1/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include <asm/div64.h>
24
25#define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */
26
27#define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */
28
29#define SHIFTED_2 (2 << SHIFT_AMOUNT)
30#define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */
31
32/* -------------------------------------------------------------------------------
33 * NEW TYPE - fINT
34 * -------------------------------------------------------------------------------
35 * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
36 * fInt A;
37 * A.full => The full number as it is. Generally not easy to read
38 * A.partial.real => Only the integer portion
39 * A.partial.decimal => Only the fractional portion
40 */
41typedef union _fInt {
42    int full;
43    struct _partial {
44        unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
45        int real: 32 - SHIFT_AMOUNT;
46    } partial;
47} fInt;
48
49/* -------------------------------------------------------------------------------
50 * Function Declarations
51 *  -------------------------------------------------------------------------------
52 */
53static fInt ConvertToFraction(int);                       /* Use this to convert an INT to a FINT */
54static fInt Convert_ULONG_ToFraction(uint32_t);           /* Use this to convert an uint32_t to a FINT */
55static fInt GetScaledFraction(int, int);                  /* Use this to convert an INT to a FINT after scaling it by a factor */
56static int ConvertBackToInteger(fInt);                    /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
57
58static fInt fNegate(fInt);                                /* Returns -1 * input fInt value */
59static fInt fAdd (fInt, fInt);                            /* Returns the sum of two fInt numbers */
60static fInt fSubtract (fInt A, fInt B);                   /* Returns A-B - Sometimes easier than Adding negative numbers */
61static fInt fMultiply (fInt, fInt);                       /* Returns the product of two fInt numbers */
62static fInt fDivide (fInt A, fInt B);                     /* Returns A/B */
63static fInt fGetSquare(fInt);                             /* Returns the square of a fInt number */
64static fInt fSqrt(fInt);                                  /* Returns the Square Root of a fInt number */
65
66static int uAbs(int);                                     /* Returns the Absolute value of the Int */
67static int uPow(int base, int exponent);                  /* Returns base^exponent an INT */
68
69static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
70static bool Equal(fInt, fInt);                            /* Returns true if two fInts are equal to each other */
71static bool GreaterThan(fInt A, fInt B);                  /* Returns true if A > B */
72
73static fInt fExponential(fInt exponent);                  /* Can be used to calculate e^exponent */
74static fInt fNaturalLog(fInt value);                      /* Can be used to calculate ln(value) */
75
76/* Fuse decoding functions
77 * -------------------------------------------------------------------------------------
78 */
79static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
80static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
81static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
82
83/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
84 * -------------------------------------------------------------------------------------
85 * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
86 */
87static fInt Divide (int, int);                            /* Divide two INTs and return result as FINT */
88static fInt fNegate(fInt);
89
90static int uGetScaledDecimal (fInt);                      /* Internal function */
91static int GetReal (fInt A);                              /* Internal function */
92
93/* -------------------------------------------------------------------------------------
94 * TROUBLESHOOTING INFORMATION
95 * -------------------------------------------------------------------------------------
96 * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
97 * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
98 * 3) fMultiply - OutputOutOfRangeException:
99 * 4) fGetSquare - OutputOutOfRangeException:
100 * 5) fDivide - DivideByZeroException
101 * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
102 */
103
104/* -------------------------------------------------------------------------------------
105 * START OF CODE
106 * -------------------------------------------------------------------------------------
107 */
108static fInt fExponential(fInt exponent)        /*Can be used to calculate e^exponent*/
109{
110	uint32_t i;
111	bool bNegated = false;
112
113	fInt fPositiveOne = ConvertToFraction(1);
114	fInt fZERO = ConvertToFraction(0);
115
116	fInt lower_bound = Divide(78, 10000);
117	fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
118	fInt error_term;
119
120	static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
121	static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
122
123	if (GreaterThan(fZERO, exponent)) {
124		exponent = fNegate(exponent);
125		bNegated = true;
126	}
127
