1// SPDX-License-Identifier: MIT
2/*
3 * Copyright 2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26
27#include "dm_services.h"
28#include "dc.h"
29
30#include "dcn32/dcn32_init.h"
31
32#include "resource.h"
33#include "include/irq_service_interface.h"
34#include "dcn32_resource.h"
35
36#include "dcn20/dcn20_resource.h"
37#include "dcn30/dcn30_resource.h"
38
39#include "dcn10/dcn10_ipp.h"
40#include "dcn30/dcn30_hubbub.h"
41#include "dcn31/dcn31_hubbub.h"
42#include "dcn32/dcn32_hubbub.h"
43#include "dcn32/dcn32_mpc.h"
44#include "dcn32/dcn32_hubp.h"
45#include "irq/dcn32/irq_service_dcn32.h"
46#include "dcn32/dcn32_dpp.h"
47#include "dcn32/dcn32_optc.h"
48#include "dcn20/dcn20_hwseq.h"
49#include "dcn30/dcn30_hwseq.h"
50#include "dce110/dce110_hwseq.h"
51#include "dcn30/dcn30_opp.h"
52#include "dcn20/dcn20_dsc.h"
53#include "dcn30/dcn30_vpg.h"
54#include "dcn30/dcn30_afmt.h"
55#include "dcn30/dcn30_dio_stream_encoder.h"
56#include "dcn32/dcn32_dio_stream_encoder.h"
57#include "dcn31/dcn31_hpo_dp_stream_encoder.h"
58#include "dcn31/dcn31_hpo_dp_link_encoder.h"
59#include "dcn32/dcn32_hpo_dp_link_encoder.h"
60#include "dcn31/dcn31_apg.h"
61#include "dcn31/dcn31_dio_link_encoder.h"
62#include "dcn32/dcn32_dio_link_encoder.h"
63#include "dce/dce_clock_source.h"
64#include "dce/dce_audio.h"
65#include "dce/dce_hwseq.h"
66#include "clk_mgr.h"
67#include "virtual/virtual_stream_encoder.h"
68#include "dml/display_mode_vba.h"
69#include "dcn32/dcn32_dccg.h"
70#include "dcn10/dcn10_resource.h"
71#include "link.h"
72#include "dcn31/dcn31_panel_cntl.h"
73
74#include "dcn30/dcn30_dwb.h"
75#include "dcn32/dcn32_mmhubbub.h"
76
77#include "dcn/dcn_3_2_0_offset.h"
78#include "dcn/dcn_3_2_0_sh_mask.h"
79#include "nbio/nbio_4_3_0_offset.h"
80
81#include "reg_helper.h"
82#include "dce/dmub_abm.h"
83#include "dce/dmub_psr.h"
84#include "dce/dce_aux.h"
85#include "dce/dce_i2c.h"
86
87#include "dml/dcn30/display_mode_vba_30.h"
88#include "vm_helper.h"
89#include "dcn20/dcn20_vmid.h"
90#include "dml/dcn32/dcn32_fpu.h"
91
92#include "dc_state_priv.h"
93
94#include "dml2/dml2_wrapper.h"
95
96#define DC_LOGGER_INIT(logger)
97
98enum dcn32_clk_src_array_id {
99	DCN32_CLK_SRC_PLL0,
100	DCN32_CLK_SRC_PLL1,
101	DCN32_CLK_SRC_PLL2,
102	DCN32_CLK_SRC_PLL3,
103	DCN32_CLK_SRC_PLL4,
104	DCN32_CLK_SRC_TOTAL
105};
106
107/* begin *********************
108 * macros to expend register list macro defined in HW object header file
109 */
110
111/* DCN */
112#define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
113
114#define BASE(seg) BASE_INNER(seg)
115
116#define SR(reg_name)\
117		REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
118					reg ## reg_name
119#define SR_ARR(reg_name, id) \
120	REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
121
122#define SR_ARR_INIT(reg_name, id, value) \
123	REG_STRUCT[id].reg_name = value
124
125#define SRI(reg_name, block, id)\
126	REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
127		reg ## block ## id ## _ ## reg_name
128
129#define SRI_ARR(reg_name, block, id)\
130	REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
131		reg ## block ## id ## _ ## reg_name
132
133#define SR_ARR_I2C(reg_name, id) \
134	REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
135
136#define SRI_ARR_I2C(reg_name, block, id)\
137	REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
138		reg ## block ## id ## _ ## reg_name
139
140#define SRI_ARR_ALPHABET(reg_name, block, index, id)\
141	REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
142		reg ## block ## id ## _ ## reg_name
143
144#define SRI2(reg_name, block, id)\
145	.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
146		reg ## reg_name
147#define SRI2_ARR(reg_name, block, id)\
148	REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
149		reg ## reg_name
150
151#define SRIR(var_name, reg_name, block, id)\
152	.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
153		reg ## block ## id ## _ ## reg_name
154
155#define SRII(reg_name, block, id)\
156	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
157					reg ## block ## id ## _ ## reg_name
158
159#define SRII_ARR_2(reg_name, block, id, inst)\
160	REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
161		reg ## block ## id ## _ ## reg_name
162
163#define SRII_MPC_RMU(reg_name, block, id)\
164	.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
165		reg ## block ## id ## _ ## reg_name
166
167#define SRII_DWB(reg_name, temp_name, block, id)\
168	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
169		reg ## block ## id ## _ ## temp_name
170
171#define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
172	.field_name = reg_name ## __ ## field_name ## post_fix
173
174#define DCCG_SRII(reg_name, block, id)\
175	REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
176		reg ## block ## id ## _ ## reg_name
177
178#define VUPDATE_SRII(reg_name, block, id)\
179	REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
180		reg ## reg_name ## _ ## block ## id
181
182/* NBIO */
183#define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
184
185#define NBIO_BASE(seg) \
186	NBIO_BASE_INNER(seg)
187
188#define NBIO_SR(reg_name)\
189	REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
190			regBIF_BX0_ ## reg_name
191#define NBIO_SR_ARR(reg_name, id)\
192	REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
193		regBIF_BX0_ ## reg_name
194
195#undef CTX
196#define CTX ctx
197#define REG(reg_name) \
198	(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
199
200static struct bios_registers bios_regs;
201
202#define bios_regs_init() \
203		( \
204		NBIO_SR(BIOS_SCRATCH_3),\
205		NBIO_SR(BIOS_SCRATCH_6)\
206		)
207
208#define clk_src_regs_init(index, pllid)\
209	CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
210
211static struct dce110_clk_src_regs clk_src_regs[5];
212
213static const struct dce110_clk_src_shift cs_shift = {
214		CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
215};
216
217static const struct dce110_clk_src_mask cs_mask = {
218		CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
219};
220
221#define abm_regs_init(id)\
222		ABM_DCN32_REG_LIST_RI(id)
223
224static struct dce_abm_registers abm_regs[4];
225
226static const struct dce_abm_shift abm_shift = {
227		ABM_MASK_SH_LIST_DCN32(__SHIFT)
228};
229
230static const struct dce_abm_mask abm_mask = {
231		ABM_MASK_SH_LIST_DCN32(_MASK)
232};
233
234#define audio_regs_init(id)\
235		AUD_COMMON_REG_LIST_RI(id)
236
237static struct dce_audio_registers audio_regs[5];
238
239#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
240		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
241		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
242		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
243
244static const struct dce_audio_shift audio_shift = {
245		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
246};
247
248static const struct dce_audio_mask audio_mask = {
249		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
250};
251
252#define vpg_regs_init(id)\
253	VPG_DCN3_REG_LIST_RI(id)
254
255static struct dcn30_vpg_registers vpg_regs[10];
256
257static const struct dcn30_vpg_shift vpg_shift = {
258	DCN3_VPG_MASK_SH_LIST(__SHIFT)
259};
260
261static const struct dcn30_vpg_mask vpg_mask = {
262	DCN3_VPG_MASK_SH_LIST(_MASK)
263};
264
265#define afmt_regs_init(id)\
266	AFMT_DCN3_REG_LIST_RI(id)
267
268static struct dcn30_afmt_registers afmt_regs[6];
269
270static const struct dcn30_afmt_shift afmt_shift = {
271	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
272};
273
274static const struct dcn30_afmt_mask afmt_mask = {
275	DCN3_AFMT_MASK_SH_LIST(_MASK)
276};
277
278#define apg_regs_init(id)\
279	APG_DCN31_REG_LIST_RI(id)
280
281static struct dcn31_apg_registers apg_regs[4];
282
283static const struct dcn31_apg_shift apg_shift = {
284	DCN31_APG_MASK_SH_LIST(__SHIFT)
285};
286
287static const struct dcn31_apg_mask apg_mask = {
288		DCN31_APG_MASK_SH_LIST(_MASK)
289};
290
291#define stream_enc_regs_init(id)\
292	SE_DCN32_REG_LIST_RI(id)
293
294static struct dcn10_stream_enc_registers stream_enc_regs[5];
295
296static const struct dcn10_stream_encoder_shift se_shift = {
297		SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
298};
299
300static const struct dcn10_stream_encoder_mask se_mask = {
301		SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
302};
303
304
305#define aux_regs_init(id)\
306	DCN2_AUX_REG_LIST_RI(id)
307
308static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
309
310#define hpd_regs_init(id)\
311	HPD_REG_LIST_RI(id)
312
313static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
314
315#define link_regs_init(id, phyid)\
316	( \
317	LE_DCN31_REG_LIST_RI(id), \
318	UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
319	)
320	/*DPCS_DCN31_REG_LIST(id),*/ \
321
322static struct dcn10_link_enc_registers link_enc_regs[5];
323
324static const struct dcn10_link_enc_shift le_shift = {
325	LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
326	//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
327};
328
329static const struct dcn10_link_enc_mask le_mask = {
330	LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
331	//DPCS_DCN31_MASK_SH_LIST(_MASK)
332};
333
334#define hpo_dp_stream_encoder_reg_init(id)\
335	DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
336
337static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
338
339static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
340	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
341};
342
343static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
344	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
345};
346
347
348#define hpo_dp_link_encoder_reg_init(id)\
349	DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
350	/*DCN3_1_RDPCSTX_REG_LIST(0),*/
351	/*DCN3_1_RDPCSTX_REG_LIST(1),*/
352	/*DCN3_1_RDPCSTX_REG_LIST(2),*/
353	/*DCN3_1_RDPCSTX_REG_LIST(3),*/
354
355static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
356
357static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
358	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
359};
360
361static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
362	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
363};
364
365#define dpp_regs_init(id)\
366	DPP_REG_LIST_DCN30_COMMON_RI(id)
367
368static struct dcn3_dpp_registers dpp_regs[4];
369
370static const struct dcn3_dpp_shift tf_shift = {
371		DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
372};
373
374static const struct dcn3_dpp_mask tf_mask = {
375		DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
376};
377
378
379#define opp_regs_init(id)\
380	OPP_REG_LIST_DCN30_RI(id)
381
382static struct dcn20_opp_registers opp_regs[4];
383
384static const struct dcn20_opp_shift opp_shift = {
385	OPP_MASK_SH_LIST_DCN20(__SHIFT)
386};
387
388static const struct dcn20_opp_mask opp_mask = {
389	OPP_MASK_SH_LIST_DCN20(_MASK)
390};
391
