1/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25#include "dm_services.h"
26
27#include "amdgpu.h"
28
29#include "dc.h"
30
31#include "core_status.h"
32#include "core_types.h"
33#include "hw_sequencer.h"
34#include "dce/dce_hwseq.h"
35
36#include "resource.h"
37#include "dc_state.h"
38#include "dc_state_priv.h"
39
40#include "gpio_service_interface.h"
41#include "clk_mgr.h"
42#include "clock_source.h"
43#include "dc_bios_types.h"
44
45#include "bios_parser_interface.h"
46#include "bios/bios_parser_helper.h"
47#include "include/irq_service_interface.h"
48#include "transform.h"
49#include "dmcu.h"
50#include "dpp.h"
51#include "timing_generator.h"
52#include "abm.h"
53#include "virtual/virtual_link_encoder.h"
54#include "hubp.h"
55
56#include "link_hwss.h"
57#include "link_encoder.h"
58#include "link_enc_cfg.h"
59
60#include "link.h"
61#include "dm_helpers.h"
62#include "mem_input.h"
63
64#include "dc_dmub_srv.h"
65
66#include "dsc.h"
67
68#include "vm_helper.h"
69
70#include "dce/dce_i2c.h"
71
72#include "dmub/dmub_srv.h"
73
74#include "dce/dmub_psr.h"
75
76#include "dce/dmub_hw_lock_mgr.h"
77
78#include "dc_trace.h"
79
80#include "hw_sequencer_private.h"
81
82#include "dml2/dml2_internal_types.h"
83
84#include "dce/dmub_outbox.h"
85
86#define CTX \
87	dc->ctx
88
89#define DC_LOGGER \
90	dc->ctx->logger
91
92static const char DC_BUILD_ID[] = "production-build";
93
94/**
95 * DOC: Overview
96 *
97 * DC is the OS-agnostic component of the amdgpu DC driver.
98 *
99 * DC maintains and validates a set of structs representing the state of the
100 * driver and writes that state to AMD hardware
101 *
102 * Main DC HW structs:
103 *
104 * struct dc - The central struct.  One per driver.  Created on driver load,
105 * destroyed on driver unload.
106 *
107 * struct dc_context - One per driver.
108 * Used as a backpointer by most other structs in dc.
109 *
110 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
111 * plugpoints).  Created on driver load, destroyed on driver unload.
112 *
113 * struct dc_sink - One per display.  Created on boot or hotplug.
114 * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
115 * (the display directly attached).  It may also have one or more remote
116 * sinks (in the Multi-Stream Transport case)
117 *
118 * struct resource_pool - One per driver.  Represents the hw blocks not in the
119 * main pipeline.  Not directly accessible by dm.
120 *
121 * Main dc state structs:
122 *
123 * These structs can be created and destroyed as needed.  There is a full set of
124 * these structs in dc->current_state representing the currently programmed state.
125 *
126 * struct dc_state - The global DC state to track global state information,
127 * such as bandwidth values.
128 *
129 * struct dc_stream_state - Represents the hw configuration for the pipeline from
130 * a framebuffer to a display.  Maps one-to-one with dc_sink.
131 *
132 * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
133 * and may have more in the Multi-Plane Overlay case.
134 *
135 * struct resource_context - Represents the programmable state of everything in
136 * the resource_pool.  Not directly accessible by dm.
137 *
138 * struct pipe_ctx - A member of struct resource_context.  Represents the
139 * internal hardware pipeline components.  Each dc_plane_state has either
140 * one or two (in the pipe-split case).
141 */
142
143/* Private functions */
144
145static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
146{
147	if (new > *original)
148		*original = new;
149}
150
151static void destroy_links(struct dc *dc)
152{
153	uint32_t i;
154
155	for (i = 0; i < dc->link_count; i++) {
156		if (NULL != dc->links[i])
157			dc->link_srv->destroy_link(&dc->links[i]);
158	}
159}
160
161static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
162{
163	int i;
164	uint32_t count = 0;
165
166	for (i = 0; i < num_links; i++) {
167		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
168				links[i]->is_internal_display)
169			count++;
170	}
171
172	return count;
173}
174
175static int get_seamless_boot_stream_count(struct dc_state *ctx)
176{
177	uint8_t i;
178	uint8_t seamless_boot_stream_count = 0;
179
180	for (i = 0; i < ctx->stream_count; i++)
181		if (ctx->streams[i]->apply_seamless_boot_optimization)
182			seamless_boot_stream_count++;
183
184	return seamless_boot_stream_count;
185}
186
187static bool create_links(
188		struct dc *dc,
189		uint32_t num_virtual_links)
190{
191	int i;
192	int connectors_num;
193	struct dc_bios *bios = dc->ctx->dc_bios;
194
195	dc->link_count = 0;
196
197	connectors_num = bios->funcs->get_connectors_number(bios);
198
199	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
200
201	if (connectors_num > ENUM_ID_COUNT) {
202		dm_error(
203			"DC: Number of connectors %d exceeds maximum of %d!\n",
204			connectors_num,
205			ENUM_ID_COUNT);
206		return false;
207	}
208
209	dm_output_to_console(
210		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
211		__func__,
212		connectors_num,
213		num_virtual_links);
214
215	for (i = 0; i < connectors_num; i++) {
216		struct link_init_data link_init_params = {0};
217		struct dc_link *link;
218
219		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
220
221		link_init_params.ctx = dc->ctx;
222		/* next BIOS object table connector */
223		link_init_params.connector_index = i;
224		link_init_params.link_index = dc->link_count;
225		link_init_params.dc = dc;
226		link = dc->link_srv->create_link(&link_init_params);
227
228		if (link) {
229			dc->links[dc->link_count] = link;
230			link->dc = dc;
231			++dc->link_count;
232		}
233	}
234
235	DC_LOG_DC("BIOS object table - end");
236
237	/* Create a link for each usb4 dpia port */
238	for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
239		struct link_init_data link_init_params = {0};
240		struct dc_link *link;
241
242		link_init_params.ctx = dc->ctx;
243		link_init_params.connector_index = i;
244		link_init_params.link_index = dc->link_count;
245		link_init_params.dc = dc;
246		link_init_params.is_dpia_link = true;
247
248		link = dc->link_srv->create_link(&link_init_params);
249		if (link) {
250			dc->links[dc->link_count] = link;
251			link->dc = dc;
252			++dc->link_count;
253		}
254	}
255
256	for (i = 0; i < num_virtual_links; i++) {
257		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
258		struct encoder_init_data enc_init = {0};
259
260		if (link == NULL) {
261			BREAK_TO_DEBUGGER();
262			goto failed_alloc;
263		}
264
265		link->link_index = dc->link_count;
266		dc->links[dc->link_count] = link;
267		dc->link_count++;
268
269		link->ctx = dc->ctx;
270		link->dc = dc;
271		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
272		link->link_id.type = OBJECT_TYPE_CONNECTOR;
273		link->link_id.id = CONNECTOR_ID_VIRTUAL;
274		link->link_id.enum_id = ENUM_ID_1;
275		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
276
277		if (!link->link_enc) {
278			BREAK_TO_DEBUGGER();
279			goto failed_alloc;
280		}
281
282		link->link_status.dpcd_caps = &link->dpcd_caps;
283
284		enc_init.ctx = dc->ctx;
285		enc_init.channel = CHANNEL_ID_UNKNOWN;
286		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
287		enc_init.transmitter = TRANSMITTER_UNKNOWN;
288		enc_init.connector = link->link_id;
289		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
290		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
291		enc_init.encoder.enum_id = ENUM_ID_1;
292		virtual_link_encoder_construct(link->link_enc, &enc_init);
293	}
294
295	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
296
297	return true;
298
299failed_alloc:
300	return false;
301}
302
303/* Create additional DIG link encoder objects if fewer than the platform
304 * supports were created during link construction. This can happen if the
305 * number of physical connectors is less than the number of DIGs.
306 */
307static bool create_link_encoders(struct dc *dc)
308{
309	bool res = true;
310	unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
311	unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
312	int i;
313
314	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
315	 * link encoders and physical display endpoints and does not require
316	 * additional link encoder objects.
317	 */
318	if (num_usb4_dpia == 0)
319		return res;
320
321	/* Create as many link encoder objects as the platform supports. DPIA
322	 * endpoints can be programmably mapped to any DIG.
323	 */
324	if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
325		for (i = 0; i < num_dig_link_enc; i++) {
326			struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
327
328			if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
329				link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
330						(enum engine_id)(ENGINE_ID_DIGA + i));
331				if (link_enc) {
332					dc->res_pool->link_encoders[i] = link_enc;
333					dc->res_pool->dig_link_enc_count++;
334				} else {
335					res = false;
336				}
337			}
338		}
339	}
340
341	return res;
342}
343
344/* Destroy any additional DIG link encoder objects created by
345 * create_link_encoders().
346 * NB: Must only be called after destroy_links().
347 */
348static void destroy_link_encoders(struct dc *dc)
349{
350	unsigned int num_usb4_dpia;
351	unsigned int num_dig_link_enc;
352	int i;
353
354	if (!dc->res_pool)
355		return;
356
357	num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
358	num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
359
360	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
361	 * link encoders and physical display endpoints and does not require
362	 * additional link encoder objects.
363	 */
364	if (num_usb4_dpia == 0)
365		return;
366
367	for (i = 0; i < num_dig_link_enc; i++) {
368		struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
369
370		if (link_enc) {
371			link_enc->funcs->destroy(&link_enc);
372			dc->res_pool->link_encoders[i] = NULL;
373			dc->res_pool->dig_link_enc_count--;
374		}
375	}
376}
377
378static struct dc_perf_trace *dc_perf_trace_create(void)
379{
380	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
381}
382
383static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
384{
385	kfree(*perf_trace);
386	*perf_trace = NULL;
387}
388
389/**
390 *  dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
391 *  @dc:     dc reference
392 *  @stream: Initial dc stream state
393 *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
394 *
395 *  Looks up the pipe context of dc_stream_state and updates the
396 *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
397 *  Rate, which is a power-saving feature that targets reducing panel
398 *  refresh rate while the screen is static
399 *
400 *  Return: %true if the pipe context is found and adjusted;
401 *          %false if the pipe context is not found.
402 */
403bool dc_stream_adjust_vmin_vmax(struct dc *dc,
404		struct dc_stream_state *stream,
405		struct dc_crtc_timing_adjust *adjust)
406{
407	int i;
408
409	/*
410	 * Don't adjust DRR while there's bandwidth optimizations pending to
411	 * avoid conflicting with firmware updates.
412	 */
413	if (dc->ctx->dce_version > DCE_VERSION_MAX)
414		if (dc->optimized_required || dc->wm_optimized_required)
415			return false;
416
417	dc_exit_ips_for_hw_access(dc);
418
419	stream->adjust.v_total_max = adjust->v_total_max;
420	stream->adjust.v_total_mid = adjust->v_total_mid;
421	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
422	stream->adjust.v_total_min = adjust->v_total_min;
423
424	for (i = 0; i < MAX_PIPES; i++) {
425		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
426
427		if (pipe->stream == stream && pipe->stream_res.tg) {
428			dc->hwss.set_drr(&pipe,
429					1,
430					*adjust);
431
432			return true;
433		}
434	}
435	return false;
436}
437
438/**
439 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
440 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
441 *
442 * @dc: [in] dc reference
443 * @stream: [in] Initial dc stream state
444 * @refresh_rate: [in] new refresh_rate
445 *
446 * Return: %true if the pipe context is found and there is an associated
447 *         timing_generator for the DC;
448 *         %false if the pipe context is not found or there is no
449 *         timing_generator for the DC.
450 */
451bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
452		struct dc_stream_state *stream,
453		uint32_t *refresh_rate)
454{
455	bool status = false;
456
457	int i = 0;
458
459	dc_exit_ips_for_hw_access(dc);
460
461	for (i = 0; i < MAX_PIPES; i++) {
462		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
463
464		if (pipe->stream == stream && pipe->stream_res.tg) {
465			/* Only execute if a function pointer has been defined for
466			 * the DC version in question
467			 */
468			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
469				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
470
471				status = true;
472
473				break;
474			}
475		}
476	}
477
478	return status;
479}
480
481bool dc_stream_get_crtc_position(struct dc *dc,
482		struct dc_stream_state **streams, int num_streams,
483		unsigned int *v_pos, unsigned int *nom_v_pos)
484{
485	/* TODO: Support multiple streams */
486	const struct dc_stream_state *stream = streams[0];
487	int i;
488	bool ret = false;
489	struct crtc_position position;
490
491	dc_exit_ips_for_hw_access(dc);
492
493	for (i = 0; i < MAX_PIPES; i++) {
494		struct pipe_ctx *pipe =
495				&dc->current_state->res_ctx.pipe_ctx[i];
496
497		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
498			dc->hwss.get_position(&pipe, 1, &position);
499
500			*v_pos = position.vertical_count;
501			*nom_v_pos = position.nominal_vcount;
502			ret = true;
503		}
504	}
505	return ret;
506}
507
508#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
509static inline void
510dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
511		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
512{
513	union dmub_rb_cmd cmd = {0};
514
515	cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
516	cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
517
518	if (is_stop) {
519		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
520		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
521	} else {
522		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
523		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
524		cmd.secure_display.roi_info.x_start = rect->x;
525		cmd.secure_display.roi_info.y_start = rect->y;
526		cmd.secure_display.roi_info.x_end = rect->x + rect->width;
527		cmd.secure_display.roi_info.y_end = rect->y + rect->height;
528	}
529
530	dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
531}
532
533static inline void
534dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
535		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
536{
537	if (is_stop)
538		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
539	else
540		dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
541}
542
543bool
544dc_stream_forward_crc_window(struct dc_stream_state *stream,
545		struct rect *rect, bool is_stop)
546{
547	struct dmcu *dmcu;
548	struct dc_dmub_srv *dmub_srv;
549	struct otg_phy_mux mux_mapping;
550	struct pipe_ctx *pipe;
551	int i;
552	struct dc *dc = stream->ctx->dc;
553
554	for (i = 0; i < MAX_PIPES; i++) {
555		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
556		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
557			break;
558	}
559
560	/* Stream not found */
561	if (i == MAX_PIPES)
562		return false;
563
564	mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
565	mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
566
567	dmcu = dc->res_pool->dmcu;
568	dmub_srv = dc->ctx->dmub_srv;
569
570	/* forward to dmub */
571	if (dmub_srv)
572		dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
573	/* forward to dmcu */
574	else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
575		dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
576	else
577		return false;
578
579	return true;
580}
581#endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
582
583/**
584 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
585 * @dc: DC Object
586 * @stream: The stream to configure CRC on.
587 * @enable: Enable CRC if true, disable otherwise.
588 * @crc_window: CRC window (x/y start/end) information
589 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
590 *              once.
591 *
592 * By default, only CRC0 is configured, and the entire frame is used to
593 * calculate the CRC.
594 *
595 * Return: %false if the stream is not found or CRC capture is not supported;
596 *         %true if the stream has been configured.
597 */
598bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
599			     struct crc_params *crc_window, bool enable, bool continuous)
600{
601	struct pipe_ctx *pipe;
602	struct crc_params param;
603	struct timing_generator *tg;
604
605	pipe = resource_get_otg_master_for_stream(
606			&dc->current_state->res_ctx, stream);
607
608	/* Stream not found */
609	if (pipe == NULL)
610		return false;
611
612	dc_exit_ips_for_hw_access(dc);
613
614	/* By default, capture the full frame */
615	param.windowa_x_start = 0;
616	param.windowa_y_start = 0;
617	param.windowa_x_end = pipe->stream->timing.h_addressable;
618	param.windowa_y_end = pipe->stream->timing.v_addressable;
619	param.windowb_x_start = 0;
620	param.windowb_y_start = 0;
621	param.windowb_x_end = pipe->stream->timing.h_addressable;
622	param.windowb_y_end = pipe->stream->timing.v_addressable;
623
624	if (crc_window) {
625		param.windowa_x_start = crc_window->windowa_x_start;
626		param.windowa_y_start = crc_window->windowa_y_start;
627		param.windowa_x_end = crc_window->windowa_x_end;
628		param.windowa_y_end = crc_window->windowa_y_end;
629		param.windowb_x_start = crc_window->windowb_x_start;
630		param.windowb_y_start = crc_window->windowb_y_start;
631		param.windowb_x_end = crc_window->windowb_x_end;
632		param.windowb_y_end = crc_window->windowb_y_end;
633	}
634
635	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
636	param.odm_mode = pipe->next_odm_pipe ? 1:0;
637
638	/* Default to the union of both windows */
639	param.selection = UNION_WINDOW_A_B;
640	param.continuous_mode = continuous;
641	param.enable = enable;
642
643	tg = pipe->stream_res.tg;
644
645	/* Only call if supported */
646	if (tg->funcs->configure_crc)
647		return tg->funcs->configure_crc(tg, &param);
648	DC_LOG_WARNING("CRC capture not supported.");
649	return false;
650}
651
652/**
653 * dc_stream_get_crc() - Get CRC values for the given stream.
654 *
655 * @dc: DC object.
656 * @stream: The DC stream state of the stream to get CRCs from.
657 * @r_cr: CRC value for the red component.
658 * @g_y:  CRC value for the green component.
659 * @b_cb: CRC value for the blue component.
660 *
661 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
662 *
663 * Return:
664 * %false if stream is not found, or if CRCs are not enabled.
