, connector->name,
6394		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6395}
6396
6397static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6398				    const struct displayid_block *block)
6399{
6400	struct displayid_vesa_vendor_specific_block *vesa =
6401		(struct displayid_vesa_vendor_specific_block *)block;
6402	struct drm_display_info *info = &connector->display_info;
6403
6404	if (block->num_bytes < 3) {
6405		drm_dbg_kms(connector->dev,
6406			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6407			    connector->base.id, connector->name, block->num_bytes);
6408		return;
6409	}
6410
6411	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6412		return;
6413
6414	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6415		drm_dbg_kms(connector->dev,
6416			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6417			    connector->base.id, connector->name);
6418		return;
6419	}
6420
6421	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6422	default:
6423		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6424			    connector->base.id, connector->name);
6425		fallthrough;
6426	case 0:
6427		info->mso_stream_count = 0;
6428		break;
6429	case 1:
6430		info->mso_stream_count = 2; /* 2 or 4 links */
6431		break;
6432	case 2:
6433		info->mso_stream_count = 4; /* 4 links */
6434		break;
6435	}
6436
6437	if (!info->mso_stream_count) {
6438		info->mso_pixel_overlap = 0;
6439		return;
6440	}
6441
6442	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6443	if (info->mso_pixel_overlap > 8) {
6444		drm_dbg_kms(connector->dev,
6445			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6446			    connector->base.id, connector->name,
6447			    info->mso_pixel_overlap);
6448		info->mso_pixel_overlap = 8;
6449	}
6450
6451	drm_dbg_kms(connector->dev,
6452		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6453		    connector->base.id, connector->name,
6454		    info->mso_stream_count, info->mso_pixel_overlap);
6455}
6456
6457static void drm_update_mso(struct drm_connector *connector,
6458			   const struct drm_edid *drm_edid)
6459{
6460	const struct displayid_block *block;
6461	struct displayid_iter iter;
6462
6463	displayid_iter_edid_begin(drm_edid, &iter);
6464	displayid_iter_for_each(block, &iter) {
6465		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6466			drm_parse_vesa_mso_data(connector, block);
6467	}
6468	displayid_iter_end(&iter);
6469}
6470
6471/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6472 * all of the values which would have been set from EDID
6473 */
6474static void drm_reset_display_info(struct drm_connector *connector)
6475{
6476	struct drm_display_info *info = &connector->display_info;
6477
6478	info->width_mm = 0;
6479	info->height_mm = 0;
6480
6481	info->bpc = 0;
6482	info->color_formats = 0;
6483	info->cea_rev = 0;
6484	info->max_tmds_clock = 0;
6485	info->dvi_dual = false;
6486	info->is_hdmi = false;
6487	info->has_audio = false;
6488	info->has_hdmi_infoframe = false;
6489	info->rgb_quant_range_selectable = false;
6490	memset(&info->hdmi, 0, sizeof(info->hdmi));
6491
6492	info->edid_hdmi_rgb444_dc_modes = 0;
6493	info->edid_hdmi_ycbcr444_dc_modes = 0;
6494
6495	info->non_desktop = 0;
6496	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6497	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6498
6499	info->mso_stream_count = 0;
6500	info->mso_pixel_overlap = 0;
6501	info->max_dsc_bpp = 0;
6502
6503	kfree(info->vics);
6504	info->vics = NULL;
6505	info->vics_len = 0;
6506
6507	info->quirks = 0;
6508
6509	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6510}
6511
6512static void update_displayid_info(struct drm_connector *connector,
6513				  const struct drm_edid *drm_edid)
6514{
6515	struct drm_display_info *info = &connector->display_info;
6516	const struct displayid_block *block;
6517	struct displayid_iter iter;
6518
6519	displayid_iter_edid_begin(drm_edid, &iter);
6520	displayid_iter_for_each(block, &iter) {
6521		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6522		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6523		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6524			info->non_desktop = true;
6525
6526		/*
6527		 * We're only interested in the base section here, no need to
6528		 * iterate further.
