1/*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24#include "amdgpu_ras_eeprom.h"
25#include "amdgpu.h"
26#include "amdgpu_ras.h"
27#include <linux/bits.h>
28#include "atom.h"
29#include "amdgpu_eeprom.h"
30#include "amdgpu_atomfirmware.h"
31#include <linux/debugfs.h>
32#include <linux/uaccess.h>
33
34#include "amdgpu_reset.h"
35
36/* These are memory addresses as would be seen by one or more EEPROM
37 * chips strung on the I2C bus, usually by manipulating pins 1-3 of a
38 * set of EEPROM devices. They form a continuous memory space.
39 *
40 * The I2C device address includes the device type identifier, 1010b,
41 * which is a reserved value and indicates that this is an I2C EEPROM
42 * device. It also includes the top 3 bits of the 19 bit EEPROM memory
43 * address, namely bits 18, 17, and 16. This makes up the 7 bit
44 * address sent on the I2C bus with bit 0 being the direction bit,
45 * which is not represented here, and sent by the hardware directly.
46 *
47 * For instance,
48 *   50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0.
49 *   54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h.
50 *   56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h.
51 * Depending on the size of the I2C EEPROM device(s), bits 18:16 may
52 * address memory in a device or a device on the I2C bus, depending on
53 * the status of pins 1-3. See top of amdgpu_eeprom.c.
54 *
55 * The RAS table lives either at address 0 or address 40000h of EEPROM.
56 */
57#define EEPROM_I2C_MADDR_0      0x0
58#define EEPROM_I2C_MADDR_4      0x40000
59
60/*
61 * The 2 macros bellow represent the actual size in bytes that
62 * those entities occupy in the EEPROM memory.
63 * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
64 * uses uint64 to store 6b fields such as retired_page.
65 */
66#define RAS_TABLE_HEADER_SIZE   20
67#define RAS_TABLE_RECORD_SIZE   24
68
69/* Table hdr is 'AMDR' */
70#define RAS_TABLE_HDR_VAL       0x414d4452
71
72/* Bad GPU tag ���BADG��� */
73#define RAS_TABLE_HDR_BAD       0x42414447
74
75/*
76 * EEPROM Table structure v1
77 * ---------------------------------
78 * |                               |
79 * |     EEPROM TABLE HEADER       |
80 * |      ( size 20 Bytes )        |
81 * |                               |
82 * ---------------------------------
83 * |                               |
84 * |    BAD PAGE RECORD AREA       |
85 * |                               |
86 * ---------------------------------
87 */
88
89/* Assume 2-Mbit size EEPROM and take up the whole space. */
90#define RAS_TBL_SIZE_BYTES      (256 * 1024)
91#define RAS_TABLE_START         0
92#define RAS_HDR_START           RAS_TABLE_START
93#define RAS_RECORD_START        (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
94#define RAS_MAX_RECORD_COUNT    ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
95				 / RAS_TABLE_RECORD_SIZE)
96
97/*
98 * EEPROM Table structrue v2.1
99 * ---------------------------------
100 * |                               |
101 * |     EEPROM TABLE HEADER       |
102 * |      ( size 20 Bytes )        |
103 * |                               |
104 * ---------------------------------
105 * |                               |
106 * |     EEPROM TABLE RAS INFO     |
107 * | (available info size 4 Bytes) |
108 * |  ( reserved size 252 Bytes )  |
109 * |                               |
110 * ---------------------------------
111 * |                               |
112 * |     BAD PAGE RECORD AREA      |
113 * |                               |
114 * ---------------------------------
115 */
116
117/* EEPROM Table V2_1 */
118#define RAS_TABLE_V2_1_INFO_SIZE       256
119#define RAS_TABLE_V2_1_INFO_START      RAS_TABLE_HEADER_SIZE
120#define RAS_RECORD_START_V2_1          (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \
121					RAS_TABLE_V2_1_INFO_SIZE)
122#define RAS_MAX_RECORD_COUNT_V2_1      ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \
123					RAS_TABLE_V2_1_INFO_SIZE) \
124					/ RAS_TABLE_RECORD_SIZE)
125
126/* Given a zero-based index of an EEPROM RAS record, yields the EEPROM
127 * offset off of RAS_TABLE_START.  That is, this is something you can
128 * add to control->i2c_address, and then tell I2C layer to read
129 * from/write to there. _N is the so called absolute index,
130 * because it starts right after the table header.
131 */
132#define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \
133				     (_N) * RAS_TABLE_RECORD_SIZE)
134
135#define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \
136				      (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE)
137
138/* Given a 0-based relative record index, 0, 1, 2, ..., etc., off
139 * of "fri", return the absolute record index off of the end of
140 * the table header.
141 */
142#define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \
143			      (_C)->ras_max_record_count)
144
145#define RAS_NUM_RECS(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
146				  RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE)
147
148#define RAS_NUM_RECS_V2_1(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
149				       RAS_TABLE_HEADER_SIZE - \
150				       RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE)
151
152#define to_amdgpu_device(x) ((container_of(x, struct amdgpu_ras, eeprom_control))->adev)
153
154static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
155{
156	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
157	case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */
158	case IP_VERSION(11, 0, 7): /* Sienna cichlid */
159	case IP_VERSION(13, 0, 0):
160	case IP_VERSION(13, 0, 2): /* Aldebaran */
161	case IP_VERSION(13, 0, 10):
162		return true;
163	case IP_VERSION(13, 0, 6):
164		return (adev->gmc.is_app_apu) ? false : true;
165	default:
166		return false;
167	}
168}
169
170static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
171				  struct amdgpu_ras_eeprom_control *control)
172{
173	struct atom_context *atom_ctx = adev->mode_info.atom_context;
174	u8 i2c_addr;
175
176	if (!control)
177		return false;
178
179	if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) {
180		/* The address given by VBIOS is an 8-bit, wire-format
181		 * address, i.e. the most significant byte.