665 */
666bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
667		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
668{
669	int i;
670	struct pipe_ctx *pipe;
671	struct timing_generator *tg;
672
673	dc_exit_ips_for_hw_access(dc);
674
675	for (i = 0; i < MAX_PIPES; i++) {
676		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
677		if (pipe->stream == stream)
678			break;
679	}
680	/* Stream not found */
681	if (i == MAX_PIPES)
682		return false;
683
684	tg = pipe->stream_res.tg;
685
686	if (tg->funcs->get_crc)
687		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
688	DC_LOG_WARNING("CRC capture not supported.");
689	return false;
690}
691
692void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
693		enum dc_dynamic_expansion option)
694{
695	/* OPP FMT dyn expansion updates*/
696	int i;
697	struct pipe_ctx *pipe_ctx;
698
699	dc_exit_ips_for_hw_access(dc);
700
701	for (i = 0; i < MAX_PIPES; i++) {
702		if (dc->current_state->res_ctx.pipe_ctx[i].stream
703				== stream) {
704			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
705			pipe_ctx->stream_res.opp->dyn_expansion = option;
706			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
707					pipe_ctx->stream_res.opp,
708					COLOR_SPACE_YCBCR601,
709					stream->timing.display_color_depth,
710					stream->signal);
711		}
712	}
713}
714
715void dc_stream_set_dither_option(struct dc_stream_state *stream,
716		enum dc_dither_option option)
717{
718	struct bit_depth_reduction_params params;
719	struct dc_link *link = stream->link;
720	struct pipe_ctx *pipes = NULL;
721	int i;
722
723	for (i = 0; i < MAX_PIPES; i++) {
724		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
725				stream) {
726			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
727			break;
728		}
729	}
730
731	if (!pipes)
732		return;
733	if (option > DITHER_OPTION_MAX)
734		return;
735
736	dc_exit_ips_for_hw_access(stream->ctx->dc);
737
738	stream->dither_option = option;
739
740	memset(&params, 0, sizeof(params));
741	resource_build_bit_depth_reduction_params(stream, &params);
742	stream->bit_depth_params = params;
743
744	if (pipes->plane_res.xfm &&
745	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
746		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
747			pipes->plane_res.xfm,
748			pipes->plane_res.scl_data.lb_params.depth,
749			&stream->bit_depth_params);
750	}
751
752	pipes->stream_res.opp->funcs->
753		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
754}
755
756bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
757{
758	int i;
759	bool ret = false;
760	struct pipe_ctx *pipes;
761
762	dc_exit_ips_for_hw_access(dc);
763
764	for (i = 0; i < MAX_PIPES; i++) {
765		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
766			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
767			dc->hwss.program_gamut_remap(pipes);
768			ret = true;
769		}
770	}
771
772	return ret;
773}
774
775bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
776{
777	int i;
778	bool ret = false;
779	struct pipe_ctx *pipes;
780
781	dc_exit_ips_for_hw_access(dc);
782
783	for (i = 0; i < MAX_PIPES; i++) {
784		if (dc->current_state->res_ctx.pipe_ctx[i].stream
785				== stream) {
786
787			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
788			dc->hwss.program_output_csc(dc,
789					pipes,
790					stream->output_color_space,
791					stream->csc_color_matrix.matrix,
792					pipes->stream_res.opp->inst);
793			ret = true;
794		}
795	}
796
797	return ret;
798}
799
800void dc_stream_set_static_screen_params(struct dc *dc,
801		struct dc_stream_state **streams,
802		int num_streams,
803		const struct dc_static_screen_params *params)
804{
805	int i, j;
806	struct pipe_ctx *pipes_affected[MAX_PIPES];
807	int num_pipes_affected = 0;
808
809	dc_exit_ips_for_hw_access(dc);
810
811	for (i = 0; i < num_streams; i++) {
812		struct dc_stream_state *stream = streams[i];
813
814		for (j = 0; j < MAX_PIPES; j++) {
815			if (dc->current_state->res_ctx.pipe_ctx[j].stream
816					== stream) {
817				pipes_affected[num_pipes_affected++] =
818						&dc->current_state->res_ctx.pipe_ctx[j];
819			}
820		}
821	}
822
823	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
824}
825
826static void dc_destruct(struct dc *dc)
827{
828	// reset link encoder assignment table on destruct
829	if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
830		link_enc_cfg_init(dc, dc->current_state);
831
832	if (dc->current_state) {
833		dc_state_release(dc->current_state);
834		dc->current_state = NULL;
835	}
836
837	destroy_links(dc);
838
839	destroy_link_encoders(dc);
840
841	if (dc->clk_mgr) {
842		dc_destroy_clk_mgr(dc->clk_mgr);
843		dc->clk_mgr = NULL;
844	}
845
846	dc_destroy_resource_pool(dc);
847
848	if (dc->link_srv)
849		link_destroy_link_service(&dc->link_srv);
850
851	if (dc->ctx->gpio_service)
852		dal_gpio_service_destroy(&dc->ctx->gpio_service);
853
854	if (dc->ctx->created_bios)
855		dal_bios_parser_destroy(&dc->ctx->dc_bios);
856
857	kfree(dc->ctx->logger);
858	dc_perf_trace_destroy(&dc->ctx->perf_trace);
859
860	kfree(dc->ctx);
861	dc->ctx = NULL;
862
863	kfree(dc->bw_vbios);
864	dc->bw_vbios = NULL;
865
866	kfree(dc->bw_dceip);
867	dc->bw_dceip = NULL;
868
869	kfree(dc->dcn_soc);
870	dc->dcn_soc = NULL;
871
872	kfree(dc->dcn_ip);
873	dc->dcn_ip = NULL;
874
875	kfree(dc->vm_helper);
876	dc->vm_helper = NULL;
877
878}
879
880static bool dc_construct_ctx(struct dc *dc,
881		const struct dc_init_data *init_params)
882{
883	struct dc_context *dc_ctx;
884
885	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
886	if (!dc_ctx)
887		return false;
888
889	dc_ctx->cgs_device = init_params->cgs_device;
890	dc_ctx->driver_context = init_params->driver;
891	dc_ctx->dc = dc;
892	dc_ctx->asic_id = init_params->asic_id;
893	dc_ctx->dc_sink_id_count = 0;
894	dc_ctx->dc_stream_id_count = 0;
895	dc_ctx->dce_environment = init_params->dce_environment;
896	dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
897	dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
898	dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
899
900	/* Create logger */
901	dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
902
903	if (!dc_ctx->logger) {
904		kfree(dc_ctx);
905		return false;
906	}
907
908	dc_ctx->logger->dev = adev_to_drm(init_params->driver);
909	dc->dml.logger = dc_ctx->logger;
910
911	dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
912
913	dc_ctx->perf_trace = dc_perf_trace_create();
914	if (!dc_ctx->perf_trace) {
915		kfree(dc_ctx);
916		ASSERT_CRITICAL(false);
917		return false;
918	}
919
920	dc->ctx = dc_ctx;
921
922	dc->link_srv = link_create_link_service();
923	if (!dc->link_srv)
924		return false;
925
926	return true;
927}
928
929static bool dc_construct(struct dc *dc,
930		const struct dc_init_data *init_params)
931{
932	struct dc_context *dc_ctx;
933	struct bw_calcs_dceip *dc_dceip;
934	struct bw_calcs_vbios *dc_vbios;
935	struct dcn_soc_bounding_box *dcn_soc;
936	struct dcn_ip_params *dcn_ip;
937
938	dc->config = init_params->flags;
939
940	// Allocate memory for the vm_helper
941	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
942	if (!dc->vm_helper) {
943		dm_error("%s: failed to create dc->vm_helper\n", __func__);
944		goto fail;
945	}
946
947	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
948
949	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
950	if (!dc_dceip) {
951		dm_error("%s: failed to create dceip\n", __func__);
952		goto fail;
953	}
954
955	dc->bw_dceip = dc_dceip;
956
957	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
958	if (!dc_vbios) {
959		dm_error("%s: failed to create vbios\n", __func__);
960		goto fail;
961	}
962
963	dc->bw_vbios = dc_vbios;
964	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
965	if (!dcn_soc) {
966		dm_error("%s: failed to create dcn_soc\n", __func__);
967		goto fail;
968	}
969
970	dc->dcn_soc = dcn_soc;
971
972	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
973	if (!dcn_ip) {
974		dm_error("%s: failed to create dcn_ip\n", __func__);
975		goto fail;
976	}
977
978	dc->dcn_ip = dcn_ip;
979
980	if (!dc_construct_ctx(dc, init_params)) {
981		dm_error("%s: failed to create ctx\n", __func__);
982		goto fail;
983	}
984
985        dc_ctx = dc->ctx;
986
987	/* Resource should construct all asic specific resources.
988	 * This should be the only place where we need to parse the asic id
989	 */
990	if (init_params->vbios_override)
991		dc_ctx->dc_bios = init_params->vbios_override;
992	else {
993		/* Create BIOS parser */
994		struct bp_init_data bp_init_data;
995
996		bp_init_data.ctx = dc_ctx;
997		bp_init_data.bios = init_params->asic_id.atombios_base_address;
998
999		dc_ctx->dc_bios = dal_bios_parser_create(
1000				&bp_init_data, dc_ctx->dce_version);
1001
1002		if (!dc_ctx->dc_bios) {
1003			ASSERT_CRITICAL(false);
1004			goto fail;
1005		}
1006
1007		dc_ctx->created_bios = true;
1008	}
1009
1010	dc->vendor_signature = init_params->vendor_signature;
1011
1012	/* Create GPIO service */
1013	dc_ctx->gpio_service = dal_gpio_service_create(
1014			dc_ctx->dce_version,
1015			dc_ctx->dce_environment,
1016			dc_ctx);
1017
1018	if (!dc_ctx->gpio_service) {
1019		ASSERT_CRITICAL(false);
1020		goto fail;
1021	}
1022
1023	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1024	if (!dc->res_pool)
1025		goto fail;
1026
1027	/* set i2c speed if not done by the respective dcnxxx__resource.c */
1028	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1029		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1030	if (dc->caps.max_optimizable_video_width == 0)
1031		dc->caps.max_optimizable_video_width = 5120;
1032	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1033	if (!dc->clk_mgr)
1034		goto fail;
1035#ifdef CONFIG_DRM_AMD_DC_FP
1036	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1037
1038	if (dc->res_pool->funcs->update_bw_bounding_box) {
1039		DC_FP_START();
1040		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1041		DC_FP_END();
1042	}
1043#endif
1044
1045	if (!create_links(dc, init_params->num_virtual_links))
1046		goto fail;
1047
1048	/* Create additional DIG link encoder objects if fewer than the platform
1049	 * supports were created during link construction.
1050	 */
1051	if (!create_link_encoders(dc))
1052		goto fail;
1053
1054	/* Creation of current_state must occur after dc->dml
1055	 * is initialized in dc_create_resource_pool because
1056	 * on creation it copies the contents of dc->dml
1057	 */
1058
1059	dc->current_state = dc_state_create(dc);
1060
1061	if (!dc->current_state) {
1062		dm_error("%s: failed to create validate ctx\n", __func__);
1063		goto fail;
1064	}
1065
1066	return true;
1067
1068fail:
1069	return false;
1070}
1071
1072static void disable_all_writeback_pipes_for_stream(
1073		const struct dc *dc,
1074		struct dc_stream_state *stream,
1075		struct dc_state *context)
1076{
1077	int i;
1078
1079	for (i = 0; i < stream->num_wb_info; i++)
1080		stream->writeback_info[i].wb_enabled = false;
1081}
1082
1083static void apply_ctx_interdependent_lock(struct dc *dc,
1084					  struct dc_state *context,
1085					  struct dc_stream_state *stream,
1086					  bool lock)
1087{
1088	int i;
1089
1090	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1091	if (dc->hwss.interdependent_update_lock)
1092		dc->hwss.interdependent_update_lock(dc, context, lock);
1093	else {
1094		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1095			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1096			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1097
1098			// Copied conditions that were previously in dce110_apply_ctx_for_surface
1099			if (stream == pipe_ctx->stream) {
1100				if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1101					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1102					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1103			}
1104		}
1105	}
1106}
1107
1108static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1109{
1110	if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1111		memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1112
1113		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1114			get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1115		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1116			get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1117		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1118			get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1119		else {
1120			if (dc->ctx->dce_version < DCN_VERSION_2_0)
1121				color_space_to_black_color(
1122					dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1123		}
1124		if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1125			if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1126				get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1127			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1128				get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1129			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1130				get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1131		}
1132	}
1133}
1134
1135static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1136{
1137	int i, j;
1138	struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1139	struct dc_state *current_ctx;
1140	struct pipe_ctx *pipe;
1141	struct timing_generator *tg;
1142
1143	if (dangling_context == NULL)
1144		return;
1145
1146	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1147		struct dc_stream_state *old_stream =
1148				dc->current_state->res_ctx.pipe_ctx[i].stream;
1149		bool should_disable = true;
1150		bool pipe_split_change = false;
1151
1152		if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1153			(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1154			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1155				dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1156		else
1157			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1158				dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1159
1160		for (j = 0; j < context->stream_count; j++) {
1161			if (old_stream == context->streams[j]) {
1162				should_disable = false;
1163				break;
1164			}
1165		}
1166		if (!should_disable && pipe_split_change &&
1167				dc->current_state->stream_count != context->stream_count)
1168			should_disable = true;
1169
1170		if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1171				!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1172			struct pipe_ctx *old_pipe, *new_pipe;
1173
1174			old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1175			new_pipe = &context->res_ctx.pipe_ctx[i];
1176
1177			if (old_pipe->plane_state && !new_pipe->plane_state)
1178				should_disable = true;
1179		}
1180
1181		if (should_disable && old_stream) {
1182			bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1183			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1184			tg = pipe->stream_res.tg;
1185			/* When disabling plane for a phantom pipe, we must turn on the
1186			 * phantom OTG so the disable programming gets the double buffer
1187			 * update. Otherwise the pipe will be left in a partially disabled
1188			 * state that can result in underflow or hang when enabling it
1189			 * again for different use.
1190			 */
1191			if (is_phantom) {
1192				if (tg->funcs->enable_crtc) {
1193					int main_pipe_width, main_pipe_height;
1194					struct dc_stream_state *old_paired_stream = dc_state_get_paired_subvp_stream(dc->current_state, old_stream);
1195
1196					main_pipe_width = old_paired_stream->dst.width;
1197					main_pipe_height = old_paired_stream->dst.height;
1198					if (dc->hwss.blank_phantom)
1199						dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1200					tg->funcs->enable_crtc(tg);
1201				}
1202			}
1203
1204			if (is_phantom)
1205				dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1206			else
1207				dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1208			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1209
1210			if (pipe->stream && pipe->plane_state) {
1211				set_p_state_switch_method(dc, context, pipe);
1212				dc_update_visual_confirm_color(dc, context, pipe);
1213			}
1214
1215			if (dc->hwss.apply_ctx_for_surface) {
1216				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1217				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1218				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1219				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1220			}
1221			if (dc->hwss.program_front_end_for_ctx) {
1222				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1223				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1224				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1225				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1226			}
1227			/* We need to put the phantom OTG back into it's default (disabled) state or we
1228			 * can get corruption when transition from one SubVP config to a different one.
1229			 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1230			 * will still get it's double buffer update.
1231			 */
1232			if (is_phantom) {
1233				if (tg->funcs->disable_phantom_crtc)
1234					tg->funcs->disable_phantom_crtc(tg);
1235			}
1236		}
1237	}
1238
1239	current_ctx = dc->current_state;
1240	dc->current_state = dangling_context;
1241	dc_state_release(current_ctx);
1242}
1243
1244static void disable_vbios_mode_if_required(
1245		struct dc *dc,
1246		struct dc_state *context)
1247{
1248	unsigned int i, j;
1249
1250	/* check if timing_changed, disable stream*/
1251	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1252		struct dc_stream_state *stream = NULL;
1253		struct dc_link *link = NULL;
1254		struct pipe_ctx *pipe = NULL;
1255
1256		pipe = &context->res_ctx.pipe_ctx[i];
1257		stream = pipe->stream;
1258		if (stream == NULL)
1259			continue;
1260
1261		if (stream->apply_seamless_boot_optimization)
1262			continue;
1263
1264		// only looking for first odm pipe
1265		if (pipe->prev_odm_pipe)
1266			continue;
1267
1268		if (stream->link->local_sink &&
1269			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1270			link = stream->link;
1271		}
1272
1273		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1274			unsigned int enc_inst, tg_inst = 0;
1275			unsigned int pix_clk_100hz;
1276
1277			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1278			if (enc_inst != ENGINE_ID_UNKNOWN) {
1279				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1280					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1281						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1282							dc->res_pool->stream_enc[j]);
1283						break;
1284					}
1285				}
1286
1287				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1288					dc->res_pool->dp_clock_source,
1289					tg_inst, &pix_clk_100hz);
1290
1291				if (link->link_status.link_active) {
1292					uint32_t requested_pix_clk_100hz =
1293						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1294
1295					if (pix_clk_100hz != requested_pix_clk_100hz) {
1296						dc->link_srv->set_dpms_off(pipe);
1297						pipe->stream->dpms_off = false;
1298					}
1299				}
1300			}
1301		}
1302	}
1303}
1304
1305/**
1306 * wait_for_blank_complete - wait for all active OPPs to finish pending blank
1307 * pattern updates
1308 *
1309 * @dc: [in] dc reference
1310 * @context: [in] hardware context in use
1311 */
1312static void wait_for_blank_complete(struct dc *dc,
1313		struct dc_state *context)
1314{
1315	struct pipe_ctx *opp_head;
1316	struct dce_hwseq *hws = dc->hwseq;
1317	int i;
1318
1319	if (!hws->funcs.wait_for_blank_complete)
1320		return;
1321
1322	for (i = 0; i < MAX_PIPES; i++) {
1323		opp_head = &context->res_ctx.pipe_ctx[i];
1324
1325		if (!resource_is_pipe_type(opp_head, OPP_HEAD) ||
1326				dc_state_get_pipe_subvp_type(context, opp_head) == SUBVP_PHANTOM)
1327			continue;
1328
1329		hws->funcs.wait_for_blank_complete(opp_head->stream_res.opp);
1330	}
1331}
1332
1333static void wait_for_odm_update_pending_complete(struct dc *dc, struct dc_state *context)
1334{
1335	struct pipe_ctx *otg_master;
1336	struct timing_generator *tg;
1337	int i;
1338
1339	for (i = 0; i < MAX_PIPES; i++) {
1340		otg_master = &context->res_ctx.pipe_ctx[i];
1341		if (!resource_is_pipe_type(otg_master, OTG_MASTER) ||
1342				dc_state_get_pipe_subvp_type(context, otg_master) == SUBVP_PHANTOM)
1343			continue;
1344		tg = otg_master->stream_res.tg;
1345		if (tg->funcs->wait_odm_doublebuffer_pending_clear)
1346			tg->funcs->wait_odm_doublebuffer_pending_clear(tg);
1347	}
1348
1349	/* ODM update may require to reprogram blank pattern for each OPP */
1350	wait_for_blank_complete(dc, context);
1351}
1352
1353static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1354{
1355	int i;
1356	PERF_TRACE();
1357	for (i = 0; i < MAX_PIPES; i++) {
1358		int count = 0;
1359		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1360
1361		if (!pipe->plane_state || dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM)
1362			continue;
1363
1364		/* Timeout 100 ms */
1365		while (count < 100000) {
1366			/* Must set to false to start with, due to OR in update function */
1367			pipe->plane_state->status.is_flip_pending = false;
1368			dc->hwss.update_pending_status(pipe);
1369			if (!pipe->plane_state->status.is_flip_pending)
1370				break;
1371			udelay(1);
1372			count++;
1373		}
1374		ASSERT(!pipe->plane_state->status.is_flip_pending);
1375	}
1376	PERF_TRACE();
1377}
1378
1379/* Public functions */
1380
1381struct dc *dc_create(const struct dc_init_data *init_params)
1382{
1383	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1384	unsigned int full_pipe_count;
1385
1386	if (!dc)
1387		return NULL;
1388
1389	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1390		if (!dc_construct_ctx(dc, init_params))
1391			goto destruct_dc;
1392	} else {
1393		if (!dc_construct(dc, init_params))
1394			goto destruct_dc;
1395
1396		full_pipe_count = dc->res_pool->pipe_count;
1397		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1398			full_pipe_count--;
1399		dc->caps.max_streams = min(
1400				full_pipe_count,
1401				dc->res_pool->stream_enc_count);
1402
1403		dc->caps.max_links = dc->link_count;
1404		dc->caps.max_audios = dc->res_pool->audio_count;
1405		dc->caps.linear_pitch_alignment = 64;
1406