392#define aux_engine_regs_init(id)\
393	( \
394	AUX_COMMON_REG_LIST0_RI(id), \
395	SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
396	SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
397	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
398	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
399	)
400
401static struct dce110_aux_registers aux_engine_regs[5];
402
403static const struct dce110_aux_registers_shift aux_shift = {
404	DCN_AUX_MASK_SH_LIST(__SHIFT)
405};
406
407static const struct dce110_aux_registers_mask aux_mask = {
408	DCN_AUX_MASK_SH_LIST(_MASK)
409};
410
411#define dwbc_regs_dcn3_init(id)\
412	DWBC_COMMON_REG_LIST_DCN30_RI(id)
413
414static struct dcn30_dwbc_registers dwbc30_regs[1];
415
416static const struct dcn30_dwbc_shift dwbc30_shift = {
417	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
418};
419
420static const struct dcn30_dwbc_mask dwbc30_mask = {
421	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
422};
423
424#define mcif_wb_regs_dcn3_init(id)\
425	MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
426
427static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
428
429static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
430	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
431};
432
433static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
434	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
435};
436
437#define dsc_regsDCN20_init(id)\
438	DSC_REG_LIST_DCN20_RI(id)
439
440static struct dcn20_dsc_registers dsc_regs[4];
441
442static const struct dcn20_dsc_shift dsc_shift = {
443	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
444};
445
446static const struct dcn20_dsc_mask dsc_mask = {
447	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
448};
449
450static struct dcn30_mpc_registers mpc_regs;
451
452#define dcn_mpc_regs_init() \
453	MPC_REG_LIST_DCN3_2_RI(0),\
454	MPC_REG_LIST_DCN3_2_RI(1),\
455	MPC_REG_LIST_DCN3_2_RI(2),\
456	MPC_REG_LIST_DCN3_2_RI(3),\
457	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
458	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
459	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
460	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
461	MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
462
463static const struct dcn30_mpc_shift mpc_shift = {
464	MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
465};
466
467static const struct dcn30_mpc_mask mpc_mask = {
468	MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
469};
470
471#define optc_regs_init(id)\
472	OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
473
474static struct dcn_optc_registers optc_regs[4];
475
476static const struct dcn_optc_shift optc_shift = {
477	OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
478};
479
480static const struct dcn_optc_mask optc_mask = {
481	OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
482};
483
484#define hubp_regs_init(id)\
485	HUBP_REG_LIST_DCN32_RI(id)
486
487static struct dcn_hubp2_registers hubp_regs[4];
488
489
490static const struct dcn_hubp2_shift hubp_shift = {
491		HUBP_MASK_SH_LIST_DCN32(__SHIFT)
492};
493
494static const struct dcn_hubp2_mask hubp_mask = {
495		HUBP_MASK_SH_LIST_DCN32(_MASK)
496};
497
498static struct dcn_hubbub_registers hubbub_reg;
499#define hubbub_reg_init()\
500		HUBBUB_REG_LIST_DCN32_RI(0)
501
502static const struct dcn_hubbub_shift hubbub_shift = {
503		HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
504};
505
506static const struct dcn_hubbub_mask hubbub_mask = {
507		HUBBUB_MASK_SH_LIST_DCN32(_MASK)
508};
509
510static struct dccg_registers dccg_regs;
511
512#define dccg_regs_init()\
513	DCCG_REG_LIST_DCN32_RI()
514
515static const struct dccg_shift dccg_shift = {
516		DCCG_MASK_SH_LIST_DCN32(__SHIFT)
517};
518
519static const struct dccg_mask dccg_mask = {
520		DCCG_MASK_SH_LIST_DCN32(_MASK)
521};
522
523
524#define SRII2(reg_name_pre, reg_name_post, id)\
525	.reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
526			## id ## _ ## reg_name_post ## _BASE_IDX) + \
527			reg ## reg_name_pre ## id ## _ ## reg_name_post
528
529
530#define HWSEQ_DCN32_REG_LIST()\
531	SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
532	SR(DIO_MEM_PWR_CTRL), \
533	SR(ODM_MEM_PWR_CTRL3), \
534	SR(MMHUBBUB_MEM_PWR_CNTL), \
535	SR(DCCG_GATE_DISABLE_CNTL), \
536	SR(DCCG_GATE_DISABLE_CNTL2), \
537	SR(DCFCLK_CNTL),\
538	SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
539	SRII(PIXEL_RATE_CNTL, OTG, 0), \
540	SRII(PIXEL_RATE_CNTL, OTG, 1),\
541	SRII(PIXEL_RATE_CNTL, OTG, 2),\
542	SRII(PIXEL_RATE_CNTL, OTG, 3),\
543	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
544	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
545	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
546	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
547	SR(MICROSECOND_TIME_BASE_DIV), \
548	SR(MILLISECOND_TIME_BASE_DIV), \
549	SR(DISPCLK_FREQ_CHANGE_CNTL), \
550	SR(RBBMIF_TIMEOUT_DIS), \
551	SR(RBBMIF_TIMEOUT_DIS_2), \
552	SR(DCHUBBUB_CRC_CTRL), \
553	SR(DPP_TOP0_DPP_CRC_CTRL), \
554	SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
555	SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
556	SR(MPC_CRC_CTRL), \
557	SR(MPC_CRC_RESULT_GB), \
558	SR(MPC_CRC_RESULT_C), \
559	SR(MPC_CRC_RESULT_AR), \
560	SR(DOMAIN0_PG_CONFIG), \
561	SR(DOMAIN1_PG_CONFIG), \
562	SR(DOMAIN2_PG_CONFIG), \
563	SR(DOMAIN3_PG_CONFIG), \
564	SR(DOMAIN16_PG_CONFIG), \
565	SR(DOMAIN17_PG_CONFIG), \
566	SR(DOMAIN18_PG_CONFIG), \
567	SR(DOMAIN19_PG_CONFIG), \
568	SR(DOMAIN0_PG_STATUS), \
569	SR(DOMAIN1_PG_STATUS), \
570	SR(DOMAIN2_PG_STATUS), \
571	SR(DOMAIN3_PG_STATUS), \
572	SR(DOMAIN16_PG_STATUS), \
573	SR(DOMAIN17_PG_STATUS), \
574	SR(DOMAIN18_PG_STATUS), \
575	SR(DOMAIN19_PG_STATUS), \
576	SR(D1VGA_CONTROL), \
577	SR(D2VGA_CONTROL), \
578	SR(D3VGA_CONTROL), \
579	SR(D4VGA_CONTROL), \
580	SR(D5VGA_CONTROL), \
581	SR(D6VGA_CONTROL), \
582	SR(DC_IP_REQUEST_CNTL), \
583	SR(AZALIA_AUDIO_DTO), \
584	SR(AZALIA_CONTROLLER_CLOCK_GATING)
585
586static struct dce_hwseq_registers hwseq_reg;
587
588#define hwseq_reg_init()\
589	HWSEQ_DCN32_REG_LIST()
590
591#define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
592	HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
593	HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
594	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
595	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
596	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
597	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
598	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
599	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
600	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
601	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
602	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
603	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
604	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
605	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
606	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
607	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
608	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
609	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
610	HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
611	HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
612	HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
613	HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
614	HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
615	HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
616	HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
617	HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
618	HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
619	HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
620	HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
621	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
622	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
623	HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
624
625static const struct dce_hwseq_shift hwseq_shift = {
626		HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
627};
628
629static const struct dce_hwseq_mask hwseq_mask = {
630		HWSEQ_DCN32_MASK_SH_LIST(_MASK)
631};
632#define vmid_regs_init(id)\
633		DCN20_VMID_REG_LIST_RI(id)
634
635static struct dcn_vmid_registers vmid_regs[16];
636
637static const struct dcn20_vmid_shift vmid_shifts = {
638		DCN20_VMID_MASK_SH_LIST(__SHIFT)
639};
640
641static const struct dcn20_vmid_mask vmid_masks = {
642		DCN20_VMID_MASK_SH_LIST(_MASK)
643};
644
645static const struct resource_caps res_cap_dcn32 = {
646	.num_timing_generator = 4,
647	.num_opp = 4,
648	.num_video_plane = 4,
649	.num_audio = 5,
650	.num_stream_encoder = 5,
651	.num_hpo_dp_stream_encoder = 4,
652	.num_hpo_dp_link_encoder = 2,
653	.num_pll = 5,
654	.num_dwb = 1,
655	.num_ddc = 5,
656	.num_vmid = 16,
657	.num_mpc_3dlut = 4,
658	.num_dsc = 4,
659};
660
661static const struct dc_plane_cap plane_cap = {
662	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
663	.per_pixel_alpha = true,
664
665	.pixel_format_support = {
666			.argb8888 = true,
667			.nv12 = true,
668			.fp16 = true,
669			.p010 = true,
670			.ayuv = false,
671	},
672
673	.max_upscale_factor = {
674			.argb8888 = 16000,
675			.nv12 = 16000,
676			.fp16 = 16000
677	},
678
679	// 6:1 downscaling ratio: 1000/6 = 166.666
680	.max_downscale_factor = {
681			.argb8888 = 167,
682			.nv12 = 167,
683			.fp16 = 167
684	},
685	64,
686	64
687};
688
689static const struct dc_debug_options debug_defaults_drv = {
690	.disable_dmcu = true,
691	.force_abm_enable = false,
692	.timing_trace = false,
693	.clock_trace = true,
694	.disable_pplib_clock_request = false,
695	.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
696	.force_single_disp_pipe_split = false,
697	.disable_dcc = DCC_ENABLE,
698	.vsr_support = true,
699	.performance_trace = false,
700	.max_downscale_src_width = 7680,/*upto 8K*/
701	.disable_pplib_wm_range = false,
702	.scl_reset_length10 = true,
703	.sanity_checks = false,
704	.underflow_assert_delay_us = 0xFFFFFFFF,
705	.dwb_fi_phase = -1, // -1 = disable,
706	.dmub_command_table = true,
707	.enable_mem_low_power = {
708		.bits = {
709			.vga = false,
710			.i2c = false,
711			.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
712			.dscl = false,
713			.cm = false,
714			.mpc = false,
715			.optc = true,
716		}
717	},
718	.use_max_lb = true,
719	.force_disable_subvp = false,
720	.exit_idle_opt_for_cursor_updates = true,
721	.using_dml2 = false,
722	.enable_single_display_2to1_odm_policy = true,
723
724	/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
725	.enable_double_buffered_dsc_pg_support = true,
726	.enable_dp_dig_pixel_rate_div_policy = 1,
727	.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
728	.alloc_extra_way_for_cursor = true,
729	.min_prefetch_in_strobe_ns = 60000, // 60us