182		 *
183		 * Normalize it to a 19-bit EEPROM address. Remove the
184		 * device type identifier and make it a 7-bit address;
185		 * then make it a 19-bit EEPROM address. See top of
186		 * amdgpu_eeprom.c.
187		 */
188		i2c_addr = (i2c_addr & 0x0F) >> 1;
189		control->i2c_address = ((u32) i2c_addr) << 16;
190
191		return true;
192	}
193
194	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
195	case IP_VERSION(11, 0, 2):
196		/* VEGA20 and ARCTURUS */
197		if (adev->asic_type == CHIP_VEGA20)
198			control->i2c_address = EEPROM_I2C_MADDR_0;
199		else if (strnstr(atom_ctx->vbios_pn,
200				 "D342",
201				 sizeof(atom_ctx->vbios_pn)))
202			control->i2c_address = EEPROM_I2C_MADDR_0;
203		else
204			control->i2c_address = EEPROM_I2C_MADDR_4;
205		return true;
206	case IP_VERSION(11, 0, 7):
207		control->i2c_address = EEPROM_I2C_MADDR_0;
208		return true;
209	case IP_VERSION(13, 0, 2):
210		if (strnstr(atom_ctx->vbios_pn, "D673",
211			    sizeof(atom_ctx->vbios_pn)))
212			control->i2c_address = EEPROM_I2C_MADDR_4;
213		else
214			control->i2c_address = EEPROM_I2C_MADDR_0;
215		return true;
216	case IP_VERSION(13, 0, 0):
217		if (strnstr(atom_ctx->vbios_pn, "D707",
218			    sizeof(atom_ctx->vbios_pn)))
219			control->i2c_address = EEPROM_I2C_MADDR_0;
220		else
221			control->i2c_address = EEPROM_I2C_MADDR_4;
222		return true;
223	case IP_VERSION(13, 0, 6):
224	case IP_VERSION(13, 0, 10):
225		control->i2c_address = EEPROM_I2C_MADDR_4;
226		return true;
227	default:
228		return false;
229	}
230}
231
232static void
233__encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr,
234			     unsigned char *buf)
235{
236	u32 *pp = (uint32_t *)buf;
237
238	pp[0] = cpu_to_le32(hdr->header);
239	pp[1] = cpu_to_le32(hdr->version);
240	pp[2] = cpu_to_le32(hdr->first_rec_offset);
241	pp[3] = cpu_to_le32(hdr->tbl_size);
242	pp[4] = cpu_to_le32(hdr->checksum);
243}
244
245static void
246__decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr,
247			       unsigned char *buf)
248{
249	u32 *pp = (uint32_t *)buf;
250
251	hdr->header	      = le32_to_cpu(pp[0]);
252	hdr->version	      = le32_to_cpu(pp[1]);
253	hdr->first_rec_offset = le32_to_cpu(pp[2]);
254	hdr->tbl_size	      = le32_to_cpu(pp[3]);
255	hdr->checksum	      = le32_to_cpu(pp[4]);
256}
257
258static int __write_table_header(struct amdgpu_ras_eeprom_control *control)
259{
260	u8 buf[RAS_TABLE_HEADER_SIZE];
261	struct amdgpu_device *adev = to_amdgpu_device(control);
262	int res;
263
264	memset(buf, 0, sizeof(buf));
265	__encode_table_header_to_buf(&control->tbl_hdr, buf);
266
267	/* i2c may be unstable in gpu reset */
268	down_read(&adev->reset_domain->sem);
269	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
270				  control->i2c_address +
271				  control->ras_header_offset,
272				  buf, RAS_TABLE_HEADER_SIZE);
273	up_read(&adev->reset_domain->sem);
274
275	if (res < 0) {
276		DRM_ERROR("Failed to write EEPROM table header:%d", res);
277	} else if (res < RAS_TABLE_HEADER_SIZE) {
278		DRM_ERROR("Short write:%d out of %d\n",
279			  res, RAS_TABLE_HEADER_SIZE);
280		res = -EIO;
281	} else {
282		res = 0;
283	}
284
285	return res;
286}
287
288static void
289__encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
290			       unsigned char *buf)
291{
292	u32 *pp = (uint32_t *)buf;
293	u32 tmp;
294
295	tmp = ((uint32_t)(rai->rma_status) & 0xFF) |
296	      (((uint32_t)(rai->health_percent) << 8) & 0xFF00) |
297	      (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000);
298	pp[0] = cpu_to_le32(tmp);
299}
300
301static void
302__decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
303				 unsigned char *buf)
304{
305	u32 *pp = (uint32_t *)buf;
306	u32 tmp;
307
308	tmp = le32_to_cpu(pp[0]);
309	rai->rma_status = tmp & 0xFF;
310	rai->health_percent = (tmp >> 8) & 0xFF;
311	rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF;
312}
313
314static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control)
315{
316	struct amdgpu_device *adev = to_amdgpu_device(control);
317	u8 *buf;
318	int res;
319
320	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
321	if (!buf) {
322		DRM_ERROR("Failed to alloc buf to write table ras info\n");
323		return -ENOMEM;
324	}
325
326	__encode_table_ras_info_to_buf(&control->tbl_rai, buf);
327
328	/* i2c may be unstable in gpu reset */
329	down_read(&adev->reset_domain->sem);
330	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
331				  control->i2c_address +
332				  control->ras_info_offset,
333				  buf, RAS_TABLE_V2_1_INFO_SIZE);
334	up_read(&adev->reset_domain->sem);
335
336	if (res < 0) {
337		DRM_ERROR("Failed to write EEPROM table ras info:%d", res);
338	} else if (res < RAS_TABLE_V2_1_INFO_SIZE) {
339		DRM_ERROR("Short write:%d out of %d\n",
340			  res, RAS_TABLE_V2_1_INFO_SIZE);
341		res = -EIO;
342	} else {
343		res = 0;
344	}
345
346	kfree(buf);
347
348	return res;
349}
350
351static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control)
352{
353	int ii;
354	u8  *pp, csum;
355	size_t sz;
356
357	/* Header checksum, skip checksum field in the calculation */
358	sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
359	pp = (u8 *) &control->tbl_hdr;
360	csum = 0;
361	for (ii = 0; ii < sz; ii++, pp++)
362		csum += *pp;
363
364	return csum;
365}
366
367static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control)
368{
369	int ii;
370	u8  *pp, csum;
371	size_t sz;
372
373	sz = sizeof(control->tbl_rai);
374	pp = (u8 *) &control->tbl_rai;
375	csum = 0;
376	for (ii = 0; ii < sz; ii++, pp++)
377		csum += *pp;
378
379	return csum;
380}