1407		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1408
1409		dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1410
1411		if (dc->res_pool->dmcu != NULL)
1412			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1413	}
1414
1415	dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1416	dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1417	dc->clk_reg_offsets = init_params->clk_reg_offsets;
1418
1419	/* Populate versioning information */
1420	dc->versions.dc_ver = DC_VER;
1421
1422	dc->build_id = DC_BUILD_ID;
1423
1424	DC_LOG_DC("Display Core initialized\n");
1425
1426
1427
1428	return dc;
1429
1430destruct_dc:
1431	dc_destruct(dc);
1432	kfree(dc);
1433	return NULL;
1434}
1435
1436static void detect_edp_presence(struct dc *dc)
1437{
1438	struct dc_link *edp_links[MAX_NUM_EDP];
1439	struct dc_link *edp_link = NULL;
1440	enum dc_connection_type type;
1441	int i;
1442	int edp_num;
1443
1444	dc_get_edp_links(dc, edp_links, &edp_num);
1445	if (!edp_num)
1446		return;
1447
1448	for (i = 0; i < edp_num; i++) {
1449		edp_link = edp_links[i];
1450		if (dc->config.edp_not_connected) {
1451			edp_link->edp_sink_present = false;
1452		} else {
1453			dc_link_detect_connection_type(edp_link, &type);
1454			edp_link->edp_sink_present = (type != dc_connection_none);
1455		}
1456	}
1457}
1458
1459void dc_hardware_init(struct dc *dc)
1460{
1461
1462	detect_edp_presence(dc);
1463	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1464		dc->hwss.init_hw(dc);
1465}
1466
1467void dc_init_callbacks(struct dc *dc,
1468		const struct dc_callback_init *init_params)
1469{
1470	dc->ctx->cp_psp = init_params->cp_psp;
1471}
1472
1473void dc_deinit_callbacks(struct dc *dc)
1474{
1475	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1476}
1477
1478void dc_destroy(struct dc **dc)
1479{
1480	dc_destruct(*dc);
1481	kfree(*dc);
1482	*dc = NULL;
1483}
1484
1485static void enable_timing_multisync(
1486		struct dc *dc,
1487		struct dc_state *ctx)
1488{
1489	int i, multisync_count = 0;
1490	int pipe_count = dc->res_pool->pipe_count;
1491	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1492
1493	for (i = 0; i < pipe_count; i++) {
1494		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1495				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1496			continue;
1497		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1498			continue;
1499		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1500		multisync_count++;
1501	}
1502
1503	if (multisync_count > 0) {
1504		dc->hwss.enable_per_frame_crtc_position_reset(
1505			dc, multisync_count, multisync_pipes);
1506	}
1507}
1508
1509static void program_timing_sync(
1510		struct dc *dc,
1511		struct dc_state *ctx)
1512{
1513	int i, j, k;
1514	int group_index = 0;
1515	int num_group = 0;
1516	int pipe_count = dc->res_pool->pipe_count;
1517	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1518
1519	for (i = 0; i < pipe_count; i++) {
1520		if (!ctx->res_ctx.pipe_ctx[i].stream
1521				|| ctx->res_ctx.pipe_ctx[i].top_pipe
1522				|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1523			continue;
1524
1525		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1526	}
1527
1528	for (i = 0; i < pipe_count; i++) {
1529		int group_size = 1;
1530		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1531		struct pipe_ctx *pipe_set[MAX_PIPES];
1532
1533		if (!unsynced_pipes[i])
1534			continue;
1535
1536		pipe_set[0] = unsynced_pipes[i];
1537		unsynced_pipes[i] = NULL;
1538
1539		/* Add tg to the set, search rest of the tg's for ones with
1540		 * same timing, add all tgs with same timing to the group
1541		 */
1542		for (j = i + 1; j < pipe_count; j++) {
1543			if (!unsynced_pipes[j])
1544				continue;
1545			if (sync_type != TIMING_SYNCHRONIZABLE &&
1546				dc->hwss.enable_vblanks_synchronization &&
1547				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1548				resource_are_vblanks_synchronizable(
1549					unsynced_pipes[j]->stream,
1550					pipe_set[0]->stream)) {
1551				sync_type = VBLANK_SYNCHRONIZABLE;
1552				pipe_set[group_size] = unsynced_pipes[j];
1553				unsynced_pipes[j] = NULL;
1554				group_size++;
1555			} else
1556			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1557				resource_are_streams_timing_synchronizable(
1558					unsynced_pipes[j]->stream,
1559					pipe_set[0]->stream)) {
1560				sync_type = TIMING_SYNCHRONIZABLE;
1561				pipe_set[group_size] = unsynced_pipes[j];
1562				unsynced_pipes[j] = NULL;
1563				group_size++;
1564			}
1565		}
1566
1567		/* set first unblanked pipe as master */
1568		for (j = 0; j < group_size; j++) {
1569			bool is_blanked;
1570
1571			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1572				is_blanked =
1573					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1574			else
1575				is_blanked =
1576					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1577			if (!is_blanked) {
1578				if (j == 0)
1579					break;
1580
1581				swap(pipe_set[0], pipe_set[j]);
1582				break;
1583			}
1584		}
1585
1586		for (k = 0; k < group_size; k++) {
1587			struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1588
1589			status->timing_sync_info.group_id = num_group;
1590			status->timing_sync_info.group_size = group_size;
1591			if (k == 0)
1592				status->timing_sync_info.master = true;
1593			else
1594				status->timing_sync_info.master = false;
1595
1596		}
1597
1598		/* remove any other unblanked pipes as they have already been synced */
1599		if (dc->config.use_pipe_ctx_sync_logic) {
1600			/* check pipe's syncd to decide which pipe to be removed */
1601			for (j = 1; j < group_size; j++) {
1602				if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1603					group_size--;
1604					pipe_set[j] = pipe_set[group_size];
1605					j--;
1606				} else
1607					/* link slave pipe's syncd with master pipe */
1608					pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1609			}
1610		} else {
1611			/* remove any other pipes by checking valid plane */
1612			for (j = j + 1; j < group_size; j++) {
1613				bool is_blanked;
1614
1615				if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1616					is_blanked =
1617						pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1618				else
1619					is_blanked =
1620						pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1621				if (!is_blanked) {
1622					group_size--;
1623					pipe_set[j] = pipe_set[group_size];
1624					j--;
1625				}
1626			}
1627		}
1628
1629		if (group_size > 1) {
1630			if (sync_type == TIMING_SYNCHRONIZABLE) {
1631				dc->hwss.enable_timing_synchronization(
1632					dc, ctx, group_index, group_size, pipe_set);
1633			} else
1634				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1635				dc->hwss.enable_vblanks_synchronization(
1636					dc, group_index, group_size, pipe_set);
1637				}
1638			group_index++;
1639		}
1640		num_group++;
1641	}
1642}
1643
1644static bool streams_changed(struct dc *dc,
1645			    struct dc_stream_state *streams[],
1646			    uint8_t stream_count)
1647{
1648	uint8_t i;
1649
1650	if (stream_count != dc->current_state->stream_count)
1651		return true;
1652
1653	for (i = 0; i < dc->current_state->stream_count; i++) {
1654		if (dc->current_state->streams[i] != streams[i])
1655			return true;
1656		if (!streams[i]->link->link_state_valid)
1657			return true;
1658	}
1659
1660	return false;
1661}
1662
1663bool dc_validate_boot_timing(const struct dc *dc,
1664				const struct dc_sink *sink,
1665				struct dc_crtc_timing *crtc_timing)
1666{
1667	struct timing_generator *tg;
1668	struct stream_encoder *se = NULL;
1669
1670	struct dc_crtc_timing hw_crtc_timing = {0};
1671
1672	struct dc_link *link = sink->link;
1673	unsigned int i, enc_inst, tg_inst = 0;
1674
1675	/* Support seamless boot on EDP displays only */
1676	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1677		return false;
1678	}
1679
1680	if (dc->debug.force_odm_combine)
1681		return false;
1682
1683	/* Check for enabled DIG to identify enabled display */
1684	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1685		return false;
1686
1687	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1688
1689	if (enc_inst == ENGINE_ID_UNKNOWN)
1690		return false;
1691
1692	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1693		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1694
1695			se = dc->res_pool->stream_enc[i];
1696
1697			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1698				dc->res_pool->stream_enc[i]);
1699			break;
1700		}
1701	}
1702
1703	// tg_inst not found
1704	if (i == dc->res_pool->stream_enc_count)
1705		return false;
1706
1707	if (tg_inst >= dc->res_pool->timing_generator_count)
1708		return false;
1709
1710	if (tg_inst != link->link_enc->preferred_engine)
1711		return false;
1712
1713	tg = dc->res_pool->timing_generators[tg_inst];
1714
1715	if (!tg->funcs->get_hw_timing)
1716		return false;
1717
1718	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1719		return false;
1720
1721	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1722		return false;
1723
1724	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1725		return false;
1726
1727	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1728		return false;
1729
1730	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1731		return false;
1732
1733	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1734		return false;
1735
1736	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1737		return false;
1738
1739	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1740		return false;
1741
1742	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1743		return false;
1744
1745	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1746		return false;
1747
1748	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1749		return false;
1750
1751	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1752		return false;
1753
1754	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1755		return false;
1756
1757	/* block DSC for now, as VBIOS does not currently support DSC timings */
1758	if (crtc_timing->flags.DSC)
1759		return false;
1760
1761	if (dc_is_dp_signal(link->connector_signal)) {
1762		unsigned int pix_clk_100hz;
1763		uint32_t numOdmPipes = 1;
1764		uint32_t id_src[4] = {0};
1765
1766		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1767			dc->res_pool->dp_clock_source,
1768			tg_inst, &pix_clk_100hz);
1769
1770		if (tg->funcs->get_optc_source)
1771			tg->funcs->get_optc_source(tg,
1772						&numOdmPipes, &id_src[0], &id_src[1]);
1773
1774		if (numOdmPipes == 2)
1775			pix_clk_100hz *= 2;
1776		if (numOdmPipes == 4)
1777			pix_clk_100hz *= 4;
1778
1779		// Note: In rare cases, HW pixclk may differ from crtc's pixclk
1780		// slightly due to rounding issues in 10 kHz units.
1781		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1782			return false;
1783
1784		if (!se->funcs->dp_get_pixel_format)
1785			return false;
1786
1787		if (!se->funcs->dp_get_pixel_format(
1788			se,
1789			&hw_crtc_timing.pixel_encoding,
1790			&hw_crtc_timing.display_color_depth))
1791			return false;
1792
1793		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1794			return false;
1795
1796		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1797			return false;
1798	}
1799
1800	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1801		return false;
1802	}
1803
1804	if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1805		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1806		return false;
1807	}
1808
1809	return true;
1810}
1811
1812static inline bool should_update_pipe_for_stream(
1813		struct dc_state *context,
1814		struct pipe_ctx *pipe_ctx,
1815		struct dc_stream_state *stream)
1816{
1817	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1818}
1819
1820static inline bool should_update_pipe_for_plane(
1821		struct dc_state *context,
1822		struct pipe_ctx *pipe_ctx,
1823		struct dc_plane_state *plane_state)
1824{
1825	return (pipe_ctx->plane_state == plane_state);
1826}
1827
1828void dc_enable_stereo(
1829	struct dc *dc,
1830	struct dc_state *context,
1831	struct dc_stream_state *streams[],
1832	uint8_t stream_count)
1833{
1834	int i, j;
1835	struct pipe_ctx *pipe;
1836
1837	dc_exit_ips_for_hw_access(dc);
1838
1839	for (i = 0; i < MAX_PIPES; i++) {
1840		if (context != NULL) {
1841			pipe = &context->res_ctx.pipe_ctx[i];
1842		} else {
1843			context = dc->current_state;
1844			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1845		}
1846
1847		for (j = 0; pipe && j < stream_count; j++)  {
1848			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1849				dc->hwss.setup_stereo)
1850				dc->hwss.setup_stereo(pipe, dc);
1851		}
1852	}
1853}
1854
1855void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1856{
1857	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1858		dc_exit_ips_for_hw_access(dc);
1859
1860		enable_timing_multisync(dc, context);
1861		program_timing_sync(dc, context);
1862	}
1863}
1864
1865static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1866{
1867	int i;
1868	unsigned int stream_mask = 0;
1869
1870	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1871		if (context->res_ctx.pipe_ctx[i].stream)
1872			stream_mask |= 1 << i;
1873	}
1874
1875	return stream_mask;
1876}
1877
1878void dc_z10_restore(const struct dc *dc)
1879{
1880	if (dc->hwss.z10_restore)
1881		dc->hwss.z10_restore(dc);
1882}
1883
1884void dc_z10_save_init(struct dc *dc)
1885{
1886	if (dc->hwss.z10_save_init)
1887		dc->hwss.z10_save_init(dc);
1888}
1889
1890/**
1891 * dc_commit_state_no_check - Apply context to the hardware
1892 *
1893 * @dc: DC object with the current status to be updated
1894 * @context: New state that will become the current status at the end of this function
1895 *
1896 * Applies given context to the hardware and copy it into current context.
1897 * It's up to the user to release the src context afterwards.
1898 *
1899 * Return: an enum dc_status result code for the operation
1900 */
1901static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1902{
1903	struct dc_bios *dcb = dc->ctx->dc_bios;
1904	enum dc_status result = DC_ERROR_UNEXPECTED;
1905	struct pipe_ctx *pipe;
1906	int i, k, l;
1907	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1908	struct dc_state *old_state;
1909	bool subvp_prev_use = false;
1910
1911	dc_z10_restore(dc);
1912	dc_allow_idle_optimizations(dc, false);
1913
1914	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1915		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1916
1917		/* Check old context for SubVP */
1918		subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
1919		if (subvp_prev_use)
1920			break;
1921	}
1922
1923	for (i = 0; i < context->stream_count; i++)
1924		dc_streams[i] =  context->streams[i];
1925
1926	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1927		disable_vbios_mode_if_required(dc, context);
1928		dc->hwss.enable_accelerated_mode(dc, context);
1929	}
1930
1931	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1932		context->stream_count == 0)
1933		dc->hwss.prepare_bandwidth(dc, context);
1934
1935	/* When SubVP is active, all HW programming must be done while
1936	 * SubVP lock is acquired
1937	 */
1938	if (dc->hwss.subvp_pipe_control_lock)
1939		dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1940
1941	if (dc->hwss.update_dsc_pg)
1942		dc->hwss.update_dsc_pg(dc, context, false);
1943
1944	disable_dangling_plane(dc, context);
1945	/* re-program planes for existing stream, in case we need to
1946	 * free up plane resource for later use
1947	 */
1948	if (dc->hwss.apply_ctx_for_surface) {
1949		for (i = 0; i < context->stream_count; i++) {
1950			if (context->streams[i]->mode_changed)
1951				continue;
1952			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1953			dc->hwss.apply_ctx_for_surface(
1954				dc, context->streams[i],
1955				context->stream_status[i].plane_count,
1956				context); /* use new pipe config in new context */
1957			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1958			dc->hwss.post_unlock_program_front_end(dc, context);
1959		}
1960	}
1961
1962	/* Program hardware */
1963	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1964		pipe = &context->res_ctx.pipe_ctx[i];
1965		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1966	}
1967
1968	result = dc->hwss.apply_ctx_to_hw(dc, context);
1969
1970	if (result != DC_OK) {
1971		/* Application of dc_state to hardware stopped. */
1972		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1973		return result;
1974	}
1975
1976	dc_trigger_sync(dc, context);
1977
1978	/* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1979	for (i = 0; i < context->stream_count; i++) {
1980		uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1981
1982		context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1983		context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1984	}
1985
1986	/* Program all planes within new context*/
1987	if (dc->hwss.program_front_end_for_ctx) {
1988		dc->hwss.interdependent_update_lock(dc, context, true);
1989		dc->hwss.program_front_end_for_ctx(dc, context);
1990		dc->hwss.interdependent_update_lock(dc, context, false);
1991		dc->hwss.post_unlock_program_front_end(dc, context);
1992	}
1993
1994	if (dc->hwss.commit_subvp_config)
1995		dc->hwss.commit_subvp_config(dc, context);
1996	if (dc->hwss.subvp_pipe_control_lock)
1997		dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1998
1999	for (i = 0; i < context->stream_count; i++) {
2000		const struct dc_link *link = context->streams[i]->link;
2001
2002		if (!context->streams[i]->mode_changed)
2003			continue;
2004
2005		if (dc->hwss.apply_ctx_for_surface) {
2006			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2007			dc->hwss.apply_ctx_for_surface(
2008					dc, context->streams[i],
2009					context->stream_status[i].plane_count,
2010					context);
2011			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2012			dc->hwss.post_unlock_program_front_end(dc, context);
2013		}
2014
2015		/*
2016		 * enable stereo
2017		 * TODO rework dc_enable_stereo call to work with validation sets?
2018		 */
2019		for (k = 0; k < MAX_PIPES; k++) {
2020			pipe = &context->res_ctx.pipe_ctx[k];
2021
2022			for (l = 0 ; pipe && l < context->stream_count; l++)  {
2023				if (context->streams[l] &&
2024					context->streams[l] == pipe->stream &&
2025					dc->hwss.setup_stereo)
2026					dc->hwss.setup_stereo(pipe, dc);
2027			}
2028		}
2029
2030		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2031				context->streams[i]->timing.h_addressable,
2032				context->streams[i]->timing.v_addressable,
2033				context->streams[i]->timing.h_total,
2034				context->streams[i]->timing.v_total,
2035				context->streams[i]->timing.pix_clk_100hz / 10);
2036	}
2037
2038	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2039
2040	if (context->stream_count > get_seamless_boot_stream_count(context) ||
2041		context->stream_count == 0) {
2042		/* Must wait for no flips to be pending before doing optimize bw */
2043		wait_for_no_pipes_pending(dc, context);
2044		/*
2045		 * optimized dispclk depends on ODM setup. Need to wait for ODM
2046		 * update pending complete before optimizing bandwidth.
2047		 */
2048		wait_for_odm_update_pending_complete(dc, context);
2049		/* pplib is notified if disp_num changed */
2050		dc->hwss.optimize_bandwidth(dc, context);
2051		/* Need to do otg sync again as otg could be out of sync due to otg
2052		 * workaround applied during clock update
2053		 */
2054		dc_trigger_sync(dc, context);
2055	}
2056
2057	if (dc->hwss.update_dsc_pg)
2058		dc->hwss.update_dsc_pg(dc, context, true);
2059
2060	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2061		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2062	else
2063		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2064
2065	context->stream_mask = get_stream_mask(dc, context);
2066
2067	if (context->stream_mask != dc->current_state->stream_mask)
2068		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2069
2070	for (i = 0; i < context->stream_count; i++)
2071		context->streams[i]->mode_changed = false;
2072
2073	/* Clear update flags that were set earlier to avoid redundant programming */
2074	for (i = 0; i < context->stream_count; i++) {
2075		context->streams[i]->update_flags.raw = 0x0;
2076	}
2077
2078	old_state = dc->current_state;
2079	dc->current_state = context;
2080
2081	dc_state_release(old_state);
2082
2083	dc_state_retain(dc->current_state);
2084
2085	return result;
2086}
2087
2088static bool commit_minimal_transition_state_legacy(struct dc *dc,
2089		struct dc_state *transition_base_context);
2090
2091/**
2092 * dc_commit_streams - Commit current stream state
2093 *
2094 * @dc: DC object with the commit state to be configured in the hardware
2095 * @streams: Array with a list of stream state
2096 * @stream_count: Total of streams
2097 *
2098 * Function responsible for commit streams change to the hardware.
2099 *
2100 * Return:
2101 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2102 * code.
2103 */
2104enum dc_status dc_commit_streams(struct dc *dc,
2105				 struct dc_stream_state *streams[],
2106				 uint8_t stream_count)
2107{
2108	int i, j;
2109	struct dc_state *context;
2110	enum dc_status res = DC_OK;
2111	struct dc_validation_set set[MAX_STREAMS] = {0};
2112	struct pipe_ctx *pipe;
2113	bool handle_exit_odm2to1 = false;
2114
2115	if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2116		return res;
2117
2118	if (!streams_changed(dc, streams, stream_count))
2119		return res;
2120
2121	dc_exit_ips_for_hw_access(dc);
2122
2123	DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
2124
2125	for (i = 0; i < stream_count; i++) {
2126		struct dc_stream_state *stream = streams[i];
2127		struct dc_stream_status *status = dc_stream_get_status(stream);
2128
2129		dc_stream_log(dc, stream);
2130
2131		set[i].stream = stream;
2132
2133		if (status) {
2134			set[i].plane_count = status->plane_count;
2135			for (j = 0; j < status->plane_count; j++)
2136				set[i].plane_states[j] = status->plane_states[j];
2137		}
2138	}
2139
2140	/* ODM Combine 2:1 power optimization is only applied for single stream
2141	 * scenario, it uses extra pipes than needed to reduce power consumption
2142	 * We need to switch off this feature to make room for new streams.