6529		 */
6530		break;
6531	}
6532	displayid_iter_end(&iter);
6533}
6534
6535static void update_display_info(struct drm_connector *connector,
6536				const struct drm_edid *drm_edid)
6537{
6538	struct drm_display_info *info = &connector->display_info;
6539	const struct edid *edid;
6540
6541	drm_reset_display_info(connector);
6542	clear_eld(connector);
6543
6544	if (!drm_edid)
6545		return;
6546
6547	edid = drm_edid->edid;
6548
6549	info->quirks = edid_get_quirks(drm_edid);
6550
6551	info->width_mm = edid->width_cm * 10;
6552	info->height_mm = edid->height_cm * 10;
6553
6554	drm_get_monitor_range(connector, drm_edid);
6555
6556	if (edid->revision < 3)
6557		goto out;
6558
6559	if (!drm_edid_is_digital(drm_edid))
6560		goto out;
6561
6562	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6563	drm_parse_cea_ext(connector, drm_edid);
6564
6565	update_displayid_info(connector, drm_edid);
6566
6567	/*
6568	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6569	 *
6570	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6571	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6572	 * extensions which tell otherwise.
6573	 */
6574	if (info->bpc == 0 && edid->revision == 3 &&
6575	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6576		info->bpc = 8;
6577		drm_dbg_kms(connector->dev,
6578			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6579			    connector->base.id, connector->name, info->bpc);
6580	}
6581
6582	/* Only defined for 1.4 with digital displays */
6583	if (edid->revision < 4)
6584		goto out;
6585
6586	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6587	case DRM_EDID_DIGITAL_DEPTH_6:
6588		info->bpc = 6;
6589		break;
6590	case DRM_EDID_DIGITAL_DEPTH_8:
6591		info->bpc = 8;
6592		break;
6593	case DRM_EDID_DIGITAL_DEPTH_10:
6594		info->bpc = 10;
6595		break;
6596	case DRM_EDID_DIGITAL_DEPTH_12:
6597		info->bpc = 12;
6598		break;
6599	case DRM_EDID_DIGITAL_DEPTH_14:
6600		info->bpc = 14;
6601		break;
6602	case DRM_EDID_DIGITAL_DEPTH_16:
6603		info->bpc = 16;
6604		break;
6605	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6606	default:
6607		info->bpc = 0;
6608		break;
6609	}
6610
6611	drm_dbg_kms(connector->dev,
6612		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6613		    connector->base.id, connector->name, info->bpc);
6614
6615	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6616		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6617	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6618		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6619
6620	drm_update_mso(connector, drm_edid);
6621
6622out:
6623	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6624		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6625			    connector->base.id, connector->name,
6626			    info->non_desktop ? " (redundant quirk)" : "");
6627		info->non_desktop = true;
6628	}
6629
6630	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6631		info->max_dsc_bpp = 15;
6632
6633	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6634		info->bpc = 6;
6635
6636	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6637		info->bpc = 8;
6638
6639	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6640		info->bpc = 10;
6641
6642	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6643		info->bpc = 12;
6644
6645	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6646	drm_edid_to_eld(connector, drm_edid);
6647}
6648
6649static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6650							    struct displayid_detailed_timings_1 *timings,
6651							    bool type_7)
6652{
6653	struct drm_display_mode *mode;
6654	unsigned pixel_clock = (timings->pixel_clock[0] |
6655				(timings->pixel_clock[1] << 8) |
6656				(timings->pixel_clock[2] << 16)) + 1;
6657	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6658	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6659	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6660	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6661	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6662	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6663	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6664	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6665	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6666	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6667
6668	mode = drm_mode_create(dev);
6669	if (!mode)
6670		return NULL;
6671
6672	/* resolution is kHz for type VII, and 10 kHz for type I */
6673	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6674	mode->hdisplay = hactive;
6675	mode->hsync_start = mode->hdisplay + hsync;
6676	mode->hsync_end = mode->hsync_start + hsync_width;
6677	mode->htotal = mode->hdisplay + hblank;
6678
6679	mode->vdisplay = vactive;
6680	mode->vsync_start = mode->vdisplay + vsync;
6681	mode->vsync_end = mode->vsync_start + vsync_width;
6682	mode->vtotal = mode->vdisplay + vblank;
6683
6684	mode->flags = 0;
6685	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6686	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6687	mode->type = DRM_MODE_TYPE_DRIVER;