128	while (GreaterThan(exponent, lower_bound)) {
129		for (i = 0; i < 11; i++) {
130			if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
131				exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
132				solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
133			}
134		}
135	}
136
137	error_term = fAdd(fPositiveOne, exponent);
138
139	solution = fMultiply(solution, error_term);
140
141	if (bNegated)
142		solution = fDivide(fPositiveOne, solution);
143
144	return solution;
145}
146
147static fInt fNaturalLog(fInt value)
148{
149	uint32_t i;
150	fInt upper_bound = Divide(8, 1000);
151	fInt fNegativeOne = ConvertToFraction(-1);
152	fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
153	fInt error_term;
154
155	static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
156	static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
157
158	while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
159		for (i = 0; i < 10; i++) {
160			if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
161				value = fDivide(value, GetScaledFraction(k_array[i], 10000));
162				solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
163			}
164		}
165	}
166
167	error_term = fAdd(fNegativeOne, value);
168
169	return fAdd(solution, error_term);
170}
171
172static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
173{
174	fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
175	fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
176
177	fInt f_decoded_value;
178
179	f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
180	f_decoded_value = fMultiply(f_decoded_value, f_range);
181	f_decoded_value = fAdd(f_decoded_value, f_min);
182
183	return f_decoded_value;
184}
185
186
187static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
188{
189	fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
190	fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
191
192	fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
193	fInt f_CONSTANT1 = ConvertToFraction(1);
194
195	fInt f_decoded_value;
196
197	f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
198	f_decoded_value = fNaturalLog(f_decoded_value);
199	f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
200	f_decoded_value = fAdd(f_decoded_value, f_average);
201
202	return f_decoded_value;
203}
204
205static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
206{
207	fInt fLeakage;
208	fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
209
210	fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
211	fLeakage = fDivide(fLeakage, f_bit_max_value);
212	fLeakage = fExponential(fLeakage);
213	fLeakage = fMultiply(fLeakage, f_min);
214
215	return fLeakage;
216}
217
218static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
219{
220	fInt temp;
221
222	if (X <= MAX)
223		temp.full = (X << SHIFT_AMOUNT);
224	else
225		temp.full = 0;
226
227	return temp;
228}
229
230static fInt fNegate(fInt X)
231{
232	fInt CONSTANT_NEGONE = ConvertToFraction(-1);
233	return fMultiply(X, CONSTANT_NEGONE);
234}
235
236static fInt Convert_ULONG_ToFraction(uint32_t X)
237{
238	fInt temp;
239
240	if (X <= MAX)
241		temp.full = (X << SHIFT_AMOUNT);
242	else
243		temp.full = 0;
244
245	return temp;
246}
247
248static fInt GetScaledFraction(int X, int factor)
249{
250	int times_shifted, factor_shifted;
251	bool bNEGATED;
252	fInt fValue;
253
254	times_shifted = 0;
255	factor_shifted = 0;
256	bNEGATED = false;
257
258	if (X < 0) {
259		X = -1*X;
260		bNEGATED = true;
261	}
262
263	if (factor < 0) {
264		factor = -1*factor;
265		bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
266	}
267
268	if ((X > MAX) || factor > MAX) {
269		if ((X/factor) <= MAX) {
270			while (X > MAX) {
271				X = X >> 1;
272				times_shifted++;
273			}
274
275			while (factor > MAX) {
276				factor = factor >> 1;
277				factor_shifted++;
278			}
279		} else {
280			fValue.full = 0;
281			return fValue;
282		}
283	}
284
285	if (factor == 1)
286		return ConvertToFraction(X);
287
288	fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
289
290	fValue.full = fValue.full << times_shifted;
291	fValue.full = fValue.full >> factor_shifted;
292
293	return fValue;
294}
295
296/* Addition using two fInts */
297static fInt fAdd (fInt X, fInt Y)
298{
299	fInt Sum;
300
301	Sum.full = X.full + Y.full;
302
303	return Sum;
304}
305
306/* Addition using two fInts */
307static fInt fSubtract (fInt X, fInt Y)
308{
309	fInt Difference;
310
311	Difference.full = X.full - Y.full;
312
313	return Difference;
314}
315
316static bool Equal(fInt A, fInt B)
317{
318	if (A.full == B.full)
319		return true;
320	else
321		return false;
322}
323
324static bool GreaterThan(fInt A, fInt B)
325{
326	if (A.full > B.full)
327		return true;
328	else
329		return false;
330}
331
332static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
333{
334	fInt Product;
335	int64_t tempProduct;
336
337	/*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
338	/* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
339	bool X_LessThanOne, Y_LessThanOne;
340
341	X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
342	Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
343
344	if (X_LessThanOne && Y_LessThanOne) {
345		Product.full = X.full * Y.full;