381
382static int amdgpu_ras_eeprom_correct_header_tag(
383	struct amdgpu_ras_eeprom_control *control,
384	uint32_t header)
385{
386	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
387	u8 *hh;
388	int res;
389	u8 csum;
390
391	csum = -hdr->checksum;
392
393	hh = (void *) &hdr->header;
394	csum -= (hh[0] + hh[1] + hh[2] + hh[3]);
395	hh = (void *) &header;
396	csum += hh[0] + hh[1] + hh[2] + hh[3];
397	csum = -csum;
398	mutex_lock(&control->ras_tbl_mutex);
399	hdr->header = header;
400	hdr->checksum = csum;
401	res = __write_table_header(control);
402	mutex_unlock(&control->ras_tbl_mutex);
403
404	return res;
405}
406
407/**
408 * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table
409 * @control: pointer to control structure
410 *
411 * Reset the contents of the header of the RAS EEPROM table.
412 * Return 0 on success, -errno on error.
413 */
414int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
415{
416	struct amdgpu_device *adev = to_amdgpu_device(control);
417	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
418	struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
419	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
420	u8 csum;
421	int res;
422
423	mutex_lock(&control->ras_tbl_mutex);
424
425	hdr->header = RAS_TABLE_HDR_VAL;
426	if (adev->umc.ras &&
427	    adev->umc.ras->set_eeprom_table_version)
428		adev->umc.ras->set_eeprom_table_version(hdr);
429	else
430		hdr->version = RAS_TABLE_VER_V1;
431
432	if (hdr->version == RAS_TABLE_VER_V2_1) {
433		hdr->first_rec_offset = RAS_RECORD_START_V2_1;
434		hdr->tbl_size = RAS_TABLE_HEADER_SIZE +
435				RAS_TABLE_V2_1_INFO_SIZE;
436		rai->rma_status = GPU_HEALTH_USABLE;
437		/**
438		 * GPU health represented as a percentage.
439		 * 0 means worst health, 100 means fully health.
440		 */
441		rai->health_percent = 100;
442		/* ecc_page_threshold = 0 means disable bad page retirement */
443		rai->ecc_page_threshold = con->bad_page_cnt_threshold;
444	} else {
445		hdr->first_rec_offset = RAS_RECORD_START;
446		hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
447	}
448
449	csum = __calc_hdr_byte_sum(control);
450	if (hdr->version == RAS_TABLE_VER_V2_1)
451		csum += __calc_ras_info_byte_sum(control);
452	csum = -csum;
453	hdr->checksum = csum;
454	res = __write_table_header(control);
455	if (!res && hdr->version > RAS_TABLE_VER_V1)
456		res = __write_table_ras_info(control);
457
458	control->ras_num_recs = 0;
459	control->ras_fri = 0;
460
461	amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs);
462
463	control->bad_channel_bitmap = 0;
464	amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap);
465	con->update_channel_flag = false;
466
467	amdgpu_ras_debugfs_set_ret_size(control);
468
469	mutex_unlock(&control->ras_tbl_mutex);
470
471	return res;
472}
473
474static void
475__encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control,
476			     struct eeprom_table_record *record,
477			     unsigned char *buf)
478{
479	__le64 tmp = 0;
480	int i = 0;
481
482	/* Next are all record fields according to EEPROM page spec in LE foramt */
483	buf[i++] = record->err_type;
484
485	buf[i++] = record->bank;
486
487	tmp = cpu_to_le64(record->ts);
488	memcpy(buf + i, &tmp, 8);
489	i += 8;
490
491	tmp = cpu_to_le64((record->offset & 0xffffffffffff));
492	memcpy(buf + i, &tmp, 6);
493	i += 6;
494
495	buf[i++] = record->mem_channel;
496	buf[i++] = record->mcumc_id;
497
498	tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
499	memcpy(buf + i, &tmp, 6);
500}
501
502static void
503__decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control,
504			       struct eeprom_table_record *record,
505			       unsigned char *buf)
506{
507	__le64 tmp = 0;
508	int i =  0;
509
510	/* Next are all record fields according to EEPROM page spec in LE foramt */
511	record->err_type = buf[i++];
512
513	record->bank = buf[i++];
514
515	memcpy(&tmp, buf + i, 8);
516	record->ts = le64_to_cpu(tmp);
517	i += 8;
518
519	memcpy(&tmp, buf + i, 6);
520	record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
521	i += 6;
522
523	record->mem_channel = buf[i++];
524	record->mcumc_id = buf[i++];
525
526	memcpy(&tmp, buf + i,  6);
527	record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
528}
529
530bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
531{
532	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
533
534	if (!__is_ras_eeprom_supported(adev) ||
535	    !amdgpu_bad_page_threshold)
536		return false;
537
538	/* skip check eeprom table for VEGA20 Gaming */
539	if (!con)
540		return false;
541	else
542		if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
543			return false;
544
545	if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) {
546		if (amdgpu_bad_page_threshold == -1) {
547			dev_warn(adev->dev, "RAS records:%d exceed threshold:%d",
548				con->eeprom_control.ras_num_recs, con->bad_page_cnt_threshold);
549			dev_warn(adev->dev,
550				"But GPU can be operated due to bad_page_threshold = -1.\n");
551			return false;
552		} else {
553			dev_warn(adev->dev, "This GPU is in BAD status.");
554			dev_warn(adev->dev, "Please retire it or set a larger "
555				 "threshold value when reloading driver.\n");
556			return true;
557		}
558	}
559
560	return false;
561}
562
563/**
564 * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM
565 * @control: pointer to control structure
566 * @buf: pointer to buffer containing data to write
567 * @fri: start writing at this index
568 * @num: number of records to write
569 *
570 * The caller must hold the table mutex in @control.