730	.disable_unbounded_requesting = false,
731	.override_dispclk_programming = true,
732	.disable_fpo_optimizations = false,
733	.fpo_vactive_margin_us = 2000, // 2000us
734	.disable_fpo_vactive = false,
735	.disable_boot_optimizations = false,
736	.disable_subvp_high_refresh = false,
737	.disable_dp_plus_plus_wa = true,
738	.fpo_vactive_min_active_margin_us = 200,
739	.fpo_vactive_max_blank_us = 1000,
740	.enable_legacy_fast_update = false,
741};
742
743static struct dce_aux *dcn32_aux_engine_create(
744	struct dc_context *ctx,
745	uint32_t inst)
746{
747	struct aux_engine_dce110 *aux_engine =
748		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
749
750	if (!aux_engine)
751		return NULL;
752
753#undef REG_STRUCT
754#define REG_STRUCT aux_engine_regs
755	aux_engine_regs_init(0),
756	aux_engine_regs_init(1),
757	aux_engine_regs_init(2),
758	aux_engine_regs_init(3),
759	aux_engine_regs_init(4);
760
761	dce110_aux_engine_construct(aux_engine, ctx, inst,
762				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
763				    &aux_engine_regs[inst],
764					&aux_mask,
765					&aux_shift,
766					ctx->dc->caps.extended_aux_timeout_support);
767
768	return &aux_engine->base;
769}
770#define i2c_inst_regs_init(id)\
771	I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
772
773static struct dce_i2c_registers i2c_hw_regs[5];
774
775static const struct dce_i2c_shift i2c_shifts = {
776		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
777};
778
779static const struct dce_i2c_mask i2c_masks = {
780		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
781};
782
783static struct dce_i2c_hw *dcn32_i2c_hw_create(
784	struct dc_context *ctx,
785	uint32_t inst)
786{
787	struct dce_i2c_hw *dce_i2c_hw =
788		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
789
790	if (!dce_i2c_hw)
791		return NULL;
792
793#undef REG_STRUCT
794#define REG_STRUCT i2c_hw_regs
795	i2c_inst_regs_init(1),
796	i2c_inst_regs_init(2),
797	i2c_inst_regs_init(3),
798	i2c_inst_regs_init(4),
799	i2c_inst_regs_init(5);
800
801	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
802				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
803
804	return dce_i2c_hw;
805}
806
807static struct clock_source *dcn32_clock_source_create(
808		struct dc_context *ctx,
809		struct dc_bios *bios,
810		enum clock_source_id id,
811		const struct dce110_clk_src_regs *regs,
812		bool dp_clk_src)
813{
814	struct dce110_clk_src *clk_src =
815		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
816
817	if (!clk_src)
818		return NULL;
819
820	if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
821			regs, &cs_shift, &cs_mask)) {
822		clk_src->base.dp_clk_src = dp_clk_src;
823		return &clk_src->base;
824	}
825
826	kfree(clk_src);
827	BREAK_TO_DEBUGGER();
828	return NULL;
829}
830
831static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
832{
833	int i;
834
835	struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
836					  GFP_KERNEL);
837
838	if (!hubbub2)
839		return NULL;
840
841#undef REG_STRUCT
842#define REG_STRUCT hubbub_reg
843	hubbub_reg_init();
844
845#undef REG_STRUCT
846#define REG_STRUCT vmid_regs
847	vmid_regs_init(0),
848	vmid_regs_init(1),
849	vmid_regs_init(2),
850	vmid_regs_init(3),
851	vmid_regs_init(4),
852	vmid_regs_init(5),
853	vmid_regs_init(6),
854	vmid_regs_init(7),
855	vmid_regs_init(8),
856	vmid_regs_init(9),
857	vmid_regs_init(10),
858	vmid_regs_init(11),
859	vmid_regs_init(12),
860	vmid_regs_init(13),
861	vmid_regs_init(14),
862	vmid_regs_init(15);
863
864	hubbub32_construct(hubbub2, ctx,
865			&hubbub_reg,
866			&hubbub_shift,
867			&hubbub_mask,
868			ctx->dc->dml.ip.det_buffer_size_kbytes,
869			ctx->dc->dml.ip.pixel_chunk_size_kbytes,
870			ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
871
872
873	for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
874		struct dcn20_vmid *vmid = &hubbub2->vmid[i];
875
876		vmid->ctx = ctx;
877
878		vmid->regs = &vmid_regs[i];
879		vmid->shifts = &vmid_shifts;
880		vmid->masks = &vmid_masks;
881	}
882
883	return &hubbub2->base;
884}
885
886static struct hubp *dcn32_hubp_create(
887	struct dc_context *ctx,
888	uint32_t inst)
889{
890	struct dcn20_hubp *hubp2 =
891		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
892
893	if (!hubp2)
894		return NULL;
895
896#undef REG_STRUCT
897#define REG_STRUCT hubp_regs
898	hubp_regs_init(0),
899	hubp_regs_init(1),
900	hubp_regs_init(2),
901	hubp_regs_init(3);
902
903	if (hubp32_construct(hubp2, ctx, inst,
904			&hubp_regs[inst], &hubp_shift, &hubp_mask))
905		return &hubp2->base;
906
907	BREAK_TO_DEBUGGER();
908	kfree(hubp2);
909	return NULL;
910}
911
912static void dcn32_dpp_destroy(struct dpp **dpp)
913{
914	kfree(TO_DCN30_DPP(*dpp));
915	*dpp = NULL;
916}
917
918static struct dpp *dcn32_dpp_create(
919	struct dc_context *ctx,
920	uint32_t inst)
921{
922	struct dcn3_dpp *dpp3 =
923		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
924
925	if (!dpp3)
926		return NULL;
927
928#undef REG_STRUCT
929#define REG_STRUCT dpp_regs
930	dpp_regs_init(0),
931	dpp_regs_init(1),
932	dpp_regs_init(2),
933	dpp_regs_init(3);
934
935	if (dpp32_construct(dpp3, ctx, inst,
936			&dpp_regs[inst], &tf_shift, &tf_mask))
937		return &dpp3->base;
938
939	BREAK_TO_DEBUGGER();
940	kfree(dpp3);
941	return NULL;
942}
943
944static struct mpc *dcn32_mpc_create(
945		struct dc_context *ctx,
946		int num_mpcc,
947		int num_rmu)
948{
949	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
950					  GFP_KERNEL);
951
952	if (!mpc30)
953		return NULL;
954
955#undef REG_STRUCT
956#define REG_STRUCT mpc_regs
957	dcn_mpc_regs_init();
958
959	dcn32_mpc_construct(mpc30, ctx,
960			&mpc_regs,
961			&mpc_shift,
962			&mpc_mask,
963			num_mpcc,
964			num_rmu);
965
966	return &mpc30->base;
967}
968
969static struct output_pixel_processor *dcn32_opp_create(
970	struct dc_context *ctx, uint32_t inst)
971{
972	struct dcn20_opp *opp2 =
973		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
974
975	if (!opp2) {
976		BREAK_TO_DEBUGGER();
977		return NULL;
978	}
979
980#undef REG_STRUCT
981#define REG_STRUCT opp_regs
982	opp_regs_init(0),
983	opp_regs_init(1),
984	opp_regs_init(2),
985	opp_regs_init(3);
986
987	dcn20_opp_construct(opp2, ctx, inst,
988			&opp_regs[inst], &opp_shift, &opp_mask);
989	return &opp2->base;
990}
991
992
993static struct timing_generator *dcn32_timing_generator_create(
994		struct dc_context *ctx,
995		uint32_t instance)
996{
997	struct optc *tgn10 =
998		kzalloc(sizeof(struct optc), GFP_KERNEL);
999
1000	if (!tgn10)
1001		return NULL;
1002
1003#undef REG_STRUCT
1004#define REG_STRUCT optc_regs
1005	optc_regs_init(0),
1006	optc_regs_init(1),
1007	optc_regs_init(2),
1008	optc_regs_init(3);
1009
1010	tgn10->base.inst = instance;
1011	tgn10->base.ctx = ctx;
1012
1013	tgn10->tg_regs = &optc_regs[instance];
1014	tgn10->tg_shift = &optc_shift;
1015	tgn10->tg_mask = &optc_mask;
1016
1017	dcn32_timing_generator_init(tgn10);
1018
1019	return &tgn10->base;
1020}
1021
1022static const struct encoder_feature_support link_enc_feature = {
1023		.max_hdmi_deep_color = COLOR_DEPTH_121212,
1024		.max_hdmi_pixel_clock = 600000,
1025		.hdmi_ycbcr420_supported = true,
1026		.dp_ycbcr420_supported = true,
1027		.fec_supported = true,
1028		.flags.bits.IS_HBR2_CAPABLE = true,
1029		.flags.bits.IS_HBR3_CAPABLE = true,
1030		.flags.bits.IS_TPS3_CAPABLE = true,
1031		.flags.bits.IS_TPS4_CAPABLE = true
1032};
1033
1034static struct link_encoder *dcn32_link_encoder_create(
1035	struct dc_context *ctx,
1036	const struct encoder_init_data *enc_init_data)
1037{
1038	struct dcn20_link_encoder *enc20 =
1039		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1040
1041	if (!enc20)
1042		return NULL;
1043
1044#undef REG_STRUCT
1045#define REG_STRUCT link_enc_aux_regs
1046	aux_regs_init(0),
1047	aux_regs_init(1),
1048	aux_regs_init(2),
1049	aux_regs_init(3),
1050	aux_regs_init(4);
1051
1052#undef REG_STRUCT
1053#define REG_STRUCT link_enc_hpd_regs
1054	hpd_regs_init(0),
1055	hpd_regs_init(1),
1056	hpd_regs_init(2),
1057	hpd_regs_init(3),
1058	hpd_regs_init(4);
1059
1060#undef REG_STRUCT
1061#define REG_STRUCT link_enc_regs
1062	link_regs_init(0, A),
1063	link_regs_init(1, B),
1064	link_regs_init(2, C),
1065	link_regs_init(3, D),
1066	link_regs_init(4, E);
1067
1068	dcn32_link_encoder_construct(enc20,
1069			enc_init_data,
1070			&link_enc_feature,
1071			&link_enc_regs[enc_init_data->transmitter],
1072			&link_enc_aux_regs[enc_init_data->channel - 1],
1073			&link_enc_hpd_regs[enc_init_data->hpd_source],
1074			&le_shift,
1075			&le_mask);
1076
1077	return &enc20->enc10.base;
1078}
1079
1080struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1081{
1082	struct dcn31_panel_cntl *panel_cntl =
1083		kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1084
1085	if (!panel_cntl)
1086		return NULL;
1087
1088	dcn31_panel_cntl_construct(panel_cntl, init_data);
1089
1090	return &panel_cntl->base;
1091}
1092
1093static void read_dce_straps(
1094	struct dc_context *ctx,
1095	struct resource_straps *straps)
1096{
1097	generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
1098		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1099
1100}
1101
1102static struct audio *dcn32_create_audio(
1103		struct dc_context *ctx, unsigned int inst)
1104{
1105
1106#undef REG_STRUCT
1107#define REG_STRUCT audio_regs
1108	audio_regs_init(0),
1109	audio_regs_init(1),
1110	audio_regs_init(2),
1111	audio_regs_init(3),
1112	audio_regs_init(4);
1113
1114	return dce_audio_create(ctx, inst,
1115			&audio_regs[inst], &audio_shift, &audio_mask);
1116}
1117
1118static struct vpg *dcn32_vpg_create(
1119	struct dc_context *ctx,
1120	uint32_t inst)
1121{
1122	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1123
1124	if (!vpg3)
1125		return NULL;
1126
1127#undef REG_STRUCT
1128#define REG_STRUCT vpg_regs
1129	vpg_regs_init(0),
1130	vpg_regs_init(1),
1131	vpg_regs_init(2),
1132	vpg_regs_init(3),
1133	vpg_regs_init(4),
1134	vpg_regs_init(5),
1135	vpg_regs_init(6),
1136	vpg_regs_init(7),
1137	vpg_regs_init(8),
1138	vpg_regs_init(9);
1139
1140	vpg3_construct(vpg3, ctx, inst,
1141			&vpg_regs[inst],
1142			&vpg_shift,
1143			&vpg_mask);
1144
1145	return &vpg3->base;
1146}
1147
1148static struct afmt *dcn32_afmt_create(
1149	struct dc_context *ctx,
1150	uint32_t inst)
1151{
1152	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1153
1154	if (!afmt3)
1155		return NULL;
1156
1157#undef REG_STRUCT
1158#define REG_STRUCT afmt_regs
1159	afmt_regs_init(0),
1160	afmt_regs_init(1),
1161	afmt_regs_init(2),
1162	afmt_regs_init(3),
1163	afmt_regs_init(4),
1164	afmt_regs_init(5);
1165
1166	afmt3_construct(afmt3, ctx, inst,
1167			&afmt_regs[inst],
1168			&afmt_shift,
1169			&afmt_mask);
1170
1171	return &afmt3->base;
1172}
1173
1174static struct apg *dcn31_apg_create(
1175	struct dc_context *ctx,
1176	uint32_t inst)
1177{
1178	struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1179
1180	if (!apg31)
