/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD */ #include "dm_services.h" #include "amdgpu.h" #include "dc.h" #include "core_status.h" #include "core_types.h" #include "hw_sequencer.h" #include "dce/dce_hwseq.h" #include "resource.h" #include "dc_state.h" #include "dc_state_priv.h" #include "dc_plane_priv.h" #include "gpio_service_interface.h" #include "clk_mgr.h" #include "clock_source.h" #include "dc_bios_types.h" #include "bios_parser_interface.h" #include "bios/bios_parser_helper.h" #include "include/irq_service_interface.h" #include "transform.h" #include "dmcu.h" #include "dpp.h" #include "timing_generator.h" #include "abm.h" #include "virtual/virtual_link_encoder.h" #include "hubp.h" #include "link_hwss.h" #include "link_encoder.h" #include "link_enc_cfg.h" #include "link.h" #include "dm_helpers.h" #include "mem_input.h" #include "dc_dmub_srv.h" #include "dsc.h" #include "vm_helper.h" #include "dce/dce_i2c.h" #include "dmub/dmub_srv.h" #include "dce/dmub_psr.h" #include "dce/dmub_hw_lock_mgr.h" #include "dc_trace.h" #include "hw_sequencer_private.h" #include "dml2/dml2_internal_types.h" #include "dce/dmub_outbox.h" #define CTX \ dc->ctx #define DC_LOGGER \ dc->ctx->logger static const char DC_BUILD_ID[] = "production-build"; /** * DOC: Overview * * DC is the OS-agnostic component of the amdgpu DC driver. * * DC maintains and validates a set of structs representing the state of the * driver and writes that state to AMD hardware * * Main DC HW structs: * * struct dc - The central struct. One per driver. Created on driver load, * destroyed on driver unload. * * struct dc_context - One per driver. * Used as a backpointer by most other structs in dc. * * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP * plugpoints). Created on driver load, destroyed on driver unload. * * struct dc_sink - One per display. Created on boot or hotplug. * Destroyed on shutdown or hotunplug. A dc_link can have a local sink * (the display directly attached). It may also have one or more remote * sinks (in the Multi-Stream Transport case) * * struct resource_pool - One per driver. Represents the hw blocks not in the * main pipeline. Not directly accessible by dm. * * Main dc state structs: * * These structs can be created and destroyed as needed. There is a full set of * these structs in dc->current_state representing the currently programmed state. * * struct dc_state - The global DC state to track global state information, * such as bandwidth values. * * struct dc_stream_state - Represents the hw configuration for the pipeline from * a framebuffer to a display. Maps one-to-one with dc_sink. * * struct dc_plane_state - Represents a framebuffer. Each stream has at least one, * and may have more in the Multi-Plane Overlay case. * * struct resource_context - Represents the programmable state of everything in * the resource_pool. Not directly accessible by dm. * * struct pipe_ctx - A member of struct resource_context. Represents the * internal hardware pipeline components. Each dc_plane_state has either * one or two (in the pipe-split case). */ /* Private functions */ static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new) { if (new > *original) *original = new; } static void destroy_links(struct dc *dc) { uint32_t i; for (i = 0; i < dc->link_count; i++) { if (NULL != dc->links[i]) dc->link_srv->destroy_link(&dc->links[i]); } } static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links) { int i; uint32_t count = 0; for (i = 0; i < num_links; i++) { if (links[i]->connector_signal == SIGNAL_TYPE_EDP || links[i]->is_internal_display) count++; } return count; } static int get_seamless_boot_stream_count(struct dc_state *ctx) { uint8_t i; uint8_t seamless_boot_stream_count = 0; for (i = 0; i < ctx->stream_count; i++) if (ctx->streams[i]->apply_seamless_boot_optimization) seamless_boot_stream_count++; return seamless_boot_stream_count; } static bool create_links( struct dc *dc, uint32_t num_virtual_links) { int i; int connectors_num; struct dc_bios *bios = dc->ctx->dc_bios; dc->link_count = 0; connectors_num = bios->funcs->get_connectors_number(bios); DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num); if (connectors_num > ENUM_ID_COUNT) { dm_error( "DC: Number of connectors %d exceeds maximum of %d!\n", connectors_num, ENUM_ID_COUNT); return false; } dm_output_to_console( "DC: %s: connectors_num: physical:%d, virtual:%d\n", __func__, connectors_num, num_virtual_links); // condition loop on link_count to allow skipping invalid indices for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) { struct link_init_data link_init_params = {0}; struct dc_link *link; DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count); link_init_params.ctx = dc->ctx; /* next BIOS object table connector */ link_init_params.connector_index = i; link_init_params.link_index = dc->link_count; link_init_params.dc = dc; link = dc->link_srv->create_link(&link_init_params); if (link) { dc->links[dc->link_count] = link; link->dc = dc; ++dc->link_count; } } DC_LOG_DC("BIOS object table - end"); /* Create a link for each usb4 dpia port */ for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) { struct link_init_data link_init_params = {0}; struct dc_link *link; link_init_params.ctx = dc->ctx; link_init_params.connector_index = i; link_init_params.link_index = dc->link_count; link_init_params.dc = dc; link_init_params.is_dpia_link = true; link = dc->link_srv->create_link(&link_init_params); if (link) { dc->links[dc->link_count] = link; link->dc = dc; ++dc->link_count; } } for (i = 0; i < num_virtual_links; i++) { struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL); struct encoder_init_data enc_init = {0}; if (link == NULL) { BREAK_TO_DEBUGGER(); goto failed_alloc; } link->link_index = dc->link_count; dc->links[dc->link_count] = link; dc->link_count++; link->ctx = dc->ctx; link->dc = dc; link->connector_signal = SIGNAL_TYPE_VIRTUAL; link->link_id.type = OBJECT_TYPE_CONNECTOR; link->link_id.id = CONNECTOR_ID_VIRTUAL; link->link_id.enum_id = ENUM_ID_1; link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL); if (!link->link_enc) { BREAK_TO_DEBUGGER(); goto failed_alloc; } link->link_status.dpcd_caps = &link->dpcd_caps; enc_init.ctx = dc->ctx; enc_init.channel = CHANNEL_ID_UNKNOWN; enc_init.hpd_source = HPD_SOURCEID_UNKNOWN; enc_init.transmitter = TRANSMITTER_UNKNOWN; enc_init.connector = link->link_id; enc_init.encoder.type = OBJECT_TYPE_ENCODER; enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL; enc_init.encoder.enum_id = ENUM_ID_1; virtual_link_encoder_construct(link->link_enc, &enc_init); } dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count); return true; failed_alloc: return false; } /* Create additional DIG link encoder objects if fewer than the platform * supports were created during link construction. This can happen if the * number of physical connectors is less than the number of DIGs. */ static bool create_link_encoders(struct dc *dc) { bool res = true; unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia; unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc; int i; /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG * link encoders and physical display endpoints and does not require * additional link encoder objects. */ if (num_usb4_dpia == 0) return res; /* Create as many link encoder objects as the platform supports. DPIA * endpoints can be programmably mapped to any DIG. */ if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) { for (i = 0; i < num_dig_link_enc; i++) { struct link_encoder *link_enc = dc->res_pool->link_encoders[i]; if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) { link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx, (enum engine_id)(ENGINE_ID_DIGA + i)); if (link_enc) { dc->res_pool->link_encoders[i] = link_enc; dc->res_pool->dig_link_enc_count++; } else { res = false; } } } } return res; } /* Destroy any additional DIG link encoder objects created by * create_link_encoders(). * NB: Must only be called after destroy_links(). */ static void destroy_link_encoders(struct dc *dc) { unsigned int num_usb4_dpia; unsigned int num_dig_link_enc; int i; if (!dc->res_pool) return; num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia; num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc; /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG * link encoders and physical display endpoints and does not require * additional link encoder objects. */ if (num_usb4_dpia == 0) return; for (i = 0; i < num_dig_link_enc; i++) { struct link_encoder *link_enc = dc->res_pool->link_encoders[i]; if (link_enc) { link_enc->funcs->destroy(&link_enc); dc->res_pool->link_encoders[i] = NULL; dc->res_pool->dig_link_enc_count--; } } } static struct dc_perf_trace *dc_perf_trace_create(void) { return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL); } static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace) { kfree(*perf_trace); *perf_trace = NULL; } static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust) { if (!dc || !stream || !adjust) return false; if (!dc->current_state) return false; int i; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.tg) { if (dc->hwss.set_long_vtotal) dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max); return true; } } return false; } /** * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR * @dc: dc reference * @stream: Initial dc stream state * @adjust: Updated parameters for vertical_total_min and vertical_total_max * * Looks up the pipe context of dc_stream_state and updates the * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh * Rate, which is a power-saving feature that targets reducing panel * refresh rate while the screen is static * * Return: %true if the pipe context is found and adjusted; * %false if the pipe context is not found. */ bool dc_stream_adjust_vmin_vmax(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust) { int i; /* * Don't adjust DRR while there's bandwidth optimizations pending to * avoid conflicting with firmware updates. */ if (dc->ctx->dce_version > DCE_VERSION_MAX) if (dc->optimized_required || dc->wm_optimized_required) return false; dc_exit_ips_for_hw_access(dc); stream->adjust.v_total_max = adjust->v_total_max; stream->adjust.v_total_mid = adjust->v_total_mid; stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num; stream->adjust.v_total_min = adjust->v_total_min; stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt; if (dc->caps.max_v_total != 0 && (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) { if (adjust->allow_otg_v_count_halt) return set_long_vtotal(dc, stream, adjust); else return false; } for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.tg) { dc->hwss.set_drr(&pipe, 1, *adjust); return true; } } return false; } /** * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate) * * @dc: [in] dc reference * @stream: [in] Initial dc stream state * @refresh_rate: [in] new refresh_rate * * Return: %true if the pipe context is found and there is an associated * timing_generator for the DC; * %false if the pipe context is not found or there is no * timing_generator for the DC. */ bool dc_stream_get_last_used_drr_vtotal(struct dc *dc, struct dc_stream_state *stream, uint32_t *refresh_rate) { bool status = false; int i = 0; dc_exit_ips_for_hw_access(dc); for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.tg) { /* Only execute if a function pointer has been defined for * the DC version in question */ if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) { pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate); status = true; break; } } } return status; } bool dc_stream_get_crtc_position(struct dc *dc, struct dc_stream_state **streams, int num_streams, unsigned int *v_pos, unsigned int *nom_v_pos) { /* TODO: Support multiple streams */ const struct dc_stream_state *stream = streams[0]; int i; bool ret = false; struct crtc_position position; dc_exit_ips_for_hw_access(dc); for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.stream_enc) { dc->hwss.get_position(&pipe, 1, &position); *v_pos = position.vertical_count; *nom_v_pos = position.nominal_vcount; ret = true; } } return ret; } #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) static inline void dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv, struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop) { union dmub_rb_cmd cmd = {0}; cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num; cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num; if (is_stop) { cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY; cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE; } else { cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY; cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY; cmd.secure_display.roi_info.x_start = rect->x; cmd.secure_display.roi_info.y_start = rect->y; cmd.secure_display.roi_info.x_end = rect->x + rect->width; cmd.secure_display.roi_info.y_end = rect->y + rect->height; } dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); } static inline void dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu, struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop) { if (is_stop) dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping); else dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping); } bool dc_stream_forward_crc_window(struct dc_stream_state *stream, struct rect *rect, bool is_stop) { struct dmcu *dmcu; struct dc_dmub_srv *dmub_srv; struct otg_phy_mux mux_mapping; struct pipe_ctx *pipe; int i; struct dc *dc = stream->ctx->dc; for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe) break; } /* Stream not found */ if (i == MAX_PIPES) return false; mux_mapping.phy_output_num = stream->link->link_enc_hw_inst; mux_mapping.otg_output_num = pipe->stream_res.tg->inst; dmcu = dc->res_pool->dmcu; dmub_srv = dc->ctx->dmub_srv; /* forward to dmub */ if (dmub_srv) dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop); /* forward to dmcu */ else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop); else return false; return true; } #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */ /** * dc_stream_configure_crc() - Configure CRC capture for the given stream. * @dc: DC Object * @stream: The stream to configure CRC on. * @enable: Enable CRC if true, disable otherwise. * @crc_window: CRC window (x/y start/end) information * @continuous: Capture CRC on every frame if true. Otherwise, only capture * once. * * By default, only CRC0 is configured, and the entire frame is used to * calculate the CRC. * * Return: %false if the stream is not found or CRC capture is not supported; * %true if the stream has been configured. */ bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream, struct crc_params *crc_window, bool enable, bool continuous) { struct pipe_ctx *pipe; struct crc_params param; struct timing_generator *tg; pipe = resource_get_otg_master_for_stream( &dc->current_state->res_ctx, stream); /* Stream not found */ if (pipe == NULL) return false; dc_exit_ips_for_hw_access(dc); /* By default, capture the full frame */ param.windowa_x_start = 0; param.windowa_y_start = 0; param.windowa_x_end = pipe->stream->timing.h_addressable; param.windowa_y_end = pipe->stream->timing.v_addressable; param.windowb_x_start = 0; param.windowb_y_start = 0; param.windowb_x_end = pipe->stream->timing.h_addressable; param.windowb_y_end = pipe->stream->timing.v_addressable; if (crc_window) { param.windowa_x_start = crc_window->windowa_x_start; param.windowa_y_start = crc_window->windowa_y_start; param.windowa_x_end = crc_window->windowa_x_end; param.windowa_y_end = crc_window->windowa_y_end; param.windowb_x_start = crc_window->windowb_x_start; param.windowb_y_start = crc_window->windowb_y_start; param.windowb_x_end = crc_window->windowb_x_end; param.windowb_y_end = crc_window->windowb_y_end; } param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0; param.odm_mode = pipe->next_odm_pipe ? 1:0; /* Default to the union of both windows */ param.selection = UNION_WINDOW_A_B; param.continuous_mode = continuous; param.enable = enable; tg = pipe->stream_res.tg; /* Only call if supported */ if (tg->funcs->configure_crc) return tg->funcs->configure_crc(tg, ¶m); DC_LOG_WARNING("CRC capture not supported."); return false; } /** * dc_stream_get_crc() - Get CRC values for the given stream. * * @dc: DC object. * @stream: The DC stream state of the stream to get CRCs from. * @r_cr: CRC value for the red component. * @g_y: CRC value for the green component. * @b_cb: CRC value for the blue component. * * dc_stream_configure_crc needs to be called beforehand to enable CRCs. * * Return: * %false if stream is not found, or if CRCs are not enabled. */ bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb) { int i; struct pipe_ctx *pipe; struct timing_generator *tg; dc_exit_ips_for_hw_access(dc); for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream) break; } /* Stream not found */ if (i == MAX_PIPES) return false; tg = pipe->stream_res.tg; if (tg->funcs->get_crc) return tg->funcs->get_crc(tg, r_cr, g_y, b_cb); DC_LOG_WARNING("CRC capture not supported."); return false; } void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream, enum dc_dynamic_expansion option) { /* OPP FMT dyn expansion updates*/ int i; struct pipe_ctx *pipe_ctx; dc_exit_ips_for_hw_access(dc); for (i = 0; i < MAX_PIPES; i++) { if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; pipe_ctx->stream_res.opp->dyn_expansion = option; pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion( pipe_ctx->stream_res.opp, COLOR_SPACE_YCBCR601, stream->timing.display_color_depth, stream->signal); } } } void dc_stream_set_dither_option(struct dc_stream_state *stream, enum dc_dither_option option) { struct bit_depth_reduction_params params; struct dc_link *link = stream->link; struct pipe_ctx *pipes = NULL; int i; for (i = 0; i < MAX_PIPES; i++) { if (link->dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { pipes = &link->dc->current_state->res_ctx.pipe_ctx[i]; break; } } if (!pipes) return; if (option > DITHER_OPTION_MAX) return; dc_exit_ips_for_hw_access(stream->ctx->dc); stream->dither_option = option; memset(¶ms, 0, sizeof(params)); resource_build_bit_depth_reduction_params(stream, ¶ms); stream->bit_depth_params = params; if (pipes->plane_res.xfm && pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) { pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth( pipes->plane_res.xfm, pipes->plane_res.scl_data.lb_params.depth, &stream->bit_depth_params); } pipes->stream_res.opp->funcs-> opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms); } bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream) { int i; bool ret = false; struct pipe_ctx *pipes; dc_exit_ips_for_hw_access(dc); for (i = 0; i < MAX_PIPES; i++) { if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { pipes = &dc->current_state->res_ctx.pipe_ctx[i]; dc->hwss.program_gamut_remap(pipes); ret = true; } } return ret; } bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream) { int i; bool ret = false; struct pipe_ctx *pipes; dc_exit_ips_for_hw_access(dc); for (i = 0; i < MAX_PIPES; i++) { if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { pipes = &dc->current_state->res_ctx.pipe_ctx[i]; dc->hwss.program_output_csc(dc, pipes, stream->output_color_space, stream->csc_color_matrix.matrix, pipes->stream_res.opp->inst); ret = true; } } return ret; } void dc_stream_set_static_screen_params(struct dc *dc, struct dc_stream_state **streams, int num_streams, const struct dc_static_screen_params *params) { int i, j; struct pipe_ctx *pipes_affected[MAX_PIPES]; int num_pipes_affected = 0; dc_exit_ips_for_hw_access(dc); for (i = 0; i < num_streams; i++) { struct dc_stream_state *stream = streams[i]; for (j = 0; j < MAX_PIPES; j++) { if (dc->current_state->res_ctx.pipe_ctx[j].stream == stream) { pipes_affected[num_pipes_affected++] = &dc->current_state->res_ctx.pipe_ctx[j]; } } } dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params); } static void dc_destruct(struct dc *dc) { // reset link encoder assignment table on destruct if (dc->res_pool && dc->res_pool->funcs->link_encs_assign) link_enc_cfg_init(dc, dc->current_state); if (dc->current_state) { dc_state_release(dc->current_state); dc->current_state = NULL; } destroy_links(dc); destroy_link_encoders(dc); if (dc->clk_mgr) { dc_destroy_clk_mgr(dc->clk_mgr); dc->clk_mgr = NULL; } dc_destroy_resource_pool(dc); if (dc->link_srv) link_destroy_link_service(&dc->link_srv); if (dc->ctx->gpio_service) dal_gpio_service_destroy(&dc->ctx->gpio_service); if (dc->ctx->created_bios) dal_bios_parser_destroy(&dc->ctx->dc_bios); kfree(dc->ctx->logger); dc_perf_trace_destroy(&dc->ctx->perf_trace); kfree(dc->ctx); dc->ctx = NULL; kfree(dc->bw_vbios); dc->bw_vbios = NULL; kfree(dc->bw_dceip); dc->bw_dceip = NULL; kfree(dc->dcn_soc); dc->dcn_soc = NULL; kfree(dc->dcn_ip); dc->dcn_ip = NULL; kfree(dc->vm_helper); dc->vm_helper = NULL; } static bool dc_construct_ctx(struct dc *dc, const struct dc_init_data *init_params) { struct dc_context *dc_ctx; dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL); if (!dc_ctx) return false; dc_ctx->cgs_device = init_params->cgs_device; dc_ctx->driver_context = init_params->driver; dc_ctx->dc = dc; dc_ctx->asic_id = init_params->asic_id; dc_ctx->dc_sink_id_count = 0; dc_ctx->dc_stream_id_count = 0; dc_ctx->dce_environment = init_params->dce_environment; dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets; dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets; dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets; /* Create logger */ dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL); if (!dc_ctx->logger) { kfree(dc_ctx); return false; } dc_ctx->logger->dev = adev_to_drm(init_params->driver); dc->dml.logger = dc_ctx->logger; dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id); dc_ctx->perf_trace = dc_perf_trace_create(); if (!dc_ctx->perf_trace) { kfree(dc_ctx); ASSERT_CRITICAL(false); return false; } dc->ctx = dc_ctx; dc->link_srv = link_create_link_service(); if (!dc->link_srv) return false; return true; } static bool dc_construct(struct dc *dc, const struct dc_init_data *init_params) { struct dc_context *dc_ctx; struct bw_calcs_dceip *dc_dceip; struct bw_calcs_vbios *dc_vbios; struct dcn_soc_bounding_box *dcn_soc; struct dcn_ip_params *dcn_ip; dc->config = init_params->flags; // Allocate memory for the vm_helper dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL); if (!dc->vm_helper) { dm_error("%s: failed to create dc->vm_helper\n", __func__); goto fail; } memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides)); dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL); if (!dc_dceip) { dm_error("%s: failed to create dceip\n", __func__); goto fail; } dc->bw_dceip = dc_dceip; dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL); if (!dc_vbios) { dm_error("%s: failed to create vbios\n", __func__); goto fail; } dc->bw_vbios = dc_vbios; dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL); if (!dcn_soc) { dm_error("%s: failed to create dcn_soc\n", __func__); goto fail; } dc->dcn_soc = dcn_soc; dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL); if (!dcn_ip) { dm_error("%s: failed to create dcn_ip\n", __func__); goto fail; } dc->dcn_ip = dcn_ip; if (!dc_construct_ctx(dc, init_params)) { dm_error("%s: failed to create ctx\n", __func__); goto fail; } dc_ctx = dc->ctx; /* Resource should construct all asic specific resources. * This should be the only place where we need to parse the asic id */ if (init_params->vbios_override) dc_ctx->dc_bios = init_params->vbios_override; else { /* Create BIOS parser */ struct bp_init_data bp_init_data; bp_init_data.ctx = dc_ctx; bp_init_data.bios = init_params->asic_id.atombios_base_address; dc_ctx->dc_bios = dal_bios_parser_create( &bp_init_data, dc_ctx->dce_version); if (!dc_ctx->dc_bios) { ASSERT_CRITICAL(false); goto fail; } dc_ctx->created_bios = true; } dc->vendor_signature = init_params->vendor_signature; /* Create GPIO service */ dc_ctx->gpio_service = dal_gpio_service_create( dc_ctx->dce_version, dc_ctx->dce_environment, dc_ctx); if (!dc_ctx->gpio_service) { ASSERT_CRITICAL(false); goto fail; } dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version); if (!dc->res_pool) goto fail; /* set i2c speed if not done by the respective dcnxxx__resource.c */ if (dc->caps.i2c_speed_in_khz_hdcp == 0) dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz; if (dc->caps.max_optimizable_video_width == 0) dc->caps.max_optimizable_video_width = 5120; dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg); if (!dc->clk_mgr) goto fail; #ifdef CONFIG_DRM_AMD_DC_FP dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present; if (dc->res_pool->funcs->update_bw_bounding_box) { DC_FP_START(); dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params); DC_FP_END(); } #endif if (!create_links(dc, init_params->num_virtual_links)) goto fail; /* Create additional DIG link encoder objects if fewer than the platform * supports were created during link construction. */ if (!create_link_encoders(dc)) goto fail; /* Creation of current_state must occur after dc->dml * is initialized in dc_create_resource_pool because * on creation it copies the contents of dc->dml */ dc->current_state = dc_state_create(dc, NULL); if (!dc->current_state) { dm_error("%s: failed to create validate ctx\n", __func__); goto fail; } return true; fail: return false; } static void disable_all_writeback_pipes_for_stream( const struct dc *dc, struct dc_stream_state *stream, struct dc_state *context) { int i; for (i = 0; i < stream->num_wb_info; i++) stream->writeback_info[i].wb_enabled = false; } static void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, bool lock) { int i; /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */ if (dc->hwss.interdependent_update_lock) dc->hwss.interdependent_update_lock(dc, context, lock); else { for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; // Copied conditions that were previously in dce110_apply_ctx_for_surface if (stream == pipe_ctx->stream) { if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) && (pipe_ctx->plane_state || old_pipe_ctx->plane_state)) dc->hwss.pipe_control_lock(dc, pipe_ctx, lock); } } } } static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx) { if (dc->ctx->dce_version >= DCN_VERSION_1_0) { memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color)); if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE) get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); else { if (dc->ctx->dce_version < DCN_VERSION_2_0) color_space_to_black_color( dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color)); } if (dc->ctx->dce_version >= DCN_VERSION_2_0) { if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE) get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP) get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color)); } } } static void disable_dangling_plane(struct dc *dc, struct dc_state *context) { int i, j; struct dc_state *dangling_context = dc_state_create_current_copy(dc); struct dc_state *current_ctx; struct pipe_ctx *pipe; struct timing_generator *tg; if (dangling_context == NULL) return; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct dc_stream_state *old_stream = dc->current_state->res_ctx.pipe_ctx[i].stream; bool should_disable = true; bool pipe_split_change = false; if ((context->res_ctx.pipe_ctx[i].top_pipe) && (dc->current_state->res_ctx.pipe_ctx[i].top_pipe)) pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx != dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx; else pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe != dc->current_state->res_ctx.pipe_ctx[i].top_pipe; for (j = 0; j < context->stream_count; j++) { if (old_stream == context->streams[j]) { should_disable = false; break; } } if (!should_disable && pipe_split_change && dc->current_state->stream_count != context->stream_count) should_disable = true; if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe && !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) { struct pipe_ctx *old_pipe, *new_pipe; old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; new_pipe = &context->res_ctx.pipe_ctx[i]; if (old_pipe->plane_state && !new_pipe->plane_state) should_disable = true; } if (should_disable && old_stream) { bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM; pipe = &dc->current_state->res_ctx.pipe_ctx[i]; tg = pipe->stream_res.tg; /* When disabling plane for a phantom pipe, we must turn on the * phantom OTG so the disable programming gets the double buffer * update. Otherwise the pipe will be left in a partially disabled * state that can result in underflow or hang when enabling it * again for different use. */ if (is_phantom) { if (tg->funcs->enable_crtc) { int main_pipe_width, main_pipe_height; struct dc_stream_state *old_paired_stream = dc_state_get_paired_subvp_stream(dc->current_state, old_stream); main_pipe_width = old_paired_stream->dst.width; main_pipe_height = old_paired_stream->dst.height; if (dc->hwss.blank_phantom) dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height); tg->funcs->enable_crtc(tg); } } if (is_phantom) dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true); else dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context); disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context); if (pipe->stream && pipe->plane_state) { set_p_state_switch_method(dc, context, pipe); dc_update_visual_confirm_color(dc, context, pipe); } if (dc->hwss.apply_ctx_for_surface) { apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true); dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context); apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false); dc->hwss.post_unlock_program_front_end(dc, dangling_context); } if (dc->hwss.program_front_end_for_ctx) { dc->hwss.interdependent_update_lock(dc, dc->current_state, true); dc->hwss.program_front_end_for_ctx(dc, dangling_context); dc->hwss.interdependent_update_lock(dc, dc->current_state, false); dc->hwss.post_unlock_program_front_end(dc, dangling_context); } /* We need to put the phantom OTG back into it's default (disabled) state or we * can get corruption when transition from one SubVP config to a different one. * The OTG is set to disable on falling edge of VUPDATE so the plane disable * will still get it's double buffer update. */ if (is_phantom) { if (tg->funcs->disable_phantom_crtc) tg->funcs->disable_phantom_crtc(tg); } } } current_ctx = dc->current_state; dc->current_state = dangling_context; dc_state_release(current_ctx); } static void disable_vbios_mode_if_required( struct dc *dc, struct dc_state *context) { unsigned int i, j; /* check if timing_changed, disable stream*/ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct dc_stream_state *stream = NULL; struct dc_link *link = NULL; struct pipe_ctx *pipe = NULL; pipe = &context->res_ctx.pipe_ctx[i]; stream = pipe->stream; if (stream == NULL) continue; if (stream->apply_seamless_boot_optimization) continue; // only looking for first odm pipe if (pipe->prev_odm_pipe) continue; if (stream->link->local_sink && stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) { link = stream->link; } if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) { unsigned int enc_inst, tg_inst = 0; unsigned int pix_clk_100hz = 0; enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc); if (enc_inst != ENGINE_ID_UNKNOWN) { for (j = 0; j < dc->res_pool->stream_enc_count; j++) { if (dc->res_pool->stream_enc[j]->id == enc_inst) { tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg( dc->res_pool->stream_enc[j]); break; } } dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz( dc->res_pool->dp_clock_source, tg_inst, &pix_clk_100hz); if (link->link_status.link_active) { uint32_t requested_pix_clk_100hz = pipe->stream_res.pix_clk_params.requested_pix_clk_100hz; if (pix_clk_100hz != requested_pix_clk_100hz) { dc->link_srv->set_dpms_off(pipe); pipe->stream->dpms_off = false; } } } } } } /** * wait_for_blank_complete - wait for all active OPPs to finish pending blank * pattern updates * * @dc: [in] dc reference * @context: [in] hardware context in use */ static void wait_for_blank_complete(struct dc *dc, struct dc_state *context) { struct pipe_ctx *opp_head; struct dce_hwseq *hws = dc->hwseq; int i; if (!hws->funcs.wait_for_blank_complete) return; for (i = 0; i < MAX_PIPES; i++) { opp_head = &context->res_ctx.pipe_ctx[i]; if (!resource_is_pipe_type(opp_head, OPP_HEAD) || dc_state_get_pipe_subvp_type(context, opp_head) == SUBVP_PHANTOM) continue; hws->funcs.wait_for_blank_complete(opp_head->stream_res.opp); } } static void wait_for_odm_update_pending_complete(struct dc *dc, struct dc_state *context) { struct pipe_ctx *otg_master; struct timing_generator *tg; int i; for (i = 0; i < MAX_PIPES; i++) { otg_master = &context->res_ctx.pipe_ctx[i]; if (!resource_is_pipe_type(otg_master, OTG_MASTER) || dc_state_get_pipe_subvp_type(context, otg_master) == SUBVP_PHANTOM) continue; tg = otg_master->stream_res.tg; if (tg->funcs->wait_odm_doublebuffer_pending_clear) tg->funcs->wait_odm_doublebuffer_pending_clear(tg); } /* ODM update may require to reprogram blank pattern for each OPP */ wait_for_blank_complete(dc, context); } static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context) { int i; PERF_TRACE(); for (i = 0; i < MAX_PIPES; i++) { int count = 0; struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->plane_state || dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) continue; /* Timeout 100 ms */ while (count < 100000) { /* Must set to false to start with, due to OR in update function */ pipe->plane_state->status.is_flip_pending = false; dc->hwss.update_pending_status(pipe); if (!pipe->plane_state->status.is_flip_pending) break; udelay(1); count++; } ASSERT(!pipe->plane_state->status.is_flip_pending); } PERF_TRACE(); } /* Public functions */ struct dc *dc_create(const struct dc_init_data *init_params) { struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL); unsigned int full_pipe_count; if (!dc) return NULL; if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) { if (!dc_construct_ctx(dc, init_params)) goto destruct_dc; } else { if (!dc_construct(dc, init_params)) goto destruct_dc; full_pipe_count = dc->res_pool->pipe_count; if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE) full_pipe_count--; dc->caps.max_streams = min( full_pipe_count, dc->res_pool->stream_enc_count); dc->caps.max_links = dc->link_count; dc->caps.max_audios = dc->res_pool->audio_count; dc->caps.linear_pitch_alignment = 64; dc->caps.max_dp_protocol_version = DP_VERSION_1_4; dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator; if (dc->res_pool->dmcu != NULL) dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version; } dc->dcn_reg_offsets = init_params->dcn_reg_offsets; dc->nbio_reg_offsets = init_params->nbio_reg_offsets; dc->clk_reg_offsets = init_params->clk_reg_offsets; /* Populate versioning information */ dc->versions.dc_ver = DC_VER; dc->build_id = DC_BUILD_ID; DC_LOG_DC("Display Core initialized\n"); return dc; destruct_dc: dc_destruct(dc); kfree(dc); return NULL; } static void detect_edp_presence(struct dc *dc) { struct dc_link *edp_links[MAX_NUM_EDP]; struct dc_link *edp_link = NULL; enum dc_connection_type type; int i; int edp_num; dc_get_edp_links(dc, edp_links, &edp_num); if (!edp_num) return; for (i = 0; i < edp_num; i++) { edp_link = edp_links[i]; if (dc->config.edp_not_connected) { edp_link->edp_sink_present = false; } else { dc_link_detect_connection_type(edp_link, &type); edp_link->edp_sink_present = (type != dc_connection_none); } } } void dc_hardware_init(struct dc *dc) { detect_edp_presence(dc); if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW) dc->hwss.init_hw(dc); } void dc_init_callbacks(struct dc *dc, const struct dc_callback_init *init_params) { dc->ctx->cp_psp = init_params->cp_psp; } void dc_deinit_callbacks(struct dc *dc) { memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp)); } void dc_destroy(struct dc **dc) { dc_destruct(*dc); kfree(*dc); *dc = NULL; } static void enable_timing_multisync( struct dc *dc, struct dc_state *ctx) { int i, multisync_count = 0; int pipe_count = dc->res_pool->pipe_count; struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL }; for (i = 0; i < pipe_count; i++) { if (!ctx->res_ctx.pipe_ctx[i].stream || !