6688
6689	if (timings->flags & 0x80)
6690		mode->type |= DRM_MODE_TYPE_PREFERRED;
6691	drm_mode_set_name(mode);
6692
6693	return mode;
6694}
6695
6696static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6697					  const struct displayid_block *block)
6698{
6699	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6700	int i;
6701	int num_timings;
6702	struct drm_display_mode *newmode;
6703	int num_modes = 0;
6704	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6705	/* blocks must be multiple of 20 bytes length */
6706	if (block->num_bytes % 20)
6707		return 0;
6708
6709	num_timings = block->num_bytes / 20;
6710	for (i = 0; i < num_timings; i++) {
6711		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6712
6713		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6714		if (!newmode)
6715			continue;
6716
6717		drm_mode_probed_add(connector, newmode);
6718		num_modes++;
6719	}
6720	return num_modes;
6721}
6722
6723static int add_displayid_detailed_modes(struct drm_connector *connector,
6724					const struct drm_edid *drm_edid)
6725{
6726	const struct displayid_block *block;
6727	struct displayid_iter iter;
6728	int num_modes = 0;
6729
6730	displayid_iter_edid_begin(drm_edid, &iter);
6731	displayid_iter_for_each(block, &iter) {
6732		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6733		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6734			num_modes += add_displayid_detailed_1_modes(connector, block);
6735	}
6736	displayid_iter_end(&iter);
6737
6738	return num_modes;
6739}
6740
6741static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6742					 const struct drm_edid *drm_edid)
6743{
6744	const struct drm_display_info *info = &connector->display_info;
6745	int num_modes = 0;
6746
6747	if (!drm_edid)
6748		return 0;
6749
6750	/*
6751	 * EDID spec says modes should be preferred in this order:
6752	 * - preferred detailed mode
6753	 * - other detailed modes from base block
6754	 * - detailed modes from extension blocks
6755	 * - CVT 3-byte code modes
6756	 * - standard timing codes
6757	 * - established timing codes
6758	 * - modes inferred from GTF or CVT range information
6759	 *
6760	 * We get this pretty much right.
6761	 *
6762	 * XXX order for additional mode types in extension blocks?
6763	 */
6764	num_modes += add_detailed_modes(connector, drm_edid);
6765	num_modes += add_cvt_modes(connector, drm_edid);
6766	num_modes += add_standard_modes(connector, drm_edid);
6767	num_modes += add_established_modes(connector, drm_edid);
6768	num_modes += add_cea_modes(connector, drm_edid);
6769	num_modes += add_alternate_cea_modes(connector, drm_edid);
6770	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6771	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6772		num_modes += add_inferred_modes(connector, drm_edid);
6773
6774	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6775		edid_fixup_preferred(connector);
6776
6777	return num_modes;
6778}
6779
6780static void _drm_update_tile_info(struct drm_connector *connector,
6781				  const struct drm_edid *drm_edid);
6782
6783static int _drm_edid_connector_property_update(struct drm_connector *connector,
6784					       const struct drm_edid *drm_edid)
6785{
6786	struct drm_device *dev = connector->dev;
6787	int ret;
6788
6789	if (connector->edid_blob_ptr) {
6790		const struct edid *old_edid = connector->edid_blob_ptr->data;
6791
6792		if (old_edid) {
6793			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6794				connector->epoch_counter++;
6795				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6796					    connector->base.id, connector->name,
6797					    connector->epoch_counter);
6798			}
6799		}
6800	}
6801
6802	ret = drm_property_replace_global_blob(dev,
6803					       &connector->edid_blob_ptr,
6804					       drm_edid ? drm_edid->size : 0,
6805					       drm_edid ? drm_edid->edid : NULL,
6806					       &connector->base,
6807					       dev->mode_config.edid_property);
6808	if (ret) {
6809		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6810			    connector->base.id, connector->name, ret);
6811		goto out;
6812	}
6813
6814	ret = drm_object_property_set_value(&connector->base,
6815					    dev->mode_config.non_desktop_property,
6816					    connector->display_info.non_desktop);
6817	if (ret) {
6818		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6819			    connector->base.id, connector->name, ret);
6820		goto out;
6821	}
6822
6823	ret = drm_connector_set_tile_property(connector);
6824	if (ret) {
6825		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6826			    connector->base.id, connector->name, ret);
6827		goto out;
6828	}
6829
6830out:
6831	return ret;
6832}
6833
6834/**
6835 * drm_edid_connector_update - Update connector information from EDID
6836 * @connector: Connector
6837 * @drm_edid: EDID
6838 *
6839 * Update the connector display info, ELD, HDR metadata, relevant properties,
6840 * etc. from the passed in EDID.