1181		return NULL;
1182
1183#undef REG_STRUCT
1184#define REG_STRUCT apg_regs
1185	apg_regs_init(0),
1186	apg_regs_init(1),
1187	apg_regs_init(2),
1188	apg_regs_init(3);
1189
1190	apg31_construct(apg31, ctx, inst,
1191			&apg_regs[inst],
1192			&apg_shift,
1193			&apg_mask);
1194
1195	return &apg31->base;
1196}
1197
1198static struct stream_encoder *dcn32_stream_encoder_create(
1199	enum engine_id eng_id,
1200	struct dc_context *ctx)
1201{
1202	struct dcn10_stream_encoder *enc1;
1203	struct vpg *vpg;
1204	struct afmt *afmt;
1205	int vpg_inst;
1206	int afmt_inst;
1207
1208	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1209	if (eng_id <= ENGINE_ID_DIGF) {
1210		vpg_inst = eng_id;
1211		afmt_inst = eng_id;
1212	} else
1213		return NULL;
1214
1215	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1216	vpg = dcn32_vpg_create(ctx, vpg_inst);
1217	afmt = dcn32_afmt_create(ctx, afmt_inst);
1218
1219	if (!enc1 || !vpg || !afmt) {
1220		kfree(enc1);
1221		kfree(vpg);
1222		kfree(afmt);
1223		return NULL;
1224	}
1225
1226#undef REG_STRUCT
1227#define REG_STRUCT stream_enc_regs
1228	stream_enc_regs_init(0),
1229	stream_enc_regs_init(1),
1230	stream_enc_regs_init(2),
1231	stream_enc_regs_init(3),
1232	stream_enc_regs_init(4);
1233
1234	dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1235					eng_id, vpg, afmt,
1236					&stream_enc_regs[eng_id],
1237					&se_shift, &se_mask);
1238
1239	return &enc1->base;
1240}
1241
1242static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1243	enum engine_id eng_id,
1244	struct dc_context *ctx)
1245{
1246	struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1247	struct vpg *vpg;
1248	struct apg *apg;
1249	uint32_t hpo_dp_inst;
1250	uint32_t vpg_inst;
1251	uint32_t apg_inst;
1252
1253	ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1254	hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1255
1256	/* Mapping of VPG register blocks to HPO DP block instance:
1257	 * VPG[6] -> HPO_DP[0]
1258	 * VPG[7] -> HPO_DP[1]
1259	 * VPG[8] -> HPO_DP[2]
1260	 * VPG[9] -> HPO_DP[3]
1261	 */
1262	vpg_inst = hpo_dp_inst + 6;
1263
1264	/* Mapping of APG register blocks to HPO DP block instance:
1265	 * APG[0] -> HPO_DP[0]
1266	 * APG[1] -> HPO_DP[1]
1267	 * APG[2] -> HPO_DP[2]
1268	 * APG[3] -> HPO_DP[3]
1269	 */
1270	apg_inst = hpo_dp_inst;
1271
1272	/* allocate HPO stream encoder and create VPG sub-block */
1273	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1274	vpg = dcn32_vpg_create(ctx, vpg_inst);
1275	apg = dcn31_apg_create(ctx, apg_inst);
1276
1277	if (!hpo_dp_enc31 || !vpg || !apg) {
1278		kfree(hpo_dp_enc31);
1279		kfree(vpg);
1280		kfree(apg);
1281		return NULL;
1282	}
1283
1284#undef REG_STRUCT
1285#define REG_STRUCT hpo_dp_stream_enc_regs
1286	hpo_dp_stream_encoder_reg_init(0),
1287	hpo_dp_stream_encoder_reg_init(1),
1288	hpo_dp_stream_encoder_reg_init(2),
1289	hpo_dp_stream_encoder_reg_init(3);
1290
1291	dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1292					hpo_dp_inst, eng_id, vpg, apg,
1293					&hpo_dp_stream_enc_regs[hpo_dp_inst],
1294					&hpo_dp_se_shift, &hpo_dp_se_mask);
1295
1296	return &hpo_dp_enc31->base;
1297}
1298
1299static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1300	uint8_t inst,
1301	struct dc_context *ctx)
1302{
1303	struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1304
1305	/* allocate HPO link encoder */
1306	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1307
1308#undef REG_STRUCT
1309#define REG_STRUCT hpo_dp_link_enc_regs
1310	hpo_dp_link_encoder_reg_init(0),
1311	hpo_dp_link_encoder_reg_init(1);
1312
1313	hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1314					&hpo_dp_link_enc_regs[inst],
1315					&hpo_dp_le_shift, &hpo_dp_le_mask);
1316
1317	return &hpo_dp_enc31->base;
1318}
1319
1320static struct dce_hwseq *dcn32_hwseq_create(
1321	struct dc_context *ctx)
1322{
1323	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1324
1325#undef REG_STRUCT
1326#define REG_STRUCT hwseq_reg
1327	hwseq_reg_init();
1328
1329	if (hws) {
1330		hws->ctx = ctx;
1331		hws->regs = &hwseq_reg;
1332		hws->shifts = &hwseq_shift;
1333		hws->masks = &hwseq_mask;
1334	}
1335	return hws;
1336}
1337static const struct resource_create_funcs res_create_funcs = {
1338	.read_dce_straps = read_dce_straps,
1339	.create_audio = dcn32_create_audio,
1340	.create_stream_encoder = dcn32_stream_encoder_create,
1341	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1342	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1343	.create_hwseq = dcn32_hwseq_create,
1344};
1345
1346static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1347{
1348	unsigned int i;
1349
1350	for (i = 0; i < pool->base.stream_enc_count; i++) {
1351		if (pool->base.stream_enc[i] != NULL) {
1352			if (pool->base.stream_enc[i]->vpg != NULL) {
1353				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1354				pool->base.stream_enc[i]->vpg = NULL;
1355			}
1356			if (pool->base.stream_enc[i]->afmt != NULL) {
1357				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1358				pool->base.stream_enc[i]->afmt = NULL;
1359			}
1360			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1361			pool->base.stream_enc[i] = NULL;
1362		}
1363	}
1364
1365	for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1366		if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1367			if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1368				kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1369				pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1370			}
1371			if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1372				kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1373				pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1374			}
1375			kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1376			pool->base.hpo_dp_stream_enc[i] = NULL;
1377		}
1378	}
1379
1380	for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1381		if (pool->base.hpo_dp_link_enc[i] != NULL) {
1382			kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1383			pool->base.hpo_dp_link_enc[i] = NULL;
1384		}
1385	}
1386
1387	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1388		if (pool->base.dscs[i] != NULL)
1389			dcn20_dsc_destroy(&pool->base.dscs[i]);
1390	}
1391
1392	if (pool->base.mpc != NULL) {
1393		kfree(TO_DCN20_MPC(pool->base.mpc));
1394		pool->base.mpc = NULL;
1395	}
1396	if (pool->base.hubbub != NULL) {
1397		kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1398		pool->base.hubbub = NULL;
1399	}
1400	for (i = 0; i < pool->base.pipe_count; i++) {
1401		if (pool->base.dpps[i] != NULL)
1402			dcn32_dpp_destroy(&pool->base.dpps[i]);
1403
1404		if (pool->base.ipps[i] != NULL)
1405			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1406
1407		if (pool->base.hubps[i] != NULL) {
1408			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1409			pool->base.hubps[i] = NULL;
1410		}
1411
1412		if (pool->base.irqs != NULL) {
1413			dal_irq_service_destroy(&pool->base.irqs);
1414		}
1415	}
1416
1417	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1418		if (pool->base.engines[i] != NULL)
1419			dce110_engine_destroy(&pool->base.engines[i]);
1420		if (pool->base.hw_i2cs[i] != NULL) {
1421			kfree(pool->base.hw_i2cs[i]);
1422			pool->base.hw_i2cs[i] = NULL;
1423		}
1424		if (pool->base.sw_i2cs[i] != NULL) {
1425			kfree(pool->base.sw_i2cs[i]);
1426			pool->base.sw_i2cs[i] = NULL;
1427		}
1428	}
1429
1430	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1431		if (pool->base.opps[i] != NULL)
1432			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1433	}
1434
1435	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1436		if (pool->base.timing_generators[i] != NULL)	{
1437			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1438			pool->base.timing_generators[i] = NULL;
1439		}
1440	}
1441
1442	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1443		if (pool->base.dwbc[i] != NULL) {
1444			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1445			pool->base.dwbc[i] = NULL;
1446		}
1447		if (pool->base.mcif_wb[i] != NULL) {
1448			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1449			pool->base.mcif_wb[i] = NULL;
1450		}
1451	}
1452
1453	for (i = 0; i < pool->base.audio_count; i++) {
1454		if (pool->base.audios[i])
1455			dce_aud_destroy(&pool->base.audios[i]);
1456	}
1457
1458	for (i = 0; i < pool->base.clk_src_count; i++) {
1459		if (pool->base.clock_sources[i] != NULL) {
1460			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1461			pool->base.clock_sources[i] = NULL;
1462		}
1463	}
1464
1465	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1466		if (pool->base.mpc_lut[i] != NULL) {
1467			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1468			pool->base.mpc_lut[i] = NULL;
1469		}
1470		if (pool->base.mpc_shaper[i] != NULL) {
1471			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1472			pool->base.mpc_shaper[i] = NULL;
1473		}
1474	}
1475
1476	if (pool->base.dp_clock_source != NULL) {
1477		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1478		pool->base.dp_clock_source = NULL;
1479	}
1480
1481	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1482		if (pool->base.multiple_abms[i] != NULL)
1483			dce_abm_destroy(&pool->base.multiple_abms[i]);
1484	}
1485
1486	if (pool->base.psr != NULL)
1487		dmub_psr_destroy(&pool->base.psr);
1488
1489	if (pool->base.dccg != NULL)
1490		dcn_dccg_destroy(&pool->base.dccg);
1491
1492	if (pool->base.oem_device != NULL) {
1493		struct dc *dc = pool->base.oem_device->ctx->dc;
1494
1495		dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1496	}
1497}
1498
1499
1500static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1501{
1502	int i;
1503	uint32_t dwb_count = pool->res_cap->num_dwb;
1504
1505	for (i = 0; i < dwb_count; i++) {
1506		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1507						    GFP_KERNEL);
1508
1509		if (!dwbc30) {
1510			dm_error("DC: failed to create dwbc30!\n");
1511			return false;
1512		}
1513
1514#undef REG_STRUCT
1515#define REG_STRUCT dwbc30_regs
1516		dwbc_regs_dcn3_init(0);
1517
1518		dcn30_dwbc_construct(dwbc30, ctx,
1519				&dwbc30_regs[i],
1520				&dwbc30_shift,
1521				&dwbc30_mask,
1522				i);
1523
1524		pool->dwbc[i] = &dwbc30->base;
1525	}
1526	return true;
1527}
1528
1529static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1530{
1531	int i;
1532	uint32_t dwb_count = pool->res_cap->num_dwb;
1533
1534	for (i = 0; i < dwb_count; i++) {
1535		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1536						    GFP_KERNEL);
1537
1538		if (!mcif_wb30) {
1539			dm_error("DC: failed to create mcif_wb30!\n");
1540			return false;
1541		}
1542
1543#undef REG_STRUCT
1544#define REG_STRUCT mcif_wb30_regs
1545		mcif_wb_regs_dcn3_init(0);
1546
1547		dcn32_mmhubbub_construct(mcif_wb30, ctx,
1548				&mcif_wb30_regs[i],
1549				&mcif_wb30_shift,
1550				&mcif_wb30_mask,
1551				i);
1552
1553		pool->mcif_wb[i] = &mcif_wb30->base;
1554	}
1555	return true;