346		return Product
347	}*/
348
349	tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
350	tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
351	Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
352
353	return Product;
354}
355
356static fInt fDivide (fInt X, fInt Y)
357{
358	fInt fZERO, fQuotient;
359	int64_t longlongX, longlongY;
360
361	fZERO = ConvertToFraction(0);
362
363	if (Equal(Y, fZERO))
364		return fZERO;
365
366	longlongX = (int64_t)X.full;
367	longlongY = (int64_t)Y.full;
368
369	longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
370
371	div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
372
373	fQuotient.full = (int)longlongX;
374	return fQuotient;
375}
376
377static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
378{
379	fInt fullNumber, scaledDecimal, scaledReal;
380
381	scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
382
383	scaledDecimal.full = uGetScaledDecimal(A);
384
385	fullNumber = fAdd(scaledDecimal, scaledReal);
386
387	return fullNumber.full;
388}
389
390static fInt fGetSquare(fInt A)
391{
392	return fMultiply(A, A);
393}
394
395/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
396static fInt fSqrt(fInt num)
397{
398	fInt F_divide_Fprime, Fprime;
399	fInt test;
400	fInt twoShifted;
401	int seed, counter, error;
402	fInt x_new, x_old, C, y;
403
404	fInt fZERO = ConvertToFraction(0);
405
406	/* (0 > num) is the same as (num < 0), i.e., num is negative */
407
408	if (GreaterThan(fZERO, num) || Equal(fZERO, num))
409		return fZERO;
410
411	C = num;
412
413	if (num.partial.real > 3000)
414		seed = 60;
415	else if (num.partial.real > 1000)
416		seed = 30;
417	else if (num.partial.real > 100)
418		seed = 10;
419	else
420		seed = 2;
421
422	counter = 0;
423
424	if (Equal(num, fZERO)) /*Square Root of Zero is zero */
425		return fZERO;
426
427	twoShifted = ConvertToFraction(2);
428	x_new = ConvertToFraction(seed);
429
430	do {
431		counter++;
432
433		x_old.full = x_new.full;
434
435		test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
436		y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
437
438		Fprime = fMultiply(twoShifted, x_old);
439		F_divide_Fprime = fDivide(y, Fprime);
440
441		x_new = fSubtract(x_old, F_divide_Fprime);
442
443		error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
444
445		if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
446			return x_new;
447
448	} while (uAbs(error) > 0);
449
450	return x_new;
451}
452
453static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
454{
455	fInt *pRoots = &Roots[0];
456	fInt temp, root_first, root_second;
457	fInt f_CONSTANT10, f_CONSTANT100;
458
459	f_CONSTANT100 = ConvertToFraction(100);
460	f_CONSTANT10 = ConvertToFraction(10);
461
462	while (GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
463		A = fDivide(A, f_CONSTANT10);
464		B = fDivide(B, f_CONSTANT10);
465		C = fDivide(C, f_CONSTANT10);
466	}
467
468	temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
469	temp = fMultiply(temp, C); /* root = 4*A*C */
470	temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
471	temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
472
473	root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
474	root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
475
476	root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
477	root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
478
479	root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
480	root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
481
482	*(pRoots + 0) = root_first;
483	*(pRoots + 1) = root_second;
484}
485
486/* -----------------------------------------------------------------------------
487 * SUPPORT FUNCTIONS
488 * -----------------------------------------------------------------------------
489 */
490
491/* Conversion Functions */
492static int GetReal (fInt A)
493{
494	return (A.full >> SHIFT_AMOUNT);
495}
496
497static fInt Divide (int X, int Y)
498{
499	fInt A, B, Quotient;
500
501	A.full = X << SHIFT_AMOUNT;
502	B.full = Y << SHIFT_AMOUNT;
503
504	Quotient = fDivide(A, B);
505
506	return Quotient;
507}
508
509static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
510{
511	int dec[PRECISION];
512	int i, scaledDecimal = 0, tmp = A.partial.decimal;
513
514	for (i = 0; i < PRECISION; i++) {
515		dec[i] = tmp / (1 << SHIFT_AMOUNT);
516		tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
517		tmp *= 10;
518		scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 - i);
519	}
520
521	return scaledDecimal;
522}
523
524static int uPow(int base, int power)
525{
526	if (power == 0)
527		return 1;
528	else
529		return (base)*uPow(base, power - 1);
530}
531
532static int uAbs(int X)
533{
534	if (X < 0)
535		return (X * -1);
536	else
537		return X;
538}
539
540static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
541{
542	fInt solution;
543
544	solution = fDivide(A, fStepSize);
545	solution.partial.decimal = 0; /*All fractional digits changes to 0 */
546
547	if (error_term)
548		solution.partial.real += 1; /*Error term of 1 added */
549
550	solution = fMultiply(solution, fStepSize);
551	solution = fAdd(solution, fStepSize);
552
553	return solution;
554}
555
556