2143	 */
2144	if (stream_count > dc->current_state->stream_count &&
2145			dc->current_state->stream_count == 1) {
2146		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2147			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2148			if (pipe->next_odm_pipe)
2149				handle_exit_odm2to1 = true;
2150		}
2151	}
2152
2153	if (handle_exit_odm2to1)
2154		res = commit_minimal_transition_state_legacy(dc, dc->current_state);
2155
2156	context = dc_state_create_current_copy(dc);
2157	if (!context)
2158		goto context_alloc_fail;
2159
2160	res = dc_validate_with_context(dc, set, stream_count, context, false);
2161	if (res != DC_OK) {
2162		BREAK_TO_DEBUGGER();
2163		goto fail;
2164	}
2165
2166	res = dc_commit_state_no_check(dc, context);
2167
2168	for (i = 0; i < stream_count; i++) {
2169		for (j = 0; j < context->stream_count; j++) {
2170			if (streams[i]->stream_id == context->streams[j]->stream_id)
2171				streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2172
2173			if (dc_is_embedded_signal(streams[i]->signal)) {
2174				struct dc_stream_status *status = dc_state_get_stream_status(context, streams[i]);
2175
2176				if (dc->hwss.is_abm_supported)
2177					status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2178				else
2179					status->is_abm_supported = true;
2180			}
2181		}
2182	}
2183
2184fail:
2185	dc_state_release(context);
2186
2187context_alloc_fail:
2188
2189	DC_LOG_DC("%s Finished.\n", __func__);
2190
2191	return res;
2192}
2193
2194bool dc_acquire_release_mpc_3dlut(
2195		struct dc *dc, bool acquire,
2196		struct dc_stream_state *stream,
2197		struct dc_3dlut **lut,
2198		struct dc_transfer_func **shaper)
2199{
2200	int pipe_idx;
2201	bool ret = false;
2202	bool found_pipe_idx = false;
2203	const struct resource_pool *pool = dc->res_pool;
2204	struct resource_context *res_ctx = &dc->current_state->res_ctx;
2205	int mpcc_id = 0;
2206
2207	if (pool && res_ctx) {
2208		if (acquire) {
2209			/*find pipe idx for the given stream*/
2210			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2211				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2212					found_pipe_idx = true;
2213					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2214					break;
2215				}
2216			}
2217		} else
2218			found_pipe_idx = true;/*for release pipe_idx is not required*/
2219
2220		if (found_pipe_idx) {
2221			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2222				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2223			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2224				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2225		}
2226	}
2227	return ret;
2228}
2229
2230static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2231{
2232	int i;
2233	struct pipe_ctx *pipe;
2234
2235	for (i = 0; i < MAX_PIPES; i++) {
2236		pipe = &context->res_ctx.pipe_ctx[i];
2237
2238		// Don't check flip pending on phantom pipes
2239		if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2240			continue;
2241
2242		/* Must set to false to start with, due to OR in update function */
2243		pipe->plane_state->status.is_flip_pending = false;
2244		dc->hwss.update_pending_status(pipe);
2245		if (pipe->plane_state->status.is_flip_pending)
2246			return true;
2247	}
2248	return false;
2249}
2250
2251/* Perform updates here which need to be deferred until next vupdate
2252 *
2253 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2254 * but forcing lut memory to shutdown state is immediate. This causes
2255 * single frame corruption as lut gets disabled mid-frame unless shutdown
2256 * is deferred until after entering bypass.
2257 */
2258static void process_deferred_updates(struct dc *dc)
2259{
2260	int i = 0;
2261
2262	if (dc->debug.enable_mem_low_power.bits.cm) {
2263		ASSERT(dc->dcn_ip->max_num_dpp);
2264		for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2265			if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2266				dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2267	}
2268}
2269
2270void dc_post_update_surfaces_to_stream(struct dc *dc)
2271{
2272	int i;
2273	struct dc_state *context = dc->current_state;
2274
2275	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2276		return;
2277
2278	post_surface_trace(dc);
2279
2280	/*
2281	 * Only relevant for DCN behavior where we can guarantee the optimization
2282	 * is safe to apply - retain the legacy behavior for DCE.
2283	 */
2284
2285	if (dc->ctx->dce_version < DCE_VERSION_MAX)
2286		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2287	else {
2288		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2289
2290		if (is_flip_pending_in_pipes(dc, context))
2291			return;
2292
2293		for (i = 0; i < dc->res_pool->pipe_count; i++)
2294			if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2295					context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2296				context->res_ctx.pipe_ctx[i].pipe_idx = i;
2297				dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2298			}
2299
2300		process_deferred_updates(dc);
2301
2302		dc->hwss.optimize_bandwidth(dc, context);
2303
2304		if (dc->hwss.update_dsc_pg)
2305			dc->hwss.update_dsc_pg(dc, context, true);
2306	}
2307
2308	dc->optimized_required = false;
2309	dc->wm_optimized_required = false;
2310}
2311
2312bool dc_set_generic_gpio_for_stereo(bool enable,
2313		struct gpio_service *gpio_service)
2314{
2315	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2316	struct gpio_pin_info pin_info;
2317	struct gpio *generic;
2318	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2319			   GFP_KERNEL);
2320
2321	if (!config)
2322		return false;
2323	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2324
2325	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2326		kfree(config);
2327		return false;
2328	} else {
2329		generic = dal_gpio_service_create_generic_mux(
2330			gpio_service,
2331			pin_info.offset,
2332			pin_info.mask);
2333	}
2334
2335	if (!generic) {
2336		kfree(config);
2337		return false;
2338	}
2339
2340	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2341
2342	config->enable_output_from_mux = enable;
2343	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2344
2345	if (gpio_result == GPIO_RESULT_OK)
2346		gpio_result = dal_mux_setup_config(generic, config);
2347
2348	if (gpio_result == GPIO_RESULT_OK) {
2349		dal_gpio_close(generic);
2350		dal_gpio_destroy_generic_mux(&generic);
2351		kfree(config);
2352		return true;
2353	} else {
2354		dal_gpio_close(generic);
2355		dal_gpio_destroy_generic_mux(&generic);
2356		kfree(config);
2357		return false;
2358	}
2359}
2360
2361static bool is_surface_in_context(
2362		const struct dc_state *context,
2363		const struct dc_plane_state *plane_state)
2364{
2365	int j;
2366
2367	for (j = 0; j < MAX_PIPES; j++) {
2368		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2369
2370		if (plane_state == pipe_ctx->plane_state) {
2371			return true;
2372		}
2373	}
2374
2375	return false;
2376}
2377
2378static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2379{
2380	union surface_update_flags *update_flags = &u->surface->update_flags;
2381	enum surface_update_type update_type = UPDATE_TYPE_FAST;
2382
2383	if (!u->plane_info)
2384		return UPDATE_TYPE_FAST;
2385
2386	if (u->plane_info->color_space != u->surface->color_space) {
2387		update_flags->bits.color_space_change = 1;
2388		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2389	}
2390
2391	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2392		update_flags->bits.horizontal_mirror_change = 1;
2393		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2394	}
2395
2396	if (u->plane_info->rotation != u->surface->rotation) {
2397		update_flags->bits.rotation_change = 1;
2398		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2399	}
2400
2401	if (u->plane_info->format != u->surface->format) {
2402		update_flags->bits.pixel_format_change = 1;
2403		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2404	}
2405
2406	if (u->plane_info->stereo_format != u->surface->stereo_format) {
2407		update_flags->bits.stereo_format_change = 1;
2408		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2409	}
2410
2411	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2412		update_flags->bits.per_pixel_alpha_change = 1;
2413		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2414	}
2415
2416	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2417		update_flags->bits.global_alpha_change = 1;
2418		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2419	}
2420
2421	if (u->plane_info->dcc.enable != u->surface->dcc.enable
2422			|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2423			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2424		/* During DCC on/off, stutter period is calculated before
2425		 * DCC has fully transitioned. This results in incorrect
2426		 * stutter period calculation. Triggering a full update will
2427		 * recalculate stutter period.
2428		 */
2429		update_flags->bits.dcc_change = 1;
2430		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2431	}
2432
2433	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2434			resource_pixel_format_to_bpp(u->surface->format)) {
2435		/* different bytes per element will require full bandwidth
2436		 * and DML calculation
2437		 */
2438		update_flags->bits.bpp_change = 1;
2439		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2440	}
2441
2442	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2443			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2444		update_flags->bits.plane_size_change = 1;
2445		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2446	}
2447
2448
2449	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2450			sizeof(union dc_tiling_info)) != 0) {
2451		update_flags->bits.swizzle_change = 1;
2452		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2453
2454		/* todo: below are HW dependent, we should add a hook to
2455		 * DCE/N resource and validated there.
2456		 */
2457		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2458			/* swizzled mode requires RQ to be setup properly,
2459			 * thus need to run DML to calculate RQ settings
2460			 */
2461			update_flags->bits.bandwidth_change = 1;
2462			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2463		}
2464	}
2465
2466	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2467	return update_type;
2468}
2469
2470static enum surface_update_type get_scaling_info_update_type(
2471		const struct dc *dc,
2472		const struct dc_surface_update *u)
2473{
2474	union surface_update_flags *update_flags = &u->surface->update_flags;
2475
2476	if (!u->scaling_info)
2477		return UPDATE_TYPE_FAST;
2478
2479	if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2480			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2481			|| u->scaling_info->scaling_quality.integer_scaling !=
2482				u->surface->scaling_quality.integer_scaling
2483			) {
2484		update_flags->bits.scaling_change = 1;
2485
2486		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2487			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2488				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2489					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2490			/* Making dst rect smaller requires a bandwidth change */
2491			update_flags->bits.bandwidth_change = 1;
2492	}
2493
2494	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2495		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2496
2497		update_flags->bits.scaling_change = 1;
2498		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2499				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2500			/* Making src rect bigger requires a bandwidth change */
2501			update_flags->bits.clock_change = 1;
2502	}
2503
2504	if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2505		(u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2506		 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2507		 /* Changing clip size of a large surface may result in MPC slice count change */
2508		update_flags->bits.bandwidth_change = 1;
2509
2510	if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width ||
2511			u->scaling_info->clip_rect.height != u->surface->clip_rect.height)
2512		update_flags->bits.clip_size_change = 1;
2513
2514	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2515			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2516			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2517			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2518			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2519			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2520		update_flags->bits.position_change = 1;
2521
2522	if (update_flags->bits.clock_change
2523			|| update_flags->bits.bandwidth_change
2524			|| update_flags->bits.scaling_change)
2525		return UPDATE_TYPE_FULL;
2526
2527	if (update_flags->bits.position_change ||
2528			update_flags->bits.clip_size_change)
2529		return UPDATE_TYPE_MED;
2530
2531	return UPDATE_TYPE_FAST;
2532}
2533
2534static enum surface_update_type det_surface_update(const struct dc *dc,
2535		const struct dc_surface_update *u)
2536{
2537	const struct dc_state *context = dc->current_state;
2538	enum surface_update_type type;
2539	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2540	union surface_update_flags *update_flags = &u->surface->update_flags;
2541
2542	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2543		update_flags->raw = 0xFFFFFFFF;
2544		return UPDATE_TYPE_FULL;
2545	}
2546
2547	update_flags->raw = 0; // Reset all flags
2548
2549	type = get_plane_info_update_type(u);
2550	elevate_update_type(&overall_type, type);
2551
2552	type = get_scaling_info_update_type(dc, u);
2553	elevate_update_type(&overall_type, type);
2554
2555	if (u->flip_addr) {
2556		update_flags->bits.addr_update = 1;
2557		if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2558			update_flags->bits.tmz_changed = 1;
2559			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2560		}
2561	}
2562	if (u->in_transfer_func)
2563		update_flags->bits.in_transfer_func_change = 1;
2564
2565	if (u->input_csc_color_matrix)
2566		update_flags->bits.input_csc_change = 1;
2567
2568	if (u->coeff_reduction_factor)
2569		update_flags->bits.coeff_reduction_change = 1;
2570
2571	if (u->gamut_remap_matrix)
2572		update_flags->bits.gamut_remap_change = 1;
2573
2574	if (u->blend_tf)
2575		update_flags->bits.gamma_change = 1;
2576
2577	if (u->gamma) {
2578		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2579
2580		if (u->plane_info)
2581			format = u->plane_info->format;
2582		else if (u->surface)
2583			format = u->surface->format;
2584
2585		if (dce_use_lut(format))
2586			update_flags->bits.gamma_change = 1;
2587	}
2588
2589	if (u->lut3d_func || u->func_shaper)
2590		update_flags->bits.lut_3d = 1;
2591
2592	if (u->hdr_mult.value)
2593		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2594			update_flags->bits.hdr_mult = 1;
2595			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2596		}
2597
2598	if (update_flags->bits.in_transfer_func_change) {
2599		type = UPDATE_TYPE_MED;
2600		elevate_update_type(&overall_type, type);
2601	}
2602
2603	if (update_flags->bits.lut_3d) {
2604		type = UPDATE_TYPE_FULL;
2605		elevate_update_type(&overall_type, type);
2606	}
2607
2608	if (dc->debug.enable_legacy_fast_update &&
2609			(update_flags->bits.gamma_change ||
2610			update_flags->bits.gamut_remap_change ||
2611			update_flags->bits.input_csc_change ||
2612			update_flags->bits.coeff_reduction_change)) {
2613		type = UPDATE_TYPE_FULL;
2614		elevate_update_type(&overall_type, type);
2615	}
2616	return overall_type;
2617}
2618
2619static enum surface_update_type check_update_surfaces_for_stream(
2620		struct dc *dc,
2621		struct dc_surface_update *updates,
2622		int surface_count,
2623		struct dc_stream_update *stream_update,
2624		const struct dc_stream_status *stream_status)
2625{
2626	int i;
2627	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2628
2629	if (dc->idle_optimizations_allowed)
2630		overall_type = UPDATE_TYPE_FULL;
2631
2632	if (stream_status == NULL || stream_status->plane_count != surface_count)
2633		overall_type = UPDATE_TYPE_FULL;
2634
2635	if (stream_update && stream_update->pending_test_pattern) {
2636		overall_type = UPDATE_TYPE_FULL;
2637	}
2638
2639	/* some stream updates require passive update */
2640	if (stream_update) {
2641		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2642
2643		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2644			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2645			stream_update->integer_scaling_update)
2646			su_flags->bits.scaling = 1;
2647
2648		if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2649			su_flags->bits.out_tf = 1;
2650
2651		if (stream_update->abm_level)
2652			su_flags->bits.abm_level = 1;
2653
2654		if (stream_update->dpms_off)
2655			su_flags->bits.dpms_off = 1;
2656
2657		if (stream_update->gamut_remap)
2658			su_flags->bits.gamut_remap = 1;
2659
2660		if (stream_update->wb_update)
2661			su_flags->bits.wb_update = 1;
2662
2663		if (stream_update->dsc_config)
2664			su_flags->bits.dsc_changed = 1;
2665
2666		if (stream_update->mst_bw_update)
2667			su_flags->bits.mst_bw = 1;
2668
2669		if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2670			(stream_update->vrr_infopacket || stream_update->allow_freesync ||
2671				stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2672			su_flags->bits.fams_changed = 1;
2673
2674		if (su_flags->raw != 0)
2675			overall_type = UPDATE_TYPE_FULL;
2676
2677		if (stream_update->output_csc_transform || stream_update->output_color_space)
2678			su_flags->bits.out_csc = 1;
2679
2680		/* Output transfer function changes do not require bandwidth recalculation,
2681		 * so don't trigger a full update
2682		 */
2683		if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2684			su_flags->bits.out_tf = 1;
2685	}
2686
2687	for (i = 0 ; i < surface_count; i++) {
2688		enum surface_update_type type =
2689				det_surface_update(dc, &updates[i]);
2690
2691		elevate_update_type(&overall_type, type);
2692	}
2693
2694	return overall_type;
2695}
2696
2697/*
2698 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2699 *
2700 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2701 */
2702enum surface_update_type dc_check_update_surfaces_for_stream(
2703		struct dc *dc,
2704		struct dc_surface_update *updates,
2705		int surface_count,
2706		struct dc_stream_update *stream_update,
2707		const struct dc_stream_status *stream_status)
2708{
2709	int i;
2710	enum surface_update_type type;
2711
2712	if (stream_update)
2713		stream_update->stream->update_flags.raw = 0;
2714	for (i = 0; i < surface_count; i++)
2715		updates[i].surface->update_flags.raw = 0;
2716
2717	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2718	if (type == UPDATE_TYPE_FULL) {
2719		if (stream_update) {
2720			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2721			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2722			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2723		}
2724		for (i = 0; i < surface_count; i++)
2725			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2726	}
2727
2728	if (type == UPDATE_TYPE_FAST) {
2729		// If there's an available clock comparator, we use that.
2730		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2731			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2732				dc->optimized_required = true;
2733		// Else we fallback to mem compare.