1556}
1557
1558static struct display_stream_compressor *dcn32_dsc_create(
1559	struct dc_context *ctx, uint32_t inst)
1560{
1561	struct dcn20_dsc *dsc =
1562		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1563
1564	if (!dsc) {
1565		BREAK_TO_DEBUGGER();
1566		return NULL;
1567	}
1568
1569#undef REG_STRUCT
1570#define REG_STRUCT dsc_regs
1571	dsc_regsDCN20_init(0),
1572	dsc_regsDCN20_init(1),
1573	dsc_regsDCN20_init(2),
1574	dsc_regsDCN20_init(3);
1575
1576	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1577
1578	dsc->max_image_width = 6016;
1579
1580	return &dsc->base;
1581}
1582
1583static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1584{
1585	struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1586
1587	dcn32_resource_destruct(dcn32_pool);
1588	kfree(dcn32_pool);
1589	*pool = NULL;
1590}
1591
1592bool dcn32_acquire_post_bldn_3dlut(
1593		struct resource_context *res_ctx,
1594		const struct resource_pool *pool,
1595		int mpcc_id,
1596		struct dc_3dlut **lut,
1597		struct dc_transfer_func **shaper)
1598{
1599	bool ret = false;
1600
1601	ASSERT(*lut == NULL && *shaper == NULL);
1602	*lut = NULL;
1603	*shaper = NULL;
1604
1605	if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1606		*lut = pool->mpc_lut[mpcc_id];
1607		*shaper = pool->mpc_shaper[mpcc_id];
1608		res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1609		ret = true;
1610	}
1611	return ret;
1612}
1613
1614bool dcn32_release_post_bldn_3dlut(
1615		struct resource_context *res_ctx,
1616		const struct resource_pool *pool,
1617		struct dc_3dlut **lut,
1618		struct dc_transfer_func **shaper)
1619{
1620	int i;
1621	bool ret = false;
1622
1623	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1624		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1625			res_ctx->is_mpc_3dlut_acquired[i] = false;
1626			pool->mpc_lut[i]->state.raw = 0;
1627			*lut = NULL;
1628			*shaper = NULL;
1629			ret = true;
1630			break;
1631		}
1632	}
1633	return ret;
1634}
1635
1636static void dcn32_enable_phantom_plane(struct dc *dc,
1637		struct dc_state *context,
1638		struct dc_stream_state *phantom_stream,
1639		unsigned int dc_pipe_idx)
1640{
1641	struct dc_plane_state *phantom_plane = NULL;
1642	struct dc_plane_state *prev_phantom_plane = NULL;
1643	struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1644
1645	while (curr_pipe) {
1646		if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1647			phantom_plane = prev_phantom_plane;
1648		else
1649			phantom_plane = dc_state_create_phantom_plane(dc, context, curr_pipe->plane_state);
1650
1651		memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1652		memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1653				sizeof(phantom_plane->scaling_quality));
1654		memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1655		memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1656		memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1657		memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1658				sizeof(phantom_plane->plane_size));
1659		memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1660				sizeof(phantom_plane->tiling_info));
1661		memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1662		phantom_plane->format = curr_pipe->plane_state->format;
1663		phantom_plane->rotation = curr_pipe->plane_state->rotation;
1664		phantom_plane->visible = curr_pipe->plane_state->visible;
1665
1666		/* Shadow pipe has small viewport. */
1667		phantom_plane->clip_rect.y = 0;
1668		phantom_plane->clip_rect.height = phantom_stream->src.height;
1669
1670		dc_state_add_phantom_plane(dc, phantom_stream, phantom_plane, context);
1671
1672		curr_pipe = curr_pipe->bottom_pipe;
1673		prev_phantom_plane = phantom_plane;
1674	}
1675}
1676
1677static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
1678		struct dc_state *context,
1679		display_e2e_pipe_params_st *pipes,
1680		unsigned int pipe_cnt,
1681		unsigned int dc_pipe_idx)
1682{
1683	struct dc_stream_state *phantom_stream = NULL;
1684	struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1685
1686	phantom_stream = dc_state_create_phantom_stream(dc, context, ref_pipe->stream);
1687
1688	/* stream has limited viewport and small timing */
1689	memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
1690	memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
1691	memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
1692	DC_FP_START();
1693	dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
1694	DC_FP_END();
1695
1696	dc_state_add_phantom_stream(dc, context, phantom_stream, ref_pipe->stream);
1697	return phantom_stream;
1698}
1699
1700/* TODO: Input to this function should indicate which pipe indexes (or streams)
1701 * require a phantom pipe / stream
1702 */
1703void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
1704		display_e2e_pipe_params_st *pipes,
1705		unsigned int pipe_cnt,
1706		unsigned int index)
1707{
1708	struct dc_stream_state *phantom_stream = NULL;
1709	unsigned int i;
1710
1711	// The index of the DC pipe passed into this function is guarenteed to
1712	// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
1713	// already have phantom pipe assigned, etc.) by previous checks.
1714	phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
1715	dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
1716
1717	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1718		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1719
1720		// Build scaling params for phantom pipes which were newly added.
1721		// We determine which phantom pipes were added by comparing with
1722		// the phantom stream.
1723		if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
1724				dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
1725			pipe->stream->use_dynamic_meta = false;
1726			pipe->plane_state->flip_immediate = false;
1727			if (!resource_build_scaling_params(pipe)) {
1728				// Log / remove phantom pipes since failed to build scaling params
1729			}
1730		}
1731	}
1732}
1733
1734static bool dml1_validate(struct dc *dc, struct dc_state *context, bool fast_validate)
1735{
1736	bool out = false;
1737
1738	BW_VAL_TRACE_SETUP();
1739
1740	int vlevel = 0;
1741	int pipe_cnt = 0;
1742	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
1743
1744	/* To handle Freesync properly, setting FreeSync DML parameters
1745	 * to its default state for the first stage of validation
1746	 */
1747	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1748	context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1749
1750	DC_LOGGER_INIT(dc->ctx->logger);
1751
1752	BW_VAL_TRACE_COUNT();
1753
1754	DC_FP_START();
1755	out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
1756	DC_FP_END();
1757
1758	if (pipe_cnt == 0)
1759		goto validate_out;
1760
1761	if (!out)
1762		goto validate_fail;
1763
1764	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
1765
1766	if (fast_validate) {
1767		BW_VAL_TRACE_SKIP(fast);
1768		goto validate_out;
1769	}
1770
1771	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
1772
1773	dcn32_override_min_req_memclk(dc, context);
1774	dcn32_override_min_req_dcfclk(dc, context);
1775
1776	BW_VAL_TRACE_END_WATERMARKS();
1777
1778	goto validate_out;
1779
1780validate_fail:
1781	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
1782		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
1783
1784	BW_VAL_TRACE_SKIP(fail);
1785	out = false;
1786
1787validate_out:
1788	kfree(pipes);
1789
1790	BW_VAL_TRACE_FINISH();
1791
1792	return out;
1793}
1794
1795bool dcn32_validate_bandwidth(struct dc *dc,
1796		struct dc_state *context,
1797		bool fast_validate)
1798{
1799	bool out = false;
1800
1801	if (dc->debug.using_dml2)
1802		out = dml2_validate(dc, context, fast_validate);
1803	else
1804		out = dml1_validate(dc, context, fast_validate);
1805	return out;
1806}
1807
1808int dcn32_populate_dml_pipes_from_context(
1809	struct dc *dc, struct dc_state *context,
1810	display_e2e_pipe_params_st *pipes,
1811	bool fast_validate)
1812{
1813	int i, pipe_cnt;
1814	struct resource_context *res_ctx = &context->res_ctx;
1815	struct pipe_ctx *pipe = NULL;
1816	bool subvp_in_use = false;
1817	struct dc_crtc_timing *timing;
1818
1819	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1820
1821	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1822
1823		if (!res_ctx->pipe_ctx[i].stream)
1824			continue;
1825		pipe = &res_ctx->pipe_ctx[i];
1826		timing = &pipe->stream->timing;
1827
1828		pipes[pipe_cnt].pipe.src.gpuvm = true;
1829		DC_FP_START();
1830		dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
1831		DC_FP_END();
1832		pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
1833		if (dc->config.enable_windowed_mpo_odm &&
1834				dc->debug.enable_single_display_2to1_odm_policy) {
1835			switch (resource_get_odm_slice_count(pipe)) {
1836			case 2:
1837				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1838				break;
1839			case 4:
1840				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_4to1;
1841				break;
1842			default:
1843				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1844			}
1845		} else {
1846			pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1847		}
1848		pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
1849		pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1850		pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
1851
1852		/* Only populate DML input with subvp info for full updates.
1853		 * This is just a workaround -- needs a proper fix.
1854		 */
1855		if (!fast_validate) {
1856			switch (dc_state_get_pipe_subvp_type(context, pipe)) {
1857			case SUBVP_MAIN:
1858				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
1859				subvp_in_use = true;
1860				break;
1861			case SUBVP_PHANTOM:
1862				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
1863				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1864				// Disallow unbounded req for SubVP according to DCHUB programming guide
1865				pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1866				break;
1867			case SUBVP_NONE:
1868				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
1869				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1870				break;
1871			default:
1872				break;
1873			}
1874		}
1875
1876		pipes[pipe_cnt].dout.dsc_input_bpc = 0;
1877		if (pipes[pipe_cnt].dout.dsc_enable) {
1878			switch (timing->display_color_depth) {
1879			case COLOR_DEPTH_888:
1880				pipes[pipe_cnt].dout.dsc_input_bpc = 8;
1881				break;
1882			case COLOR_DEPTH_101010:
1883				pipes[pipe_cnt].dout.dsc_input_bpc = 10;
1884				break;
1885			case COLOR_DEPTH_121212:
1886				pipes[pipe_cnt].dout.dsc_input_bpc = 12;
1887				break;
1888			default:
1889				ASSERT(0);
1890				break;
1891			}
1892		}
1893
1894
1895		pipe_cnt++;
1896	}
1897
1898	/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
1899	 * the DET available for each pipe). Use the DET override input to maintain our driver
1900	 * policy.