6841 *
6842 * If EDID is NULL, reset the information.
6843 *
6844 * Must be called before calling drm_edid_connector_add_modes().
6845 *
6846 * Return: 0 on success, negative error on errors.
6847 */
6848int drm_edid_connector_update(struct drm_connector *connector,
6849			      const struct drm_edid *drm_edid)
6850{
6851	update_display_info(connector, drm_edid);
6852
6853	_drm_update_tile_info(connector, drm_edid);
6854
6855	return _drm_edid_connector_property_update(connector, drm_edid);
6856}
6857EXPORT_SYMBOL(drm_edid_connector_update);
6858
6859/**
6860 * drm_edid_connector_add_modes - Update probed modes from the EDID property
6861 * @connector: Connector
6862 *
6863 * Add the modes from the previously updated EDID property to the connector
6864 * probed modes list.
6865 *
6866 * drm_edid_connector_update() must have been called before this to update the
6867 * EDID property.
6868 *
6869 * Return: The number of modes added, or 0 if we couldn't find any.
6870 */
6871int drm_edid_connector_add_modes(struct drm_connector *connector)
6872{
6873	const struct drm_edid *drm_edid = NULL;
6874	int count;
6875
6876	if (connector->edid_blob_ptr)
6877		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6878					  connector->edid_blob_ptr->length);
6879
6880	count = _drm_edid_connector_add_modes(connector, drm_edid);
6881
6882	drm_edid_free(drm_edid);
6883
6884	return count;
6885}
6886EXPORT_SYMBOL(drm_edid_connector_add_modes);
6887
6888/**
6889 * drm_connector_update_edid_property - update the edid property of a connector
6890 * @connector: drm connector
6891 * @edid: new value of the edid property
6892 *
6893 * This function creates a new blob modeset object and assigns its id to the
6894 * connector's edid property.
6895 * Since we also parse tile information from EDID's displayID block, we also
6896 * set the connector's tile property here. See drm_connector_set_tile_property()
6897 * for more details.
6898 *
6899 * This function is deprecated. Use drm_edid_connector_update() instead.
6900 *
6901 * Returns:
6902 * Zero on success, negative errno on failure.
6903 */
6904int drm_connector_update_edid_property(struct drm_connector *connector,
6905				       const struct edid *edid)
6906{
6907	struct drm_edid drm_edid;
6908
6909	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6910}
6911EXPORT_SYMBOL(drm_connector_update_edid_property);
6912
6913/**
6914 * drm_add_edid_modes - add modes from EDID data, if available
6915 * @connector: connector we're probing
6916 * @edid: EDID data
6917 *
6918 * Add the specified modes to the connector's mode list. Also fills out the
6919 * &drm_display_info structure and ELD in @connector with any information which
6920 * can be derived from the edid.
6921 *
6922 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6923 *
6924 * Return: The number of modes added or 0 if we couldn't find any.