2734		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2735			dc->optimized_required = true;
2736		}
2737
2738		dc->optimized_required |= dc->wm_optimized_required;
2739	}
2740
2741	return type;
2742}
2743
2744static struct dc_stream_status *stream_get_status(
2745	struct dc_state *ctx,
2746	struct dc_stream_state *stream)
2747{
2748	uint8_t i;
2749
2750	for (i = 0; i < ctx->stream_count; i++) {
2751		if (stream == ctx->streams[i]) {
2752			return &ctx->stream_status[i];
2753		}
2754	}
2755
2756	return NULL;
2757}
2758
2759static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2760
2761static void copy_surface_update_to_plane(
2762		struct dc_plane_state *surface,
2763		struct dc_surface_update *srf_update)
2764{
2765	if (srf_update->flip_addr) {
2766		surface->address = srf_update->flip_addr->address;
2767		surface->flip_immediate =
2768			srf_update->flip_addr->flip_immediate;
2769		surface->time.time_elapsed_in_us[surface->time.index] =
2770			srf_update->flip_addr->flip_timestamp_in_us -
2771				surface->time.prev_update_time_in_us;
2772		surface->time.prev_update_time_in_us =
2773			srf_update->flip_addr->flip_timestamp_in_us;
2774		surface->time.index++;
2775		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2776			surface->time.index = 0;
2777
2778		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2779	}
2780
2781	if (srf_update->scaling_info) {
2782		surface->scaling_quality =
2783				srf_update->scaling_info->scaling_quality;
2784		surface->dst_rect =
2785				srf_update->scaling_info->dst_rect;
2786		surface->src_rect =
2787				srf_update->scaling_info->src_rect;
2788		surface->clip_rect =
2789				srf_update->scaling_info->clip_rect;
2790	}
2791
2792	if (srf_update->plane_info) {
2793		surface->color_space =
2794				srf_update->plane_info->color_space;
2795		surface->format =
2796				srf_update->plane_info->format;
2797		surface->plane_size =
2798				srf_update->plane_info->plane_size;
2799		surface->rotation =
2800				srf_update->plane_info->rotation;
2801		surface->horizontal_mirror =
2802				srf_update->plane_info->horizontal_mirror;
2803		surface->stereo_format =
2804				srf_update->plane_info->stereo_format;
2805		surface->tiling_info =
2806				srf_update->plane_info->tiling_info;
2807		surface->visible =
2808				srf_update->plane_info->visible;
2809		surface->per_pixel_alpha =
2810				srf_update->plane_info->per_pixel_alpha;
2811		surface->global_alpha =
2812				srf_update->plane_info->global_alpha;
2813		surface->global_alpha_value =
2814				srf_update->plane_info->global_alpha_value;
2815		surface->dcc =
2816				srf_update->plane_info->dcc;
2817		surface->layer_index =
2818				srf_update->plane_info->layer_index;
2819	}
2820
2821	if (srf_update->gamma &&
2822			(surface->gamma_correction !=
2823					srf_update->gamma)) {
2824		memcpy(&surface->gamma_correction->entries,
2825			&srf_update->gamma->entries,
2826			sizeof(struct dc_gamma_entries));
2827		surface->gamma_correction->is_identity =
2828			srf_update->gamma->is_identity;
2829		surface->gamma_correction->num_entries =
2830			srf_update->gamma->num_entries;
2831		surface->gamma_correction->type =
2832			srf_update->gamma->type;
2833	}
2834
2835	if (srf_update->in_transfer_func &&
2836			(surface->in_transfer_func !=
2837				srf_update->in_transfer_func)) {
2838		surface->in_transfer_func->sdr_ref_white_level =
2839			srf_update->in_transfer_func->sdr_ref_white_level;
2840		surface->in_transfer_func->tf =
2841			srf_update->in_transfer_func->tf;
2842		surface->in_transfer_func->type =
2843			srf_update->in_transfer_func->type;
2844		memcpy(&surface->in_transfer_func->tf_pts,
2845			&srf_update->in_transfer_func->tf_pts,
2846			sizeof(struct dc_transfer_func_distributed_points));
2847	}
2848
2849	if (srf_update->func_shaper &&
2850			(surface->in_shaper_func !=
2851			srf_update->func_shaper))
2852		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2853		sizeof(*surface->in_shaper_func));
2854
2855	if (srf_update->lut3d_func &&
2856			(surface->lut3d_func !=
2857			srf_update->lut3d_func))
2858		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2859		sizeof(*surface->lut3d_func));
2860
2861	if (srf_update->hdr_mult.value)
2862		surface->hdr_mult =
2863				srf_update->hdr_mult;
2864
2865	if (srf_update->blend_tf &&
2866			(surface->blend_tf !=
2867			srf_update->blend_tf))
2868		memcpy(surface->blend_tf, srf_update->blend_tf,
2869		sizeof(*surface->blend_tf));
2870
2871	if (srf_update->input_csc_color_matrix)
2872		surface->input_csc_color_matrix =
2873			*srf_update->input_csc_color_matrix;
2874
2875	if (srf_update->coeff_reduction_factor)
2876		surface->coeff_reduction_factor =
2877			*srf_update->coeff_reduction_factor;
2878
2879	if (srf_update->gamut_remap_matrix)
2880		surface->gamut_remap_matrix =
2881			*srf_update->gamut_remap_matrix;
2882}
2883
2884static void copy_stream_update_to_stream(struct dc *dc,
2885					 struct dc_state *context,
2886					 struct dc_stream_state *stream,
2887					 struct dc_stream_update *update)
2888{
2889	struct dc_context *dc_ctx = dc->ctx;
2890
2891	if (update == NULL || stream == NULL)
2892		return;
2893
2894	if (update->src.height && update->src.width)
2895		stream->src = update->src;
2896
2897	if (update->dst.height && update->dst.width)
2898		stream->dst = update->dst;
2899
2900	if (update->out_transfer_func &&
2901	    stream->out_transfer_func != update->out_transfer_func) {
2902		stream->out_transfer_func->sdr_ref_white_level =
2903			update->out_transfer_func->sdr_ref_white_level;
2904		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2905		stream->out_transfer_func->type =
2906			update->out_transfer_func->type;
2907		memcpy(&stream->out_transfer_func->tf_pts,
2908		       &update->out_transfer_func->tf_pts,
2909		       sizeof(struct dc_transfer_func_distributed_points));
2910	}
2911
2912	if (update->hdr_static_metadata)
2913		stream->hdr_static_metadata = *update->hdr_static_metadata;
2914
2915	if (update->abm_level)
2916		stream->abm_level = *update->abm_level;
2917
2918	if (update->periodic_interrupt)
2919		stream->periodic_interrupt = *update->periodic_interrupt;
2920
2921	if (update->gamut_remap)
2922		stream->gamut_remap_matrix = *update->gamut_remap;
2923
2924	/* Note: this being updated after mode set is currently not a use case
2925	 * however if it arises OCSC would need to be reprogrammed at the
2926	 * minimum
2927	 */
2928	if (update->output_color_space)
2929		stream->output_color_space = *update->output_color_space;
2930
2931	if (update->output_csc_transform)
2932		stream->csc_color_matrix = *update->output_csc_transform;
2933
2934	if (update->vrr_infopacket)
2935		stream->vrr_infopacket = *update->vrr_infopacket;
2936
2937	if (update->allow_freesync)
2938		stream->allow_freesync = *update->allow_freesync;
2939
2940	if (update->vrr_active_variable)
2941		stream->vrr_active_variable = *update->vrr_active_variable;
2942
2943	if (update->vrr_active_fixed)
2944		stream->vrr_active_fixed = *update->vrr_active_fixed;
2945
2946	if (update->crtc_timing_adjust)
2947		stream->adjust = *update->crtc_timing_adjust;
2948
2949	if (update->dpms_off)
2950		stream->dpms_off = *update->dpms_off;
2951
2952	if (update->hfvsif_infopacket)
2953		stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2954
2955	if (update->vtem_infopacket)
2956		stream->vtem_infopacket = *update->vtem_infopacket;
2957
2958	if (update->vsc_infopacket)
2959		stream->vsc_infopacket = *update->vsc_infopacket;
2960
2961	if (update->vsp_infopacket)
2962		stream->vsp_infopacket = *update->vsp_infopacket;
2963
2964	if (update->adaptive_sync_infopacket)
2965		stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2966
2967	if (update->dither_option)
2968		stream->dither_option = *update->dither_option;
2969
2970	if (update->pending_test_pattern)
2971		stream->test_pattern = *update->pending_test_pattern;
2972	/* update current stream with writeback info */
2973	if (update->wb_update) {
2974		int i;
2975
2976		stream->num_wb_info = update->wb_update->num_wb_info;
2977		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2978		for (i = 0; i < stream->num_wb_info; i++)
2979			stream->writeback_info[i] =
2980				update->wb_update->writeback_info[i];
2981	}
2982	if (update->dsc_config) {
2983		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2984		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2985		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2986				       update->dsc_config->num_slices_v != 0);
2987
2988		/* Use temporarry context for validating new DSC config */
2989		struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
2990
2991		if (dsc_validate_context) {
2992			stream->timing.dsc_cfg = *update->dsc_config;
2993			stream->timing.flags.DSC = enable_dsc;
2994			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2995				stream->timing.dsc_cfg = old_dsc_cfg;
2996				stream->timing.flags.DSC = old_dsc_enabled;
2997				update->dsc_config = NULL;
2998			}
2999
3000			dc_state_release(dsc_validate_context);
3001		} else {
3002			DC_ERROR("Failed to allocate new validate context for DSC change\n");
3003			update->dsc_config = NULL;
3004		}
3005	}
3006}
3007
3008static void backup_planes_and_stream_state(
3009		struct dc_scratch_space *scratch,
3010		struct dc_stream_state *stream)
3011{
3012	int i;
3013	struct dc_stream_status *status = dc_stream_get_status(stream);
3014
3015	if (!status)
3016		return;
3017
3018	for (i = 0; i < status->plane_count; i++) {
3019		scratch->plane_states[i] = *status->plane_states[i];
3020		scratch->gamma_correction[i] = *status->plane_states[i]->gamma_correction;
3021		scratch->in_transfer_func[i] = *status->plane_states[i]->in_transfer_func;
3022		scratch->lut3d_func[i] = *status->plane_states[i]->lut3d_func;
3023		scratch->in_shaper_func[i] = *status->plane_states[i]->in_shaper_func;
3024		scratch->blend_tf[i] = *status->plane_states[i]->blend_tf;
3025	}
3026	scratch->stream_state = *stream;
3027	if (stream->out_transfer_func)
3028		scratch->out_transfer_func = *stream->out_transfer_func;
3029}
3030
3031static void restore_planes_and_stream_state(
3032		struct dc_scratch_space *scratch,
3033		struct dc_stream_state *stream)
3034{
3035	int i;
3036	struct dc_stream_status *status = dc_stream_get_status(stream);
3037
3038	if (!status)
3039		return;
3040
3041	for (i = 0; i < status->plane_count; i++) {
3042		*status->plane_states[i] = scratch->plane_states[i];
3043		*status->plane_states[i]->gamma_correction = scratch->gamma_correction[i];
3044		*status->plane_states[i]->in_transfer_func = scratch->in_transfer_func[i];
3045		*status->plane_states[i]->lut3d_func = scratch->lut3d_func[i];
3046		*status->plane_states[i]->in_shaper_func = scratch->in_shaper_func[i];
3047		*status->plane_states[i]->blend_tf = scratch->blend_tf[i];
3048	}
3049	*stream = scratch->stream_state;
3050	if (stream->out_transfer_func)
3051		*stream->out_transfer_func = scratch->out_transfer_func;
3052}
3053
3054static bool update_planes_and_stream_state(struct dc *dc,
3055		struct dc_surface_update *srf_updates, int surface_count,
3056		struct dc_stream_state *stream,
3057		struct dc_stream_update *stream_update,
3058		enum surface_update_type *new_update_type,
3059		struct dc_state **new_context)
3060{
3061	struct dc_state *context;
3062	int i, j;
3063	enum surface_update_type update_type;
3064	const struct dc_stream_status *stream_status;
3065	struct dc_context *dc_ctx = dc->ctx;
3066
3067	stream_status = dc_stream_get_status(stream);
3068
3069	if (!stream_status) {
3070		if (surface_count) /* Only an error condition if surf_count non-zero*/
3071			ASSERT(false);
3072
3073		return false; /* Cannot commit surface to stream that is not committed */
3074	}
3075
3076	context = dc->current_state;
3077	backup_planes_and_stream_state(&dc->current_state->scratch, stream);
3078	update_type = dc_check_update_surfaces_for_stream(
3079			dc, srf_updates, surface_count, stream_update, stream_status);
3080
3081	/* update current stream with the new updates */
3082	copy_stream_update_to_stream(dc, context, stream, stream_update);
3083
3084	/* do not perform surface update if surface has invalid dimensions
3085	 * (all zero) and no scaling_info is provided
3086	 */
3087	if (surface_count > 0) {
3088		for (i = 0; i < surface_count; i++) {
3089			if ((srf_updates[i].surface->src_rect.width == 0 ||
3090				 srf_updates[i].surface->src_rect.height == 0 ||
3091				 srf_updates[i].surface->dst_rect.width == 0 ||
3092				 srf_updates[i].surface->dst_rect.height == 0) &&
3093				(!srf_updates[i].scaling_info ||
3094				  srf_updates[i].scaling_info->src_rect.width == 0 ||
3095				  srf_updates[i].scaling_info->src_rect.height == 0 ||
3096				  srf_updates[i].scaling_info->dst_rect.width == 0 ||
3097				  srf_updates[i].scaling_info->dst_rect.height == 0)) {
3098				DC_ERROR("Invalid src/dst rects in surface update!\n");
3099				return false;
3100			}
3101		}
3102	}
3103
3104	if (update_type >= update_surface_trace_level)
3105		update_surface_trace(dc, srf_updates, surface_count);
3106
3107	for (i = 0; i < surface_count; i++)
3108		copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3109
3110	if (update_type >= UPDATE_TYPE_FULL) {
3111		struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3112
3113		for (i = 0; i < surface_count; i++)
3114			new_planes[i] = srf_updates[i].surface;
3115
3116		/* initialize scratch memory for building context */
3117		context = dc_state_create_copy(dc->current_state);
3118		if (context == NULL) {
3119			DC_ERROR("Failed to allocate new validate context!\n");
3120			return false;
3121		}
3122
3123		/* For each full update, remove all existing phantom pipes first.
3124		 * Ensures that we have enough pipes for newly added MPO planes
3125		 */
3126		dc_state_remove_phantom_streams_and_planes(dc, context);
3127		dc_state_release_phantom_streams_and_planes(dc, context);
3128
3129		/*remove old surfaces from context */
3130		if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3131
3132			BREAK_TO_DEBUGGER();
3133			goto fail;
3134		}
3135
3136		/* add surface to context */
3137		if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3138
3139			BREAK_TO_DEBUGGER();
3140			goto fail;
3141		}
3142	}
3143
3144	/* save update parameters into surface */
3145	for (i = 0; i < surface_count; i++) {
3146		struct dc_plane_state *surface = srf_updates[i].surface;
3147
3148		if (update_type >= UPDATE_TYPE_MED) {
3149			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3150				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3151
3152				if (pipe_ctx->plane_state != surface)
3153					continue;
3154
3155				resource_build_scaling_params(pipe_ctx);
3156			}
3157		}
3158	}
3159
3160	if (update_type == UPDATE_TYPE_FULL) {
3161		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3162			BREAK_TO_DEBUGGER();
3163			goto fail;
3164		}
3165
3166		for (i = 0; i < context->stream_count; i++) {
3167			struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(&context->res_ctx,
3168					context->streams[i]);
3169
3170			if (otg_master && otg_master->stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE)
3171				resource_build_test_pattern_params(&context->res_ctx, otg_master);
3172		}
3173	}
3174
3175	*new_context = context;
3176	*new_update_type = update_type;
3177	backup_planes_and_stream_state(&context->scratch, stream);
3178
3179	return true;
3180
3181fail:
3182	dc_state_release(context);
3183
3184	return false;
3185
3186}
3187
3188static void commit_planes_do_stream_update(struct dc *dc,
3189		struct dc_stream_state *stream,
3190		struct dc_stream_update *stream_update,
3191		enum surface_update_type update_type,
3192		struct dc_state *context)
3193{
3194	int j;
3195
3196	// Stream updates
3197	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3198		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3199
3200		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3201
3202			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3203				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3204
3205			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3206					stream_update->vrr_infopacket ||
3207					stream_update->vsc_infopacket ||
3208					stream_update->vsp_infopacket ||
3209					stream_update->hfvsif_infopacket ||
3210					stream_update->adaptive_sync_infopacket ||
3211					stream_update->vtem_infopacket) {
3212				resource_build_info_frame(pipe_ctx);
3213				dc->hwss.update_info_frame(pipe_ctx);
3214
3215				if (dc_is_dp_signal(pipe_ctx->stream->signal))
3216					dc->link_srv->dp_trace_source_sequence(
3217							pipe_ctx->stream->link,
3218							DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3219			}
3220
3221			if (stream_update->hdr_static_metadata &&
3222					stream->use_dynamic_meta &&
3223					dc->hwss.set_dmdata_attributes &&
3224					pipe_ctx->stream->dmdata_address.quad_part != 0)
3225				dc->hwss.set_dmdata_attributes(pipe_ctx);
3226
3227			if (stream_update->gamut_remap)
3228				dc_stream_set_gamut_remap(dc, stream);
3229
3230			if (stream_update->output_csc_transform)
3231				dc_stream_program_csc_matrix(dc, stream);
3232
3233			if (stream_update->dither_option) {
3234				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3235				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3236									&pipe_ctx->stream->bit_depth_params);
3237				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3238						&stream->bit_depth_params,
3239						&stream->clamping);
3240				while (odm_pipe) {
3241					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3242							&stream->bit_depth_params,
3243							&stream->clamping);
3244					odm_pipe = odm_pipe->next_odm_pipe;
3245				}
3246			}
3247
3248
3249			/* Full fe update*/
3250			if (update_type == UPDATE_TYPE_FAST)
3251				continue;
3252
3253			if (stream_update->dsc_config)
3254				dc->link_srv->update_dsc_config(pipe_ctx);
3255
3256			if (stream_update->mst_bw_update) {
3257				if (stream_update->mst_bw_update->is_increase)
3258					dc->link_srv->increase_mst_payload(pipe_ctx,
3259							stream_update->mst_bw_update->mst_stream_bw);
3260 				else
3261					dc->link_srv->reduce_mst_payload(pipe_ctx,
3262							stream_update->mst_bw_update->mst_stream_bw);
3263 			}
3264
3265			if (stream_update->pending_test_pattern) {
3266				dc_link_dp_set_test_pattern(stream->link,
3267					stream->test_pattern.type,
3268					stream->test_pattern.color_space,
3269					stream->test_pattern.p_link_settings,
3270					stream->test_pattern.p_custom_pattern,
3271					stream->test_pattern.cust_pattern_size);
3272			}
3273
3274			if (stream_update->dpms_off) {
3275				if (*stream_update->dpms_off) {
3276					dc->link_srv->set_dpms_off(pipe_ctx);
3277					/* for dpms, keep acquired resources*/
3278					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3279						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3280
3281					dc->optimized_required = true;
3282
3283				} else {
3284					if (get_seamless_boot_stream_count(context) == 0)
3285						dc->hwss.prepare_bandwidth(dc, dc->current_state);
3286					dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3287				}
3288			} else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3289					&& !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3290				/*
3291				 * Workaround for firmware issue in some receivers where they don't pick up
3292				 * correct output color space unless DP link is disabled/re-enabled
3293				 */
3294				dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3295			}
3296
3297			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3298				bool should_program_abm = true;
3299
3300				// if otg funcs defined check if blanked before programming
3301				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3302					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3303						should_program_abm = false;
3304
3305				if (should_program_abm) {
3306					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3307						dc->hwss.set_abm_immediate_disable(pipe_ctx);
3308					} else {
3309						pipe_ctx->stream_res.abm->funcs->set_abm_level(
3310							pipe_ctx->stream_res.abm, stream->abm_level);
3311					}
3312				}
3313			}
3314		}
3315	}
3316}
3317
3318static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3319{
3320	if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3321			|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3322			&& stream->ctx->dce_version >= DCN_VERSION_3_1)
3323		return true;
3324
3325	if (stream->link->replay_settings.config.replay_supported)
3326		return true;
3327
3328	if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3329		return true;
3330
3331	return false;
3332}
3333
3334void dc_dmub_update_dirty_rect(struct dc *dc,
3335			       int surface_count,
3336			       struct dc_stream_state *stream,
3337			       struct dc_surface_update *srf_updates,
3338			       struct dc_state *context)
3339{
3340	union dmub_rb_cmd cmd;
3341	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3342	unsigned int i, j;
3343	unsigned int panel_inst = 0;
3344
3345	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3346		return;
3347
3348	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3349		return;
3350
3351	memset(&cmd, 0x0, sizeof(cmd));
3352	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3353	cmd.update_dirty_rect.header.sub_type = 0;
3354	cmd.update_dirty_rect.header.payload_bytes =
3355		sizeof(cmd.update_dirty_rect) -
3356		sizeof(cmd.update_dirty_rect.header);
3357	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3358	for (i = 0; i < surface_count; i++) {
3359		struct dc_plane_state *plane_state = srf_updates[i].surface;
3360		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3361
3362		if (!srf_updates[i].surface || !flip_addr)
3363			continue;
3364		/* Do not send in immediate flip mode */
3365		if (srf_updates[i].surface->flip_immediate)
3366			continue;
3367
3368		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3369		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3370				sizeof(flip_addr->dirty_rects));
3371		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3372			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3373
3374			if (pipe_ctx->stream != stream)
3375				continue;
3376			if (pipe_ctx->plane_state != plane_state)
3377				continue;
3378
3379			update_dirty_rect->panel_inst = panel_inst;
3380			update_dirty_rect->pipe_idx = j;
3381			dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3382		}
3383	}
3384}
3385
3386static void build_dmub_update_dirty_rect(
3387		struct dc *dc,
3388		int surface_count,
3389		struct dc_stream_state *stream,
3390		struct dc_surface_update *srf_updates,
3391		struct dc_state *context,
3392		struct dc_dmub_cmd dc_dmub_cmd[],
3393		unsigned int *dmub_cmd_count)
3394{
3395	union dmub_rb_cmd cmd;
3396	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3397	unsigned int i, j;
3398	unsigned int panel_inst = 0;
3399
3400	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3401		return;
3402
3403	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3404		return;
3405
3406	memset(&cmd, 0x0, sizeof(cmd));
3407	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3408	cmd.update_dirty_rect.header.sub_type = 0;
3409	cmd.update_dirty_rect.header.payload_bytes =
3410		sizeof(cmd.update_dirty_rect) -
3411		sizeof(cmd.update_dirty_rect.header);
3412	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3413	for (i = 0; i < surface_count; i++) {
3414		struct dc_plane_state *plane_state = srf_updates[i].surface;
3415		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3416
3417		if (!srf_updates[i].surface || !flip_addr)
3418			continue;
3419		/* Do not send in immediate flip mode */
3420		if (srf_updates[i].surface->flip_immediate)
3421			continue;
3422		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3423		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3424		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3425				sizeof(flip_addr->dirty_rects));
3426		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3427			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3428
3429			if (pipe_ctx->stream != stream)
3430				continue;
3431			if (pipe_ctx->plane_state != plane_state)
3432				continue;
3433			update_dirty_rect->panel_inst = panel_inst;
3434			update_dirty_rect->pipe_idx = j;
3435			dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3436			dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3437			(*dmub_cmd_count)++;
3438		}
3439	}
3440}
3441
3442
3443/**
3444 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3445 *
3446 * @dc: Current DC state
3447 * @srf_updates: Array of surface updates
3448 * @surface_count: Number of surfaces that have an updated
3449 * @stream: Corresponding stream to be updated in the current flip
3450 * @context: New DC state to be programmed
3451 *
3452 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3453 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3454 *
3455 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3456 * to build an array of commands and have them sent while the OTG lock is acquired.