1901	 */
1902	dcn32_set_det_allocations(dc, context, pipes);
1903
1904	// In general cases we want to keep the dram clock change requirement
1905	// (prefer configs that support MCLK switch). Only override to false
1906	// for SubVP
1907	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
1908		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
1909	else
1910		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1911
1912	return pipe_cnt;
1913}
1914
1915static struct dc_cap_funcs cap_funcs = {
1916	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap,
1917	.get_subvp_en = dcn32_subvp_in_use,
1918};
1919
1920void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
1921				display_e2e_pipe_params_st *pipes,
1922				int pipe_cnt,
1923				int vlevel)
1924{
1925    DC_FP_START();
1926    dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
1927    DC_FP_END();
1928}
1929
1930static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
1931{
1932	DC_FP_START();
1933	dcn32_update_bw_bounding_box_fpu(dc, bw_params);
1934	if (dc->debug.using_dml2 && dc->current_state && dc->current_state->bw_ctx.dml2)
1935		dml2_reinit(dc, &dc->dml2_options, &dc->current_state->bw_ctx.dml2);
1936	DC_FP_END();
1937}
1938
1939static struct resource_funcs dcn32_res_pool_funcs = {
1940	.destroy = dcn32_destroy_resource_pool,
1941	.link_enc_create = dcn32_link_encoder_create,
1942	.link_enc_create_minimal = NULL,
1943	.panel_cntl_create = dcn32_panel_cntl_create,
1944	.validate_bandwidth = dcn32_validate_bandwidth,
1945	.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
1946	.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
1947	.acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe,
1948	.acquire_free_pipe_as_secondary_opp_head = dcn32_acquire_free_pipe_as_secondary_opp_head,
1949	.release_pipe = dcn20_release_pipe,
1950	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
1951	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
1952	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
1953	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
1954	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
1955	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
1956	.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
1957	.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
1958	.update_bw_bounding_box = dcn32_update_bw_bounding_box,
1959	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
1960	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
1961	.add_phantom_pipes = dcn32_add_phantom_pipes,
1962	.build_pipe_pix_clk_params = dcn20_build_pipe_pix_clk_params,
1963};
1964
1965static uint32_t read_pipe_fuses(struct dc_context *ctx)
1966{
1967	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
1968	/* DCN32 support max 4 pipes */
1969	value = value & 0xf;
1970	return value;
1971}
1972
1973
1974static bool dcn32_resource_construct(
1975	uint8_t num_virtual_links,
1976	struct dc *dc,
1977	struct dcn32_resource_pool *pool)
1978{
1979	int i, j;
1980	struct dc_context *ctx = dc->ctx;
1981	struct irq_service_init_data init_data;
1982	struct ddc_service_init_data ddc_init_data = {0};
1983	uint32_t pipe_fuses = 0;
1984	uint32_t num_pipes  = 4;
1985
1986#undef REG_STRUCT
1987#define REG_STRUCT bios_regs
1988	bios_regs_init();
1989
1990#undef REG_STRUCT
1991#define REG_STRUCT clk_src_regs
1992	clk_src_regs_init(0, A),
1993	clk_src_regs_init(1, B),
1994	clk_src_regs_init(2, C),
1995	clk_src_regs_init(3, D),
1996	clk_src_regs_init(4, E);
1997
1998#undef REG_STRUCT
1999#define REG_STRUCT abm_regs
2000	abm_regs_init(0),
2001	abm_regs_init(1),
2002	abm_regs_init(2),
2003	abm_regs_init(3);
2004
2005#undef REG_STRUCT
2006#define REG_STRUCT dccg_regs
2007	dccg_regs_init();
2008
2009	DC_FP_START();
2010
2011	ctx->dc_bios->regs = &bios_regs;
2012
2013	pool->base.res_cap = &res_cap_dcn32;
2014	/* max number of pipes for ASIC before checking for pipe fuses */
2015	num_pipes  = pool->base.res_cap->num_timing_generator;
2016	pipe_fuses = read_pipe_fuses(ctx);
2017
2018	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
2019		if (pipe_fuses & 1 << i)
2020			num_pipes--;
2021
2022	if (pipe_fuses & 1)
2023		ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
2024
2025	if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
2026		ASSERT(0); //Entire DCN is harvested!
2027
2028	/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
2029	 * value will be changed, update max_num_dpp and max_num_otg for dml.
2030	 */
2031	dcn3_2_ip.max_num_dpp = num_pipes;
2032	dcn3_2_ip.max_num_otg = num_pipes;
2033
2034	pool->base.funcs = &dcn32_res_pool_funcs;
2035
2036	/*************************************************
2037	 *  Resource + asic cap harcoding                *
2038	 *************************************************/
2039	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2040	pool->base.timing_generator_count = num_pipes;
2041	pool->base.pipe_count = num_pipes;
2042	pool->base.mpcc_count = num_pipes;
2043	dc->caps.max_downscale_ratio = 600;
2044	dc->caps.i2c_speed_in_khz = 100;
2045	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
2046	/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
2047	dc->caps.max_cursor_size = 64;
2048	dc->caps.min_horizontal_blanking_period = 80;
2049	dc->caps.dmdata_alloc_size = 2048;
2050	dc->caps.mall_size_per_mem_channel = 4;
2051	dc->caps.mall_size_total = 0;
2052	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2053
2054	dc->caps.cache_line_size = 64;
2055	dc->caps.cache_num_ways = 16;
2056
2057	/* Calculate the available MALL space */
2058	dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
2059		dc, dc->ctx->dc_bios->vram_info.num_chans) *
2060		dc->caps.mall_size_per_mem_channel * 1024 * 1024;
2061	dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
2062
2063	dc->caps.subvp_fw_processing_delay_us = 15;
2064	dc->caps.subvp_drr_max_vblank_margin_us = 40;
2065	dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
2066	dc->caps.subvp_swath_height_margin_lines = 16;
2067	dc->caps.subvp_pstate_allow_width_us = 20;
2068	dc->caps.subvp_vertical_int_margin_us = 30;
2069	dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
2070
2071	dc->caps.max_slave_planes = 2;
2072	dc->caps.max_slave_yuv_planes = 2;
2073	dc->caps.max_slave_rgb_planes = 2;
2074	dc->caps.post_blend_color_processing = true;
2075	dc->caps.force_dp_tps4_for_cp2520 = true;
2076	if (dc->config.forceHBR2CP2520)
2077		dc->caps.force_dp_tps4_for_cp2520 = false;
2078	dc->caps.dp_hpo = true;
2079	dc->caps.dp_hdmi21_pcon_support = true;
2080	dc->caps.edp_dsc_support = true;
2081	dc->caps.extended_aux_timeout_support = true;
2082	dc->caps.dmcub_support = true;
2083	dc->caps.seamless_odm = true;
2084	dc->caps.max_v_total = (1 << 15) - 1;
2085
2086	/* Color pipeline capabilities */
2087	dc->caps.color.dpp.dcn_arch = 1;
2088	dc->caps.color.dpp.input_lut_shared = 0;
2089	dc->caps.color.dpp.icsc = 1;
2090	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2091	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2092	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2093	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2094	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2095	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2096	dc->caps.color.dpp.post_csc = 1;
2097	dc->caps.color.dpp.gamma_corr = 1;
2098	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2099
2100	dc->caps.color.dpp.hw_3d_lut = 1;
2101	dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
2102	// no OGAM ROM on DCN2 and later ASICs
2103	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2104	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2105	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2106	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2107	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2108	dc->caps.color.dpp.ocsc = 0;
2109
2110	dc->caps.color.mpc.gamut_remap = 1;
2111	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
2112	dc->caps.color.mpc.ogam_ram = 1;
2113	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2114	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2115	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2116	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2117	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2118	dc->caps.color.mpc.ocsc = 1;
2119
2120	/* Use pipe context based otg sync logic */
2121	dc->config.use_pipe_ctx_sync_logic = true;
2122
2123	dc->config.dc_mode_clk_limit_support = true;
2124	dc->config.enable_windowed_mpo_odm = true;
2125	/* read VBIOS LTTPR caps */
2126	{
2127		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2128			enum bp_result bp_query_result;
2129			uint8_t is_vbios_lttpr_enable = 0;
2130
2131			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2132			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2133		}
2134
2135		/* interop bit is implicit */
2136		{
2137			dc->caps.vbios_lttpr_aware = true;
2138		}
2139	}
2140
2141	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2142		dc->debug = debug_defaults_drv;
2143
2144	// Init the vm_helper
2145	if (dc->vm_helper)
2146		vm_helper_init(dc->vm_helper, 16);
2147
2148	/*************************************************
2149	 *  Create resources                             *
2150	 *************************************************/
2151
2152	/* Clock Sources for Pixel Clock*/
2153	pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
2154			dcn32_clock_source_create(ctx, ctx->dc_bios,
2155				CLOCK_SOURCE_COMBO_PHY_PLL0,
2156				&clk_src_regs[0], false);
2157	pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
2158			dcn32_clock_source_create(ctx, ctx->dc_bios,
2159				CLOCK_SOURCE_COMBO_PHY_PLL1,
2160				&clk_src_regs[1], false);
2161	pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
2162			dcn32_clock_source_create(ctx, ctx->dc_bios,
2163				CLOCK_SOURCE_COMBO_PHY_PLL2,
2164				&clk_src_regs[2], false);
2165	pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
2166			dcn32_clock_source_create(ctx, ctx->dc_bios,
2167				CLOCK_SOURCE_COMBO_PHY_PLL3,
2168				&clk_src_regs[3], false);
2169	pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
2170			dcn32_clock_source_create(ctx, ctx->dc_bios,
2171				CLOCK_SOURCE_COMBO_PHY_PLL4,
2172				&clk_src_regs[4], false);
2173
2174	pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
2175
2176	/* todo: not reuse phy_pll registers */
2177	pool->base.dp_clock_source =
2178			dcn32_clock_source_create(ctx, ctx->dc_bios,
2179				CLOCK_SOURCE_ID_DP_DTO,
2180				&clk_src_regs[0], true);
2181
2182	for (i = 0; i < pool->base.clk_src_count; i++) {
2183		if (pool->base.clock_sources[i] == NULL) {
2184			dm_error("DC: failed to create clock sources!\n");
2185			BREAK_TO_DEBUGGER();
2186			goto create_fail;
2187		}
2188	}
2189
2190	/* DCCG */
2191	pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2192	if (pool->base.dccg == NULL) {
2193		dm_error("DC: failed to create dccg!\n");