571 * Return 0 on success, -errno otherwise.
572 */
573static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control,
574				     u8 *buf, const u32 fri, const u32 num)
575{
576	struct amdgpu_device *adev = to_amdgpu_device(control);
577	u32 buf_size;
578	int res;
579
580	/* i2c may be unstable in gpu reset */
581	down_read(&adev->reset_domain->sem);
582	buf_size = num * RAS_TABLE_RECORD_SIZE;
583	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
584				  control->i2c_address +
585				  RAS_INDEX_TO_OFFSET(control, fri),
586				  buf, buf_size);
587	up_read(&adev->reset_domain->sem);
588	if (res < 0) {
589		DRM_ERROR("Writing %d EEPROM table records error:%d",
590			  num, res);
591	} else if (res < buf_size) {
592		/* Short write, return error.
593		 */
594		DRM_ERROR("Wrote %d records out of %d",
595			  res / RAS_TABLE_RECORD_SIZE, num);
596		res = -EIO;
597	} else {
598		res = 0;
599	}
600
601	return res;
602}
603
604static int
605amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control,
606			       struct eeprom_table_record *record,
607			       const u32 num)
608{
609	struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control));
610	u32 a, b, i;
611	u8 *buf, *pp;
612	int res;
613
614	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
615	if (!buf)
616		return -ENOMEM;
617
618	/* Encode all of them in one go.
619	 */
620	pp = buf;
621	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
622		__encode_table_record_to_buf(control, &record[i], pp);
623
624		/* update bad channel bitmap */
625		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
626		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
627			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
628			con->update_channel_flag = true;
629		}
630	}
631
632	/* a, first record index to write into.
633	 * b, last record index to write into.
634	 * a = first index to read (fri) + number of records in the table,
635	 * b = a + @num - 1.
636	 * Let N = control->ras_max_num_record_count, then we have,
637	 * case 0: 0 <= a <= b < N,
638	 *   just append @num records starting at a;
639	 * case 1: 0 <= a < N <= b,
640	 *   append (N - a) records starting at a, and
641	 *   append the remainder,  b % N + 1, starting at 0.
642	 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases,
643	 * case 2a: 0 <= a <= b < N
644	 *   append num records starting at a; and fix fri if b overwrote it,
645	 *   and since a <= b, if b overwrote it then a must've also,
646	 *   and if b didn't overwrite it, then a didn't also.
647	 * case 2b: 0 <= b < a < N
648	 *   write num records starting at a, which wraps around 0=N
649	 *   and overwrite fri unconditionally. Now from case 2a,
650	 *   this means that b eclipsed fri to overwrite it and wrap
651	 *   around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally
652	 *   set fri = b + 1 (mod N).
653	 * Now, since fri is updated in every case, except the trivial case 0,
654	 * the number of records present in the table after writing, is,
655	 * num_recs - 1 = b - fri (mod N), and we take the positive value,
656	 * by adding an arbitrary multiple of N before taking the modulo N
657	 * as shown below.
658	 */
659	a = control->ras_fri + control->ras_num_recs;
660	b = a + num  - 1;
661	if (b < control->ras_max_record_count) {
662		res = __amdgpu_ras_eeprom_write(control, buf, a, num);
663	} else if (a < control->ras_max_record_count) {
664		u32 g0, g1;
665
666		g0 = control->ras_max_record_count - a;
667		g1 = b % control->ras_max_record_count + 1;
668		res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
669		if (res)
670			goto Out;
671		res = __amdgpu_ras_eeprom_write(control,
672						buf + g0 * RAS_TABLE_RECORD_SIZE,
673						0, g1);
674		if (res)
675			goto Out;
676		if (g1 > control->ras_fri)
677			control->ras_fri = g1 % control->ras_max_record_count;
678	} else {
679		a %= control->ras_max_record_count;
680		b %= control->ras_max_record_count;
681
682		if (a <= b) {
683			/* Note that, b - a + 1 = num. */
684			res = __amdgpu_ras_eeprom_write(control, buf, a, num);
685			if (res)
686				goto Out;
687			if (b >= control->ras_fri)
688				control->ras_fri = (b + 1) % control->ras_max_record_count;
689		} else {
690			u32 g0, g1;
691
692			/* b < a, which means, we write from
693			 * a to the end of the table, and from
694			 * the start of the table to b.