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled) continue; if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source) continue; multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i]; multisync_count++; } if (multisync_count > 0) { dc->hwss.enable_per_frame_crtc_position_reset( dc, multisync_count, multisync_pipes); } } static void program_timing_sync( struct dc *dc, struct dc_state *ctx) { int i, j, k; int group_index = 0; int num_group = 0; int pipe_count = dc->res_pool->pipe_count; struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL }; for (i = 0; i < pipe_count; i++) { if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe) continue; unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i]; } for (i = 0; i < pipe_count; i++) { int group_size = 1; enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE; struct pipe_ctx *pipe_set[MAX_PIPES]; if (!unsynced_pipes[i]) continue; pipe_set[0] = unsynced_pipes[i]; unsynced_pipes[i] = NULL; /* Add tg to the set, search rest of the tg's for ones with * same timing, add all tgs with same timing to the group */ for (j = i + 1; j < pipe_count; j++) { if (!unsynced_pipes[j]) continue; if (sync_type != TIMING_SYNCHRONIZABLE && dc->hwss.enable_vblanks_synchronization && unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks && resource_are_vblanks_synchronizable( unsynced_pipes[j]->stream, pipe_set[0]->stream)) { sync_type = VBLANK_SYNCHRONIZABLE; pipe_set[group_size] = unsynced_pipes[j]; unsynced_pipes[j] = NULL; group_size++; } else if (sync_type != VBLANK_SYNCHRONIZABLE && resource_are_streams_timing_synchronizable( unsynced_pipes[j]->stream, pipe_set[0]->stream)) { sync_type = TIMING_SYNCHRONIZABLE; pipe_set[group_size] = unsynced_pipes[j]; unsynced_pipes[j] = NULL; group_size++; } } /* set first unblanked pipe as master */ for (j = 0; j < group_size; j++) { bool is_blanked; if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked) is_blanked = pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp); else is_blanked = pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg); if (!is_blanked) { if (j == 0) break; swap(pipe_set[0], pipe_set[j]); break; } } for (k = 0; k < group_size; k++) { struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream); status->timing_sync_info.group_id = num_group; status->timing_sync_info.group_size = group_size; if (k == 0) status->timing_sync_info.master = true; else status->timing_sync_info.master = false; } /* remove any other unblanked pipes as they have already been synced */ if (dc->config.use_pipe_ctx_sync_logic) { /* check pipe's syncd to decide which pipe to be removed */ for (j = 1; j < group_size; j++) { if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) { group_size--; pipe_set[j] = pipe_set[group_size]; j--; } else /* link slave pipe's syncd with master pipe */ pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd; } } else { /* remove any other pipes by checking valid plane */ for (j = j + 1; j < group_size; j++) { bool is_blanked; if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked) is_blanked = pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp); else is_blanked = pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg); if (!is_blanked) { group_size--; pipe_set[j] = pipe_set[group_size]; j--; } } } if (group_size > 1) { if (sync_type == TIMING_SYNCHRONIZABLE) { dc->hwss.enable_timing_synchronization( dc, ctx, group_index, group_size, pipe_set); } else if (sync_type == VBLANK_SYNCHRONIZABLE) { dc->hwss.enable_vblanks_synchronization( dc, group_index, group_size, pipe_set); } group_index++; } num_group++; } } static bool streams_changed(struct dc *dc, struct dc_stream_state *streams[], uint8_t stream_count) { uint8_t i; if (stream_count != dc->current_state->stream_count) return true; for (i = 0; i < dc->current_state->stream_count; i++) { if (dc->current_state->streams[i] != streams[i]) return true; if (!streams[i]->link->link_state_valid) return true; } return false; } bool dc_validate_boot_timing(const struct dc *dc, const struct dc_sink *sink, struct dc_crtc_timing *crtc_timing) { struct timing_generator *tg; struct stream_encoder *se = NULL; struct dc_crtc_timing hw_crtc_timing = {0}; struct dc_link *link = sink->link; unsigned int i, enc_inst, tg_inst = 0; /* Support seamless boot on EDP displays only */ if (sink->sink_signal != SIGNAL_TYPE_EDP) { return false; } if (dc->debug.force_odm_combine) return false; /* Check for enabled DIG to identify enabled display */ if (!link->link_enc->funcs->is_dig_enabled(link->link_enc)) return false; enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc); if (enc_inst == ENGINE_ID_UNKNOWN) return false; for (i = 0; i < dc->res_pool->stream_enc_count; i++) { if (dc->res_pool->stream_enc[i]->id == enc_inst) { se = dc->res_pool->stream_enc[i]; tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg( dc->res_pool->stream_enc[i]); break; } } // tg_inst not found if (i == dc->res_pool->stream_enc_count) return false; if (tg_inst >= dc->res_pool->timing_generator_count) return false; if (tg_inst != link->link_enc->preferred_engine) return false; tg = dc->res_pool->timing_generators[tg_inst]; if (!tg->funcs->get_hw_timing) return false; if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing)) return false; if (crtc_timing->h_total != hw_crtc_timing.h_total) return false; if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left) return false; if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable) return false; if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right) return false; if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch) return false; if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width) return false; if (crtc_timing->v_total != hw_crtc_timing.v_total) return false; if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top) return false; if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable) return false; if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom) return false; if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch) return false; if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width) return false; /* block DSC for now, as VBIOS does not currently support DSC timings */ if (crtc_timing->flags.DSC) return false; if (dc_is_dp_signal(link->connector_signal)) { unsigned int pix_clk_100hz = 0; uint32_t numOdmPipes = 1; uint32_t id_src[4] = {0}; dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz( dc->res_pool->dp_clock_source, tg_inst, &pix_clk_100hz); if (tg->funcs->get_optc_source) tg->funcs->get_optc_source(tg, &numOdmPipes, &id_src[0], &id_src[1]); if (numOdmPipes == 2) pix_clk_100hz *= 2; if (numOdmPipes == 4) pix_clk_100hz *= 4; // Note: In rare cases, HW pixclk may differ from crtc's pixclk // slightly due to rounding issues in 10 kHz units. if (crtc_timing->pix_clk_100hz != pix_clk_100hz) return false; if (!se->funcs->dp_get_pixel_format) return false; if (!se->funcs->dp_get_pixel_format( se, &hw_crtc_timing.pixel_encoding, &hw_crtc_timing.display_color_depth)) return false; if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth) return false; if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding) return false; } if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) { return false; } if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED) return false; if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) { DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n"); return false; } return true; } static inline bool should_update_pipe_for_stream( struct dc_state *context, struct pipe_ctx *pipe_ctx, struct dc_stream_state *stream) { return (pipe_ctx->stream && pipe_ctx->stream == stream); } static inline bool should_update_pipe_for_plane( struct dc_state *context, struct pipe_ctx *pipe_ctx, struct dc_plane_state *plane_state) { return (pipe_ctx->plane_state == plane_state); } void dc_enable_stereo( struct dc *dc, struct dc_state *context, struct dc_stream_state *streams[], uint8_t stream_count) { int i, j; struct pipe_ctx *pipe; dc_exit_ips_for_hw_access(dc); for (i = 0; i < MAX_PIPES; i++) { if (context != NULL) { pipe = &context->res_ctx.pipe_ctx[i]; } else { context = dc->current_state; pipe = &dc->current_state->res_ctx.pipe_ctx[i]; } for (j = 0; pipe && j < stream_count; j++) { if (should_update_pipe_for_stream(context, pipe, streams[j]) && dc->hwss.setup_stereo) dc->hwss.setup_stereo(pipe, dc); } } } void dc_trigger_sync(struct dc *dc, struct dc_state *context) { if (context->stream_count > 1 && !dc->debug.disable_timing_sync) { dc_exit_ips_for_hw_access(dc); enable_timing_multisync(dc, context); program_timing_sync(dc, context); } } static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context) { int i; unsigned int stream_mask = 0; for (i = 0; i < dc->res_pool->pipe_count; i++) { if (context->res_ctx.pipe_ctx[i].stream) stream_mask |= 1 << i; } return stream_mask; } void dc_z10_restore(const struct dc *dc) { if (dc->hwss.z10_restore) dc->hwss.z10_restore(dc); } void dc_z10_save_init(struct dc *dc) { if (dc->hwss.z10_save_init) dc->hwss.z10_save_init(dc); } /** * dc_commit_state_no_check - Apply context to the hardware * * @dc: DC object with the current status to be updated * @context: New state that will become the current status at the end of this function * * Applies given context to the hardware and copy it into current context. * It's up to the user to release the src context afterwards. * * Return: an enum dc_status result code for the operation */ static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context) { struct dc_bios *dcb = dc->ctx->dc_bios; enum dc_status result = DC_ERROR_UNEXPECTED; struct pipe_ctx *pipe; int i, k, l; struct dc_stream_state *dc_streams[MAX_STREAMS] = {0}; struct dc_state *old_state; bool subvp_prev_use = false; dc_z10_restore(dc); dc_allow_idle_optimizations(dc, false); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; /* Check old context for SubVP */ subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM); if (subvp_prev_use) break; } for (i = 0; i < context->stream_count; i++) dc_streams[i] = context->streams[i]; if (!dcb->funcs->is_accelerated_mode(dcb)) { disable_vbios_mode_if_required(dc, context); dc->hwss.enable_accelerated_mode(dc, context); } if (context->stream_count > get_seamless_boot_stream_count(context) || context->stream_count == 0) dc->hwss.prepare_bandwidth(dc, context); /* When SubVP is active, all HW programming must be done while * SubVP lock is acquired */ if (dc->hwss.subvp_pipe_control_lock) dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use); if (dc->hwss.update_dsc_pg) dc->hwss.update_dsc_pg(dc, context, false); disable_dangling_plane(dc, context); /* re-program planes for existing stream, in case we need to * free up plane resource for later use */ if (dc->hwss.apply_ctx_for_surface) { for (i = 0; i < context->stream_count; i++) { if (context->streams[i]->mode_changed) continue; apply_ctx_interdependent_lock(dc, context, context->streams[i], true); dc->hwss.apply_ctx_for_surface( dc, context->streams[i], context->stream_status[i].plane_count, context); /* use new pipe config in new context */ apply_ctx_interdependent_lock(dc, context, context->streams[i], false); dc->hwss.post_unlock_program_front_end(dc, context); } } /* Program hardware */ for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe); } result = dc->hwss.apply_ctx_to_hw(dc, context); if (result != DC_OK) { /* Application of dc_state to hardware stopped. */ dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY; return result; } dc_trigger_sync(dc, context); /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */ for (i = 0; i < context->stream_count; i++) { uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed; context->streams[i]->update_flags.raw = 0xFFFFFFFF; context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed; } /* Program all planes within new context*/ if (dc->hwss.program_front_end_for_ctx) { dc->hwss.interdependent_update_lock(dc, context, true); dc->hwss.program_front_end_for_ctx(dc, context); dc->hwss.interdependent_update_lock(dc, context, false); dc->hwss.post_unlock_program_front_end(dc, context); } if (dc->hwss.commit_subvp_config) dc->hwss.commit_subvp_config(dc, context); if (dc->hwss.subvp_pipe_control_lock) dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use); for (i = 0; i < context->stream_count; i++) { const struct dc_link *link = context->streams[i]->link; if (!context->streams[i]->mode_changed) continue; if (dc->hwss.apply_ctx_for_surface) { apply_ctx_interdependent_lock(dc, context, context->streams[i], true); dc->hwss.apply_ctx_for_surface( dc, context->streams[i], context->stream_status[i].plane_count, context); apply_ctx_interdependent_lock(dc, context, context->streams[i], false); dc->hwss.post_unlock_program_front_end(dc, context); } /* * enable stereo * TODO rework dc_enable_stereo call to work with validation sets? */ for (k = 0; k < MAX_PIPES; k++) { pipe = &context->res_ctx.pipe_ctx[k]; for (l = 0 ; pipe && l < context->stream_count; l++) { if (context->streams[l] && context->streams[l] == pipe->stream && dc->hwss.setup_stereo) dc->hwss.setup_stereo(pipe, dc); } } CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}", context->streams[i]->timing.h_addressable, context->streams[i]->timing.v_addressable, context->streams[i]->timing.h_total, context->streams[i]->timing.v_total, context->streams[i]->timing.pix_clk_100hz / 10); } dc_enable_stereo(dc, context, dc_streams, context->stream_count); if (context->stream_count > get_seamless_boot_stream_count(context) || context->stream_count == 0) { /* Must wait for no flips to be pending before doing optimize bw */ wait_for_no_pipes_pending(dc, context); /* * optimized dispclk depends on ODM setup. Need to wait for ODM * update pending complete before optimizing bandwidth. */ wait_for_odm_update_pending_complete(dc, context); /* pplib is notified if disp_num changed */ dc->hwss.optimize_bandwidth(dc, context); /* Need to do otg sync again as otg could be out of sync due to otg * workaround applied during clock update */ dc_trigger_sync(dc, context); } if (dc->hwss.update_dsc_pg) dc->hwss.update_dsc_pg(dc, context, true); if (dc->ctx->dce_version >= DCE_VERSION_MAX) TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk); else TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce); context->stream_mask = get_stream_mask(dc, context); if (context->stream_mask != dc->current_state->stream_mask) dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask); for (i = 0; i < context->stream_count; i++) context->streams[i]->mode_changed = false; /* Clear update flags that were set earlier to avoid redundant programming */ for (i = 0; i < context->stream_count; i++) { context->streams[i]->update_flags.raw = 0x0; } old_state = dc->current_state; dc->current_state = context; dc_state_release(old_state); dc_state_retain(dc->current_state); return result; } static bool commit_minimal_transition_state(struct dc *dc, struct dc_state *transition_base_context); /** * dc_commit_streams - Commit current stream state * * @dc: DC object with the commit state to be configured in the hardware * @params: Parameters for the commit, including the streams to be committed * * Function responsible for commit streams change to the hardware. * * Return: * Return DC_OK if everything work as expected, otherwise, return a dc_status * code. */ enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params) { int i, j; struct dc_state *context; enum dc_status res = DC_OK; struct dc_validation_set set[MAX_STREAMS] = {0}; struct pipe_ctx *pipe; bool handle_exit_odm2to1 = false; if (!params) return DC_ERROR_UNEXPECTED; if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW) return res; if (!streams_changed(dc, params->streams, params->stream_count) && dc->current_state->power_source == params->power_source) return res; dc_exit_ips_for_hw_access(dc); DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count); for (i = 0; i < params->stream_count; i++) { struct dc_stream_state *stream = params->streams[i]; struct dc_stream_status *status = dc_stream_get_status(stream); dc_stream_log(dc, stream); set[i].stream = stream; if (status) { set[i].plane_count = status->plane_count; for (j = 0; j < status->plane_count; j++) set[i].plane_states[j] = status->plane_states[j]; } } /* ODM Combine 2:1 power optimization is only applied for single stream * scenario, it uses extra pipes than needed to reduce power consumption * We need to switch off this feature to make room for new streams. */ if (params->stream_count > dc->current_state->stream_count && dc->current_state->stream_count == 1) { for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->next_odm_pipe) handle_exit_odm2to1 = true; } } if (handle_exit_odm2to1) res = commit_minimal_transition_state(dc, dc->current_state); context = dc_state_create_current_copy(dc); if (!context) goto context_alloc_fail; context->power_source = params->power_source; res = dc_validate_with_context(dc, set, params->stream_count, context, false); if (res != DC_OK) { BREAK_TO_DEBUGGER(); goto fail; } res = dc_commit_state_no_check(dc, context); for (i = 0; i < params->stream_count; i++) { for (j = 0; j < context->stream_count; j++) { if (params->streams[i]->stream_id == context->streams[j]->stream_id) params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst; if (dc_is_embedded_signal(params->streams[i]->signal)) { struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]); if (dc->hwss.is_abm_supported) status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]); else status->is_abm_supported = true; } } } fail: dc_state_release(context); context_alloc_fail: DC_LOG_DC("%s Finished.\n", __func__); return res; } bool dc_acquire_release_mpc_3dlut( struct dc *dc, bool acquire, struct dc_stream_state *stream, struct dc_3dlut **lut, struct dc_transfer_func **shaper) { int pipe_idx; bool ret = false; bool found_pipe_idx = false; const struct resource_pool *pool = dc->res_pool; struct resource_context *res_ctx = &dc->current_state->res_ctx; int mpcc_id = 0; if (pool && res_ctx) { if (acquire) { /*find pipe idx for the given stream*/ for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) { if (res_ctx->pipe_ctx[pipe_idx].stream == stream) { found_pipe_idx = true; mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst; break; } } } else found_pipe_idx = true;/*for release pipe_idx is not required*/ if (found_pipe_idx) { if (acquire && pool->funcs->acquire_post_bldn_3dlut) ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper); else if (!acquire && pool->funcs->release_post_bldn_3dlut) ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper); } } return ret; } static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context) { int i; struct pipe_ctx *pipe; for (i = 0; i < MAX_PIPES; i++) { pipe = &context->res_ctx.pipe_ctx[i]; // Don't check flip pending on phantom pipes if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM)) continue; /* Must set to false to start with, due to OR in update function */ pipe->plane_state->status.is_flip_pending = false; dc->hwss.update_pending_status(pipe); if (pipe->plane_state->status.is_flip_pending) return true; } return false; } /* Perform updates here which need to be deferred until next vupdate * * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered * but forcing lut memory to shutdown state is immediate. This causes * single frame corruption as lut gets disabled mid-frame unless shutdown * is deferred until after entering bypass. */ static void process_deferred_updates(struct dc *dc) { int i = 0; if (dc->debug.enable_mem_low_power.bits.cm) { ASSERT(dc->dcn_ip->max_num_dpp); for (i = 0; i < dc->dcn_ip->max_num_dpp; i++) if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update) dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]); } } void dc_post_update_surfaces_to_stream(struct dc *dc) { int i; struct dc_state *context = dc->current_state; if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0) return; post_surface_trace(dc); /* * Only relevant for DCN behavior where we can guarantee the optimization * is safe to apply - retain the legacy behavior for DCE. */ if (dc->ctx->dce_version < DCE_VERSION_MAX) TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce); else { TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk); if (is_flip_pending_in_pipes(dc, context)) return; for (i = 0; i < dc->res_pool->pipe_count; i++) if (context->res_ctx.pipe_ctx[i].stream == NULL || context->res_ctx.pipe_ctx[i].plane_state == NULL) { context->res_ctx.pipe_ctx[i].pipe_idx = i; dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]); } process_deferred_updates(dc); dc->hwss.optimize_bandwidth(dc, context); if (dc->hwss.update_dsc_pg) dc->hwss.update_dsc_pg(dc, context, true); } dc->optimized_required = false; dc->wm_optimized_required = false; } bool dc_set_generic_gpio_for_stereo(bool enable, struct gpio_service *gpio_service) { enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR; struct gpio_pin_info pin_info; struct gpio *generic; struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config), GFP_KERNEL); if (!config) return false; pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0); if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) { kfree(config); return false; } else { generic = dal_gpio_service_create_generic_mux( gpio_service, pin_info.offset, pin_info.mask); } if (!generic) { kfree(config); return false; } gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT); config->enable_output_from_mux = enable; config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC; if (gpio_result == GPIO_RESULT_OK) gpio_result = dal_mux_setup_config(generic, config); if (gpio_result == GPIO_RESULT_OK) { dal_gpio_close(generic); dal_gpio_destroy_generic_mux(&generic); kfree(config); return true; } else { dal_gpio_close(generic); dal_gpio_destroy_generic_mux(&generic); kfree(config); return false; } } static bool is_surface_in_context( const struct dc_state *context, const struct dc_plane_state *plane_state) { int j; for (j = 0; j < MAX_PIPES; j++) { const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (plane_state == pipe_ctx->plane_state) { return true; } } return false; } static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u) { union surface_update_flags *update_flags = &u->surface->update_flags; enum surface_update_type update_type = UPDATE_TYPE_FAST; if (!u->plane_info) return UPDATE_TYPE_FAST; if (u->plane_info->color_space != u->surface->color_space) { update_flags->bits.color_space_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); } if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) { update_flags->bits.horizontal_mirror_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); } if (u->plane_info->rotation != u->surface->rotation) { update_flags->bits.rotation_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_FULL); } if (u->plane_info->format != u->surface->format) { update_flags->bits.pixel_format_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_FULL); } if (u->plane_info->stereo_format != u->surface->stereo_format) { update_flags->bits.stereo_format_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_FULL); } if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) { update_flags->bits.per_pixel_alpha_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); } if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) { update_flags->bits.global_alpha_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); } if (u->plane_info->dcc.enable != u->surface->dcc.enable || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) { /* During DCC on/off, stutter period is calculated before * DCC has fully transitioned. This results in incorrect * stutter period calculation. Triggering a full update will * recalculate stutter period. */ update_flags->bits.dcc_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_FULL); } if (resource_pixel_format_to_bpp(u->plane_info->format) != resource_pixel_format_to_bpp(u->surface->format)) { /* different bytes per element will require full bandwidth * and DML calculation */ update_flags->bits.bpp_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_FULL); } if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) { update_flags->bits.plane_size_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); } if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info, sizeof(union dc_tiling_info)) != 0) { update_flags->bits.swizzle_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); /* todo: below are HW dependent, we should add a hook to * DCE/N resource and validated there. */ if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) { /* swizzled mode requires RQ to be setup properly, * thus need to run DML to calculate RQ settings */ update_flags->bits.bandwidth_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_FULL); } } /* This should be UPDATE_TYPE_FAST if nothing has changed. */ return update_type; } static enum surface_update_type get_scaling_info_update_type( const struct dc *dc, const struct dc_surface_update *u) { union surface_update_flags *update_flags = &u->surface->update_flags; if (!u->scaling_info) return UPDATE_TYPE_FAST; if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width || u->scaling_info->dst_rect.height != u->surface->dst_rect.height || u->scaling_info->scaling_quality.integer_scaling != u->surface->scaling_quality.integer_scaling ) { update_flags->bits.scaling_change = 1; if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width || u->scaling_info->dst_rect.height < u->surface->dst_rect.height) && (u->scaling_info->dst_rect.width < u->surface->src_rect.width || u->scaling_info->dst_rect.height < u->surface->src_rect.height)) /* Making dst rect smaller requires a bandwidth change */ update_flags->bits.bandwidth_change = 1; } if (u->scaling_info->src_rect.width != u->surface->src_rect.width || u->scaling_info->src_rect.height != u->surface->src_rect.height) { update_flags->bits.scaling_change = 1; if (u->scaling_info->src_rect.width > u->surface->src_rect.width || u->scaling_info->src_rect.height > u->surface->src_rect.height) /* Making src rect bigger requires a bandwidth change */ update_flags->bits.clock_change = 1; } if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width && (u->scaling_info->clip_rect.width > u->surface->clip_rect.width || u->scaling_info->clip_rect.height > u->surface->clip_rect.height)) /* Changing clip size of a large surface may result in MPC slice count change */ update_flags->bits.bandwidth_change = 1; if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width || u->scaling_info->clip_rect.height != u->surface->clip_rect.height) update_flags->bits.clip_size_change = 1; if (u->scaling_info->src_rect.x != u->surface->src_rect.x || u->scaling_info->src_rect.y != u->surface->src_rect.y || u->scaling_info->clip_rect.x != u->surface->clip_rect.x || u->scaling_info->clip_rect.y != u->surface->clip_rect.y || u->scaling_info->dst_rect.x != u->surface->dst_rect.x || u->scaling_info->dst_rect.y != u->surface->dst_rect.y) update_flags->bits.position_change = 1; if (update_flags->bits.clock_change || update_flags->bits.bandwidth_change || update_flags->bits.scaling_change) return UPDATE_TYPE_FULL; if (update_flags->bits.position_change || update_flags->bits.clip_size_change) return UPDATE_TYPE_MED; return UPDATE_TYPE_FAST; } static enum surface_update_type det_surface_update(const struct dc *dc, const struct dc_surface_update *u) { const struct dc_state *context = dc->current_state; enum surface_update_type type; enum surface_update_type overall_type = UPDATE_TYPE_FAST; union surface_update_flags *update_flags = &u->surface->update_flags; if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) { update_flags->raw = 0xFFFFFFFF; return UPDATE_TYPE_FULL; } update_flags->raw = 0; // Reset all flags type = get_plane_info_update_type(u); elevate_update_type(&overall_type, type); type = get_scaling_info_update_type(dc, u); elevate_update_type(&overall_type, type); if (u->flip_addr) { update_flags->bits.addr_update = 1; if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) { update_flags->bits.tmz_changed = 1; elevate_update_type(&overall_type, UPDATE_TYPE_FULL); } } if (u->in_transfer_func) update_flags->bits.in_transfer_func_change = 1; if (u->input_csc_color_matrix) update_flags->bits.input_csc_change = 1; if (u->coeff_reduction_factor) update_flags->bits.coeff_reduction_change = 1; if (u->gamut_remap_matrix) update_flags->bits.gamut_remap_change = 1; if (u->blend_tf) update_flags->bits.gamma_change = 1; if (u->gamma) { enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN; if (u->plane_info) format = u->plane_info->format; else if (u->surface) format = u->surface->format; if (dce_use_lut(format)) update_flags->bits.gamma_change = 1; } if (u->lut3d_func || u->func_shaper) update_flags->bits.lut_3d = 1; if (u->hdr_mult.value) if (u->hdr_mult.value != u->surface->hdr_mult.value) { update_flags->bits.hdr_mult = 1; elevate_update_type(&overall_type, UPDATE_TYPE_MED); } if (update_flags->bits.in_transfer_func_change) { type = UPDATE_TYPE_MED; elevate_update_type(&overall_type, type); } if (update_flags->bits.lut_3d) { type = UPDATE_TYPE_FULL; elevate_update_type(&overall_type, type); } if (dc->debug.enable_legacy_fast_update && (update_flags->bits.gamma_change || update_flags->bits.gamut_remap_change || update_flags->bits.input_csc_change || update_flags->bits.coeff_reduction_change)) { type = UPDATE_TYPE_FULL; elevate_update_type(&overall_type, type); } return overall_type; } static enum surface_update_type check_update_surfaces_for_stream( struct dc *dc, struct dc_surface_update *updates, int surface_count, struct dc_stream_update *stream_update, const struct dc_stream_status *stream_status) { int i; enum surface_update_type overall_type = UPDATE_TYPE_FAST; if (dc->idle_optimizations_allowed) overall_type = UPDATE_TYPE_FULL; if (stream_status == NULL || stream_status->plane_count != surface_count) overall_type = UPDATE_TYPE_FULL; if (stream_update && stream_update->pending_test_pattern) { overall_type = UPDATE_TYPE_FULL; } /* some stream updates require passive update */ if (stream_update) { union stream_update_flags *su_flags = &stream_update->stream->update_flags; if ((stream_update->src.height != 0 && stream_update->src.width != 0) || (stream_update->dst.height != 0 && stream_update->dst.width != 0) || stream_update->integer_scaling_update) su_flags->bits.scaling = 1; if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func) su_flags->bits.out_tf = 1; if (stream_update->abm_level) su_flags->bits.abm_level = 1; if (stream_update->dpms_off) su_flags->bits.dpms_off = 1; if (stream_update->gamut_remap) su_flags->bits.gamut_remap = 1; if (stream_update->wb_update) su_flags->bits.wb_update = 1; if (stream_update->dsc_config) su_flags->bits.dsc_changed = 1; if (stream_update->mst_bw_update) su_flags->bits.mst_bw = 1; if (stream_update->stream && stream_update->stream->freesync_on_desktop && (stream_update->vrr_infopacket || stream_update->allow_freesync || stream_update->vrr_active_variable || stream_update->vrr_active_fixed)) su_flags->bits.fams_changed = 1; if (su_flags->raw != 0) overall_type = UPDATE_TYPE_FULL; if (stream_update->output_csc_transform || stream_update->output_color_space) su_flags->bits.out_csc = 1; /* Output transfer function changes do not require bandwidth recalculation, * so don't trigger a full update */ if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func) su_flags->bits.out_tf = 1; } for (i = 0 ; i < surface_count; i++) { enum surface_update_type type = det_surface_update(dc, &updates[i]); elevate_update_type(&overall_type, type); } return overall_type; } /* * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full) * * See :c:type:`enum surface_update_type ` for explanation of update types */ enum surface_update_type dc_check_update_surfaces_for_stream( struct dc *dc, struct dc_surface_update *updates, int surface_count, struct dc_stream_update *stream_update, const struct dc_stream_status *stream_status) { int i; enum surface_update_type type; if (stream_update) stream_update->stream->update_flags.raw = 0; for (i = 0; i < surface_count; i++) updates[i].surface->update_flags.raw = 0; type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status); if (type == UPDATE_TYPE_FULL) { if (stream_update) { uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed; stream_update->stream->update_flags.raw = 0xFFFFFFFF; stream_update->stream->update_flags.bits.dsc_changed = dsc_changed; } for (i = 0; i < surface_count; i++) updates[i].surface->update_flags.raw = 0xFFFFFFFF; } if (type == UPDATE_TYPE_FAST) { // If there's an available clock comparator, we use that. if (dc->clk_mgr->funcs->are_clock_states_equal) { if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk)) dc->optimized_required = true; // Else we fallback to mem compare. } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) { dc->optimized_required = true; } dc->optimized_required |= dc->wm_optimized_required; } return type; } static struct dc_stream_status *stream_get_status( struct dc_state *ctx, struct dc_stream_state *stream) { uint8_t i; for (i = 0; i < ctx->stream_count; i++) { if (stream == ctx->streams[i]) { return &ctx->stream_status[i]; } } return NULL; } static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL; static void copy_surface_update_to_plane( struct dc_plane_state *surface, struct dc_surface_update *srf_update) { if (srf_update->flip_addr) { surface->address = srf_update->flip_addr->address; surface->flip_immediate = srf_update->flip_addr->flip_immediate; surface->time.time_elapsed_in_us[surface->time.index] = srf_update->flip_addr->flip_timestamp_in_us - surface->time.prev_update_time_in_us; surface->time.prev_update_time_in_us = srf_update->flip_addr->flip_timestamp_in_us; surface->time.index++; if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX) surface->time.index = 0; surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips; } if (srf_update->scaling_info) { surface->scaling_quality = srf_update->scaling_info->scaling_quality; surface->dst_rect = srf_update->scaling_info->dst_rect; surface->src_rect = srf_update->scaling_info->src_rect; surface->clip_rect = srf_update->scaling_info->clip_rect; } if (srf_update->plane_info) { surface->color_space = srf_update->plane_info->color_space; surface->format = srf_update->plane_info->format; surface->plane_size = srf_update->plane_info->plane_size; surface->rotation = srf_update->plane_info->rotation; surface->horizontal_mirror = srf_update->plane_info->horizontal_mirror; surface->stereo_format = srf_update->plane_info->stereo_format; surface->tiling_info = srf_update->plane_info->tiling_info; surface->visible = srf_update->plane_info->visible; surface->per_pixel_alpha = srf_update->plane_info->per_pixel_alpha; surface->global_alpha = srf_update->plane_info->global_alpha; surface->global_alpha_value = srf_update->plane_info->global_alpha_value; surface->dcc = srf_update->plane_info->dcc; surface->layer_index = srf_update->plane_info->layer_index; } if (srf_update->gamma) { memcpy(&surface->gamma_correction.entries, &srf_update->gamma->entries, sizeof(struct dc_gamma_entries)); surface->gamma_correction.is_identity = srf_update->gamma->is_identity; surface->gamma_correction.num_entries = srf_update->gamma->num_entries; surface->gamma_correction.type = srf_update->gamma->type; } if (srf_update->in_transfer_func) { surface->in_transfer_func.sdr_ref_white_level = srf_update->in_transfer_func->sdr_ref_white_level; surface->in_transfer_func.tf = srf_update->in_transfer_func->tf; surface->in_transfer_func.type = srf_update->in_transfer_func->type; memcpy(&surface->in_transfer_func.tf_pts, &srf_update->in_transfer_func->tf_pts, sizeof(struct dc_transfer_func_distributed_points)); } if (srf_update->func_shaper) memcpy(&surface->in_shaper_func, srf_update->func_shaper, sizeof(surface->in_shaper_func)); if (srf_update->lut3d_func) memcpy(&surface->lut3d_func, srf_update->lut3d_func, sizeof(surface->lut3d_func)); if (srf_update->hdr_mult.value) surface->hdr_mult = srf_update->hdr_mult; if (srf_update->blend_tf) memcpy(&surface->blend_tf, srf_update->blend_tf, sizeof(surface->blend_tf)); if (srf_update->input_csc_color_matrix) surface->input_csc_color_matrix = *srf_update->input_csc_color_matrix; if (srf_update->coeff_reduction_factor) surface->coeff_reduction_factor = *srf_update->coeff_reduction_factor; if (srf_update->gamut_remap_matrix) surface->gamut_remap_matrix = *srf_update->gamut_remap_matrix; } static void copy_stream_update_to_stream(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, struct dc_stream_update *update) { struct dc_context *dc_ctx = dc->ctx; if (update == NULL || stream == NULL) return; if (update->src.height && update->src.width) stream->src = update->src; if (update->dst.height && update->dst.width) stream->dst = update->dst; if (update->out_transfer_func) { stream->out_transfer_func.sdr_ref_white_level = update->out_transfer_func->sdr_ref_white_level; stream->out_transfer_func.tf = update->out_transfer_func->tf; stream->out_transfer_func.type = update->out_transfer_func->type; memcpy(&stream->out_transfer_func.tf_pts, &update->out_transfer_func->tf_pts, sizeof(struct dc_transfer_func_distributed_points)); } if (update->hdr_static_metadata) stream->hdr_static_metadata = *update->hdr_static_metadata; if (update->abm_level) stream->abm_level = *update->abm_level; if (update->periodic_interrupt) stream->periodic_interrupt = *update->periodic_interrupt; if (update->gamut_remap) stream->gamut_remap_matrix = *update->gamut_remap; /* Note: this being updated after mode set is currently not a use case * however if it arises OCSC would need to be reprogrammed at the * minimum */ if (update->output_color_space) stream->output_color_space = *update->output_color_space; if (update->output_csc_transform) stream->csc_color_matrix = *update->output_csc_transform; if (update->vrr_infopacket) stream->vrr_infopacket = *update->vrr_infopacket; if (update->allow_freesync) stream->allow_freesync = *update->allow_freesync; if (update->vrr_active_variable) stream->vrr_active_variable = *update->vrr_active_variable; if (update->vrr_active_fixed) stream->vrr_active_fixed = *update->vrr_active_fixed; if (update->crtc_timing_adjust) stream->adjust = *update->crtc_timing_adjust; if (update->dpms_off) stream->dpms_off = *update->dpms_off; if (update->hfvsif_infopacket) stream->hfvsif_infopacket = *update->hfvsif_infopacket; if (update->vtem_infopacket) stream->vtem_infopacket = *update->vtem_infopacket; if (update->vsc_infopacket) stream->vsc_infopacket = *update->vsc_infopacket; if (update->vsp_infopacket) stream->vsp_infopacket = *update->vsp_infopacket; if (update->adaptive_sync_infopacket) stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket; if (update->dither_option) stream->dither_option = *update->dither_option; if (update->pending_test_pattern) stream->test_pattern = *update->pending_test_pattern; /* update current stream with writeback info */ if (update->wb_update) { int i; stream->num_wb_info = update->wb_update->num_wb_info; ASSERT(stream->num_wb_info <= MAX_DWB_PIPES); for (i = 0; i < stream->num_wb_info; i++) stream->writeback_info[i] = update->wb_update->writeback_info[i]; } if (update->dsc_config) { struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg; uint32_t old_dsc_enabled = stream->timing.flags.DSC; uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 && update->dsc_config->num_slices_v != 0); /* Use temporarry context for validating new DSC config */ struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state); if (dsc_validate_context) { stream->timing.dsc_cfg = *update->dsc_config; stream->timing.flags.DSC = enable_dsc; if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) { stream->timing.dsc_cfg = old_dsc_cfg; stream->timing.flags.DSC = old_dsc_enabled; update->dsc_config = NULL; } dc_state_release(dsc_validate_context); } else { DC_ERROR("Failed to allocate new validate context for DSC change\n"); update->dsc_config = NULL; } } } static void backup_planes_and_stream_state( struct dc_scratch_space *scratch, struct dc_stream_state *stream) { int i; struct dc_stream_status *status = dc_stream_get_status(stream); if (!status) return; for (i = 0; i < status->plane_count; i++) { scratch->plane_states[i] = *status->plane_states[i]; } scratch->stream_state = *stream; } static void restore_planes_and_stream_state( struct dc_scratch_space *scratch, struct dc_stream_state *stream) { int i; struct dc_stream_status *status = dc_stream_get_status(stream); if (!status) return; for (i = 0; i < status->plane_count; i++) { *status->plane_states[i] = scratch->plane_states[i]; } *stream = scratch->stream_state; } /** * update_seamless_boot_flags() - Helper function for updating seamless boot flags * * @dc: Current DC state * @context: New DC state to be programmed * @surface_count: Number of surfaces that have an updated * @stream: Corresponding stream to be updated in the current flip * * Updating seamless boot flags do not need to be part of the commit sequence. This * helper function will update the seamless boot flags on each flip (if required) * outside of the HW commit sequence (fast or slow). * * Return: void */ static void update_seamless_boot_flags(struct dc *dc, struct dc_state *context, int surface_count, struct dc_stream_state *stream) { if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) { /* Optimize seamless boot flag keeps clocks and watermarks high until * first flip. After first flip, optimization is required to lower * bandwidth. Important to note that it is expected UEFI will * only light up a single display on POST, therefore we only expect * one stream with seamless boot flag set. */ if (stream->apply_seamless_boot_optimization) { stream->apply_seamless_boot_optimization = false; if (get_seamless_boot_stream_count(context) == 0) dc->optimized_required = true; } } } /** * update_planes_and_stream_state() - The function takes planes and stream * updates as inputs and determines the appropriate update type. If update type * is FULL, the function allocates a new context, populates and validates it. * Otherwise, it updates current dc context. The function will return both * new_context and new_update_type back to the caller. The function also backs * up both current and new contexts into corresponding dc state scratch memory. * TODO: The function does too many things, and even conditionally allocates dc * context memory implicitly. We should consider to break it down. * * @dc: Current DC state * @srf_updates: an array of surface updates * @surface_count: surface update count * @stream: Corresponding stream to be updated * @stream_update: stream update * @new_update_type: [out] determined update type by the function * @new_context: [out] new context allocated and validated if update type is * FULL, reference to current context if update type is less than FULL. * * Return: true if a valid update is populated into new_context, false * otherwise. */ static bool update_planes_and_stream_state(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, enum surface_update_type *new_update_type, struct dc_state **new_context) { struct dc_state *context; int i, j; enum surface_update_type update_type; const struct dc_stream_status *stream_status; struct dc_context *dc_ctx = dc->ctx; stream_status = dc_stream_get_status(stream); if (!stream_status) { if (surface_count) /* Only an error condition if surf_count non-zero*/ ASSERT(false); return false; /* Cannot commit surface to stream that is not committed */ } context = dc->current_state; update_type = dc_check_update_surfaces_for_stream( dc, srf_updates, surface_count, stream_update, stream_status); if (update_type == UPDATE_TYPE_FULL) backup_planes_and_stream_state(&dc->scratch.current_state, stream); /* update current stream with the new updates */ copy_stream_update_to_stream(dc, context, stream, stream_update); /* do not perform surface update if surface has invalid dimensions * (all zero) and no scaling_info is provided */ if (surface_count > 0) { for (i = 0; i < surface_count; i++) { if ((srf_updates[i].surface->src_rect.width == 0 || srf_updates[i].surface->src_rect.height == 0 || srf_updates[i].surface->dst_rect.width == 0 || srf_updates[i].surface->dst_rect.height == 0) && (!srf_updates[i].scaling_info || srf_updates[i].scaling_info->src_rect.width == 0 || srf_updates[i].scaling_info->src_rect.height == 0 || srf_updates[i].scaling_info->dst_rect.width == 0 || srf_updates[i].scaling_info->dst_rect.height == 0)) { DC_ERROR("Invalid src/dst rects in surface update!\n"); return false; } } } if (update_type >= update_surface_trace_level) update_surface_trace(dc, srf_updates, surface_count); for (i = 0; i < surface_count; i++) copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]); if (update_type >= UPDATE_TYPE_FULL) { struct dc_plane_state *new_planes[MAX_SURFACES] = {0}; for (i = 0; i < surface_count; i++) new_planes[i] = srf_updates[i].surface; /* initialize scratch memory for building context */ context = dc_state_create_copy(dc->current_state); if (context == NULL) { DC_ERROR("Failed to allocate new validate context!\n"); return false; } /* For each full update, remove all existing phantom pipes first. * Ensures that we have enough pipes for newly added MPO planes */ dc_state_remove_phantom_streams_and_planes(dc, context); dc_state_release_phantom_streams_and_planes(dc, context); /*remove old surfaces from context */ if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) { BREAK_TO_DEBUGGER(); goto fail; } /* add surface to context */ if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) { BREAK_TO_DEBUGGER(); goto fail; } } /* save update parameters into surface */ for (i = 0; i < surface_count; i++) { struct dc_plane_state *surface = srf_updates[i].surface; if (update_type != UPDATE_TYPE_MED) continue; if (surface->update_flags.bits.clip_size_change || surface->update_flags.bits.position_change) { for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->plane_state != surface) continue; resource_build_scaling_params(pipe_ctx); } } } if (update_type == UPDATE_TYPE_FULL) { if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) { BREAK_TO_DEBUGGER(); goto fail; } } update_seamless_boot_flags(dc, context, surface_count, stream); *new_context = context; *new_update_type = update_type; if (update_type == UPDATE_TYPE_FULL) backup_planes_and_stream_state(&dc->scratch.new_state, stream); return true; fail: dc_state_release(context); return false; } static void commit_planes_do_stream_update(struct dc *dc, struct dc_stream_state *stream, struct dc_stream_update *stream_update, enum surface_update_type update_type, struct dc_state *context) { int j; // Stream updates for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) { if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt) dc->hwss.setup_periodic_interrupt(dc, pipe_ctx); if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) || stream_update->vrr_infopacket || stream_update->vsc_infopacket || stream_update->vsp_infopacket || stream_update->hfvsif_infopacket || stream_update->adaptive_sync_infopacket || stream_update->vtem_infopacket) { resource_build_info_frame(pipe_ctx); dc->hwss.update_info_frame(pipe_ctx); if (dc_is_dp_signal(pipe_ctx->stream->signal)) dc->link_srv->dp_trace_source_sequence( pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME); } if (stream_update->hdr_static_metadata && stream->use_dynamic_meta && dc->hwss.set_dmdata_attributes && pipe_ctx->stream->dmdata_address.quad_part != 0) dc->hwss.set_dmdata_attributes(pipe_ctx); if (stream_update->gamut_remap) dc_stream_set_gamut_remap(dc, stream); if (stream_update->output_csc_transform) dc_stream_program_csc_matrix(dc, stream); if (stream_update->dither_option) { struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe; resource_build_bit_depth_reduction_params(pipe_ctx->stream, &pipe_ctx->stream->bit_depth_params); pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp, &stream->bit_depth_params, &stream->clamping); while (odm_pipe) { odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp, &stream->bit_depth_params, &stream->clamping); odm_pipe = odm_pipe->next_odm_pipe; } } /* Full fe update*/ if (update_type == UPDATE_TYPE_FAST) continue; if (stream_update->dsc_config) dc->link_srv->update_dsc_config(pipe_ctx); if (stream_update->mst_bw_update) { if (stream_update->mst_bw_update->is_increase) dc->link_srv->increase_mst_payload(pipe_ctx, stream_update->mst_bw_update->mst_stream_bw); else dc->link_srv->reduce_mst_payload(pipe_ctx, stream_update->mst_bw_update->mst_stream_bw); } if (stream_update->pending_test_pattern) { /* * test pattern params depends on ODM topology * changes that we could be applying to front * end. Since at the current stage front end * changes are not yet applied. We can only * apply test pattern in hw based on current * state and populate the final test pattern * params in new state. If current and new test * pattern params are different as result of * different ODM topology being used, it will be * detected and handle during front end * programming update. */ dc->link_srv->dp_set_test_pattern(stream->link, stream->test_pattern.type, stream->test_pattern.color_space, stream->test_pattern.p_link_settings, stream->test_pattern.p_custom_pattern, stream->test_pattern.cust_pattern_size); resource_build_test_pattern_params(&context->res_ctx, pipe_ctx); } if (stream_update->dpms_off) { if (*stream_update->dpms_off) { dc->link_srv->set_dpms_off(pipe_ctx); /* for dpms, keep acquired resources*/ if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only) pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio); dc->optimized_required = true; } else { if (get_seamless_boot_stream_count(context) == 0) dc->hwss.prepare_bandwidth(dc, dc->current_state); dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx); } } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) { /* * Workaround for firmware issue in some receivers where they don't pick up * correct output color space unless DP link is disabled/re-enabled */ dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx); } if (stream_update->abm_level && pipe_ctx->stream_res.abm) { bool should_program_abm = true; // if otg funcs defined check if blanked before programming if (pipe_ctx->stream_res.tg->funcs->is_blanked) if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg)) should_program_abm = false; if (should_program_abm) { if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) { dc->hwss.set_abm_immediate_disable(pipe_ctx); } else { pipe_ctx->stream_res.abm->funcs->set_abm_level( pipe_ctx->stream_res.abm, stream->abm_level); } } } } } } static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream) { if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1) && stream->ctx->dce_version >= DCN_VERSION_3_1) return true; if (stream->link->replay_settings.config.replay_supported) return true; if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level) return true; return false; } void dc_dmub_update_dirty_rect(struct dc *dc, int surface_count, struct dc_stream_state *stream, struct dc_surface_update *srf_updates, struct dc_state *context) { union dmub_rb_cmd cmd; struct dmub_cmd_update_dirty_rect_data *update_dirty_rect; unsigned int i, j; unsigned int panel_inst = 0; if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream)) return; if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst)) return; memset(&cmd, 0x0, sizeof(cmd)); cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT; cmd.update_dirty_rect.header.sub_type = 0; cmd.update_dirty_rect.header.payload_bytes = sizeof(cmd.update_dirty_rect) - sizeof(cmd.update_dirty_rect.header); update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data; for (i = 0; i < surface_count; i++) { struct dc_plane_state *plane_state = srf_updates[i].surface; const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr; if (!srf_updates[i].surface || !flip_addr) continue; /* Do not send in immediate flip mode */ if (srf_updates[i].surface->flip_immediate) continue; update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1; update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count; memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects, sizeof(flip_addr->dirty_rects)); for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->stream != stream) continue; if (pipe_ctx->plane_state != plane_state) continue; update_dirty_rect->panel_inst = panel_inst; update_dirty_rect->pipe_idx = j; dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); } } } static void build_dmub_update_dirty_rect( struct dc *dc, int surface_count, struct dc_stream_state *stream, struct dc_surface_update *srf_updates, struct dc_state *context, struct dc_dmub_cmd dc_dmub_cmd[], unsigned int *dmub_cmd_count) { union dmub_rb_cmd cmd; struct dmub_cmd_update_dirty_rect_data *update_dirty_rect; unsigned int i, j; unsigned int panel_inst = 0; if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream)) return; if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst)) return; memset(&cmd, 0x0, sizeof(cmd)); cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT; cmd.update_dirty_rect.header.sub_type = 0; cmd.update_dirty_rect.header.payload_bytes = sizeof(cmd.update_dirty_rect) - sizeof(cmd.update_dirty_rect.header); update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data; for (i = 0; i < surface_count; i++) { struct dc_plane_state *plane_state = srf_updates[i].surface; const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr; if (!srf_updates[i].surface || !flip_addr) continue; /* Do not send in immediate flip mode */ if (srf_updates[i].surface->flip_immediate) continue; update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1; update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count; memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects, sizeof(flip_addr->dirty_rects)); for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->stream != stream) continue; if (pipe_ctx->plane_state != plane_state) continue; update_dirty_rect->panel_inst = panel_inst; update_dirty_rect->pipe_idx = j; dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd; dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT; (*dmub_cmd_count)++; } } } /** * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB * * @dc: Current DC state * @srf_updates: Array of surface updates * @surface_count: Number of surfaces that have an updated * @stream: Corresponding stream to be updated in the current flip * @context: New DC state to be programmed * * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array * * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required * to build an array of commands and have them sent while the OTG lock is acquired. * * Return: void */ static void build_dmub_cmd_list(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_state *context, struct dc_dmub_cmd dc_dmub_cmd[], unsigned int *dmub_cmd_count) { // Initialize cmd count to 0 *dmub_cmd_count = 0; build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count); } static void commit_planes_for_stream_fast(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, enum surface_update_type update_type, struct dc_state *context) { int i, j; struct pipe_ctx *top_pipe_to_program = NULL; struct dc_stream_status *stream_status = NULL; dc_exit_ips_for_hw_access(dc); dc_z10_restore(dc); top_pipe_to_program = resource_get_otg_master_for_stream( &context->res_ctx, stream); if (!top_pipe_to_program) return; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->stream && pipe->plane_state) { set_p_state_switch_method(dc, context, pipe); if (dc->debug.visual_confirm) dc_update_visual_confirm_color(dc, context, pipe); } } for (i = 0; i < surface_count; i++) { struct dc_plane_state *plane_state = srf_updates[i].surface; /*set logical flag for lock/unlock use*/ for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!pipe_ctx->plane_state) continue; if (should_update_pipe_for_plane(context, pipe_ctx, plane_state)) continue; pipe_ctx->plane_state->triplebuffer_flips = false; if (update_type == UPDATE_TYPE_FAST && dc->hwss.program_triplebuffer && !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) { /*triple buffer for VUpdate only*/ pipe_ctx->plane_state->triplebuffer_flips = true; } } } stream_status = dc_state_get_stream_status(context, stream); build_dmub_cmd_list(dc, srf_updates, surface_count, stream, context, context->dc_dmub_cmd, &(context->dmub_cmd_count)); hwss_build_fast_sequence(dc, context->dc_dmub_cmd, context->dmub_cmd_count, context->block_sequence, &(context->block_sequence_steps), top_pipe_to_program, stream_status, context); hwss_execute_sequence(dc, context->block_sequence, context->block_sequence_steps); /* Clear update flags so next flip doesn't have redundant programming * (if there's no stream update, the update flags are not cleared). * Surface updates are cleared unconditionally at the beginning of each flip, * so no need to clear here. */ if (top_pipe_to_program->stream) top_pipe_to_program->stream->update_flags.raw = 0; } static void wait_for_outstanding_hw_updates(struct dc *dc, struct dc_state *dc_context) { /* * This function calls HWSS to wait for any potentially double buffered * operations to complete. It should be invoked as a pre-amble prior * to full update programming before asserting any HW locks. */ int pipe_idx; int opp_inst; int opp_count = dc->res_pool->res_cap->num_opp; struct hubp *hubp; int mpcc_inst; const struct pipe_ctx *pipe_ctx; for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) { pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx]; if (!pipe_ctx->stream) continue; if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear) pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg); hubp = pipe_ctx->plane_res.hubp; if (!hubp) continue; mpcc_inst = hubp->inst; // MPCC inst is equal to pipe index in practice for (opp_inst = 0; opp_inst < opp_count; opp_inst++) { if ((dc->res_pool->opps[opp_inst] != NULL) && (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst])) { dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst); dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false; break; } } } wait_for_odm_update_pending_complete(dc, dc_context); } static void commit_planes_for_stream(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, enum surface_update_type update_type, struct dc_state *context) { int i, j; struct pipe_ctx *top_pipe_to_program = NULL; bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST); bool subvp_prev_use = false; bool subvp_curr_use = false; uint8_t current_stream_mask = 0; // Once we apply the new subvp context to hardware it won't be in the // dc->current_state anymore, so we have to cache it before we apply // the new SubVP context subvp_prev_use = false; dc_exit_ips_for_hw_access(dc); dc_z10_restore(dc); if (update_type == UPDATE_TYPE_FULL) wait_for_outstanding_hw_updates(dc, context); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->stream && pipe->plane_state) { set_p_state_switch_method(dc, context, pipe); if (dc->debug.visual_confirm) dc_update_visual_confirm_color(dc, context, pipe); } } if (update_type == UPDATE_TYPE_FULL) { dc_allow_idle_optimizations(dc, false); if (get_seamless_boot_stream_count(context) == 0) dc->hwss.prepare_bandwidth(dc, context); if (dc->hwss.update_dsc_pg) dc->hwss.update_dsc_pg(dc, context, false); context_clock_trace(dc, context); } top_pipe_to_program = resource_get_otg_master_for_stream( &context->res_ctx, stream); ASSERT(top_pipe_to_program != NULL); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; // Check old context for SubVP subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM); if (subvp_prev_use) break; } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) { subvp_curr_use = true; break; } } if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) { struct pipe_ctx *mpcc_pipe; struct pipe_ctx *odm_pipe; for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe) for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU; } if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed) if (top_pipe_to_program && top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) { if (should_use_dmub_lock(stream->link)) { union dmub_hw_lock_flags hw_locks = { 0 }; struct dmub_hw_lock_inst_flags inst_flags = { 0 }; hw_locks.bits.lock_dig = 1; inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst; dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv, true, &hw_locks, &inst_flags); } else top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable( top_pipe_to_program->stream_res.tg); } if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) { if (dc->hwss.subvp_pipe_control_lock) dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use); dc->hwss.interdependent_update_lock(dc, context, true); } else { if (dc->hwss.subvp_pipe_control_lock) dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use); /* Lock the top pipe while updating plane addrs, since freesync requires * plane addr update event triggers to be synchronized. * top_pipe_to_program is expected to never be NULL */ dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true); } dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context); // Stream updates if (stream_update) commit_planes_do_stream_update(dc, stream, stream_update, update_type, context); if (surface_count == 0) { /* * In case of turning off screen, no need to program front end a second time. * just return after program blank. */ if (dc->hwss.apply_ctx_for_surface) dc->hwss.apply_ctx_for_surface(dc, stream, 0, context); if (dc->hwss.program_front_end_for_ctx) dc->hwss.program_front_end_for_ctx(dc, context); if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) { dc->hwss.interdependent_update_lock(dc, context, false); } else { dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false); } dc->hwss.post_unlock_program_front_end(dc, context); if (update_type != UPDATE_TYPE_FAST) if (dc->hwss.commit_subvp_config) dc->hwss.commit_subvp_config(dc, context); /* Since phantom pipe programming is moved to post_unlock_program_front_end, * move the SubVP lock to after the phantom pipes have been setup */ if (dc->hwss.subvp_pipe_control_lock) dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use); return; } if (update_type != UPDATE_TYPE_FAST) { for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP || dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) && pipe_ctx->stream && pipe_ctx->plane_state) { /* Only update visual confirm for SUBVP and Mclk switching here. * The bar appears on all pipes, so we need to update the bar on all displays, * so the information doesn't get stale. */ dc->hwss.update_visual_confirm_color(dc, pipe_ctx, pipe_ctx->plane_res.hubp->inst); } } } for (i = 0; i < surface_count; i++) { struct dc_plane_state *plane_state = srf_updates[i].surface; /*set logical flag for lock/unlock use*/ for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!pipe_ctx->plane_state) continue; if (should_update_pipe_for_plane(context, pipe_ctx, plane_state)) continue; pipe_ctx->plane_state->triplebuffer_flips = false; if (update_type == UPDATE_TYPE_FAST && dc->hwss.program_triplebuffer != NULL && !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) { /*triple buffer for VUpdate only*/ pipe_ctx->plane_state->triplebuffer_flips = true; } } if (update_type == UPDATE_TYPE_FULL) { /* force vsync flip when reconfiguring pipes to prevent underflow */ plane_state->flip_immediate = false; } } // Update Type FULL, Surface updates for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && should_update_pipe_for_stream(context, pipe_ctx, stream)) { struct dc_stream_status *stream_status = NULL; if (!pipe_ctx->plane_state) continue; /* Full fe update*/ if (update_type == UPDATE_TYPE_FAST) continue; ASSERT(!pipe_ctx->plane_state->triplebuffer_flips); if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) { /*turn off triple buffer for full update*/ dc->hwss.program_triplebuffer( dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips); } stream_status = stream_get_status(context, pipe_ctx->stream); if (dc->hwss.apply_ctx_for_surface) dc->hwss.apply_ctx_for_surface( dc, pipe_ctx->stream, stream_status->plane_count, context); } } if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) { dc->hwss.program_front_end_for_ctx(dc, context); if (dc->debug.validate_dml_output) { for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i]; if (cur_pipe->stream == NULL) continue; cur_pipe->plane_res.hubp->funcs->validate_dml_output( cur_pipe->plane_res.hubp, dc->ctx, &context->res_ctx.pipe_ctx[i].rq_regs, &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs); } } } // Update Type FAST, Surface updates if (update_type == UPDATE_TYPE_FAST) { if (dc->hwss.set_flip_control_gsl) for (i = 0; i < surface_count; i++) { struct dc_plane_state *plane_state = srf_updates[i].surface; for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!should_update_pipe_for_stream(context, pipe_ctx, stream)) continue; if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state)) continue; // GSL has to be used for flip immediate dc->hwss.set_flip_control_gsl(pipe_ctx, pipe_ctx->plane_state->flip_immediate); } } /* Perform requested Updates */ for (i = 0; i < surface_count; i++) { struct dc_plane_state *plane_state = srf_updates[i].surface; for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!should_update_pipe_for_stream(context, pipe_ctx, stream)) continue; if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state)) continue; /*program triple buffer after lock based on flip type*/ if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) { /*only enable triplebuffer for fast_update*/ dc->hwss.program_triplebuffer( dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips); } if (pipe_ctx->plane_state->update_flags.bits.addr_update) dc->hwss.update_plane_addr(dc, pipe_ctx); } } } if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) { dc->hwss.interdependent_update_lock(dc, context, false); } else { dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false); } if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed) if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) { top_pipe_to_program->stream_res.tg->funcs->wait_for_state( top_pipe_to_program->stream_res.tg, CRTC_STATE_VACTIVE); top_pipe_to_program->stream_res.tg->funcs->wait_for_state( top_pipe_to_program->stream_res.tg, CRTC_STATE_VBLANK); top_pipe_to_program->stream_res.tg->funcs->wait_for_state( top_pipe_to_program->stream_res.tg, CRTC_STATE_VACTIVE); if (should_use_dmub_lock(stream->link)) { union dmub_hw_lock_flags hw_locks = { 0 }; struct dmub_hw_lock_inst_flags inst_flags = { 0 }; hw_locks.bits.lock_dig = 1; inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst; dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv, false, &hw_locks, &inst_flags); } else top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable( top_pipe_to_program->stream_res.tg); } if (subvp_curr_use) { /* If enabling subvp or transitioning from subvp->subvp, enable the * phantom streams before we program front end for the phantom pipes. */ if (update_type != UPDATE_TYPE_FAST) { if (dc->hwss.enable_phantom_streams) dc->hwss.enable_phantom_streams(dc, context); } } if (update_type != UPDATE_TYPE_FAST) dc->hwss.post_unlock_program_front_end(dc, context); if (subvp_prev_use && !subvp_curr_use) { /* If disabling subvp, disable phantom streams after front end * programming has completed (we turn on phantom OTG in order * to complete the plane disable for phantom pipes). */ if (dc->hwss.disable_phantom_streams) dc->hwss.disable_phantom_streams(dc, context); } if (update_type != UPDATE_TYPE_FAST) if (dc->hwss.commit_subvp_config) dc->hwss.commit_subvp_config(dc, context); /* Since phantom pipe programming is moved to post_unlock_program_front_end, * move the SubVP lock to after the phantom pipes have been setup */ if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) { if (dc->hwss.subvp_pipe_control_lock) dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use); } else { if (dc->hwss.subvp_pipe_control_lock) dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use); } // Fire manual trigger only when bottom plane is flipped for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!pipe_ctx->plane_state) continue; if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe || !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) || !pipe_ctx->plane_state->update_flags.bits.addr_update || pipe_ctx->plane_state->skip_manual_trigger) continue; if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger) pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg); } current_stream_mask = get_stream_mask(dc, context); if (current_stream_mask != context->stream_mask) { context->stream_mask = current_stream_mask; dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask); } } /** * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change * * @dc: Used to get the current state status * @stream: Target stream, which we want to remove the attached planes * @srf_updates: Array of surface updates * @surface_count: Number of surface update * @is_plane_addition: [in] Fill out with true if it is a plane addition case * * DCN32x and newer support a feature named Dynamic ODM which can conflict with * the MPO if used simultaneously in some specific configurations (e.g., * 4k@144). This function checks if the incoming context requires applying a * transition state with unnecessary pipe splitting and ODM disabled to * circumvent our hardware limitations to prevent this edge case. If the OPP * associated with an MPCC might change due to plane additions, this function * returns true. * * Return: * Return true if OPP and MPCC might change, otherwise, return false. */ static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc, struct dc_stream_state *stream, struct dc_surface_update *srf_updates, int surface_count, bool *is_plane_addition) { struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream); bool force_minimal_pipe_splitting = false; bool subvp_active = false; uint32_t i; *is_plane_addition = false; if (cur_stream_status && dc->current_state->stream_count > 0 && dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) { /* determine if minimal transition is required due to MPC*/ if (surface_count > 0) { if (cur_stream_status->plane_count > surface_count) { force_minimal_pipe_splitting = true; } else if (cur_stream_status->plane_count < surface_count) { force_minimal_pipe_splitting = true; *is_plane_addition = true; } } } if (cur_stream_status && dc->current_state->stream_count == 1 && dc->debug.enable_single_display_2to1_odm_policy) { /* determine if minimal transition is required due to dynamic ODM*/ if (surface_count > 0) { if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) { force_minimal_pipe_splitting = true; } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) { force_minimal_pipe_splitting = true; *is_plane_addition = true; } } } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) { subvp_active = true; break; } } /* For SubVP when adding or removing planes we need to add a minimal transition * (even when disabling all planes). Whenever disabling a phantom pipe, we * must use the minimal transition path to disable the pipe correctly. * * We want to use the minimal transition whenever subvp is active, not only if * a plane is being added / removed from a subvp stream (MPO plane can be added * to a DRR pipe of SubVP + DRR config, in which case we still want to run through * a min transition to disable subvp. */ if (cur_stream_status && subvp_active) { /* determine if minimal transition is required due to SubVP*/ if (cur_stream_status->plane_count > surface_count) { force_minimal_pipe_splitting = true; } else if (cur_stream_status->plane_count < surface_count) { force_minimal_pipe_splitting = true; *is_plane_addition = true; } } return force_minimal_pipe_splitting; } struct pipe_split_policy_backup { bool dynamic_odm_policy; bool subvp_policy; enum pipe_split_policy mpc_policy; char force_odm[MAX_PIPES]; }; static void backup_and_set_minimal_pipe_split_policy(struct dc *dc, struct dc_state *context, struct pipe_split_policy_backup *policy) { int i; if (!dc->config.is_vmin_only_asic) { policy->mpc_policy = dc->debug.pipe_split_policy; dc->debug.pipe_split_policy = MPC_SPLIT_AVOID; } policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy; dc->debug.enable_single_display_2to1_odm_policy = false; policy->subvp_policy = dc->debug.force_disable_subvp; dc->debug.force_disable_subvp = true; for (i = 0; i < context->stream_count; i++) { policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments; context->streams[i]->debug.force_odm_combine_segments = 0; } } static void restore_minimal_pipe_split_policy(struct dc *dc, struct dc_state *context, struct pipe_split_policy_backup *policy) { uint8_t i; if (!dc->config.is_vmin_only_asic) dc->debug.pipe_split_policy = policy->mpc_policy; dc->debug.enable_single_display_2to1_odm_policy = policy->dynamic_odm_policy; dc->debug.force_disable_subvp = policy->subvp_policy; for (i = 0; i < context->stream_count; i++) context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i]; } static void release_minimal_transition_state(struct dc *dc, struct dc_state *minimal_transition_context, struct dc_state *base_context, struct pipe_split_policy_backup *policy) { restore_minimal_pipe_split_policy(dc, base_context, policy); dc_state_release(minimal_transition_context); } static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context) { uint8_t i; int j; struct dc_stream_status *stream_status; for (i = 0; i < context->stream_count; i++) { stream_status = &context->stream_status[i]; for (j = 0; j < stream_status->plane_count; j++) stream_status->plane_states[j]->flip_immediate = false; } } static struct dc_state *create_minimal_transition_state(struct dc *dc, struct dc_state *base_context, struct pipe_split_policy_backup *policy) { struct dc_state *minimal_transition_context = NULL; minimal_transition_context = dc_state_create_copy(base_context); if (!minimal_transition_context) return NULL; backup_and_set_minimal_pipe_split_policy(dc, base_context, policy); /* commit minimal state */ if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) { /* prevent underflow and corruption when reconfiguring pipes */ force_vsync_flip_in_minimal_transition_context(minimal_transition_context); } else { /* * This should never happen, minimal transition state should * always be validated first before adding pipe split features. */ release_minimal_transition_state(dc, minimal_transition_context, base_context, policy); BREAK_TO_DEBUGGER(); minimal_transition_context = NULL; } return minimal_transition_context; } static bool is_pipe_topology_transition_seamless_with_intermediate_step( struct dc *dc, struct dc_state *initial_state, struct dc_state *intermediate_state, struct dc_state *final_state) { return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state, intermediate_state) && dc->hwss.is_pipe_topology_transition_seamless(dc, intermediate_state, final_state); } static void swap_and_release_current_context(struct dc *dc, struct dc_state *new_context, struct dc_stream_state *stream) { int i; struct dc_state *old = dc->current_state; struct pipe_ctx *pipe_ctx; /* Since memory free requires elevated IRQ, an interrupt * request is generated by mem free. If this happens * between freeing and reassigning the context, our vsync * interrupt will call into dc and cause a memory * corruption. Hence, we first reassign the context, * then free the old context. */ dc->current_state = new_context; dc_state_release(old); // clear any forced full updates for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe_ctx = &new_context->res_ctx.pipe_ctx[i]; if (pipe_ctx->plane_state && pipe_ctx->stream == stream) pipe_ctx->plane_state->force_full_update = false; } } static int initialize_empty_surface_updates( struct dc_stream_state *stream, struct dc_surface_update *srf_updates) { struct dc_stream_status *status = dc_stream_get_status(stream); int i; if (!status) return 0; for (i = 0; i < status->plane_count; i++) srf_updates[i].surface = status->plane_states[i]; return status->plane_count; } static bool commit_minimal_transition_based_on_new_context(struct dc *dc, struct dc_state *new_context, struct dc_stream_state *stream, struct dc_surface_update *srf_updates, int surface_count) { bool success = false; struct pipe_split_policy_backup policy; struct dc_state *intermediate_context = create_minimal_transition_state(dc, new_context, &policy); if (intermediate_context) { if (is_pipe_topology_transition_seamless_with_intermediate_step( dc, dc->current_state, intermediate_context, new_context)) { DC_LOG_DC("commit minimal transition state: base = new state\n"); commit_planes_for_stream(dc, srf_updates, surface_count, stream, NULL, UPDATE_TYPE_FULL, intermediate_context); swap_and_release_current_context( dc, intermediate_context, stream); dc_state_retain(dc->current_state); success = true; } release_minimal_transition_state( dc, intermediate_context, new_context, &policy); } return success; } static bool commit_minimal_transition_based_on_current_context(struct dc *dc, struct dc_state *new_context, struct dc_stream_state *stream) { bool success = false; struct pipe_split_policy_backup policy; struct dc_state *intermediate_context; struct dc_state *old_current_state = dc->current_state; struct dc_surface_update srf_updates[MAX_SURFACE_NUM] = {0}; int surface_count; /* * Both current and new contexts share the same stream and plane state * pointers. When new context is validated, stream and planes get * populated with new updates such as new plane addresses. This makes * the current context no longer valid because stream and planes are * modified from the original. We backup current stream and plane states * into scratch space whenever we are populating new context. So we can * restore the original values back by calling the restore function now. * This restores back the original stream and plane states associated * with the current state. */ restore_planes_and_stream_state(&dc->scratch.current_state, stream); dc_state_retain(old_current_state); intermediate_context = create_minimal_transition_state(dc, old_current_state, &policy); if (intermediate_context) { if (is_pipe_topology_transition_seamless_with_intermediate_step( dc, dc->current_state, intermediate_context, new_context)) { DC_LOG_DC("commit minimal transition state: base = current state\n"); surface_count = initialize_empty_surface_updates( stream, srf_updates); commit_planes_for_stream(dc, srf_updates, surface_count, stream, NULL, UPDATE_TYPE_FULL, intermediate_context); swap_and_release_current_context( dc, intermediate_context, stream); dc_state_retain(dc->current_state); success = true; } release_minimal_transition_state(dc, intermediate_context, old_current_state, &policy); } dc_state_release(old_current_state); /* * Restore stream and plane states back to the values associated with * new context. */ restore_planes_and_stream_state(&dc->scratch.new_state, stream); return success; } /** * commit_minimal_transition_state_in_dc_update - Commit a minimal state based * on current or new context * * @dc: DC structure, used to get the current state * @new_context: New context * @stream: Stream getting the update for the flip * @srf_updates: Surface updates * @surface_count: Number of surfaces * * The function takes in current state and new state and determine a minimal * transition state as the intermediate step which could make the transition * between current and new states seamless. If found, it will commit the minimal * transition state and update current state to this minimal transition state * and return true, if not, it will return false. * * Return: * Return True if the minimal transition succeeded, false otherwise */ static bool commit_minimal_transition_state_in_dc_update(struct dc *dc, struct dc_state *new_context, struct dc_stream_state *stream, struct dc_surface_update *srf_updates, int surface_count) { bool success = commit_minimal_transition_based_on_new_context( dc, new_context, stream, srf_updates, surface_count); if (!success) success = commit_minimal_transition_based_on_current_context(dc, new_context, stream); if (!success) DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n"); return success; } /** * commit_minimal_transition_state - Create a transition pipe split state * * @dc: Used to get the current state status * @transition_base_context: New transition state * * In some specific configurations, such as pipe split on multi-display with * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe * programming when moving to new planes. To mitigate those types of problems, * this function adds a transition state that minimizes pipe usage before * programming the new configuration. When adding a new plane, the current * state requires the least pipes, so it is applied without splitting. When * removing a plane, the new state requires the least pipes, so it is applied * without splitting. * * Return: * Return false if something is wrong in the transition state. */ static bool commit_minimal_transition_state(struct dc *dc, struct dc_state *transition_base_context) { struct dc_state *transition_context; struct pipe_split_policy_backup policy; enum dc_status ret = DC_ERROR_UNEXPECTED; unsigned int i, j; unsigned int pipe_in_use = 0; bool subvp_in_use = false; bool odm_in_use = false; /* check current pipes in use*/ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i]; if (pipe->plane_state) pipe_in_use++; } /* If SubVP is enabled and we are adding or removing planes from any main subvp * pipe, we must use the minimal transition. */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) { subvp_in_use = true; break; } } /* If ODM is enabled and we are adding or removing planes from any ODM * pipe, we must use the minimal transition. */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i]; if (resource_is_pipe_type(pipe, OTG_MASTER)) { odm_in_use = resource_get_odm_slice_count(pipe) > 1; break; } } /* When the OS add a new surface if we have been used all of pipes with odm combine * and mpc split feature, it need use commit_minimal_transition_state to transition safely. * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need * call it again. Otherwise return true to skip. * * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially * enter/exit MPO when DCN still have enough resources. */ if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use) return true; DC_LOG_DC("%s base = %s state, reason = %s\n", __func__, dc->current_state == transition_base_context ? "current" : "new", subvp_in_use ? "Subvp In Use" : odm_in_use ? "ODM in Use" : dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" : "Unknown"); dc_state_retain(transition_base_context); transition_context = create_minimal_transition_state(dc, transition_base_context, &policy); if (transition_context) { ret = dc_commit_state_no_check(dc, transition_context); release_minimal_transition_state(dc, transition_context, transition_base_context, &policy); } dc_state_release(transition_base_context); if (ret != DC_OK) { /* this should never happen */ BREAK_TO_DEBUGGER(); return false; } /* force full surface update */ for (i = 0; i < dc->current_state->stream_count; i++) { for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) { dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF; } } return true; } static void populate_fast_updates(struct dc_fast_update *fast_update, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_update *stream_update) { int i = 0; if (stream_update) { fast_update[0].out_transfer_func = stream_update->out_transfer_func; fast_update[0].output_csc_transform = stream_update->output_csc_transform; } for (i = 0; i < surface_count; i++) { fast_update[i].flip_addr = srf_updates[i].flip_addr; fast_update[i].gamma = srf_updates[i].gamma; fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix; fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix; fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor; } } static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count) { int i; if (fast_update[0].out_transfer_func || fast_update[0].output_csc_transform) return true; for (i = 0; i < surface_count; i++) { if (fast_update[i].flip_addr || fast_update[i].gamma || fast_update[i].gamut_remap_matrix || fast_update[i].input_csc_color_matrix || fast_update[i].coeff_reduction_factor) return true; } return false; } static bool full_update_required(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_update *stream_update, struct dc_stream_state *stream) { int i; struct dc_stream_status *stream_status; const struct dc_state *context = dc->current_state; for (i = 0; i < surface_count; i++) { if (srf_updates && (srf_updates[i].plane_info || srf_updates[i].scaling_info || (srf_updates[i].hdr_mult.value && srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) || srf_updates[i].in_transfer_func || srf_updates[i].func_shaper || srf_updates[i].lut3d_func || srf_updates[i].surface->force_full_update || (srf_updates[i].flip_addr && srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) || !is_surface_in_context(context, srf_updates[i].surface))) return true; } if (stream_update && (((stream_update->src.height != 0 && stream_update->src.width != 0) || (stream_update->dst.height != 0 && stream_update->dst.width != 0) || stream_update->integer_scaling_update) || stream_update->hdr_static_metadata || stream_update->abm_level || stream_update->periodic_interrupt || stream_update->vrr_infopacket || stream_update->vsc_infopacket || stream_update->vsp_infopacket || stream_update->hfvsif_infopacket || stream_update->vtem_infopacket || stream_update->adaptive_sync_infopacket || stream_update->dpms_off || stream_update->allow_freesync || stream_update->vrr_active_variable || stream_update->vrr_active_fixed || stream_update->gamut_remap || stream_update->output_color_space || stream_update->dither_option || stream_update->wb_update || stream_update->dsc_config || stream_update->mst_bw_update || stream_update->func_shaper || stream_update->lut3d_func || stream_update->pending_test_pattern || stream_update->crtc_timing_adjust)) return true; if (stream) { stream_status = dc_stream_get_status(stream); if (stream_status == NULL || stream_status->plane_count != surface_count) return true; } if (dc->idle_optimizations_allowed) return true; return false; } static bool fast_update_only(struct dc *dc, struct dc_fast_update *fast_update, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_update *stream_update, struct dc_stream_state *stream) { return fast_updates_exist(fast_update, surface_count) && !full_update_required(dc, srf_updates, surface_count, stream_update, stream); } static bool update_planes_and_stream_v1(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, struct dc_state *state) { const struct dc_stream_status *stream_status; enum surface_update_type update_type; struct dc_state *context; struct dc_context *dc_ctx = dc->ctx; int i, j; struct dc_fast_update fast_update[MAX_SURFACES] = {0}; dc_exit_ips_for_hw_access(dc); populate_fast_updates(fast_update, srf_updates, surface_count, stream_update); stream_status = dc_stream_get_status(stream); context = dc->current_state; update_type = dc_check_update_surfaces_for_stream( dc, srf_updates, surface_count, stream_update, stream_status); if (update_type >= UPDATE_TYPE_FULL) { /* initialize scratch memory for building context */ context = dc_state_create_copy(state); if (context == NULL) { DC_ERROR("Failed to allocate new validate context!\n"); return false; } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state) new_pipe->plane_state->force_full_update = true; } } else if (update_type == UPDATE_TYPE_FAST) { /* * Previous frame finished and HW is ready for optimization. */ dc_post_update_surfaces_to_stream(dc); } for (i = 0; i < surface_count; i++) { struct dc_plane_state *surface = srf_updates[i].surface; copy_surface_update_to_plane(surface, &srf_updates[i]); if (update_type >= UPDATE_TYPE_MED) { for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->plane_state != surface) continue; resource_build_scaling_params(pipe_ctx); } } } copy_stream_update_to_stream(dc, context, stream, stream_update); if (update_type >= UPDATE_TYPE_FULL) { if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) { DC_ERROR("Mode validation failed for stream update!\n"); dc_state_release(context); return false; } } TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES); if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) && !dc->debug.enable_legacy_fast_update) { commit_planes_for_stream_fast(dc, srf_updates, surface_count, stream, stream_update, update_type, context); } else { commit_planes_for_stream( dc, srf_updates, surface_count, stream, stream_update, update_type, context); } /*update current_State*/ if (dc->current_state != context) { struct dc_state *old = dc->current_state; dc->current_state = context; dc_state_release(old); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (pipe_ctx->plane_state && pipe_ctx->stream == stream) pipe_ctx->plane_state->force_full_update = false; } } /* Legacy optimization path for DCE. */ if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) { dc_post_update_surfaces_to_stream(dc); TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce); } return true; } static bool update_planes_and_stream_v2(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update) { struct dc_state *context; enum surface_update_type update_type; struct dc_fast_update fast_update[MAX_SURFACES] = {0}; /* In cases where MPO and split or ODM are used transitions can * cause underflow. Apply stream configuration with minimal pipe * split first to avoid unsupported transitions for active pipes. */ bool force_minimal_pipe_splitting = 0; bool is_plane_addition = 0; bool is_fast_update_only; populate_fast_updates(fast_update, srf_updates, surface_count, stream_update); is_fast_update_only = fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream); force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes( dc, stream, srf_updates, surface_count, &is_plane_addition); /* on plane addition, minimal state is the current one */ if (force_minimal_pipe_splitting && is_plane_addition && !commit_minimal_transition_state(dc, dc->current_state)) return false; if (!update_planes_and_stream_state( dc, srf_updates, surface_count, stream, stream_update, &update_type, &context)) return false; /* on plane removal, minimal state is the new one */ if (force_minimal_pipe_splitting && !is_plane_addition) { if (!commit_minimal_transition_state(dc, context)) { dc_state_release(context); return false; } update_type = UPDATE_TYPE_FULL; } if (dc->hwss.is_pipe_topology_transition_seamless && !dc->hwss.is_pipe_topology_transition_seamless( dc, dc->current_state, context)) commit_minimal_transition_state_in_dc_update(dc, context, stream, srf_updates, surface_count); if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) { commit_planes_for_stream_fast(dc, srf_updates, surface_count, stream, stream_update, update_type, context); } else { if (!stream_update && dc->hwss.is_pipe_topology_transition_seamless && !dc->hwss.is_pipe_topology_transition_seamless( dc, dc->current_state, context)) { DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n"); BREAK_TO_DEBUGGER(); } commit_planes_for_stream( dc, srf_updates, surface_count, stream, stream_update, update_type, context); } if (dc->current_state != context) swap_and_release_current_context(dc, context, stream); return true; } static void commit_planes_and_stream_update_on_current_context(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, enum surface_update_type update_type) { struct dc_fast_update fast_update[MAX_SURFACES] = {0}; ASSERT(update_type < UPDATE_TYPE_FULL); populate_fast_updates(fast_update, srf_updates, surface_count, stream_update); if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) && !dc->debug.enable_legacy_fast_update) commit_planes_for_stream_fast(dc, srf_updates, surface_count, stream, stream_update, update_type, dc->current_state); else commit_planes_for_stream( dc, srf_updates, surface_count, stream, stream_update, update_type, dc->current_state); } static void commit_planes_and_stream_update_with_new_context(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, enum surface_update_type update_type, struct dc_state *new_context) { ASSERT(update_type >= UPDATE_TYPE_FULL); if (!dc->hwss.is_pipe_topology_transition_seamless(dc, dc->current_state, new_context)) /* * It is required by the feature design that all pipe topologies * using extra free pipes for power saving purposes such as * dynamic ODM or SubVp shall only be enabled when it can be * transitioned seamlessly to AND from its minimal transition * state. A minimal transition state is defined as the same dc * state but with all power saving features disabled. So it uses * the minimum pipe topology. When we can't seamlessly * transition from state A to state B, we will insert the * minimal transition state A' or B' in between so seamless * transition between A and B can be made possible. */ commit_minimal_transition_state_in_dc_update(dc, new_context, stream, srf_updates, surface_count); commit_planes_for_stream( dc, srf_updates, surface_count, stream, stream_update, update_type, new_context); } static bool update_planes_and_stream_v3(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update) { struct dc_state *new_context; enum surface_update_type update_type; /* * When this function returns true and new_context is not equal to * current state, the function allocates and validates a new dc state * and assigns it to new_context. The function expects that the caller * is responsible to free this memory when new_context is no longer * used. We swap current with new context and free current instead. So * new_context's memory will live until the next full update after it is * replaced by a newer context. Refer to the use of * swap_and_free_current_context below. */ if (!update_planes_and_stream_state(dc, srf_updates, surface_count, stream, stream_update, &update_type, &new_context)) return false; if (new_context == dc->current_state) { commit_planes_and_stream_update_on_current_context(dc, srf_updates, surface_count, stream, stream_update, update_type); } else { commit_planes_and_stream_update_with_new_context(dc, srf_updates, surface_count, stream, stream_update, update_type, new_context); swap_and_release_current_context(dc, new_context, stream); } return true; } bool dc_update_planes_and_stream(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update) { dc_exit_ips_for_hw_access(dc); /* * update planes and stream version 3 separates FULL and FAST updates * to their own sequences. It aims to clean up frequent checks for * update type resulting unnecessary branching in logic flow. It also * adds a new commit minimal transition sequence, which detects the need * for minimal transition based on the actual comparison of current and * new states instead of "predicting" it based on per feature software * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit * minimal transition sequence is made universal to any power saving * features that would use extra free pipes such as Dynamic ODM/MPC * Combine, MPO or SubVp. Therefore there is no longer a need to * specially handle compatibility problems with transitions among those * features as they are now transparent to the new sequence. */ if (dc->ctx->dce_version > DCN_VERSION_3_51) return update_planes_and_stream_v3(dc, srf_updates, surface_count, stream, stream_update); return update_planes_and_stream_v2(dc, srf_updates, surface_count, stream, stream_update); } void dc_commit_updates_for_stream(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, struct dc_state *state) { dc_exit_ips_for_hw_access(dc); /* TODO: Since change commit sequence can have a huge impact, * we decided to only enable it for DCN3x. However, as soon as * we get more confident about this change we'll need to enable * the new sequence for all ASICs. */ if (dc->ctx->dce_version > DCN_VERSION_3_51) { update_planes_and_stream_v3(dc, srf_updates, surface_count, stream, stream_update); return; } if (dc->ctx->dce_version >= DCN_VERSION_3_2) { update_planes_and_stream_v2(dc, srf_updates, surface_count, stream, stream_update); return; } update_planes_and_stream_v1(dc, srf_updates, surface_count, stream, stream_update, state); } uint8_t dc_get_current_stream_count(struct dc *dc) { return dc->current_state->stream_count; } struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i) { if (i < dc->current_state->stream_count) return dc->current_state->streams[i]; return NULL; } enum dc_irq_source dc_interrupt_to_irq_source( struct dc *dc, uint32_t src_id, uint32_t ext_id) { return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id); } /* * dc_interrupt_set() - Enable/disable an AMD hw interrupt source */ bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable) { if (dc == NULL) return false; return dal_irq_service_set(dc->res_pool->irqs, src, enable); } void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src) { dal_irq_service_ack(dc->res_pool->irqs, src); } void dc_power_down_on_boot(struct dc *dc) { if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW && dc->hwss.power_down_on_boot) { if (dc->caps.ips_support) dc_exit_ips_for_hw_access(dc); dc->hwss.power_down_on_boot(dc); } } void dc_set_power_state( struct dc *dc, enum dc_acpi_cm_power_state power_state) { if (!dc->current_state) return; switch (power_state) { case DC_ACPI_CM_POWER_STATE_D0: dc_state_construct(dc, dc->current_state); dc_exit_ips_for_hw_access(dc); dc_z10_restore(dc); dc->hwss.init_hw(dc); if (dc->hwss.init_sys_ctx != NULL && dc->vm_pa_config.valid) { dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config); } break; default: ASSERT(dc->current_state->stream_count == 0); dc_state_destruct(dc->current_state); break; } } void dc_resume(struct dc *dc) { uint32_t i; for (i = 0; i < dc->link_count; i++) dc->link_srv->resume(dc->links[i]); } bool dc_is_dmcu_initialized(struct dc *dc) { struct dmcu *dmcu = dc->res_pool->dmcu; if (dmcu) return dmcu->funcs->is_dmcu_initialized(dmcu); return false; } void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info) { info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz; info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz; info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz; info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz; info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz; info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz; info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz; info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz; info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz; } enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping) { if (dc->hwss.set_clock) return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping); return DC_ERROR_UNEXPECTED; } void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg) { if (dc->hwss.get_clock) dc->hwss.get_clock(dc, clock_type, clock_cfg); } /* enable/disable eDP PSR without specify stream for eDP */ bool dc_set_psr_allow_active(struct dc *dc, bool enable) { int i; bool allow_active; for (i = 0; i < dc->current_state->stream_count ; i++) { struct dc_link *link; struct dc_stream_state *stream = dc->current_state->streams[i]; link = stream->link; if (!link) continue; if (link->psr_settings.psr_feature_enabled) { if (enable && !link->psr_settings.psr_allow_active) { allow_active = true; if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL)) return false; } else if (!enable && link->psr_settings.psr_allow_active) { allow_active = false; if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL)) return false; } } } return true; } /* enable/disable eDP Replay without specify stream for eDP */ bool dc_set_replay_allow_active(struct dc *dc, bool active) { int i; bool allow_active; for (i = 0; i < dc->current_state->stream_count; i++) { struct dc_link *link; struct dc_stream_state *stream = dc->current_state->streams[i]; link = stream->link; if (!link) continue; if (link->replay_settings.replay_feature_enabled) { if (active && !link->replay_settings.replay_allow_active) { allow_active = true; if (!dc_link_set_replay_allow_active(link, &allow_active, false, false, NULL)) return false; } else if (!active && link->replay_settings.replay_allow_active) { allow_active = false; if (!dc_link_set_replay_allow_active(link, &allow_active, true, false, NULL)) return false; } } } return true; } void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name) { if (dc->debug.disable_idle_power_optimizations) return; if (allow != dc->idle_optimizations_allowed) DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__, dc->idle_optimizations_allowed, allow, caller_name); if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL)) return; if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present) if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr)) return; if (allow == dc->idle_optimizations_allowed) return; if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow)) dc->idle_optimizations_allowed = allow; } void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name) { if (dc->caps.ips_support) dc_allow_idle_optimizations_internal(dc, false, caller_name); } bool dc_dmub_is_ips_idle_state(struct dc *dc) { if (dc->debug.disable_idle_power_optimizations) return false; if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL)) return false; if (!dc->ctx->dmub_srv) return false; return dc->ctx->dmub_srv->idle_allowed; } /* set min and max memory clock to lowest and highest DPM level, respectively */ void dc_unlock_memory_clock_frequency(struct dc *dc) { if (dc->clk_mgr->funcs->set_hard_min_memclk) dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false); if (dc->clk_mgr->funcs->set_hard_max_memclk) dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr); } /* set min memory clock to the min required for current mode, max to maxDPM */ void dc_lock_memory_clock_frequency(struct dc *dc) { if (dc->clk_mgr->funcs->get_memclk_states_from_smu) dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr); if (dc->clk_mgr->funcs->set_hard_min_memclk) dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true); if (dc->clk_mgr->funcs->set_hard_max_memclk) dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr); } static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz) { struct dc_state *context = dc->current_state; struct hubp *hubp; struct pipe_ctx *pipe; int i; for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->stream != NULL) { dc->hwss.disable_pixel_data(dc, pipe, true); // wait for double buffer pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE); pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK); pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE); hubp = pipe->plane_res.hubp; hubp->funcs->set_blank_regs(hubp, true); } } dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz); dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz); for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->stream != NULL) { dc->hwss.disable_pixel_data(dc, pipe, false); hubp = pipe->plane_res.hubp; hubp->funcs->set_blank_regs(hubp, false); } } } /** * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode * @dc: pointer to dc of the dm calling this * @enable: True = transition to DC mode, false = transition back to AC mode * * Some SoCs define additional clock limits when in DC mode, DM should * invoke this function when the platform undergoes a power source transition * so DC can apply/unapply the limit. This interface may be disruptive to * the onscreen content. * * Context: Triggered by OS through DM interface, or manually by escape calls. * Need to hold a dclock when doing so. * * Return: none (void function) * */ void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable) { unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i; bool p_state_change_support; if (!dc->config.dc_mode_clk_limit_support) return; softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk; for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) { if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM) maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz; } funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000; p_state_change_support = dc->clk_mgr->clks.p_state_change_support; if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) { if (p_state_change_support) { if (funcMin <= softMax) dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax); // else: No-Op } else { if (funcMin <= softMax) blank_and_force_memclk(dc, true, softMax); // else: No-Op } } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) { if (p_state_change_support) { if (funcMin <= softMax) dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM); // else: No-Op } else { if (funcMin <= softMax) blank_and_force_memclk(dc, true, maxDPM); // else: No-Op } } dc->clk_mgr->dc_mode_softmax_enabled = enable; } bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, unsigned int pitch, unsigned int height, enum surface_pixel_format format, struct dc_cursor_attributes *cursor_attr) { if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr)) return true; return false; } /* cleanup on driver unload */ void dc_hardware_release(struct dc *dc) { dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc); if (dc->hwss.hardware_release) dc->hwss.hardware_release(dc); } void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc) { if (dc->current_state) dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true; } /** * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification * * @dc: [in] dc structure * * Checks whether DMUB FW supports outbox notifications, if supported DM * should register outbox interrupt prior to actually enabling interrupts * via dc_enable_dmub_outbox * * Return: * True if DMUB FW supports outbox notifications, False otherwise */ bool dc_is_dmub_outbox_supported(struct dc *dc) { switch (dc->ctx->asic_id.chip_family) { case FAMILY_YELLOW_CARP: /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */ if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 && !dc->debug.dpia_debug.bits.disable_dpia) return true; break; case AMDGPU_FAMILY_GC_11_0_1: case AMDGPU_FAMILY_GC_11_5_0: if (!dc->debug.dpia_debug.bits.disable_dpia) return true; break; default: break; } /* dmub aux needs dmub notifications to be enabled */ return dc->debug.enable_dmub_aux_for_legacy_ddc; } /** * dc_enable_dmub_notifications - Check if dmub fw supports outbox * * @dc: [in] dc structure * * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This * API shall be removed after switching. * * Return: * True if DMUB FW supports outbox notifications, False otherwise */ bool dc_enable_dmub_notifications(struct dc *dc) { return dc_is_dmub_outbox_supported(dc); } /** * dc_enable_dmub_outbox - Enables DMUB unsolicited notification * * @dc: [in] dc structure * * Enables DMUB unsolicited notifications to x86 via outbox. */ void dc_enable_dmub_outbox(struct dc *dc) { struct dc_context *dc_ctx = dc->ctx; dmub_enable_outbox_notification(dc_ctx->dmub_srv); DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__); } /** * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message * Sets port index appropriately for legacy DDC * @dc: dc structure * @link_index: link index * @payload: aux payload * * Returns: True if successful, False if failure */ bool dc_process_dmub_aux_transfer_async(struct dc *dc, uint32_t link_index, struct aux_payload *payload) { uint8_t action; union dmub_rb_cmd cmd = {0}; ASSERT(payload->length <= 16); cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS; cmd.dp_aux_access.header.payload_bytes = 0; /* For dpia, ddc_pin is set to NULL */ if (!dc->links[link_index]->ddc->ddc_pin) cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA; else cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC; cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst; cmd.dp_aux_access.aux_control.sw_crc_enabled = 0; cmd.dp_aux_access.aux_control.timeout = 0; cmd.dp_aux_access.aux_control.dpaux.address = payload->address; cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux; cmd.dp_aux_access.aux_control.dpaux.length = payload->length; /* set aux action */ if (payload->i2c_over_aux) { if (payload->write) { if (payload->mot) action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT; else action = DP_AUX_REQ_ACTION_I2C_WRITE; } else { if (payload->mot) action = DP_AUX_REQ_ACTION_I2C_READ_MOT; else action = DP_AUX_REQ_ACTION_I2C_READ; } } else { if (payload->write) action = DP_AUX_REQ_ACTION_DPCD_WRITE; else action = DP_AUX_REQ_ACTION_DPCD_READ; } cmd.dp_aux_access.aux_control.dpaux.action = action; if (payload->length && payload->write) { memcpy(cmd.dp_aux_access.aux_control.dpaux.data, payload->data, payload->length ); } dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); return true; } uint8_t get_link_index_from_dpia_port_index(const struct dc *dc, uint8_t dpia_port_index) { uint8_t index, link_index = 0xFF; for (index = 0; index < dc->link_count; index++) { /* ddc_hw_inst has dpia port index for dpia links * and ddc instance for legacy links */ if (!dc->links[index]->ddc->ddc_pin) { if (dc->links[index]->ddc_hw_inst == dpia_port_index) { link_index = index; break; } } } ASSERT(link_index != 0xFF); return link_index; } /** * dc_process_dmub_set_config_async - Submits set_config command * * @dc: [in] dc structure * @link_index: [in] link_index: link index * @payload: [in] aux payload * @notify: [out] set_config immediate reply * * Submits set_config command to dmub via inbox message. * * Return: * True if successful, False if failure */ bool dc_process_dmub_set_config_async(struct dc *dc, uint32_t link_index, struct set_config_cmd_payload *payload, struct dmub_notification *notify) { union dmub_rb_cmd cmd = {0}; bool is_cmd_complete = true; /* prepare SET_CONFIG command */ cmd.set_config_access.header.type = DMUB_CMD__DPIA; cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS; cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst; cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type; cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data; if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) { /* command is not processed by dmub */ notify->sc_status = SET_CONFIG_UNKNOWN_ERROR; return is_cmd_complete; } /* command processed by dmub, if ret_status is 1, it is completed instantly */ if (cmd.set_config_access.header.ret_status == 1) notify->sc_status = cmd.set_config_access.set_config_control.immed_status; else /* cmd pending, will receive notification via outbox */ is_cmd_complete = false; return is_cmd_complete; } /** * dc_process_dmub_set_mst_slots - Submits MST solt allocation * * @dc: [in] dc structure * @link_index: [in] link index * @mst_alloc_slots: [in] mst slots to be allotted * @mst_slots_in_use: [out] mst slots in use returned in failure case * * Submits mst slot allocation command to dmub via inbox message * * Return: * DC_OK if successful, DC_ERROR if failure */ enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc, uint32_t link_index, uint8_t mst_alloc_slots, uint8_t *mst_slots_in_use) { union dmub_rb_cmd cmd = {0}; /* prepare MST_ALLOC_SLOTS command */ cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA; cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS; cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst; cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots; if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) /* command is not processed by dmub */ return DC_ERROR_UNEXPECTED; /* command processed by dmub, if ret_status is 1 */ if (cmd.set_config_access.header.ret_status != 1) /* command processing error */ return DC_ERROR_UNEXPECTED; /* command processed and we have a status of 2, mst not enabled in dpia */ if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2) return DC_FAIL_UNSUPPORTED_1; /* previously configured mst alloc and used slots did not match */ if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) { *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use; return DC_NOT_SUPPORTED; } return DC_OK; } /** * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption * * @dc: [in] dc structure * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable * * Submits dpia hpd int enable command to dmub via inbox message */ void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc, uint32_t hpd_int_enable) { union dmub_rb_cmd cmd = {0}; cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE; cmd.dpia_hpd_int_enable.enable = hpd_int_enable; dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable); } /** * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging * * @dc: [in] dc structure * * */ void dc_print_dmub_diagnostic_data(const struct dc *dc) { dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv); } /** * dc_disable_accelerated_mode - disable accelerated mode * @dc: dc structure */ void dc_disable_accelerated_mode(struct dc *dc) { bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0); } /** * dc_notify_vsync_int_state - notifies vsync enable/disable state * @dc: dc structure * @stream: stream where vsync int state changed * @enable: whether vsync is enabled or disabled * * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM * interrupts after steady state is reached. */ void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable) { int i; int edp_num; struct pipe_ctx *pipe = NULL; struct dc_link *link = stream->sink->link; struct dc_link *edp_links[MAX_NUM_EDP]; if (link->psr_settings.psr_feature_enabled) return; if (link->replay_settings.replay_feature_enabled) return; /*find primary pipe associated with stream*/ for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.tg) break; } if (i == MAX_PIPES) { ASSERT(0); return; } dc_get_edp_links(dc, edp_links, &edp_num); /* Determine panel inst */ for (i = 0; i < edp_num; i++) { if (edp_links[i] == link) break; } if (i == edp_num) { return; } if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause) pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst); } /***************************************************************************** * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause * ABM * @dc: dc structure * @stream: stream where vsync int state changed * @pData: abm hw states * ****************************************************************************/ bool dc_abm_save_restore( struct dc *dc, struct dc_stream_state *stream, struct abm_save_restore *pData) { int i; int edp_num; struct pipe_ctx *pipe = NULL; struct dc_link *link = stream->sink->link; struct dc_link *edp_links[MAX_NUM_EDP]; if (link->replay_settings.replay_feature_enabled) return false; /*find primary pipe associated with stream*/ for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.tg) break; } if (i == MAX_PIPES) { ASSERT(0); return false; } dc_get_edp_links(dc, edp_links, &edp_num); /* Determine panel inst */ for (i = 0; i < edp_num; i++) if (edp_links[i] == link) break; if (i == edp_num) return false; if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->save_restore) return pipe->stream_res.abm->funcs->save_restore( pipe->stream_res.abm, i, pData); return false; } void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties) { unsigned int i; bool subvp_sw_cursor_req = false; for (i = 0; i < dc->current_state->stream_count; i++) { if (check_subvp_sw_cursor_fallback_req(dc, dc->current_state->streams[i])) { subvp_sw_cursor_req = true; break; } } properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size; } /** * dc_set_edp_power() - DM controls eDP power to be ON/OFF * * Called when DM wants to power on/off eDP. * Only work on links with flag skip_implict_edp_power_control is set. * * @dc: Current DC state * @edp_link: a link with eDP connector signal type * @powerOn: power on/off eDP * * Return: void */ void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link, bool powerOn) { if (edp_link->connector_signal != SIGNAL_TYPE_EDP) return; if (edp_link->skip_implict_edp_power_control == false) return; edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn); } /* ***************************************************************************** * dc_get_power_profile_for_dc_state() - extracts power profile from dc state * * Called when DM wants to make power policy decisions based on dc_state * ***************************************************************************** */ struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context) { struct dc_power_profile profile = { 0 }; profile.power_level += !context->bw_ctx.bw.dcn.clk.p_state_change_support; return profile; }