6925 */
6926int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6927{
6928	struct drm_edid _drm_edid;
6929	const struct drm_edid *drm_edid;
6930
6931	if (edid && !drm_edid_is_valid(edid)) {
6932		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6933			 connector->base.id, connector->name);
6934		edid = NULL;
6935	}
6936
6937	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6938
6939	update_display_info(connector, drm_edid);
6940
6941	return _drm_edid_connector_add_modes(connector, drm_edid);
6942}
6943EXPORT_SYMBOL(drm_add_edid_modes);
6944
6945/**
6946 * drm_add_modes_noedid - add modes for the connectors without EDID
6947 * @connector: connector we're probing
6948 * @hdisplay: the horizontal display limit
6949 * @vdisplay: the vertical display limit
6950 *
6951 * Add the specified modes to the connector's mode list. Only when the
6952 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6953 *
6954 * Return: The number of modes added or 0 if we couldn't find any.
6955 */
6956int drm_add_modes_noedid(struct drm_connector *connector,
6957			int hdisplay, int vdisplay)
6958{
6959	int i, count, num_modes = 0;
6960	struct drm_display_mode *mode;
6961	struct drm_device *dev = connector->dev;
6962
6963	count = ARRAY_SIZE(drm_dmt_modes);
6964	if (hdisplay < 0)
6965		hdisplay = 0;
6966	if (vdisplay < 0)
6967		vdisplay = 0;
6968
6969	for (i = 0; i < count; i++) {
6970		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6971
6972		if (hdisplay && vdisplay) {
6973			/*
6974			 * Only when two are valid, they will be used to check
6975			 * whether the mode should be added to the mode list of
6976			 * the connector.
6977			 */
6978			if (ptr->hdisplay > hdisplay ||
6979					ptr->vdisplay > vdisplay)
6980				continue;
6981		}
6982		if (drm_mode_vrefresh(ptr) > 61)
6983			continue;
6984		mode = drm_mode_duplicate(dev, ptr);
6985		if (mode) {
6986			drm_mode_probed_add(connector, mode);
6987			num_modes++;
6988		}
6989	}
6990	return num_modes;
6991}
6992EXPORT_SYMBOL(drm_add_modes_noedid);
6993
6994static bool is_hdmi2_sink(const struct drm_connector *connector)
6995{
6996	/*
6997	 * FIXME: sil-sii8620 doesn't have a connector around when
6998	 * we need one, so we have to be prepared for a NULL connector.
6999	 */
7000	if (!connector)
7001		return true;
7002
7003	return connector->display_info.hdmi.scdc.supported ||
7004		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7005}
7006
7007static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7008			    const struct drm_display_mode *mode)
7009{
7010	bool has_hdmi_infoframe = connector ?
7011		connector->display_info.has_hdmi_infoframe : false;
7012
7013	if (!has_hdmi_infoframe)
7014		return 0;
7015
7016	/* No HDMI VIC when signalling 3D video format */
7017	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7018		return 0;
7019
7020	return drm_match_hdmi_mode(mode);
7021}
7022
7023static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7024			   const struct drm_display_mode *mode)
7025{
7026	/*
7027	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7028	 * we should send its VIC in vendor infoframes, else send the
7029	 * VIC in AVI infoframes. Lets check if this mode is present in
7030	 * HDMI 1.4b 4K modes
7031	 */
7032	if (drm_mode_hdmi_vic(connector, mode))
7033		return 0;
7034
7035	return drm_match_cea_mode(mode);
7036}
7037
7038/*
7039 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7040 * conform to HDMI 1.4.
7041 *
7042 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7043 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7044 *
7045 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7046 * version.
7047 */
7048static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7049{
7050	if (!is_hdmi2_sink(connector) && vic > 64 &&
7051	    !cta_vdb_has_vic(connector, vic))
7052		return 0;
7053
7054	return vic;
7055}
7056
7057/**
7058 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7059 *                                              data from a DRM display mode
7060 * @frame: HDMI AVI infoframe
7061 * @connector: the connector
7062 * @mode: DRM display mode
7063 *
7064 * Return: 0 on success or a negative error code on failure.
7065 */
7066int
7067drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7068					 const struct drm_connector *connector,
7069					 const struct drm_display_mode *mode)
7070{
7071	enum hdmi_picture_aspect picture_aspect;
7072	u8 vic, hdmi_vic;
7073
7074	if (!frame || !mode)
7075		return -EINVAL;
7076
7077	hdmi_avi_infoframe_init(frame);
7078
7079	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7080		frame->pixel_repeat = 1;
7081
7082	vic = drm_mode_cea_vic(connector, mode);
7083	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7084
7085	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7086
7087	/*
7088	 * As some drivers don't support atomic, we can't use connector state.