3457 *
3458 * Return: void
3459 */
3460static void build_dmub_cmd_list(struct dc *dc,
3461		struct dc_surface_update *srf_updates,
3462		int surface_count,
3463		struct dc_stream_state *stream,
3464		struct dc_state *context,
3465		struct dc_dmub_cmd dc_dmub_cmd[],
3466		unsigned int *dmub_cmd_count)
3467{
3468	// Initialize cmd count to 0
3469	*dmub_cmd_count = 0;
3470	build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3471}
3472
3473static void commit_planes_for_stream_fast(struct dc *dc,
3474		struct dc_surface_update *srf_updates,
3475		int surface_count,
3476		struct dc_stream_state *stream,
3477		struct dc_stream_update *stream_update,
3478		enum surface_update_type update_type,
3479		struct dc_state *context)
3480{
3481	int i, j;
3482	struct pipe_ctx *top_pipe_to_program = NULL;
3483	struct dc_stream_status *stream_status = NULL;
3484	dc_exit_ips_for_hw_access(dc);
3485
3486	dc_z10_restore(dc);
3487
3488	top_pipe_to_program = resource_get_otg_master_for_stream(
3489			&context->res_ctx,
3490			stream);
3491
3492	if (!top_pipe_to_program)
3493		return;
3494
3495	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3496		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3497
3498		if (pipe->stream && pipe->plane_state) {
3499			set_p_state_switch_method(dc, context, pipe);
3500
3501			if (dc->debug.visual_confirm)
3502				dc_update_visual_confirm_color(dc, context, pipe);
3503		}
3504	}
3505
3506	for (i = 0; i < surface_count; i++) {
3507		struct dc_plane_state *plane_state = srf_updates[i].surface;
3508		/*set logical flag for lock/unlock use*/
3509		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3510			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3511
3512			if (!pipe_ctx->plane_state)
3513				continue;
3514			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3515				continue;
3516			pipe_ctx->plane_state->triplebuffer_flips = false;
3517			if (update_type == UPDATE_TYPE_FAST &&
3518			    dc->hwss.program_triplebuffer &&
3519			    !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3520				/*triple buffer for VUpdate  only*/
3521				pipe_ctx->plane_state->triplebuffer_flips = true;
3522			}
3523		}
3524	}
3525
3526	stream_status = dc_state_get_stream_status(context, stream);
3527
3528	build_dmub_cmd_list(dc,
3529			srf_updates,
3530			surface_count,
3531			stream,
3532			context,
3533			context->dc_dmub_cmd,
3534			&(context->dmub_cmd_count));
3535	hwss_build_fast_sequence(dc,
3536			context->dc_dmub_cmd,
3537			context->dmub_cmd_count,
3538			context->block_sequence,
3539			&(context->block_sequence_steps),
3540			top_pipe_to_program,
3541			stream_status);
3542	hwss_execute_sequence(dc,
3543			context->block_sequence,
3544			context->block_sequence_steps);
3545	/* Clear update flags so next flip doesn't have redundant programming
3546	 * (if there's no stream update, the update flags are not cleared).
3547	 * Surface updates are cleared unconditionally at the beginning of each flip,
3548	 * so no need to clear here.
3549	 */
3550	if (top_pipe_to_program->stream)
3551		top_pipe_to_program->stream->update_flags.raw = 0;
3552}
3553
3554static void wait_for_outstanding_hw_updates(struct dc *dc, struct dc_state *dc_context)
3555{
3556/*
3557 * This function calls HWSS to wait for any potentially double buffered
3558 * operations to complete. It should be invoked as a pre-amble prior
3559 * to full update programming before asserting any HW locks.
3560 */
3561	int pipe_idx;
3562	int opp_inst;
3563	int opp_count = dc->res_pool->res_cap->num_opp;
3564	struct hubp *hubp;
3565	int mpcc_inst;
3566	const struct pipe_ctx *pipe_ctx;
3567
3568	for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3569		pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3570
3571		if (!pipe_ctx->stream)
3572			continue;
3573
3574		if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3575			pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3576
3577		hubp = pipe_ctx->plane_res.hubp;
3578		if (!hubp)
3579			continue;
3580
3581		mpcc_inst = hubp->inst;
3582		// MPCC inst is equal to pipe index in practice
3583		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3584			if ((dc->res_pool->opps[opp_inst] != NULL) &&
3585				(dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst])) {
3586				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3587				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3588				break;
3589			}
3590		}
3591	}
3592	wait_for_odm_update_pending_complete(dc, dc_context);
3593}
3594
3595static void commit_planes_for_stream(struct dc *dc,
3596		struct dc_surface_update *srf_updates,
3597		int surface_count,
3598		struct dc_stream_state *stream,
3599		struct dc_stream_update *stream_update,
3600		enum surface_update_type update_type,
3601		struct dc_state *context)
3602{
3603	int i, j;
3604	struct pipe_ctx *top_pipe_to_program = NULL;
3605	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3606	bool subvp_prev_use = false;
3607	bool subvp_curr_use = false;
3608	uint8_t current_stream_mask = 0;
3609
3610	// Once we apply the new subvp context to hardware it won't be in the
3611	// dc->current_state anymore, so we have to cache it before we apply
3612	// the new SubVP context
3613	subvp_prev_use = false;
3614	dc_exit_ips_for_hw_access(dc);
3615
3616	dc_z10_restore(dc);
3617	if (update_type == UPDATE_TYPE_FULL)
3618		wait_for_outstanding_hw_updates(dc, context);
3619
3620	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3621		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3622
3623		if (pipe->stream && pipe->plane_state) {
3624			set_p_state_switch_method(dc, context, pipe);
3625
3626			if (dc->debug.visual_confirm)
3627				dc_update_visual_confirm_color(dc, context, pipe);
3628		}
3629	}
3630
3631	if (update_type == UPDATE_TYPE_FULL) {
3632		dc_allow_idle_optimizations(dc, false);
3633
3634		if (get_seamless_boot_stream_count(context) == 0)
3635			dc->hwss.prepare_bandwidth(dc, context);
3636
3637		if (dc->hwss.update_dsc_pg)
3638			dc->hwss.update_dsc_pg(dc, context, false);
3639
3640		context_clock_trace(dc, context);
3641	}
3642
3643	top_pipe_to_program = resource_get_otg_master_for_stream(
3644				&context->res_ctx,
3645				stream);
3646	ASSERT(top_pipe_to_program != NULL);
3647	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3648		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3649
3650		// Check old context for SubVP
3651		subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
3652		if (subvp_prev_use)
3653			break;
3654	}
3655
3656	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3657		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3658
3659		if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
3660			subvp_curr_use = true;
3661			break;
3662		}
3663	}
3664
3665	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3666		struct pipe_ctx *mpcc_pipe;
3667		struct pipe_ctx *odm_pipe;
3668
3669		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3670			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3671				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3672	}
3673
3674	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3675		if (top_pipe_to_program &&
3676			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3677			if (should_use_dmub_lock(stream->link)) {
3678				union dmub_hw_lock_flags hw_locks = { 0 };
3679				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3680
3681				hw_locks.bits.lock_dig = 1;
3682				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3683
3684				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3685							true,
3686							&hw_locks,
3687							&inst_flags);
3688			} else
3689				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3690						top_pipe_to_program->stream_res.tg);
3691		}
3692
3693	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3694		if (dc->hwss.subvp_pipe_control_lock)
3695				dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3696		dc->hwss.interdependent_update_lock(dc, context, true);
3697
3698	} else {
3699		if (dc->hwss.subvp_pipe_control_lock)
3700			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3701		/* Lock the top pipe while updating plane addrs, since freesync requires
3702		 *  plane addr update event triggers to be synchronized.
3703		 *  top_pipe_to_program is expected to never be NULL
3704		 */
3705		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3706	}
3707
3708	dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3709
3710	// Stream updates
3711	if (stream_update)
3712		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3713
3714	if (surface_count == 0) {
3715		/*
3716		 * In case of turning off screen, no need to program front end a second time.
3717		 * just return after program blank.
3718		 */
3719		if (dc->hwss.apply_ctx_for_surface)
3720			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3721		if (dc->hwss.program_front_end_for_ctx)
3722			dc->hwss.program_front_end_for_ctx(dc, context);
3723
3724		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3725			dc->hwss.interdependent_update_lock(dc, context, false);
3726		} else {
3727			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3728		}
3729		dc->hwss.post_unlock_program_front_end(dc, context);
3730
3731		if (update_type != UPDATE_TYPE_FAST)
3732			if (dc->hwss.commit_subvp_config)
3733				dc->hwss.commit_subvp_config(dc, context);
3734
3735		/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3736		 * move the SubVP lock to after the phantom pipes have been setup
3737		 */
3738		if (dc->hwss.subvp_pipe_control_lock)
3739			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3740							 NULL, subvp_prev_use);
3741		return;
3742	}
3743
3744	if (update_type != UPDATE_TYPE_FAST) {
3745		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3746			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3747
3748			if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3749				dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3750				pipe_ctx->stream && pipe_ctx->plane_state) {
3751				/* Only update visual confirm for SUBVP and Mclk switching here.
3752				 * The bar appears on all pipes, so we need to update the bar on all displays,
3753				 * so the information doesn't get stale.
3754				 */
3755				dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3756						pipe_ctx->plane_res.hubp->inst);
3757			}
3758		}
3759	}
3760
3761	for (i = 0; i < surface_count; i++) {
3762		struct dc_plane_state *plane_state = srf_updates[i].surface;
3763		/*set logical flag for lock/unlock use*/
3764		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3765			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3766			if (!pipe_ctx->plane_state)
3767				continue;
3768			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3769				continue;
3770			pipe_ctx->plane_state->triplebuffer_flips = false;
3771			if (update_type == UPDATE_TYPE_FAST &&
3772				dc->hwss.program_triplebuffer != NULL &&
3773				!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3774					/*triple buffer for VUpdate  only*/
3775					pipe_ctx->plane_state->triplebuffer_flips = true;
3776			}
3777		}
3778		if (update_type == UPDATE_TYPE_FULL) {
3779			/* force vsync flip when reconfiguring pipes to prevent underflow */
3780			plane_state->flip_immediate = false;
3781		}
3782	}
3783
3784	// Update Type FULL, Surface updates
3785	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3786		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3787
3788		if (!pipe_ctx->top_pipe &&
3789			!pipe_ctx->prev_odm_pipe &&
3790			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3791			struct dc_stream_status *stream_status = NULL;
3792
3793			if (!pipe_ctx->plane_state)
3794				continue;
3795
3796			/* Full fe update*/
3797			if (update_type == UPDATE_TYPE_FAST)
3798				continue;
3799
3800			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3801
3802			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3803				/*turn off triple buffer for full update*/
3804				dc->hwss.program_triplebuffer(
3805					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3806			}
3807			stream_status =
3808				stream_get_status(context, pipe_ctx->stream);
3809
3810			if (dc->hwss.apply_ctx_for_surface)
3811				dc->hwss.apply_ctx_for_surface(
3812					dc, pipe_ctx->stream, stream_status->plane_count, context);
3813		}
3814	}
3815	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3816		dc->hwss.program_front_end_for_ctx(dc, context);
3817		if (dc->debug.validate_dml_output) {
3818			for (i = 0; i < dc->res_pool->pipe_count; i++) {
3819				struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3820				if (cur_pipe->stream == NULL)
3821					continue;
3822
3823				cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3824						cur_pipe->plane_res.hubp, dc->ctx,
3825						&context->res_ctx.pipe_ctx[i].rq_regs,
3826						&context->res_ctx.pipe_ctx[i].dlg_regs,
3827						&context->res_ctx.pipe_ctx[i].ttu_regs);
3828			}
3829		}
3830	}
3831
3832	// Update Type FAST, Surface updates
3833	if (update_type == UPDATE_TYPE_FAST) {
3834		if (dc->hwss.set_flip_control_gsl)
3835			for (i = 0; i < surface_count; i++) {
3836				struct dc_plane_state *plane_state = srf_updates[i].surface;
3837
3838				for (j = 0; j < dc->res_pool->pipe_count; j++) {
3839					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3840
3841					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3842						continue;
3843
3844					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3845						continue;
3846
3847					// GSL has to be used for flip immediate
3848					dc->hwss.set_flip_control_gsl(pipe_ctx,
3849							pipe_ctx->plane_state->flip_immediate);
3850				}
3851			}
3852
3853		/* Perform requested Updates */
3854		for (i = 0; i < surface_count; i++) {
3855			struct dc_plane_state *plane_state = srf_updates[i].surface;
3856
3857			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3858				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3859
3860				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3861					continue;
3862
3863				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3864					continue;
3865
3866				/*program triple buffer after lock based on flip type*/
3867				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3868					/*only enable triplebuffer for  fast_update*/
3869					dc->hwss.program_triplebuffer(
3870						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3871				}
3872				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3873					dc->hwss.update_plane_addr(dc, pipe_ctx);
3874			}
3875		}
3876	}
3877
3878	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3879		dc->hwss.interdependent_update_lock(dc, context, false);
3880	} else {
3881		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3882	}
3883
3884	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3885		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3886			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3887				top_pipe_to_program->stream_res.tg,
3888				CRTC_STATE_VACTIVE);
3889			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3890				top_pipe_to_program->stream_res.tg,
3891				CRTC_STATE_VBLANK);
3892			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3893				top_pipe_to_program->stream_res.tg,
3894				CRTC_STATE_VACTIVE);
3895
3896			if (should_use_dmub_lock(stream->link)) {
3897				union dmub_hw_lock_flags hw_locks = { 0 };
3898				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3899
3900				hw_locks.bits.lock_dig = 1;
3901				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3902
3903				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3904							false,
3905							&hw_locks,
3906							&inst_flags);
3907			} else
3908				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3909					top_pipe_to_program->stream_res.tg);
3910		}
3911
3912	if (subvp_curr_use) {
3913		/* If enabling subvp or transitioning from subvp->subvp, enable the
3914		 * phantom streams before we program front end for the phantom pipes.
3915		 */
3916		if (update_type != UPDATE_TYPE_FAST) {
3917			if (dc->hwss.enable_phantom_streams)
3918				dc->hwss.enable_phantom_streams(dc, context);
3919		}
3920	}
3921
3922	if (update_type != UPDATE_TYPE_FAST)
3923		dc->hwss.post_unlock_program_front_end(dc, context);
3924
3925	if (subvp_prev_use && !subvp_curr_use) {
3926		/* If disabling subvp, disable phantom streams after front end
3927		 * programming has completed (we turn on phantom OTG in order
3928		 * to complete the plane disable for phantom pipes).
3929		 */
3930
3931		if (dc->hwss.disable_phantom_streams)
3932			dc->hwss.disable_phantom_streams(dc, context);
3933	}
3934
3935	if (update_type != UPDATE_TYPE_FAST)
3936		if (dc->hwss.commit_subvp_config)
3937			dc->hwss.commit_subvp_config(dc, context);
3938	/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3939	 * move the SubVP lock to after the phantom pipes have been setup
3940	 */
3941	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3942		if (dc->hwss.subvp_pipe_control_lock)
3943			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3944	} else {
3945		if (dc->hwss.subvp_pipe_control_lock)
3946			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3947	}
3948
3949	// Fire manual trigger only when bottom plane is flipped
3950	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3951		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3952
3953		if (!pipe_ctx->plane_state)
3954			continue;
3955
3956		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3957				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3958				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
3959				pipe_ctx->plane_state->skip_manual_trigger)
3960			continue;
3961
3962		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3963			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3964	}
3965
3966	current_stream_mask = get_stream_mask(dc, context);
3967	if (current_stream_mask != context->stream_mask) {
3968		context->stream_mask = current_stream_mask;
3969		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
3970	}
3971}
3972
3973/**
3974 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
3975 *
3976 * @dc: Used to get the current state status
3977 * @stream: Target stream, which we want to remove the attached planes
3978 * @srf_updates: Array of surface updates
3979 * @surface_count: Number of surface update
3980 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
3981 *
3982 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
3983 * the MPO if used simultaneously in some specific configurations (e.g.,
3984 * 4k@144). This function checks if the incoming context requires applying a
3985 * transition state with unnecessary pipe splitting and ODM disabled to
3986 * circumvent our hardware limitations to prevent this edge case. If the OPP
3987 * associated with an MPCC might change due to plane additions, this function
3988 * returns true.
3989 *
3990 * Return:
3991 * Return true if OPP and MPCC might change, otherwise, return false.
3992 */
3993static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3994		struct dc_stream_state *stream,
3995		struct dc_surface_update *srf_updates,
3996		int surface_count,
3997		bool *is_plane_addition)
3998{
3999
4000	struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4001	bool force_minimal_pipe_splitting = false;
4002	bool subvp_active = false;
4003	uint32_t i;
4004
4005	*is_plane_addition = false;
4006
4007	if (cur_stream_status &&
4008			dc->current_state->stream_count > 0 &&
4009			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4010		/* determine if minimal transition is required due to MPC*/
4011		if (surface_count > 0) {
4012			if (cur_stream_status->plane_count > surface_count) {
4013				force_minimal_pipe_splitting = true;
4014			} else if (cur_stream_status->plane_count < surface_count) {
4015				force_minimal_pipe_splitting = true;
4016				*is_plane_addition = true;
4017			}
4018		}
4019	}
4020
4021	if (cur_stream_status &&
4022			dc->current_state->stream_count == 1 &&
4023			dc->debug.enable_single_display_2to1_odm_policy) {
4024		/* determine if minimal transition is required due to dynamic ODM*/
4025		if (surface_count > 0) {
4026			if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4027				force_minimal_pipe_splitting = true;
4028			} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4029				force_minimal_pipe_splitting = true;
4030				*is_plane_addition = true;
4031			}
4032		}
4033	}
4034
4035	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4036		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4037
4038		if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4039			subvp_active = true;
4040			break;
4041		}
4042	}
4043
4044	/* For SubVP when adding or removing planes we need to add a minimal transition
4045	 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4046	 * must use the minimal transition path to disable the pipe correctly.
4047	 *
4048	 * We want to use the minimal transition whenever subvp is active, not only if
4049	 * a plane is being added / removed from a subvp stream (MPO plane can be added
4050	 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4051	 * a min transition to disable subvp.