695			 */
696			g0 = control->ras_max_record_count - a;
697			g1 = b + 1;
698			res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
699			if (res)
700				goto Out;
701			res = __amdgpu_ras_eeprom_write(control,
702							buf + g0 * RAS_TABLE_RECORD_SIZE,
703							0, g1);
704			if (res)
705				goto Out;
706			control->ras_fri = g1 % control->ras_max_record_count;
707		}
708	}
709	control->ras_num_recs = 1 + (control->ras_max_record_count + b
710				     - control->ras_fri)
711		% control->ras_max_record_count;
712Out:
713	kfree(buf);
714	return res;
715}
716
717static int
718amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control)
719{
720	struct amdgpu_device *adev = to_amdgpu_device(control);
721	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
722	u8 *buf, *pp, csum;
723	u32 buf_size;
724	int res;
725
726	/* Modify the header if it exceeds.
727	 */
728	if (amdgpu_bad_page_threshold != 0 &&
729	    control->ras_num_recs >= ras->bad_page_cnt_threshold) {
730		dev_warn(adev->dev,
731			"Saved bad pages %d reaches threshold value %d\n",
732			control->ras_num_recs, ras->bad_page_cnt_threshold);
733		control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
734		if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) {
735			control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD;
736			control->tbl_rai.health_percent = 0;
737		}
738
739		/* ignore the -ENOTSUPP return value */
740		amdgpu_dpm_send_rma_reason(adev);
741	}
742
743	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
744		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
745					    RAS_TABLE_V2_1_INFO_SIZE +
746					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
747	else
748		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
749					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
750	control->tbl_hdr.checksum = 0;
751
752	buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
753	buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
754	if (!buf) {
755		DRM_ERROR("allocating memory for table of size %d bytes failed\n",
756			  control->tbl_hdr.tbl_size);
757		res = -ENOMEM;
758		goto Out;
759	}
760
761	down_read(&adev->reset_domain->sem);
762	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
763				 control->i2c_address +
764				 control->ras_record_offset,
765				 buf, buf_size);
766	up_read(&adev->reset_domain->sem);
767	if (res < 0) {
768		DRM_ERROR("EEPROM failed reading records:%d\n",
769			  res);
770		goto Out;
771	} else if (res < buf_size) {
772		DRM_ERROR("EEPROM read %d out of %d bytes\n",
773			  res, buf_size);
774		res = -EIO;
775		goto Out;
776	}
777
778	/**
779	 * bad page records have been stored in eeprom,
780	 * now calculate gpu health percent
781	 */
782	if (amdgpu_bad_page_threshold != 0 &&
783	    control->tbl_hdr.version == RAS_TABLE_VER_V2_1 &&
784	    control->ras_num_recs < ras->bad_page_cnt_threshold)
785		control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold -
786						   control->ras_num_recs) * 100) /
787						   ras->bad_page_cnt_threshold;
788
789	/* Recalc the checksum.
790	 */
791	csum = 0;
792	for (pp = buf; pp < buf + buf_size; pp++)
793		csum += *pp;
794
795	csum += __calc_hdr_byte_sum(control);
796	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
797		csum += __calc_ras_info_byte_sum(control);
798	/* avoid sign extension when assigning to "checksum" */
799	csum = -csum;
800	control->tbl_hdr.checksum = csum;
801	res = __write_table_header(control);
802	if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1)
803		res = __write_table_ras_info(control);
804Out:
805	kfree(buf);
806	return res;
807}
808
809/**
810 * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table
811 * @control: pointer to control structure
812 * @record: array of records to append
813 * @num: number of records in @record array
814 *
815 * Append @num records to the table, calculate the checksum and write
816 * the table back to EEPROM. The maximum number of records that
817 * can be appended is between 1 and control->ras_max_record_count,
818 * regardless of how many records are already stored in the table.
819 *
820 * Return 0 on success or if EEPROM is not supported, -errno on error.
821 */
822int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control,
823			     struct eeprom_table_record *record,
824			     const u32 num)
825{
826	struct amdgpu_device *adev = to_amdgpu_device(control);
827	int res;
828
829	if (!__is_ras_eeprom_supported(adev))
830		return 0;
831
832	if (num == 0) {
833		DRM_ERROR("will not append 0 records\n");
834		return -EINVAL;
835	} else if (num > control->ras_max_record_count) {
836		DRM_ERROR("cannot append %d records than the size of table %d\n",
837			  num, control->ras_max_record_count);
838		return -EINVAL;
839	}
840
841	mutex_lock(&control->ras_tbl_mutex);
842
843	res = amdgpu_ras_eeprom_append_table(control, record, num);
844	if (!res)
845		res = amdgpu_ras_eeprom_update_header(control);
846	if (!res)
847		amdgpu_ras_debugfs_set_ret_size(control);
848
849	mutex_unlock(&control->ras_tbl_mutex);
850	return res;
851}
852
853/**
854 * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer
855 * @control: pointer to control structure
856 * @buf: pointer to buffer to read into
857 * @fri: first record index, start reading at this index, absolute index
858 * @num: number of records to read
859 *
860 * The caller must hold the table mutex in @control.
861 * Return 0 on success, -errno otherwise.
862 */
863static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
864				    u8 *buf, const u32 fri, const u32 num)
865{
866	struct amdgpu_device *adev = to_amdgpu_device(control);
867	u32 buf_size;
868	int res;
869
870	/* i2c may be unstable in gpu reset */
871	down_read(&adev->reset_domain->sem);
872	buf_size = num * RAS_TABLE_RECORD_SIZE;
873	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
874				 control->i2c_address +
875				 RAS_INDEX_TO_OFFSET(control, fri),
876				 buf, buf_size);
877	up_read(&adev->reset_domain->sem);
878	if (res < 0) {
879		DRM_ERROR("Reading %d EEPROM table records error:%d",
880			  num, res);
881	} else if (res < buf_size) {
882		/* Short read, return error.