7089	 * So just initialize the frame with default values, just the same way
7090	 * as it's done with other properties here.
7091	 */
7092	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7093	frame->itc = 0;
7094
7095	/*
7096	 * Populate picture aspect ratio from either
7097	 * user input (if specified) or from the CEA/HDMI mode lists.
7098	 */
7099	picture_aspect = mode->picture_aspect_ratio;
7100	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7101		if (vic)
7102			picture_aspect = drm_get_cea_aspect_ratio(vic);
7103		else if (hdmi_vic)
7104			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7105	}
7106
7107	/*
7108	 * The infoframe can't convey anything but none, 4:3
7109	 * and 16:9, so if the user has asked for anything else
7110	 * we can only satisfy it by specifying the right VIC.
7111	 */
7112	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7113		if (vic) {
7114			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7115				return -EINVAL;
7116		} else if (hdmi_vic) {
7117			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7118				return -EINVAL;
7119		} else {
7120			return -EINVAL;
7121		}
7122
7123		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7124	}
7125
7126	frame->video_code = vic_for_avi_infoframe(connector, vic);
7127	frame->picture_aspect = picture_aspect;
7128	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7129	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7130
7131	return 0;
7132}
7133EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7134
7135/**
7136 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7137 *                                        quantization range information
7138 * @frame: HDMI AVI infoframe
7139 * @connector: the connector
7140 * @mode: DRM display mode
7141 * @rgb_quant_range: RGB quantization range (Q)
7142 */
7143void
7144drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7145				   const struct drm_connector *connector,
7146				   const struct drm_display_mode *mode,
7147				   enum hdmi_quantization_range rgb_quant_range)
7148{
7149	const struct drm_display_info *info = &connector->display_info;
7150
7151	/*
7152	 * CEA-861:
7153	 * "A Source shall not send a non-zero Q value that does not correspond
7154	 *  to the default RGB Quantization Range for the transmitted Picture
7155	 *  unless the Sink indicates support for the Q bit in a Video
7156	 *  Capabilities Data Block."
7157	 *
7158	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7159	 * default RGB quantization range for the mode, even when QS=0.
7160	 */
7161	if (info->rgb_quant_range_selectable ||
7162	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7163		frame->quantization_range = rgb_quant_range;
7164	else
7165		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7166
7167	/*
7168	 * CEA-861-F:
7169	 * "When transmitting any RGB colorimetry, the Source should set the
7170	 *  YQ-field to match the RGB Quantization Range being transmitted
7171	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7172	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7173	 *
7174	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7175	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7176	 * good way to tell which version of CEA-861 the sink supports, so
7177	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7178	 * on CEA-861-F.
7179	 */
7180	if (!is_hdmi2_sink(connector) ||
7181	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7182		frame->ycc_quantization_range =
7183			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7184	else
7185		frame->ycc_quantization_range =
7186			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7187}
7188EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7189
7190static enum hdmi_3d_structure
7191s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7192{
7193	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7194
7195	switch (layout) {
7196	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7197		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7198	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7199		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7200	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7201		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7202	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7203		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7204	case DRM_MODE_FLAG_3D_L_DEPTH:
7205		return HDMI_3D_STRUCTURE_L_DEPTH;
7206	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7207		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7208	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7209		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7210	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7211		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7212	default:
7213		return HDMI_3D_STRUCTURE_INVALID;
7214	}
7215}
7216
7217/**
7218 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7219 * data from a DRM display mode
7220 * @frame: HDMI vendor infoframe
7221 * @connector: the connector
7222 * @mode: DRM display mode
7223 *
7224 * Note that there's is a need to send HDMI vendor infoframes only when using a
7225 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7226 * function will return -EINVAL, error that can be safely ignored.
7227 *
7228 * Return: 0 on success or a negative error code on failure.