4052	 */
4053	if (cur_stream_status && subvp_active) {
4054		/* determine if minimal transition is required due to SubVP*/
4055		if (cur_stream_status->plane_count > surface_count) {
4056			force_minimal_pipe_splitting = true;
4057		} else if (cur_stream_status->plane_count < surface_count) {
4058			force_minimal_pipe_splitting = true;
4059			*is_plane_addition = true;
4060		}
4061	}
4062
4063	return force_minimal_pipe_splitting;
4064}
4065
4066struct pipe_split_policy_backup {
4067	bool dynamic_odm_policy;
4068	bool subvp_policy;
4069	enum pipe_split_policy mpc_policy;
4070};
4071
4072static void release_minimal_transition_state(struct dc *dc,
4073		struct dc_state *context, struct pipe_split_policy_backup *policy)
4074{
4075	dc_state_release(context);
4076	/* restore previous pipe split and odm policy */
4077	if (!dc->config.is_vmin_only_asic)
4078		dc->debug.pipe_split_policy = policy->mpc_policy;
4079	dc->debug.enable_single_display_2to1_odm_policy = policy->dynamic_odm_policy;
4080	dc->debug.force_disable_subvp = policy->subvp_policy;
4081}
4082
4083static struct dc_state *create_minimal_transition_state(struct dc *dc,
4084		struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4085{
4086	struct dc_state *minimal_transition_context = NULL;
4087	unsigned int i, j;
4088
4089	if (!dc->config.is_vmin_only_asic) {
4090		policy->mpc_policy = dc->debug.pipe_split_policy;
4091		dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4092	}
4093	policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4094	dc->debug.enable_single_display_2to1_odm_policy = false;
4095	policy->subvp_policy = dc->debug.force_disable_subvp;
4096	dc->debug.force_disable_subvp = true;
4097
4098	minimal_transition_context = dc_state_create_copy(base_context);
4099	if (!minimal_transition_context)
4100		return NULL;
4101
4102	/* commit minimal state */
4103	if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) {
4104		for (i = 0; i < minimal_transition_context->stream_count; i++) {
4105			struct dc_stream_status *stream_status = &minimal_transition_context->stream_status[i];
4106
4107			for (j = 0; j < stream_status->plane_count; j++) {
4108				struct dc_plane_state *plane_state = stream_status->plane_states[j];
4109
4110				/* force vsync flip when reconfiguring pipes to prevent underflow
4111				 * and corruption
4112				 */
4113				plane_state->flip_immediate = false;
4114			}
4115		}
4116	} else {
4117		/* this should never happen */
4118		release_minimal_transition_state(dc, minimal_transition_context, policy);
4119		BREAK_TO_DEBUGGER();
4120		minimal_transition_context = NULL;
4121	}
4122	return minimal_transition_context;
4123}
4124
4125
4126/**
4127 * commit_minimal_transition_state - Commit a minimal state based on current or new context
4128 *
4129 * @dc: DC structure, used to get the current state
4130 * @context: New context
4131 * @stream: Stream getting the update for the flip
4132 *
4133 * The function takes in current state and new state and determine a minimal transition state
4134 * as the intermediate step which could make the transition between current and new states
4135 * seamless. If found, it will commit the minimal transition state and update current state to
4136 * this minimal transition state and return true, if not, it will return false.
4137 *
4138 * Return:
4139 * Return True if the minimal transition succeeded, false otherwise
4140 */
4141static bool commit_minimal_transition_state(struct dc *dc,
4142		struct dc_state *context,
4143		struct dc_stream_state *stream)
4144{
4145	bool success = false;
4146	struct dc_state *minimal_transition_context;
4147	struct pipe_split_policy_backup policy;
4148
4149	/* commit based on new context */
4150	minimal_transition_context = create_minimal_transition_state(dc,
4151			context, &policy);
4152	if (minimal_transition_context) {
4153		if (dc->hwss.is_pipe_topology_transition_seamless(
4154					dc, dc->current_state, minimal_transition_context) &&
4155			dc->hwss.is_pipe_topology_transition_seamless(
4156					dc, minimal_transition_context, context)) {
4157			DC_LOG_DC("%s base = new state\n", __func__);
4158
4159			success = dc_commit_state_no_check(dc, minimal_transition_context) == DC_OK;
4160		}
4161		release_minimal_transition_state(dc, minimal_transition_context, &policy);
4162	}
4163
4164	if (!success) {
4165		/* commit based on current context */
4166		restore_planes_and_stream_state(&dc->current_state->scratch, stream);
4167		minimal_transition_context = create_minimal_transition_state(dc,
4168				dc->current_state, &policy);
4169		if (minimal_transition_context) {
4170			if (dc->hwss.is_pipe_topology_transition_seamless(
4171					dc, dc->current_state, minimal_transition_context) &&
4172				dc->hwss.is_pipe_topology_transition_seamless(
4173						dc, minimal_transition_context, context)) {
4174				DC_LOG_DC("%s base = current state\n", __func__);
4175				success = dc_commit_state_no_check(dc, minimal_transition_context) == DC_OK;
4176			}
4177			release_minimal_transition_state(dc, minimal_transition_context, &policy);
4178		}
4179		restore_planes_and_stream_state(&context->scratch, stream);
4180	}
4181
4182	ASSERT(success);
4183	return success;
4184}
4185
4186/**
4187 * commit_minimal_transition_state_legacy - Create a transition pipe split state
4188 *
4189 * @dc: Used to get the current state status
4190 * @transition_base_context: New transition state
4191 *
4192 * In some specific configurations, such as pipe split on multi-display with
4193 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4194 * programming when moving to new planes. To mitigate those types of problems,
4195 * this function adds a transition state that minimizes pipe usage before
4196 * programming the new configuration. When adding a new plane, the current
4197 * state requires the least pipes, so it is applied without splitting. When
4198 * removing a plane, the new state requires the least pipes, so it is applied
4199 * without splitting.
4200 *
4201 * Return:
4202 * Return false if something is wrong in the transition state.
4203 */
4204static bool commit_minimal_transition_state_legacy(struct dc *dc,
4205		struct dc_state *transition_base_context)
4206{
4207	struct dc_state *transition_context;
4208	struct pipe_split_policy_backup policy;
4209	enum dc_status ret = DC_ERROR_UNEXPECTED;
4210	unsigned int i, j;
4211	unsigned int pipe_in_use = 0;
4212	bool subvp_in_use = false;
4213	bool odm_in_use = false;
4214
4215	/* check current pipes in use*/
4216	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4217		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4218
4219		if (pipe->plane_state)
4220			pipe_in_use++;
4221	}
4222
4223	/* If SubVP is enabled and we are adding or removing planes from any main subvp
4224	 * pipe, we must use the minimal transition.
4225	 */
4226	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4227		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4228
4229		if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4230			subvp_in_use = true;
4231			break;
4232		}
4233	}
4234
4235	/* If ODM is enabled and we are adding or removing planes from any ODM
4236	 * pipe, we must use the minimal transition.
4237	 */
4238	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4239		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4240
4241		if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4242			odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4243			break;
4244		}
4245	}
4246
4247	/* When the OS add a new surface if we have been used all of pipes with odm combine
4248	 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4249	 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4250	 * call it again. Otherwise return true to skip.
4251	 *
4252	 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4253	 * enter/exit MPO when DCN still have enough resources.
4254	 */
4255	if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4256		return true;
4257
4258	DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4259			dc->current_state == transition_base_context ? "current" : "new",
4260			subvp_in_use ? "Subvp In Use" :
4261			odm_in_use ? "ODM in Use" :
4262			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4263			"Unknown");
4264
4265	transition_context = create_minimal_transition_state(dc,
4266			transition_base_context, &policy);
4267	if (transition_context) {
4268		ret = dc_commit_state_no_check(dc, transition_context);
4269		release_minimal_transition_state(dc, transition_context, &policy);
4270	}
4271
4272	if (ret != DC_OK) {
4273		/* this should never happen */
4274		BREAK_TO_DEBUGGER();
4275		return false;
4276	}
4277
4278	/* force full surface update */
4279	for (i = 0; i < dc->current_state->stream_count; i++) {
4280		for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4281			dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4282		}
4283	}
4284
4285	return true;
4286}
4287
4288/**
4289 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
4290 *
4291 * @dc: Current DC state
4292 * @context: New DC state to be programmed
4293 * @surface_count: Number of surfaces that have an updated
4294 * @stream: Corresponding stream to be updated in the current flip
4295 *
4296 * Updating seamless boot flags do not need to be part of the commit sequence. This
4297 * helper function will update the seamless boot flags on each flip (if required)
4298 * outside of the HW commit sequence (fast or slow).
4299 *
4300 * Return: void
4301 */
4302static void update_seamless_boot_flags(struct dc *dc,
4303		struct dc_state *context,
4304		int surface_count,
4305		struct dc_stream_state *stream)
4306{
4307	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
4308		/* Optimize seamless boot flag keeps clocks and watermarks high until
4309		 * first flip. After first flip, optimization is required to lower
4310		 * bandwidth. Important to note that it is expected UEFI will
4311		 * only light up a single display on POST, therefore we only expect
4312		 * one stream with seamless boot flag set.
4313		 */
4314		if (stream->apply_seamless_boot_optimization) {
4315			stream->apply_seamless_boot_optimization = false;
4316
4317			if (get_seamless_boot_stream_count(context) == 0)
4318				dc->optimized_required = true;
4319		}
4320	}
4321}
4322
4323static void populate_fast_updates(struct dc_fast_update *fast_update,
4324		struct dc_surface_update *srf_updates,
4325		int surface_count,
4326		struct dc_stream_update *stream_update)
4327{
4328	int i = 0;
4329
4330	if (stream_update) {
4331		fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4332		fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4333	}
4334
4335	for (i = 0; i < surface_count; i++) {
4336		fast_update[i].flip_addr = srf_updates[i].flip_addr;
4337		fast_update[i].gamma = srf_updates[i].gamma;
4338		fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4339		fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4340		fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4341	}
4342}
4343
4344static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4345{
4346	int i;
4347
4348	if (fast_update[0].out_transfer_func ||
4349		fast_update[0].output_csc_transform)
4350		return true;
4351
4352	for (i = 0; i < surface_count; i++) {
4353		if (fast_update[i].flip_addr ||
4354				fast_update[i].gamma ||
4355				fast_update[i].gamut_remap_matrix ||
4356				fast_update[i].input_csc_color_matrix ||
4357				fast_update[i].coeff_reduction_factor)
4358			return true;
4359	}
4360
4361	return false;
4362}
4363
4364static bool full_update_required(struct dc *dc,
4365		struct dc_surface_update *srf_updates,
4366		int surface_count,
4367		struct dc_stream_update *stream_update,
4368		struct dc_stream_state *stream)
4369{
4370
4371	int i;
4372	struct dc_stream_status *stream_status;
4373	const struct dc_state *context = dc->current_state;
4374
4375	for (i = 0; i < surface_count; i++) {
4376		if (srf_updates &&
4377				(srf_updates[i].plane_info ||
4378				srf_updates[i].scaling_info ||
4379				(srf_updates[i].hdr_mult.value &&
4380				srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4381				srf_updates[i].in_transfer_func ||
4382				srf_updates[i].func_shaper ||
4383				srf_updates[i].lut3d_func ||
4384				srf_updates[i].surface->force_full_update ||
4385				(srf_updates[i].flip_addr &&
4386				srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4387				!is_surface_in_context(context, srf_updates[i].surface)))
4388			return true;
4389	}
4390
4391	if (stream_update &&
4392			(((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4393			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4394			stream_update->integer_scaling_update) ||
4395			stream_update->hdr_static_metadata ||
4396			stream_update->abm_level ||
4397			stream_update->periodic_interrupt ||
4398			stream_update->vrr_infopacket ||
4399			stream_update->vsc_infopacket ||
4400			stream_update->vsp_infopacket ||
4401			stream_update->hfvsif_infopacket ||
4402			stream_update->vtem_infopacket ||
4403			stream_update->adaptive_sync_infopacket ||
4404			stream_update->dpms_off ||
4405			stream_update->allow_freesync ||
4406			stream_update->vrr_active_variable ||
4407			stream_update->vrr_active_fixed ||
4408			stream_update->gamut_remap ||
4409			stream_update->output_color_space ||
4410			stream_update->dither_option ||
4411			stream_update->wb_update ||
4412			stream_update->dsc_config ||
4413			stream_update->mst_bw_update ||
4414			stream_update->func_shaper ||
4415			stream_update->lut3d_func ||
4416			stream_update->pending_test_pattern ||
4417			stream_update->crtc_timing_adjust))
4418		return true;
4419
4420	if (stream) {
4421		stream_status = dc_stream_get_status(stream);
4422		if (stream_status == NULL || stream_status->plane_count != surface_count)
4423			return true;
4424	}
4425	if (dc->idle_optimizations_allowed)
4426		return true;
4427
4428	return false;
4429}
4430
4431static bool fast_update_only(struct dc *dc,
4432		struct dc_fast_update *fast_update,
4433		struct dc_surface_update *srf_updates,
4434		int surface_count,
4435		struct dc_stream_update *stream_update,
4436		struct dc_stream_state *stream)
4437{
4438	return fast_updates_exist(fast_update, surface_count)
4439			&& !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4440}
4441
4442bool dc_update_planes_and_stream(struct dc *dc,
4443		struct dc_surface_update *srf_updates, int surface_count,
4444		struct dc_stream_state *stream,
4445		struct dc_stream_update *stream_update)
4446{
4447	struct dc_state *context;
4448	enum surface_update_type update_type;
4449	int i;
4450	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4451
4452	/* In cases where MPO and split or ODM are used transitions can
4453	 * cause underflow. Apply stream configuration with minimal pipe
4454	 * split first to avoid unsupported transitions for active pipes.
4455	 */
4456	bool force_minimal_pipe_splitting = 0;
4457	bool is_plane_addition = 0;
4458	bool is_fast_update_only;
4459
4460	dc_exit_ips_for_hw_access(dc);
4461
4462	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4463	is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
4464			surface_count, stream_update, stream);
4465	force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4466			dc,
4467			stream,
4468			srf_updates,
4469			surface_count,
4470			&is_plane_addition);
4471
4472	/* on plane addition, minimal state is the current one */
4473	if (force_minimal_pipe_splitting && is_plane_addition &&
4474		!commit_minimal_transition_state_legacy(dc, dc->current_state))
4475				return false;
4476
4477	if (!update_planes_and_stream_state(
4478			dc,
4479			srf_updates,
4480			surface_count,
4481			stream,
4482			stream_update,
4483			&update_type,
4484			&context))
4485		return false;
4486
4487	/* on plane removal, minimal state is the new one */
4488	if (force_minimal_pipe_splitting && !is_plane_addition) {
4489		if (!commit_minimal_transition_state_legacy(dc, context)) {
4490			dc_state_release(context);
4491			return false;
4492		}
4493		update_type = UPDATE_TYPE_FULL;
4494	}
4495
4496	if (dc->hwss.is_pipe_topology_transition_seamless &&
4497			!dc->hwss.is_pipe_topology_transition_seamless(
4498					dc, dc->current_state, context)) {
4499		commit_minimal_transition_state(dc,
4500				context, stream);
4501	}
4502	update_seamless_boot_flags(dc, context, surface_count, stream);
4503	if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
4504		commit_planes_for_stream_fast(dc,
4505				srf_updates,
4506				surface_count,
4507				stream,
4508				stream_update,
4509				update_type,
4510				context);
4511	} else {
4512		if (!stream_update &&
4513				dc->hwss.is_pipe_topology_transition_seamless &&
4514				!dc->hwss.is_pipe_topology_transition_seamless(
4515						dc, dc->current_state, context)) {
4516			DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4517			BREAK_TO_DEBUGGER();
4518		}
4519		commit_planes_for_stream(
4520				dc,
4521				srf_updates,
4522				surface_count,
4523				stream,
4524				stream_update,
4525				update_type,
4526				context);
4527	}
4528
4529	if (dc->current_state != context) {
4530
4531		/* Since memory free requires elevated IRQL, an interrupt
4532		 * request is generated by mem free. If this happens
4533		 * between freeing and reassigning the context, our vsync
4534		 * interrupt will call into dc and cause a memory
4535		 * corruption BSOD. Hence, we first reassign the context,
4536		 * then free the old context.
4537		 */
4538
4539		struct dc_state *old = dc->current_state;
4540
4541		dc->current_state = context;
4542		dc_state_release(old);
4543
4544		// clear any forced full updates
4545		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4546			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4547
4548			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4549				pipe_ctx->plane_state->force_full_update = false;
4550		}
4551	}
4552	return true;
4553}
4554
4555void dc_commit_updates_for_stream(struct dc *dc,
4556		struct dc_surface_update *srf_updates,
4557		int surface_count,
4558		struct dc_stream_state *stream,
4559		struct dc_stream_update *stream_update,
4560		struct dc_state *state)
4561{
4562	const struct dc_stream_status *stream_status;
4563	enum surface_update_type update_type;
4564	struct dc_state *context;
4565	struct dc_context *dc_ctx = dc->ctx;
4566	int i, j;
4567	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4568
4569	dc_exit_ips_for_hw_access(dc);
4570
4571	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4572	stream_status = dc_stream_get_status(stream);
4573	context = dc->current_state;
4574
4575	update_type = dc_check_update_surfaces_for_stream(
4576				dc, srf_updates, surface_count, stream_update, stream_status);
4577
4578	/* TODO: Since change commit sequence can have a huge impact,
4579	 * we decided to only enable it for DCN3x. However, as soon as
4580	 * we get more confident about this change we'll need to enable
4581	 * the new sequence for all ASICs.
4582	 */
4583	if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4584		/*
4585		 * Previous frame finished and HW is ready for optimization.
4586		 */
4587		if (update_type == UPDATE_TYPE_FAST)
4588			dc_post_update_surfaces_to_stream(dc);
4589
4590		dc_update_planes_and_stream(dc, srf_updates,
4591					    surface_count, stream,
4592					    stream_update);
4593		return;
4594	}
4595
4596	if (update_type >= update_surface_trace_level)
4597		update_surface_trace(dc, srf_updates, surface_count);
4598
4599
4600	if (update_type >= UPDATE_TYPE_FULL) {
4601
4602		/* initialize scratch memory for building context */
4603		context = dc_state_create_copy(state);
4604		if (context == NULL) {
4605			DC_ERROR("Failed to allocate new validate context!\n");
4606			return;
4607		}
4608
4609		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4610			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4611			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4612
4613			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4614				new_pipe->plane_state->force_full_update = true;
4615		}
4616	} else if (update_type == UPDATE_TYPE_FAST) {
4617		/*
4618		 * Previous frame finished and HW is ready for optimization.