883		 */
884		DRM_ERROR("Read %d records out of %d",
885			  res / RAS_TABLE_RECORD_SIZE, num);
886		res = -EIO;
887	} else {
888		res = 0;
889	}
890
891	return res;
892}
893
894/**
895 * amdgpu_ras_eeprom_read -- read EEPROM
896 * @control: pointer to control structure
897 * @record: array of records to read into
898 * @num: number of records in @record
899 *
900 * Reads num records from the RAS table in EEPROM and
901 * writes the data into @record array.
902 *
903 * Returns 0 on success, -errno on error.
904 */
905int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
906			   struct eeprom_table_record *record,
907			   const u32 num)
908{
909	struct amdgpu_device *adev = to_amdgpu_device(control);
910	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
911	int i, res;
912	u8 *buf, *pp;
913	u32 g0, g1;
914
915	if (!__is_ras_eeprom_supported(adev))
916		return 0;
917
918	if (num == 0) {
919		DRM_ERROR("will not read 0 records\n");
920		return -EINVAL;
921	} else if (num > control->ras_num_recs) {
922		DRM_ERROR("too many records to read:%d available:%d\n",
923			  num, control->ras_num_recs);
924		return -EINVAL;
925	}
926
927	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
928	if (!buf)
929		return -ENOMEM;
930
931	/* Determine how many records to read, from the first record
932	 * index, fri, to the end of the table, and from the beginning
933	 * of the table, such that the total number of records is
934	 * @num, and we handle wrap around when fri > 0 and
935	 * fri + num > RAS_MAX_RECORD_COUNT.
936	 *
937	 * First we compute the index of the last element
938	 * which would be fetched from each region,
939	 * g0 is in [fri, fri + num - 1], and
940	 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1].
941	 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of
942	 * the last element to fetch, we set g0 to _the number_
943	 * of elements to fetch, @num, since we know that the last
944	 * indexed to be fetched does not exceed the table.
945	 *
946	 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then
947	 * we set g0 to the number of elements to read
948	 * until the end of the table, and g1 to the number of
949	 * elements to read from the beginning of the table.
950	 */
951	g0 = control->ras_fri + num - 1;
952	g1 = g0 % control->ras_max_record_count;
953	if (g0 < control->ras_max_record_count) {
954		g0 = num;
955		g1 = 0;
956	} else {
957		g0 = control->ras_max_record_count - control->ras_fri;
958		g1 += 1;
959	}
960
961	mutex_lock(&control->ras_tbl_mutex);
962	res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0);
963	if (res)
964		goto Out;
965	if (g1) {
966		res = __amdgpu_ras_eeprom_read(control,
967					       buf + g0 * RAS_TABLE_RECORD_SIZE,
968					       0, g1);
969		if (res)
970			goto Out;
971	}
972
973	res = 0;
974
975	/* Read up everything? Then transform.
976	 */
977	pp = buf;
978	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
979		__decode_table_record_from_buf(control, &record[i], pp);
980
981		/* update bad channel bitmap */
982		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
983		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
984			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
985			con->update_channel_flag = true;
986		}
987	}
988Out:
989	kfree(buf);
990	mutex_unlock(&control->ras_tbl_mutex);
991
992	return res;
993}
994
995uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control)
996{
997	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
998		return RAS_MAX_RECORD_COUNT_V2_1;
999	else
1000		return RAS_MAX_RECORD_COUNT;
1001}
1002
1003static ssize_t
1004amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf,
1005				    size_t size, loff_t *pos)
1006{
1007	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1008	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1009	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1010	u8 data[50];
1011	int res;
1012
1013	if (!size)
1014		return size;
1015
1016	if (!ras || !control) {
1017		res = snprintf(data, sizeof(data), "Not supported\n");
1018	} else {
1019		res = snprintf(data, sizeof(data), "%d bytes or %d records\n",
1020			       RAS_TBL_SIZE_BYTES, control->ras_max_record_count);
1021	}
1022
1023	if (*pos >= res)
1024		return 0;
1025
1026	res -= *pos;
1027	res = min_t(size_t, res, size);
1028
1029	if (copy_to_user(buf, &data[*pos], res))
1030		return -EFAULT;
1031
1032	*pos += res;
1033
1034	return res;
1035}
1036
1037const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = {
1038	.owner = THIS_MODULE,
1039	.read = amdgpu_ras_debugfs_eeprom_size_read,
1040	.write = NULL,
1041	.llseek = default_llseek,
1042};
1043
1044static const char *tbl_hdr_str = " Signature    Version  FirstOffs       Size   Checksum\n";
1045static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n";
1046#define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1)
1047static const char *rec_hdr_str = "Index  Offset ErrType Bank/CU          TimeStamp      Offs/Addr MemChl MCUMCID    RetiredPage\n";
1048static const char *rec_hdr_fmt = "%5d 0x%05X %7s    0x%02X 0x%016llX 0x%012llX   0x%02X    0x%02X 0x%012llX\n";
1049#define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1)
1050
1051static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = {
1052	"ignore",
1053	"re",
1054	"ue",
1055};
1056
1057static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control)
1058{
1059	return strlen(tbl_hdr_str) + tbl_hdr_fmt_size +
1060		strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs;
1061}
1062
1063void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control)
1064{
1065	struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras,
1066					      eeprom_control);
1067	struct dentry *de = ras->de_ras_eeprom_table;
1068
1069	if (de)
1070		d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control);
1071}
1072
1073static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf,
1074					     size_t size, loff_t *pos)
1075{
1076	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1077	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1078	struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control;
1079	const size_t orig_size = size;
1080	int res = -EFAULT;
1081	size_t data_len;
1082
1083	mutex_lock(&control->ras_tbl_mutex);
1084
1085	/* We want *pos - data_len > 0, which means there's
1086	 * bytes to be printed from data.