7229 */
7230int
7231drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7232					    const struct drm_connector *connector,
7233					    const struct drm_display_mode *mode)
7234{
7235	/*
7236	 * FIXME: sil-sii8620 doesn't have a connector around when
7237	 * we need one, so we have to be prepared for a NULL connector.
7238	 */
7239	bool has_hdmi_infoframe = connector ?
7240		connector->display_info.has_hdmi_infoframe : false;
7241	int err;
7242
7243	if (!frame || !mode)
7244		return -EINVAL;
7245
7246	if (!has_hdmi_infoframe)
7247		return -EINVAL;
7248
7249	err = hdmi_vendor_infoframe_init(frame);
7250	if (err < 0)
7251		return err;
7252
7253	/*
7254	 * Even if it's not absolutely necessary to send the infoframe
7255	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7256	 * know that the sink can handle it. This is based on a
7257	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7258	 * have trouble realizing that they should switch from 3D to 2D
7259	 * mode if the source simply stops sending the infoframe when
7260	 * it wants to switch from 3D to 2D.
7261	 */
7262	frame->vic = drm_mode_hdmi_vic(connector, mode);
7263	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7264
7265	return 0;
7266}
7267EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7268
7269static void drm_parse_tiled_block(struct drm_connector *connector,
7270				  const struct displayid_block *block)
7271{
7272	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7273	u16 w, h;
7274	u8 tile_v_loc, tile_h_loc;
7275	u8 num_v_tile, num_h_tile;
7276	struct drm_tile_group *tg;
7277
7278	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7279	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7280
7281	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7282	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7283	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7284	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7285
7286	connector->has_tile = true;
7287	if (tile->tile_cap & 0x80)
7288		connector->tile_is_single_monitor = true;
7289
7290	connector->num_h_tile = num_h_tile + 1;
7291	connector->num_v_tile = num_v_tile + 1;
7292	connector->tile_h_loc = tile_h_loc;
7293	connector->tile_v_loc = tile_v_loc;
7294	connector->tile_h_size = w + 1;
7295	connector->tile_v_size = h + 1;
7296
7297	drm_dbg_kms(connector->dev,
7298		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7299		    connector->base.id, connector->name,
7300		    tile->tile_cap,
7301		    connector->tile_h_size, connector->tile_v_size,
7302		    connector->num_h_tile, connector->num_v_tile,
7303		    connector->tile_h_loc, connector->tile_v_loc,
7304		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7305
7306	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7307	if (!tg)
7308		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7309	if (!tg)
7310		return;
7311
7312	if (connector->tile_group != tg) {
7313		/* if we haven't got a pointer,
7314		   take the reference, drop ref to old tile group */
7315		if (connector->tile_group)
7316			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7317		connector->tile_group = tg;
7318	} else {
7319		/* if same tile group, then release the ref we just took. */
7320		drm_mode_put_tile_group(connector->dev, tg);
7321	}
7322}
7323
7324static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7325				     const struct displayid_block *block)
7326{
7327	return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7328		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7329		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7330		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7331}
7332
7333static void _drm_update_tile_info(struct drm_connector *connector,
7334				  const struct drm_edid *drm_edid)
7335{
7336	const struct displayid_block *block;
7337	struct displayid_iter iter;
7338
7339	connector->has_tile = false;
7340
7341	displayid_iter_edid_begin(drm_edid, &iter);
7342	displayid_iter_for_each(block, &iter) {
7343		if (displayid_is_tiled_block(&iter, block))
7344			drm_parse_tiled_block(connector, block);
7345	}
7346	displayid_iter_end(&iter);
7347
7348	if (!connector->has_tile && connector->tile_group) {
7349		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7350		connector->tile_group = NULL;
7351	}
7352}
7353
7354/**
7355 * drm_edid_is_digital - is digital?
7356 * @drm_edid: The EDID
7357 *
7358 * Return true if input is digital.
7359 */
7360bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7361{
7362	return drm_edid && drm_edid->edid &&
7363		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7364}
7365EXPORT_SYMBOL(drm_edid_is_digital);
7366