4619		 */
4620		dc_post_update_surfaces_to_stream(dc);
4621	}
4622
4623
4624	for (i = 0; i < surface_count; i++) {
4625		struct dc_plane_state *surface = srf_updates[i].surface;
4626
4627		copy_surface_update_to_plane(surface, &srf_updates[i]);
4628
4629		if (update_type >= UPDATE_TYPE_MED) {
4630			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4631				struct pipe_ctx *pipe_ctx =
4632					&context->res_ctx.pipe_ctx[j];
4633
4634				if (pipe_ctx->plane_state != surface)
4635					continue;
4636
4637				resource_build_scaling_params(pipe_ctx);
4638			}
4639		}
4640	}
4641
4642	copy_stream_update_to_stream(dc, context, stream, stream_update);
4643
4644	if (update_type >= UPDATE_TYPE_FULL) {
4645		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4646			DC_ERROR("Mode validation failed for stream update!\n");
4647			dc_state_release(context);
4648			return;
4649		}
4650	}
4651
4652	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4653
4654	update_seamless_boot_flags(dc, context, surface_count, stream);
4655	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4656			!dc->debug.enable_legacy_fast_update) {
4657		commit_planes_for_stream_fast(dc,
4658				srf_updates,
4659				surface_count,
4660				stream,
4661				stream_update,
4662				update_type,
4663				context);
4664	} else {
4665		commit_planes_for_stream(
4666				dc,
4667				srf_updates,
4668				surface_count,
4669				stream,
4670				stream_update,
4671				update_type,
4672				context);
4673	}
4674	/*update current_State*/
4675	if (dc->current_state != context) {
4676
4677		struct dc_state *old = dc->current_state;
4678
4679		dc->current_state = context;
4680		dc_state_release(old);
4681
4682		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4683			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4684
4685			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4686				pipe_ctx->plane_state->force_full_update = false;
4687		}
4688	}
4689
4690	/* Legacy optimization path for DCE. */
4691	if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4692		dc_post_update_surfaces_to_stream(dc);
4693		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4694	}
4695
4696	return;
4697
4698}
4699
4700uint8_t dc_get_current_stream_count(struct dc *dc)
4701{
4702	return dc->current_state->stream_count;
4703}
4704
4705struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4706{
4707	if (i < dc->current_state->stream_count)
4708		return dc->current_state->streams[i];
4709	return NULL;
4710}
4711
4712enum dc_irq_source dc_interrupt_to_irq_source(
4713		struct dc *dc,
4714		uint32_t src_id,
4715		uint32_t ext_id)
4716{
4717	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
4718}
4719
4720/*
4721 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4722 */
4723bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4724{
4725
4726	if (dc == NULL)
4727		return false;
4728
4729	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
4730}
4731
4732void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4733{
4734	dal_irq_service_ack(dc->res_pool->irqs, src);
4735}
4736
4737void dc_power_down_on_boot(struct dc *dc)
4738{
4739	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4740			dc->hwss.power_down_on_boot)
4741		dc->hwss.power_down_on_boot(dc);
4742}
4743
4744void dc_set_power_state(
4745	struct dc *dc,
4746	enum dc_acpi_cm_power_state power_state)
4747{
4748	if (!dc->current_state)
4749		return;
4750
4751	switch (power_state) {
4752	case DC_ACPI_CM_POWER_STATE_D0:
4753		dc_state_construct(dc, dc->current_state);
4754
4755		dc_exit_ips_for_hw_access(dc);
4756
4757		dc_z10_restore(dc);
4758
4759		dc->hwss.init_hw(dc);
4760
4761		if (dc->hwss.init_sys_ctx != NULL &&
4762			dc->vm_pa_config.valid) {
4763			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4764		}
4765
4766		break;
4767	default:
4768		ASSERT(dc->current_state->stream_count == 0);
4769
4770		dc_state_destruct(dc->current_state);
4771
4772		break;
4773	}
4774}
4775
4776void dc_resume(struct dc *dc)
4777{
4778	uint32_t i;
4779
4780	for (i = 0; i < dc->link_count; i++)
4781		dc->link_srv->resume(dc->links[i]);
4782}
4783
4784bool dc_is_dmcu_initialized(struct dc *dc)
4785{
4786	struct dmcu *dmcu = dc->res_pool->dmcu;
4787
4788	if (dmcu)
4789		return dmcu->funcs->is_dmcu_initialized(dmcu);
4790	return false;
4791}
4792
4793void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4794{
4795	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4796	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4797	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4798	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4799	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4800	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4801	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4802	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4803	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4804}
4805enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4806{
4807	if (dc->hwss.set_clock)
4808		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4809	return DC_ERROR_UNEXPECTED;
4810}
4811void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4812{
4813	if (dc->hwss.get_clock)
4814		dc->hwss.get_clock(dc, clock_type, clock_cfg);
4815}
4816
4817/* enable/disable eDP PSR without specify stream for eDP */
4818bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4819{
4820	int i;
4821	bool allow_active;
4822
4823	for (i = 0; i < dc->current_state->stream_count ; i++) {
4824		struct dc_link *link;
4825		struct dc_stream_state *stream = dc->current_state->streams[i];
4826
4827		link = stream->link;
4828		if (!link)
4829			continue;
4830
4831		if (link->psr_settings.psr_feature_enabled) {
4832			if (enable && !link->psr_settings.psr_allow_active) {
4833				allow_active = true;
4834				if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4835					return false;
4836			} else if (!enable && link->psr_settings.psr_allow_active) {
4837				allow_active = false;
4838				if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4839					return false;
4840			}
4841		}
4842	}
4843
4844	return true;
4845}
4846
4847/* enable/disable eDP Replay without specify stream for eDP */
4848bool dc_set_replay_allow_active(struct dc *dc, bool active)
4849{
4850	int i;
4851	bool allow_active;
4852
4853	for (i = 0; i < dc->current_state->stream_count; i++) {
4854		struct dc_link *link;
4855		struct dc_stream_state *stream = dc->current_state->streams[i];
4856
4857		link = stream->link;
4858		if (!link)
4859			continue;
4860
4861		if (link->replay_settings.replay_feature_enabled) {
4862			if (active && !link->replay_settings.replay_allow_active) {
4863				allow_active = true;
4864				if (!dc_link_set_replay_allow_active(link, &allow_active,
4865					false, false, NULL))
4866					return false;
4867			} else if (!active && link->replay_settings.replay_allow_active) {
4868				allow_active = false;
4869				if (!dc_link_set_replay_allow_active(link, &allow_active,
4870					true, false, NULL))
4871					return false;
4872			}
4873		}
4874	}
4875
4876	return true;
4877}
4878
4879void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4880{
4881	if (dc->debug.disable_idle_power_optimizations)
4882		return;
4883
4884	if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
4885		return;
4886
4887	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4888		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4889			return;
4890
4891	if (allow == dc->idle_optimizations_allowed)
4892		return;
4893
4894	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
4895		dc->idle_optimizations_allowed = allow;
4896}
4897
4898void dc_exit_ips_for_hw_access(struct dc *dc)
4899{
4900	if (dc->caps.ips_support)
4901		dc_allow_idle_optimizations(dc, false);
4902}
4903
4904bool dc_dmub_is_ips_idle_state(struct dc *dc)
4905{
4906	if (dc->debug.disable_idle_power_optimizations)
4907		return false;
4908
4909	if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
4910		return false;
4911
4912	if (!dc->ctx->dmub_srv)
4913		return false;
4914
4915	return dc->ctx->dmub_srv->idle_allowed;
4916}
4917
4918/* set min and max memory clock to lowest and highest DPM level, respectively */
4919void dc_unlock_memory_clock_frequency(struct dc *dc)
4920{
4921	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4922		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4923
4924	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4925		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4926}
4927
4928/* set min memory clock to the min required for current mode, max to maxDPM */
4929void dc_lock_memory_clock_frequency(struct dc *dc)
4930{
4931	if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4932		dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4933
4934	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4935		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4936
4937	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4938		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4939}
4940
4941static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4942{
4943	struct dc_state *context = dc->current_state;
4944	struct hubp *hubp;
4945	struct pipe_ctx *pipe;
4946	int i;
4947
4948	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4949		pipe = &context->res_ctx.pipe_ctx[i];
4950
4951		if (pipe->stream != NULL) {
4952			dc->hwss.disable_pixel_data(dc, pipe, true);
4953
4954			// wait for double buffer
4955			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4956			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4957			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4958
4959			hubp = pipe->plane_res.hubp;
4960			hubp->funcs->set_blank_regs(hubp, true);
4961		}
4962	}
4963
4964	dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4965	dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4966
4967	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4968		pipe = &context->res_ctx.pipe_ctx[i];
4969
4970		if (pipe->stream != NULL) {
4971			dc->hwss.disable_pixel_data(dc, pipe, false);
4972
4973			hubp = pipe->plane_res.hubp;
4974			hubp->funcs->set_blank_regs(hubp, false);
4975		}
4976	}
4977}
4978
4979
4980/**
4981 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4982 * @dc: pointer to dc of the dm calling this
4983 * @enable: True = transition to DC mode, false = transition back to AC mode
4984 *
4985 * Some SoCs define additional clock limits when in DC mode, DM should
4986 * invoke this function when the platform undergoes a power source transition
4987 * so DC can apply/unapply the limit. This interface may be disruptive to
4988 * the onscreen content.
4989 *
4990 * Context: Triggered by OS through DM interface, or manually by escape calls.
4991 * Need to hold a dclock when doing so.
4992 *
4993 * Return: none (void function)
4994 *
4995 */
4996void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4997{
4998	unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
4999	bool p_state_change_support;
5000
5001	if (!dc->config.dc_mode_clk_limit_support)
5002		return;
5003
5004	softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5005	for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5006		if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5007			maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5008	}
5009	funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5010	p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5011
5012	if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5013		if (p_state_change_support) {
5014			if (funcMin <= softMax)
5015				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5016			// else: No-Op
5017		} else {
5018			if (funcMin <= softMax)
5019				blank_and_force_memclk(dc, true, softMax);
5020			// else: No-Op
5021		}
5022	} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5023		if (p_state_change_support) {
5024			if (funcMin <= softMax)
5025				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5026			// else: No-Op
5027		} else {
5028			if (funcMin <= softMax)
5029				blank_and_force_memclk(dc, true, maxDPM);
5030			// else: No-Op
5031		}
5032	}
5033	dc->clk_mgr->dc_mode_softmax_enabled = enable;
5034}
5035bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
5036		struct dc_cursor_attributes *cursor_attr)
5037{
5038	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
5039		return true;
5040	return false;
5041}
5042
5043/* cleanup on driver unload */
5044void dc_hardware_release(struct dc *dc)
5045{
5046	dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5047
5048	if (dc->hwss.hardware_release)
5049		dc->hwss.hardware_release(dc);
5050}
5051
5052void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5053{
5054	if (dc->current_state)
5055		dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5056}
5057
5058/**
5059 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5060 *
5061 * @dc: [in] dc structure
5062 *
5063 * Checks whether DMUB FW supports outbox notifications, if supported DM
5064 * should register outbox interrupt prior to actually enabling interrupts
5065 * via dc_enable_dmub_outbox
5066 *
5067 * Return:
5068 * True if DMUB FW supports outbox notifications, False otherwise
5069 */
5070bool dc_is_dmub_outbox_supported(struct dc *dc)
5071{
5072	switch (dc->ctx->asic_id.chip_family) {
5073
5074	case FAMILY_YELLOW_CARP:
5075		/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5076		if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5077		    !dc->debug.dpia_debug.bits.disable_dpia)
5078			return true;
5079	break;
5080
5081	case AMDGPU_FAMILY_GC_11_0_1:
5082	case AMDGPU_FAMILY_GC_11_5_0:
5083		if (!dc->debug.dpia_debug.bits.disable_dpia)
5084			return true;
5085	break;
5086
5087	default:
5088		break;
5089	}
5090
5091	/* dmub aux needs dmub notifications to be enabled */
5092	return dc->debug.enable_dmub_aux_for_legacy_ddc;
5093
5094}
5095
5096/**
5097 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5098 *
5099 * @dc: [in] dc structure
5100 *
5101 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5102 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported.  This
5103 * API shall be removed after switching.
5104 *
5105 * Return:
5106 * True if DMUB FW supports outbox notifications, False otherwise
5107 */
5108bool dc_enable_dmub_notifications(struct dc *dc)
5109{
5110	return dc_is_dmub_outbox_supported(dc);
5111}
5112
5113/**
5114 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5115 *
5116 * @dc: [in] dc structure
5117 *
5118 * Enables DMUB unsolicited notifications to x86 via outbox.
5119 */
5120void dc_enable_dmub_outbox(struct dc *dc)
5121{
5122	struct dc_context *dc_ctx = dc->ctx;
5123
5124	dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5125	DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5126}
5127
5128/**
5129 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5130 *                                      Sets port index appropriately for legacy DDC
5131 * @dc: dc structure
5132 * @link_index: link index
5133 * @payload: aux payload
5134 *
5135 * Returns: True if successful, False if failure
5136 */
5137bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5138				uint32_t link_index,
5139				struct aux_payload *payload)
5140{
5141	uint8_t action;
5142	union dmub_rb_cmd cmd = {0};
5143
5144	ASSERT(payload->length <= 16);
5145
5146	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5147	cmd.dp_aux_access.header.payload_bytes = 0;
5148	/* For dpia, ddc_pin is set to NULL */
5149	if (!dc->links[link_index]->ddc->ddc_pin)
5150		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5151	else
5152		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5153
5154	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5155	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5156	cmd.dp_aux_access.aux_control.timeout = 0;
5157	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5158	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5159	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5160
5161	/* set aux action */
5162	if (payload->i2c_over_aux) {
5163		if (payload->write) {
5164			if (payload->mot)
5165				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5166			else
5167				action = DP_AUX_REQ_ACTION_I2C_WRITE;
5168		} else {
5169			if (payload->mot)
5170				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5171			else
5172				action = DP_AUX_REQ_ACTION_I2C_READ;
5173			}
5174	} else {
5175		if (payload->write)
5176			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5177		else
5178			action = DP_AUX_REQ_ACTION_DPCD_READ;
5179	}
5180
5181	cmd.dp_aux_access.aux_control.dpaux.action = action;
5182
5183	if (payload->length && payload->write) {
5184		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5185			payload->data,
5186			payload->length
5187			);
5188	}
5189
5190	dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5191
5192	return true;
5193}
5194
5195uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5196					    uint8_t dpia_port_index)
5197{
5198	uint8_t index, link_index = 0xFF;
5199
5200	for (index = 0; index < dc->link_count; index++) {
5201		/* ddc_hw_inst has dpia port index for dpia links
5202		 * and ddc instance for legacy links
5203		 */
5204		if (!dc->links[index]->ddc->ddc_pin) {
5205			if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5206				link_index = index;
5207				break;
5208			}
5209		}
5210	}
5211	ASSERT(link_index != 0xFF);
5212	return link_index;
5213}
5214
5215/**
5216 * dc_process_dmub_set_config_async - Submits set_config command
5217 *
5218 * @dc: [in] dc structure
5219 * @link_index: [in] link_index: link index
5220 * @payload: [in] aux payload
5221 * @notify: [out] set_config immediate reply
5222 *
5223 * Submits set_config command to dmub via inbox message.
5224 *
5225 * Return:
5226 * True if successful, False if failure
5227 */
5228bool dc_process_dmub_set_config_async(struct dc *dc,
5229				uint32_t link_index,
5230				struct set_config_cmd_payload *payload,
5231				struct dmub_notification *notify)
5232{
5233	union dmub_rb_cmd cmd = {0};
5234	bool is_cmd_complete = true;
5235
5236	/* prepare SET_CONFIG command */
5237	cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5238	cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5239
5240	cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5241	cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5242	cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5243
5244	if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5245		/* command is not processed by dmub */
5246		notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5247		return is_cmd_complete;
5248	}
5249
5250	/* command processed by dmub, if ret_status is 1, it is completed instantly */
5251	if (cmd.set_config_access.header.ret_status == 1)
5252		notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5253	else
5254		/* cmd pending, will receive notification via outbox */
5255		is_cmd_complete = false;
5256
5257	return is_cmd_complete;
5258}
5259
5260/**
5261 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5262 *
5263 * @dc: [in] dc structure
5264 * @link_index: [in] link index
5265 * @mst_alloc_slots: [in] mst slots to be allotted
5266 * @mst_slots_in_use: [out] mst slots in use returned in failure case
5267 *
5268 * Submits mst slot allocation command to dmub via inbox message
5269 *
5270 * Return:
5271 * DC_OK if successful, DC_ERROR if failure
5272 */
5273enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5274				uint32_t link_index,
5275				uint8_t mst_alloc_slots,
5276				uint8_t *mst_slots_in_use)
5277{
5278	union dmub_rb_cmd cmd = {0};
5279
5280	/* prepare MST_ALLOC_SLOTS command */
5281	cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5282	cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5283
5284	cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5285	cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5286
5287	if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5288		/* command is not processed by dmub */
5289		return DC_ERROR_UNEXPECTED;
5290
5291	/* command processed by dmub, if ret_status is 1 */
5292	if (cmd.set_config_access.header.ret_status != 1)
5293		/* command processing error */
5294		return DC_ERROR_UNEXPECTED;
5295
5296	/* command processed and we have a status of 2, mst not enabled in dpia */
5297	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5298		return DC_FAIL_UNSUPPORTED_1;
5299
5300	/* previously configured mst alloc and used slots did not match */
5301	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5302		*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5303		return DC_NOT_SUPPORTED;
5304	}
5305
5306	return DC_OK;
5307}
5308
5309/**
5310 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5311 *
5312 * @dc: [in] dc structure
5313 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5314 *
5315 * Submits dpia hpd int enable command to dmub via inbox message
5316 */
5317void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5318				uint32_t hpd_int_enable)
5319{
5320	union dmub_rb_cmd cmd = {0};
5321
5322	cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5323	cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5324
5325	dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5326
5327	DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5328}
5329
5330/**
5331 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5332 *
5333 * @dc: [in] dc structure
5334 *
5335 *
5336 */
5337void dc_print_dmub_diagnostic_data(const struct dc *dc)
5338{
5339	dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5340}
5341
5342/**
5343 * dc_disable_accelerated_mode - disable accelerated mode
5344 * @dc: dc structure
5345 */
5346void dc_disable_accelerated_mode(struct dc *dc)
5347{
5348	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5349}
5350
5351
5352/**
5353 *  dc_notify_vsync_int_state - notifies vsync enable/disable state
5354 *  @dc: dc structure
5355 *  @stream: stream where vsync int state changed
5356 *  @enable: whether vsync is enabled or disabled
5357 *
5358 *  Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5359 *  interrupts after steady state is reached.
5360 */
5361void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5362{
5363	int i;
5364	int edp_num;
5365	struct pipe_ctx *pipe = NULL;
5366	struct dc_link *link = stream->sink->link;
5367	struct dc_link *edp_links[MAX_NUM_EDP];
5368
5369
5370	if (link->psr_settings.psr_feature_enabled)
5371		return;
5372
5373	if (link->replay_settings.replay_feature_enabled)
5374		return;
5375
5376	/*find primary pipe associated with stream*/
5377	for (i = 0; i < MAX_PIPES; i++) {
5378		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5379
5380		if (pipe->stream == stream && pipe->stream_res.tg)
5381			break;
5382	}
5383
5384	if (i == MAX_PIPES) {
5385		ASSERT(0);
5386		return;
5387	}
5388
5389	dc_get_edp_links(dc, edp_links, &edp_num);
5390
5391	/* Determine panel inst */
5392	for (i = 0; i < edp_num; i++) {
5393		if (edp_links[i] == link)
5394			break;
5395	}
5396
5397	if (i == edp_num) {
5398		return;
5399	}
5400
5401	if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5402		pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5403}
5404
5405/*****************************************************************************
5406 *  dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5407 *                          ABM
5408 *  @dc: dc structure
5409 *	@stream: stream where vsync int state changed
5410 *  @pData: abm hw states
5411 *
5412 ****************************************************************************/
5413bool dc_abm_save_restore(
5414		struct dc *dc,
5415		struct dc_stream_state *stream,
5416		struct abm_save_restore *pData)
5417{
5418	int i;
5419	int edp_num;
5420	struct pipe_ctx *pipe = NULL;
5421	struct dc_link *link = stream->sink->link;
5422	struct dc_link *edp_links[MAX_NUM_EDP];
5423
5424	if (link->replay_settings.replay_feature_enabled)
5425		return false;
5426
5427	/*find primary pipe associated with stream*/
5428	for (i = 0; i < MAX_PIPES; i++) {
5429		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5430
5431		if (pipe->stream == stream && pipe->stream_res.tg)
5432			break;
5433	}
5434
5435	if (i == MAX_PIPES) {
5436		ASSERT(0);
5437		return false;
5438	}
5439
5440	dc_get_edp_links(dc, edp_links, &edp_num);
5441
5442	/* Determine panel inst */
5443	for (i = 0; i < edp_num; i++)
5444		if (edp_links[i] == link)
5445			break;
5446
5447	if (i == edp_num)
5448		return false;
5449
5450	if (pipe->stream_res.abm &&
5451		pipe->stream_res.abm->funcs->save_restore)
5452		return pipe->stream_res.abm->funcs->save_restore(
5453				pipe->stream_res.abm,
5454				i,
5455				pData);
5456	return false;
5457}
5458
5459void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5460{
5461	unsigned int i;
5462	bool subvp_sw_cursor_req = false;
5463
5464	for (i = 0; i < dc->current_state->stream_count; i++) {
5465		if (check_subvp_sw_cursor_fallback_req(dc, dc->current_state->streams[i])) {
5466			subvp_sw_cursor_req = true;
5467			break;
5468		}
5469	}
5470	properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size;
5471}
5472
5473/**
5474 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5475 *
5476 * Called when DM wants to power on/off eDP.
5477 *     Only work on links with flag skip_implict_edp_power_control is set.
5478 *
5479 * @dc: Current DC state
5480 * @edp_link: a link with eDP connector signal type
5481 * @powerOn: power on/off eDP
5482 *
5483 * Return: void
5484 */
5485void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
5486				 bool powerOn)
5487{
5488	if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
5489		return;
5490
5491	if (edp_link->skip_implict_edp_power_control == false)
5492		return;
5493
5494	edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
5495}
5496
5497/*
5498 *****************************************************************************
5499 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
5500 *
5501 * Called when DM wants to make power policy decisions based on dc_state
5502 *
5503 *****************************************************************************
5504 */
5505struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
5506{
5507	struct dc_power_profile profile = { 0 };
5508
5509	profile.power_level += !context->bw_ctx.bw.dcn.clk.p_state_change_support;
5510
5511	return profile;
5512}
5513
5514