1087	 */
1088	data_len = strlen(tbl_hdr_str);
1089	if (*pos < data_len) {
1090		data_len -= *pos;
1091		data_len = min_t(size_t, data_len, size);
1092		if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len))
1093			goto Out;
1094		buf += data_len;
1095		size -= data_len;
1096		*pos += data_len;
1097	}
1098
1099	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size;
1100	if (*pos < data_len && size > 0) {
1101		u8 data[tbl_hdr_fmt_size + 1];
1102		loff_t lpos;
1103
1104		snprintf(data, sizeof(data), tbl_hdr_fmt,
1105			 control->tbl_hdr.header,
1106			 control->tbl_hdr.version,
1107			 control->tbl_hdr.first_rec_offset,
1108			 control->tbl_hdr.tbl_size,
1109			 control->tbl_hdr.checksum);
1110
1111		data_len -= *pos;
1112		data_len = min_t(size_t, data_len, size);
1113		lpos = *pos - strlen(tbl_hdr_str);
1114		if (copy_to_user(buf, &data[lpos], data_len))
1115			goto Out;
1116		buf += data_len;
1117		size -= data_len;
1118		*pos += data_len;
1119	}
1120
1121	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str);
1122	if (*pos < data_len && size > 0) {
1123		loff_t lpos;
1124
1125		data_len -= *pos;
1126		data_len = min_t(size_t, data_len, size);
1127		lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size;
1128		if (copy_to_user(buf, &rec_hdr_str[lpos], data_len))
1129			goto Out;
1130		buf += data_len;
1131		size -= data_len;
1132		*pos += data_len;
1133	}
1134
1135	data_len = amdgpu_ras_debugfs_table_size(control);
1136	if (*pos < data_len && size > 0) {
1137		u8 dare[RAS_TABLE_RECORD_SIZE];
1138		u8 data[rec_hdr_fmt_size + 1];
1139		struct eeprom_table_record record;
1140		int s, r;
1141
1142		/* Find the starting record index
1143		 */
1144		s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1145			strlen(rec_hdr_str);
1146		s = s / rec_hdr_fmt_size;
1147		r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1148			strlen(rec_hdr_str);
1149		r = r % rec_hdr_fmt_size;
1150
1151		for ( ; size > 0 && s < control->ras_num_recs; s++) {
1152			u32 ai = RAS_RI_TO_AI(control, s);
1153			/* Read a single record
1154			 */
1155			res = __amdgpu_ras_eeprom_read(control, dare, ai, 1);
1156			if (res)
1157				goto Out;
1158			__decode_table_record_from_buf(control, &record, dare);
1159			snprintf(data, sizeof(data), rec_hdr_fmt,
1160				 s,
1161				 RAS_INDEX_TO_OFFSET(control, ai),
1162				 record_err_type_str[record.err_type],
1163				 record.bank,
1164				 record.ts,
1165				 record.offset,
1166				 record.mem_channel,
1167				 record.mcumc_id,
1168				 record.retired_page);
1169
1170			data_len = min_t(size_t, rec_hdr_fmt_size - r, size);
1171			if (copy_to_user(buf, &data[r], data_len)) {
1172				res = -EFAULT;
1173				goto Out;
1174			}
1175			buf += data_len;
1176			size -= data_len;
1177			*pos += data_len;
1178			r = 0;
1179		}
1180	}
1181	res = 0;
1182Out:
1183	mutex_unlock(&control->ras_tbl_mutex);
1184	return res < 0 ? res : orig_size - size;
1185}
1186
1187static ssize_t
1188amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf,
1189				     size_t size, loff_t *pos)
1190{
1191	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1192	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1193	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1194	u8 data[81];
1195	int res;
1196
1197	if (!size)
1198		return size;
1199
1200	if (!ras || !control) {
1201		res = snprintf(data, sizeof(data), "Not supported\n");
1202		if (*pos >= res)
1203			return 0;
1204
1205		res -= *pos;
1206		res = min_t(size_t, res, size);
1207
1208		if (copy_to_user(buf, &data[*pos], res))
1209			return -EFAULT;
1210
1211		*pos += res;
1212
1213		return res;
1214	} else {
1215		return amdgpu_ras_debugfs_table_read(f, buf, size, pos);
1216	}
1217}
1218
1219const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = {
1220	.owner = THIS_MODULE,
1221	.read = amdgpu_ras_debugfs_eeprom_table_read,
1222	.write = NULL,
1223	.llseek = default_llseek,
1224};
1225
1226/**
1227 * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum
1228 * @control: pointer to control structure
1229 *
1230 * Check the checksum of the stored in EEPROM RAS table.
1231 *
1232 * Return 0 if the checksum is correct,
1233 * positive if it is not correct, and
1234 * -errno on I/O error.
1235 */
1236static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control)
1237{
1238	struct amdgpu_device *adev = to_amdgpu_device(control);
1239	int buf_size, res;
1240	u8  csum, *buf, *pp;
1241
1242	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
1243		buf_size = RAS_TABLE_HEADER_SIZE +
1244			   RAS_TABLE_V2_1_INFO_SIZE +
1245			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1246	else
1247		buf_size = RAS_TABLE_HEADER_SIZE +
1248			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1249
1250	buf = kzalloc(buf_size, GFP_KERNEL);
1251	if (!buf) {
1252		DRM_ERROR("Out of memory checking RAS table checksum.\n");
1253		return -ENOMEM;
1254	}
1255
1256	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1257				 control->i2c_address +
1258				 control->ras_header_offset,
1259				 buf, buf_size);
1260	if (res < buf_size) {
1261		DRM_ERROR("Partial read for checksum, res:%d\n", res);
1262		/* On partial reads, return -EIO.