2194		BREAK_TO_DEBUGGER();
2195		goto create_fail;
2196	}
2197
2198	/* DML */
2199	dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2200
2201	/* IRQ Service */
2202	init_data.ctx = dc->ctx;
2203	pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
2204	if (!pool->base.irqs)
2205		goto create_fail;
2206
2207	/* HUBBUB */
2208	pool->base.hubbub = dcn32_hubbub_create(ctx);
2209	if (pool->base.hubbub == NULL) {
2210		BREAK_TO_DEBUGGER();
2211		dm_error("DC: failed to create hubbub!\n");
2212		goto create_fail;
2213	}
2214
2215	/* HUBPs, DPPs, OPPs, TGs, ABMs */
2216	for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2217
2218		/* if pipe is disabled, skip instance of HW pipe,
2219		 * i.e, skip ASIC register instance
2220		 */
2221		if (pipe_fuses & 1 << i)
2222			continue;
2223
2224		/* HUBPs */
2225		pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
2226		if (pool->base.hubps[j] == NULL) {
2227			BREAK_TO_DEBUGGER();
2228			dm_error(
2229				"DC: failed to create hubps!\n");
2230			goto create_fail;
2231		}
2232
2233		/* DPPs */
2234		pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
2235		if (pool->base.dpps[j] == NULL) {
2236			BREAK_TO_DEBUGGER();
2237			dm_error(
2238				"DC: failed to create dpps!\n");
2239			goto create_fail;
2240		}
2241
2242		/* OPPs */
2243		pool->base.opps[j] = dcn32_opp_create(ctx, i);
2244		if (pool->base.opps[j] == NULL) {
2245			BREAK_TO_DEBUGGER();
2246			dm_error(
2247				"DC: failed to create output pixel processor!\n");
2248			goto create_fail;
2249		}
2250
2251		/* TGs */
2252		pool->base.timing_generators[j] = dcn32_timing_generator_create(
2253				ctx, i);
2254		if (pool->base.timing_generators[j] == NULL) {
2255			BREAK_TO_DEBUGGER();
2256			dm_error("DC: failed to create tg!\n");
2257			goto create_fail;
2258		}
2259
2260		/* ABMs */
2261		pool->base.multiple_abms[j] = dmub_abm_create(ctx,
2262				&abm_regs[i],
2263				&abm_shift,
2264				&abm_mask);
2265		if (pool->base.multiple_abms[j] == NULL) {
2266			dm_error("DC: failed to create abm for pipe %d!\n", i);
2267			BREAK_TO_DEBUGGER();
2268			goto create_fail;
2269		}
2270
2271		/* index for resource pool arrays for next valid pipe */
2272		j++;
2273	}
2274
2275	/* PSR */
2276	pool->base.psr = dmub_psr_create(ctx);
2277	if (pool->base.psr == NULL) {
2278		dm_error("DC: failed to create psr obj!\n");
2279		BREAK_TO_DEBUGGER();
2280		goto create_fail;
2281	}
2282
2283	/* MPCCs */
2284	pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
2285	if (pool->base.mpc == NULL) {
2286		BREAK_TO_DEBUGGER();
2287		dm_error("DC: failed to create mpc!\n");
2288		goto create_fail;
2289	}
2290
2291	/* DSCs */
2292	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2293		pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
2294		if (pool->base.dscs[i] == NULL) {
2295			BREAK_TO_DEBUGGER();
2296			dm_error("DC: failed to create display stream compressor %d!\n", i);
2297			goto create_fail;
2298		}
2299	}
2300
2301	/* DWB */
2302	if (!dcn32_dwbc_create(ctx, &pool->base)) {
2303		BREAK_TO_DEBUGGER();
2304		dm_error("DC: failed to create dwbc!\n");
2305		goto create_fail;
2306	}
2307
2308	/* MMHUBBUB */
2309	if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
2310		BREAK_TO_DEBUGGER();
2311		dm_error("DC: failed to create mcif_wb!\n");
2312		goto create_fail;
2313	}
2314
2315	/* AUX and I2C */
2316	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2317		pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
2318		if (pool->base.engines[i] == NULL) {
2319			BREAK_TO_DEBUGGER();
2320			dm_error(
2321				"DC:failed to create aux engine!!\n");
2322			goto create_fail;
2323		}
2324		pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
2325		if (pool->base.hw_i2cs[i] == NULL) {
2326			BREAK_TO_DEBUGGER();
2327			dm_error(
2328				"DC:failed to create hw i2c!!\n");
2329			goto create_fail;
2330		}
2331		pool->base.sw_i2cs[i] = NULL;
2332	}
2333
2334	/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
2335	if (!resource_construct(num_virtual_links, dc, &pool->base,
2336			&res_create_funcs))
2337		goto create_fail;
2338
2339	/* HW Sequencer init functions and Plane caps */
2340	dcn32_hw_sequencer_init_functions(dc);
2341
2342	dc->caps.max_planes =  pool->base.pipe_count;
2343
2344	for (i = 0; i < dc->caps.max_planes; ++i)
2345		dc->caps.planes[i] = plane_cap;
2346
2347	dc->cap_funcs = cap_funcs;
2348
2349	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2350		ddc_init_data.ctx = dc->ctx;
2351		ddc_init_data.link = NULL;
2352		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2353		ddc_init_data.id.enum_id = 0;
2354		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2355		pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2356	} else {
2357		pool->base.oem_device = NULL;
2358	}
2359
2360	dc->dml2_options.dcn_pipe_count = pool->base.pipe_count;
2361	dc->dml2_options.use_native_pstate_optimization = false;
2362	dc->dml2_options.use_native_soc_bb_construction = true;
2363	dc->dml2_options.minimize_dispclk_using_odm = true;
2364
2365	dc->dml2_options.callbacks.dc = dc;
2366	dc->dml2_options.callbacks.build_scaling_params = &resource_build_scaling_params;
2367	dc->dml2_options.callbacks.can_support_mclk_switch_using_fw_based_vblank_stretch = &dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch;
2368	dc->dml2_options.callbacks.acquire_secondary_pipe_for_mpc_odm = &dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy;
2369	dc->dml2_options.callbacks.update_pipes_for_stream_with_slice_count = &resource_update_pipes_for_stream_with_slice_count;
2370	dc->dml2_options.callbacks.update_pipes_for_plane_with_slice_count = &resource_update_pipes_for_plane_with_slice_count;
2371	dc->dml2_options.callbacks.get_mpc_slice_index = &resource_get_mpc_slice_index;
2372	dc->dml2_options.callbacks.get_odm_slice_index = &resource_get_odm_slice_index;
2373	dc->dml2_options.callbacks.get_opp_head = &resource_get_opp_head;
2374
2375	dc->dml2_options.svp_pstate.callbacks.dc = dc;
2376	dc->dml2_options.svp_pstate.callbacks.add_phantom_plane = &dc_state_add_phantom_plane;
2377	dc->dml2_options.svp_pstate.callbacks.add_phantom_stream = &dc_state_add_phantom_stream;
2378	dc->dml2_options.svp_pstate.callbacks.build_scaling_params = &resource_build_scaling_params;
2379	dc->dml2_options.svp_pstate.callbacks.create_phantom_plane = &dc_state_create_phantom_plane;
2380	dc->dml2_options.svp_pstate.callbacks.remove_phantom_plane = &dc_state_remove_phantom_plane;
2381	dc->dml2_options.svp_pstate.callbacks.remove_phantom_stream = &dc_state_remove_phantom_stream;
2382	dc->dml2_options.svp_pstate.callbacks.create_phantom_stream = &dc_state_create_phantom_stream;
2383	dc->dml2_options.svp_pstate.callbacks.release_phantom_plane = &dc_state_release_phantom_plane;
2384	dc->dml2_options.svp_pstate.callbacks.release_phantom_stream = &dc_state_release_phantom_stream;
2385	dc->dml2_options.svp_pstate.callbacks.release_dsc = &dcn20_release_dsc;
2386	dc->dml2_options.svp_pstate.callbacks.get_pipe_subvp_type = &dc_state_get_pipe_subvp_type;
2387	dc->dml2_options.svp_pstate.callbacks.get_stream_subvp_type = &dc_state_get_stream_subvp_type;
2388	dc->dml2_options.svp_pstate.callbacks.get_paired_subvp_stream = &dc_state_get_paired_subvp_stream;
2389
2390	dc->dml2_options.svp_pstate.subvp_fw_processing_delay_us = dc->caps.subvp_fw_processing_delay_us;
2391	dc->dml2_options.svp_pstate.subvp_prefetch_end_to_mall_start_us = dc->caps.subvp_prefetch_end_to_mall_start_us;
2392	dc->dml2_options.svp_pstate.subvp_pstate_allow_width_us = dc->caps.subvp_pstate_allow_width_us;
2393	dc->dml2_options.svp_pstate.subvp_swath_height_margin_lines = dc->caps.subvp_swath_height_margin_lines;
2394
2395	dc->dml2_options.svp_pstate.force_disable_subvp = dc->debug.force_disable_subvp;
2396	dc->dml2_options.svp_pstate.force_enable_subvp = dc->debug.force_subvp_mclk_switch;
2397
2398	dc->dml2_options.mall_cfg.cache_line_size_bytes = dc->caps.cache_line_size;
2399	dc->dml2_options.mall_cfg.cache_num_ways = dc->caps.cache_num_ways;
2400	dc->dml2_options.mall_cfg.max_cab_allocation_bytes = dc->caps.max_cab_allocation_bytes;
2401	dc->dml2_options.mall_cfg.mblk_height_4bpe_pixels = DCN3_2_MBLK_HEIGHT_4BPE;
2402	dc->dml2_options.mall_cfg.mblk_height_8bpe_pixels = DCN3_2_MBLK_HEIGHT_8BPE;
2403	dc->dml2_options.mall_cfg.mblk_size_bytes = DCN3_2_MALL_MBLK_SIZE_BYTES;
2404	dc->dml2_options.mall_cfg.mblk_width_pixels = DCN3_2_MBLK_WIDTH;
2405
2406	dc->dml2_options.max_segments_per_hubp = 18;
2407	dc->dml2_options.det_segment_size = DCN3_2_DET_SEG_SIZE;
2408	dc->dml2_options.map_dc_pipes_with_callbacks = true;
2409
2410	if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
2411		dc->config.sdpif_request_limit_words_per_umc = 16;
2412
2413	DC_FP_END();
2414
2415	return true;
2416
2417create_fail:
2418
2419	DC_FP_END();
2420
2421	dcn32_resource_destruct(pool);
2422
2423	return false;
2424}
2425
2426struct resource_pool *dcn32_create_resource_pool(
2427		const struct dc_init_data *init_data,
2428		struct dc *dc)
2429{
2430	struct dcn32_resource_pool *pool =
2431		kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
2432
2433	if (!pool)
2434		return NULL;
2435
2436	if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
2437		return &pool->base;
2438
2439	BREAK_TO_DEBUGGER();
2440	kfree(pool);
2441	return NULL;
2442}
2443
2444/*
2445 * Find the most optimal free pipe from res_ctx, which could be used as a
2446 * secondary dpp pipe for input opp head pipe.
2447 *
2448 * a free pipe - a pipe in input res_ctx not yet used for any streams or
2449 * planes.
2450 * secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending
2451 * tree. This is typical used for rendering MPO planes or additional offset
2452 * areas in MPCC combine.
2453 *
2454 * Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe
2455 * -------------------------------------------------------------------------
2456 *
2457 * PROBLEM:
2458 *
2459 * 1. There is a hardware limitation that a secondary DPP pipe cannot be
2460 * transferred from one MPC blending tree to the other in a single frame.
2461 * Otherwise it could cause glitches on the screen.
2462 *
2463 * For instance, we cannot transition from state 1 to state 2 in one frame. This
2464 * is because PIPE1 is transferred from PIPE0's MPC blending tree over to
2465 * PIPE2's MPC blending tree, which is not supported by hardware.
2466 * To support this transition we need to first remove PIPE1 from PIPE0's MPC
2467 * blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree
2468 * in the next frame. This is not optimal as it will delay the flip for two
2469 * frames.
2470 *
2471 *	State 1:
2472 *	PIPE0 -- secondary DPP pipe --> (PIPE1)
2473 *	PIPE2 -- secondary DPP pipe --> NONE
2474 *
2475 *	State 2:
2476 *	PIPE0 -- secondary DPP pipe --> NONE
2477 *	PIPE2 -- secondary DPP pipe --> (PIPE1)
2478 *
2479 * 2. We want to in general minimize the unnecessary changes in pipe topology.