1263		 */
1264		if (res >= 0)
1265			res = -EIO;
1266		goto Out;
1267	}
1268
1269	csum = 0;
1270	for (pp = buf; pp < buf + buf_size; pp++)
1271		csum += *pp;
1272Out:
1273	kfree(buf);
1274	return res < 0 ? res : csum;
1275}
1276
1277static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control)
1278{
1279	struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
1280	struct amdgpu_device *adev = to_amdgpu_device(control);
1281	unsigned char *buf;
1282	int res;
1283
1284	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
1285	if (!buf) {
1286		DRM_ERROR("Failed to alloc buf to read EEPROM table ras info\n");
1287		return -ENOMEM;
1288	}
1289
1290	/**
1291	 * EEPROM table V2_1 supports ras info,
1292	 * read EEPROM table ras info
1293	 */
1294	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1295				 control->i2c_address + control->ras_info_offset,
1296				 buf, RAS_TABLE_V2_1_INFO_SIZE);
1297	if (res < RAS_TABLE_V2_1_INFO_SIZE) {
1298		DRM_ERROR("Failed to read EEPROM table ras info, res:%d", res);
1299		res = res >= 0 ? -EIO : res;
1300		goto Out;
1301	}
1302
1303	__decode_table_ras_info_from_buf(rai, buf);
1304
1305Out:
1306	kfree(buf);
1307	return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res;
1308}
1309
1310int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control,
1311			   bool *exceed_err_limit)
1312{
1313	struct amdgpu_device *adev = to_amdgpu_device(control);
1314	unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 };
1315	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
1316	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1317	int res;
1318
1319	*exceed_err_limit = false;
1320
1321	if (!__is_ras_eeprom_supported(adev))
1322		return 0;
1323
1324	/* Verify i2c adapter is initialized */
1325	if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo)
1326		return -ENOENT;
1327
1328	if (!__get_eeprom_i2c_addr(adev, control))
1329		return -EINVAL;
1330
1331	control->ras_header_offset = RAS_HDR_START;
1332	control->ras_info_offset = RAS_TABLE_V2_1_INFO_START;
1333	mutex_init(&control->ras_tbl_mutex);
1334
1335	/* Read the table header from EEPROM address */
1336	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1337				 control->i2c_address + control->ras_header_offset,
1338				 buf, RAS_TABLE_HEADER_SIZE);
1339	if (res < RAS_TABLE_HEADER_SIZE) {
1340		DRM_ERROR("Failed to read EEPROM table header, res:%d", res);
1341		return res >= 0 ? -EIO : res;
1342	}
1343
1344	__decode_table_header_from_buf(hdr, buf);
1345
1346	if (hdr->version == RAS_TABLE_VER_V2_1) {
1347		control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr);
1348		control->ras_record_offset = RAS_RECORD_START_V2_1;
1349		control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1;
1350	} else {
1351		control->ras_num_recs = RAS_NUM_RECS(hdr);
1352		control->ras_record_offset = RAS_RECORD_START;
1353		control->ras_max_record_count = RAS_MAX_RECORD_COUNT;
1354	}
1355	control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset);
1356
1357	if (hdr->header == RAS_TABLE_HDR_VAL) {
1358		DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
1359				 control->ras_num_recs);
1360
1361		if (hdr->version == RAS_TABLE_VER_V2_1) {
1362			res = __read_table_ras_info(control);
1363			if (res)
1364				return res;
1365		}
1366
1367		res = __verify_ras_table_checksum(control);
1368		if (res)
1369			DRM_ERROR("RAS table incorrect checksum or error:%d\n",
1370				  res);
1371
1372		/* Warn if we are at 90% of the threshold or above
1373		 */
1374		if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold)
1375			dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d",
1376					control->ras_num_recs,
1377					ras->bad_page_cnt_threshold);
1378	} else if (hdr->header == RAS_TABLE_HDR_BAD &&
1379		   amdgpu_bad_page_threshold != 0) {
1380		if (hdr->version == RAS_TABLE_VER_V2_1) {
1381			res = __read_table_ras_info(control);
1382			if (res)
1383				return res;
1384		}
1385
1386		res = __verify_ras_table_checksum(control);
1387		if (res)
1388			DRM_ERROR("RAS Table incorrect checksum or error:%d\n",
1389				  res);
1390		if (ras->bad_page_cnt_threshold > control->ras_num_recs) {
1391			/* This means that, the threshold was increased since
1392			 * the last time the system was booted, and now,
1393			 * ras->bad_page_cnt_threshold - control->num_recs > 0,
1394			 * so that at least one more record can be saved,
1395			 * before the page count threshold is reached.
1396			 */
1397			dev_info(adev->dev,
1398				 "records:%d threshold:%d, resetting "
1399				 "RAS table header signature",
1400				 control->ras_num_recs,
1401				 ras->bad_page_cnt_threshold);
1402			res = amdgpu_ras_eeprom_correct_header_tag(control,
1403								   RAS_TABLE_HDR_VAL);
1404		} else {
1405			dev_err(adev->dev, "RAS records:%d exceed threshold:%d",
1406				control->ras_num_recs, ras->bad_page_cnt_threshold);
1407			if (amdgpu_bad_page_threshold == -1) {
1408				dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1.");
1409				res = 0;
1410			} else {
1411				*exceed_err_limit = true;
1412				dev_err(adev->dev,
1413					"RAS records:%d exceed threshold:%d, "
1414					"GPU will not be initialized. Replace this GPU or increase the threshold",
1415					control->ras_num_recs, ras->bad_page_cnt_threshold);
1416			}
1417		}
1418	} else {
1419		DRM_INFO("Creating a new EEPROM table");
1420
1421		res = amdgpu_ras_eeprom_reset_table(control);
1422	}
1423
1424	return res < 0 ? res : 0;
1425}
1426