2480 * If a pipe is already added in current blending tree and there are no changes
2481 * to plane topology, we don't want to swap it with another free pipe
2482 * unnecessarily in every update. Powering up and down a pipe would require a
2483 * full update which delays the flip for 1 frame. If we use the original pipe
2484 * we don't have to toggle its power. So we can flip faster.
2485 */
2486static int find_optimal_free_pipe_as_secondary_dpp_pipe(
2487		const struct resource_context *cur_res_ctx,
2488		struct resource_context *new_res_ctx,
2489		const struct resource_pool *pool,
2490		const struct pipe_ctx *new_opp_head)
2491{
2492	const struct pipe_ctx *cur_opp_head;
2493	int free_pipe_idx;
2494
2495	cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx];
2496	free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree(
2497			cur_res_ctx, new_res_ctx, cur_opp_head);
2498
2499	/* Up until here if we have not found a free secondary pipe, we will
2500	 * need to wait for at least one frame to complete the transition
2501	 * sequence.
2502	 */
2503	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2504		free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2505				cur_res_ctx, new_res_ctx, pool);
2506
2507	/* Up until here if we have not found a free secondary pipe, we will
2508	 * need to wait for at least two frames to complete the transition
2509	 * sequence. It really doesn't matter which pipe we decide take from
2510	 * current enabled pipes. It won't save our frame time when we swap only
2511	 * one pipe or more pipes.
2512	 */
2513	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2514		free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
2515				cur_res_ctx, new_res_ctx, pool);
2516
2517	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2518		free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2519
2520	return free_pipe_idx;
2521}
2522
2523static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
2524		struct resource_context *res_ctx,
2525		const struct resource_pool *pool,
2526		const struct pipe_ctx *primary_pipe)
2527{
2528	int i;
2529	struct pipe_ctx *secondary_pipe = NULL;
2530	struct pipe_ctx *next_odm_mpo_pipe = NULL;
2531	int primary_index, preferred_pipe_idx;
2532	struct pipe_ctx *old_primary_pipe = NULL;
2533
2534	/*
2535	 * Modified from find_idle_secondary_pipe
2536	 * With windowed MPO and ODM, we want to avoid the case where we want a
2537	 *  free pipe for the left side but the free pipe is being used on the
2538	 *  right side.
2539	 * Add check on current_state if the primary_pipe is the left side,
2540	 *  to check the right side ( primary_pipe->next_odm_pipe ) to see if
2541	 *  it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
2542	 * - If so, then don't use this pipe
2543	 * EXCEPTION - 3 plane ( 2 MPO plane ) case
2544	 * - in this case, the primary pipe has already gotten a free pipe for the
2545	 *  MPO window in the left
2546	 * - when it tries to get a free pipe for the MPO window on the right,
2547	 *  it will see that it is already assigned to the right side
2548	 *  ( primary_pipe->next_odm_pipe ).  But in this case, we want this
2549	 *  free pipe, since it will be for the right side.  So add an
2550	 *  additional condition, that skipping the free pipe on the right only
2551	 *  applies if the primary pipe has no bottom pipe currently assigned
2552	 */
2553	if (primary_pipe) {
2554		primary_index = primary_pipe->pipe_idx;
2555		old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
2556		if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
2557			&& (!primary_pipe->bottom_pipe))
2558			next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
2559
2560		preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
2561		if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
2562			!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
2563			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
2564			secondary_pipe->pipe_idx = preferred_pipe_idx;
2565		}
2566	}
2567
2568	/*
2569	 * search backwards for the second pipe to keep pipe
2570	 * assignment more consistent
2571	 */
2572	if (!secondary_pipe)
2573		for (i = pool->pipe_count - 1; i >= 0; i--) {
2574			if ((res_ctx->pipe_ctx[i].stream == NULL) &&
2575				!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
2576				secondary_pipe = &res_ctx->pipe_ctx[i];
2577				secondary_pipe->pipe_idx = i;
2578				break;
2579			}
2580		}
2581
2582	return secondary_pipe;
2583}
2584
2585static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2586		struct dc_state *state,
2587		const struct resource_pool *pool,
2588		struct dc_stream_state *stream,
2589		const struct pipe_ctx *head_pipe)
2590{
2591	struct resource_context *res_ctx = &state->res_ctx;
2592	struct pipe_ctx *idle_pipe, *pipe;
2593	struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
2594	int head_index;
2595
2596	if (!head_pipe)
2597		ASSERT(0);
2598
2599	/*
2600	 * Modified from dcn20_acquire_idle_pipe_for_layer
2601	 * Check if head_pipe in old_context already has bottom_pipe allocated.
2602	 * - If so, check if that pipe is available in the current context.
2603	 * --  If so, reuse pipe from old_context
2604	 */
2605	head_index = head_pipe->pipe_idx;
2606	pipe = &old_ctx->pipe_ctx[head_index];
2607	if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
2608		idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
2609		idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
2610	} else {
2611		idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
2612		if (!idle_pipe)
2613			return NULL;
2614	}
2615
2616	idle_pipe->stream = head_pipe->stream;
2617	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2618	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2619
2620	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2621	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2622	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2623	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2624
2625	return idle_pipe;
2626}
2627
2628static int find_optimal_free_pipe_as_secondary_opp_head(
2629		const struct resource_context *cur_res_ctx,
2630		struct resource_context *new_res_ctx,
2631		const struct resource_pool *pool,
2632		const struct pipe_ctx *new_otg_master)
2633{
2634	const struct pipe_ctx *cur_otg_master;
2635	int free_pipe_idx;
2636
2637	cur_otg_master =  &cur_res_ctx->pipe_ctx[new_otg_master->pipe_idx];
2638	free_pipe_idx = resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
2639			cur_res_ctx, new_res_ctx, cur_otg_master);
2640
2641	/* Up until here if we have not found a free secondary pipe, we will
2642	 * need to wait for at least one frame to complete the transition
2643	 * sequence.
2644	 */
2645	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2646		free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2647				cur_res_ctx, new_res_ctx, pool);
2648
2649	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2650		free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2651
2652	return free_pipe_idx;
2653}
2654
2655struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe(
2656		const struct dc_state *cur_ctx,
2657		struct dc_state *new_ctx,
2658		const struct resource_pool *pool,
2659		const struct pipe_ctx *opp_head_pipe)
2660{
2661
2662	int free_pipe_idx;
2663	struct pipe_ctx *free_pipe;
2664
2665	if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm)
2666		return dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2667				new_ctx, pool, opp_head_pipe->stream, opp_head_pipe);
2668
2669	free_pipe_idx = find_optimal_free_pipe_as_secondary_dpp_pipe(
2670					&cur_ctx->res_ctx, &new_ctx->res_ctx,
2671					pool, opp_head_pipe);
2672	if (free_pipe_idx >= 0) {
2673		free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2674		free_pipe->pipe_idx = free_pipe_idx;
2675		free_pipe->stream = opp_head_pipe->stream;
2676		free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg;
2677		free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp;
2678
2679		free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx];
2680		free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx];
2681		free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx];
2682		free_pipe->plane_res.mpcc_inst =
2683				pool->dpps[free_pipe->pipe_idx]->inst;
2684	} else {
2685		ASSERT(opp_head_pipe);
2686		free_pipe = NULL;
2687	}
2688
2689	return free_pipe;
2690}
2691
2692struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_opp_head(
2693		const struct dc_state *cur_ctx,
2694		struct dc_state *new_ctx,
2695		const struct resource_pool *pool,
2696		const struct pipe_ctx *otg_master)
2697{
2698	int free_pipe_idx = find_optimal_free_pipe_as_secondary_opp_head(
2699			&cur_ctx->res_ctx, &new_ctx->res_ctx,
2700			pool, otg_master);
2701	struct pipe_ctx *free_pipe;
2702
2703	if (free_pipe_idx >= 0) {
2704		free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2705		free_pipe->pipe_idx = free_pipe_idx;
2706		free_pipe->stream = otg_master->stream;
2707		free_pipe->stream_res.tg = otg_master->stream_res.tg;
2708		free_pipe->stream_res.dsc = NULL;
2709		free_pipe->stream_res.opp = pool->opps[free_pipe_idx];
2710		free_pipe->plane_res.mi = pool->mis[free_pipe_idx];
2711		free_pipe->plane_res.hubp = pool->hubps[free_pipe_idx];
2712		free_pipe->plane_res.ipp = pool->ipps[free_pipe_idx];
2713		free_pipe->plane_res.xfm = pool->transforms[free_pipe_idx];
2714		free_pipe->plane_res.dpp = pool->dpps[free_pipe_idx];
2715		free_pipe->plane_res.mpcc_inst = pool->dpps[free_pipe_idx]->inst;
2716		if (free_pipe->stream->timing.flags.DSC == 1) {
2717			dcn20_acquire_dsc(free_pipe->stream->ctx->dc,
2718					&new_ctx->res_ctx,
2719					&free_pipe->stream_res.dsc,
2720					free_pipe_idx);
2721			ASSERT(free_pipe->stream_res.dsc);
2722			if (free_pipe->stream_res.dsc == NULL) {
2723				memset(free_pipe, 0, sizeof(*free_pipe));
2724				free_pipe = NULL;
2725			}
2726		}
2727	} else {
2728		ASSERT(otg_master);
2729		free_pipe = NULL;
2730	}
2731
2732	return free_pipe;
2733}
2734
2735unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
2736{
2737	/*
2738	 * DCN32 and DCN321 SKUs may have different sizes for MALL
2739	 *  but we may not be able to access all the MALL space.
2740	 *  If the num_chans is power of 2, then we can access all
2741	 *  of the available MALL space.  Otherwise, we can only
2742	 *  access:
2743	 *
2744	 *  max_cab_size_in_bytes = total_cache_size_in_bytes *
2745	 *    ((2^floor(log2(num_chans)))/num_chans)
2746	 *
2747	 * Calculating the MALL sizes for all available SKUs, we
2748	 *  have come up with the follow simplified check.
2749	 * - we have max_chans which provides the max MALL size.
2750	 *  Each chans supports 4MB of MALL so:
2751	 *
2752	 *  total_cache_size_in_bytes = max_chans * 4 MB
2753	 *
2754	 * - we have avail_chans which shows the number of channels
2755	 *  we can use if we can't access the entire MALL space.
2756	 *  It is generally half of max_chans
2757	 * - so we use the following checks:
2758	 *
2759	 *   if (num_chans == max_chans), return max_chans
2760	 *   if (num_chans < max_chans), return avail_chans
2761	 *
2762	 * - exception is GC_11_0_0 where we can't access max_chans,
2763	 *  so we define max_avail_chans as the maximum available
2764	 *  MALL space
2765	 *
2766	 */
2767	int gc_11_0_0_max_chans = 48;
2768	int gc_11_0_0_max_avail_chans = 32;
2769	int gc_11_0_0_avail_chans = 16;
2770	int gc_11_0_3_max_chans = 16;
2771	int gc_11_0_3_avail_chans = 8;
2772	int gc_11_0_2_max_chans = 8;
2773	int gc_11_0_2_avail_chans = 4;
2774
2775	if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
2776		return (num_chans == gc_11_0_0_max_chans) ?
2777			gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
2778	} else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
2779		return (num_chans == gc_11_0_2_max_chans) ?
2780			gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
2781	} else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
2782		return (num_chans == gc_11_0_3_max_chans) ?
2783			gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
2784	}
2785}
2786