1/*
2 * Copyright 2018 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26
27#include <linux/io-64-nonatomic-lo-hi.h>
28#ifdef CONFIG_X86
29#include <asm/hypervisor.h>
30#endif
31
32#include "amdgpu.h"
33#include "amdgpu_gmc.h"
34#include "amdgpu_ras.h"
35#include "amdgpu_reset.h"
36#include "amdgpu_xgmi.h"
37
38#include <drm/drm_drv.h>
39#include <drm/ttm/ttm_tt.h>
40
41/**
42 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
43 *
44 * @adev: amdgpu_device pointer
45 *
46 * Allocate video memory for pdb0 and map it for CPU access
47 * Returns 0 for success, error for failure.
48 */
49int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
50{
51	int r;
52	struct amdgpu_bo_param bp;
53	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
54	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
55	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
56
57	memset(&bp, 0, sizeof(bp));
58	bp.size = PAGE_ALIGN((npdes + 1) * 8);
59	bp.byte_align = PAGE_SIZE;
60	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
61	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
62		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
63	bp.type = ttm_bo_type_kernel;
64	bp.resv = NULL;
65	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
66
67	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
68	if (r)
69		return r;
70
71	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
72	if (unlikely(r != 0))
73		goto bo_reserve_failure;
74
75	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
76	if (r)
77		goto bo_pin_failure;
78	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
79	if (r)
80		goto bo_kmap_failure;
81
82	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
83	return 0;
84
85bo_kmap_failure:
86	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
87bo_pin_failure:
88	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
89bo_reserve_failure:
90	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
91	return r;
92}
93
94/**
95 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
96 *
97 * @bo: the BO to get the PDE for
98 * @level: the level in the PD hirarchy
99 * @addr: resulting addr
100 * @flags: resulting flags
101 *
102 * Get the address and flags to be used for a PDE (Page Directory Entry).
103 */
104void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
105			       uint64_t *addr, uint64_t *flags)
106{
107	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
108
109	switch (bo->tbo.resource->mem_type) {
110	case TTM_PL_TT:
111		*addr = bo->tbo.ttm->dma_address[0];
112		break;
113	case TTM_PL_VRAM:
114		*addr = amdgpu_bo_gpu_offset(bo);
115		break;
116	default:
117		*addr = 0;
118		break;
119	}
120	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
121	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
122}
123
124/*
125 * amdgpu_gmc_pd_addr - return the address of the root directory
126 */
127uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
128{
129	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
130	uint64_t pd_addr;
131
132	/* TODO: move that into ASIC specific code */
133	if (adev->asic_type >= CHIP_VEGA10) {
134		uint64_t flags = AMDGPU_PTE_VALID;
135
136		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
137		pd_addr |= flags;
138	} else {
139		pd_addr = amdgpu_bo_gpu_offset(bo);
140	}
141	return pd_addr;
142}
143
144/**
145 * amdgpu_gmc_set_pte_pde - update the page tables using CPU
146 *
147 * @adev: amdgpu_device pointer
148 * @cpu_pt_addr: cpu address of the page table
149 * @gpu_page_idx: entry in the page table to update
150 * @addr: dst addr to write into pte/pde
151 * @flags: access flags
152 *
153 * Update the page tables using CPU.
154 */
155int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
156				uint32_t gpu_page_idx, uint64_t addr,
157				uint64_t flags)
158{
159	void __iomem *ptr = (void *)cpu_pt_addr;
160	uint64_t value;
161
162	/*
163	 * The following is for PTE only. GART does not have PDEs.
164	*/
165	value = addr & 0x0000FFFFFFFFF000ULL;
166	value |= flags;
167	writeq(value, ptr + (gpu_page_idx * 8));
168
169	return 0;
170}
171
172/**
173 * amdgpu_gmc_agp_addr - return the address in the AGP address space
174 *
175 * @bo: TTM BO which needs the address, must be in GTT domain
176 *
177 * Tries to figure out how to access the BO through the AGP aperture. Returns
178 * AMDGPU_BO_INVALID_OFFSET if that is not possible.
179 */
180uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
181{
182	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
183
184	if (!bo->ttm)
185		return AMDGPU_BO_INVALID_OFFSET;
186
187	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
188		return AMDGPU_BO_INVALID_OFFSET;
189
190	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
191		return AMDGPU_BO_INVALID_OFFSET;
192
193	return adev->gmc.agp_start + bo->ttm->dma_address[0];
194}
195
196/**
197 * amdgpu_gmc_vram_location - try to find VRAM location
198 *
199 * @adev: amdgpu device structure holding all necessary information
200 * @mc: memory controller structure holding memory information
201 * @base: base address at which to put VRAM
202 *
203 * Function will try to place VRAM at base address provided
204 * as parameter.
205 */
206void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
207			      u64 base)
208{
209	uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
210	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
211
212	mc->vram_start = base;
213	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
214	if (limit < mc->real_vram_size)
215		mc->real_vram_size = limit;
216
217	if (vis_limit && vis_limit < mc->visible_vram_size)
218		mc->visible_vram_size = vis_limit;
219
220	if (mc->real_vram_size < mc->visible_vram_size)
221		mc->visible_vram_size = mc->real_vram_size;
222
223	if (mc->xgmi.num_physical_nodes == 0) {
224		mc->fb_start = mc->vram_start;
225		mc->fb_end = mc->vram_end;
226	}
227	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
228			mc->mc_vram_size >> 20, mc->vram_start,
229			mc->vram_end, mc->real_vram_size >> 20);
230}
231
232/** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
233 *
234 * @adev: amdgpu device structure holding all necessary information
235 * @mc: memory controller structure holding memory information
236 *
237 * This function is only used if use GART for FB translation. In such
238 * case, we use sysvm aperture (vmid0 page tables) for both vram
239 * and gart (aka system memory) access.
240 *
241 * GPUVM (and our organization of vmid0 page tables) require sysvm
242 * aperture to be placed at a location aligned with 8 times of native
243 * page size. For example, if vm_context0_cntl.page_table_block_size
244 * is 12, then native page size is 8G (2M*2^12), sysvm should start
245 * with a 64G aligned address. For simplicity, we just put sysvm at
246 * address 0. So vram start at address 0 and gart is right after vram.
247 */
248void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
249{
250	u64 hive_vram_start = 0;
251	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
252	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
253	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
254	mc->gart_start = hive_vram_end + 1;
255	mc->gart_end = mc->gart_start + mc->gart_size - 1;
256	mc->fb_start = hive_vram_start;
257	mc->fb_end = hive_vram_end;
258	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
259			mc->mc_vram_size >> 20, mc->vram_start,
260			mc->vram_end, mc->real_vram_size >> 20);
261	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
262			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
263}
264
265/**
266 * amdgpu_gmc_gart_location - try to find GART location
267 *
268 * @adev: amdgpu device structure holding all necessary information
269 * @mc: memory controller structure holding memory information
270 * @gart_placement: GART placement policy with respect to VRAM
271 *
272 * Function will place try to place GART before or after VRAM.
273 * If GART size is bigger than space left then we ajust GART size.
274 * Thus function will never fails.
275 */
276void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
277			      enum amdgpu_gart_placement gart_placement)
278{
279	const uint64_t four_gb = 0x100000000ULL;
280	u64 size_af, size_bf;
281	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
282	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
283
284	/* VCE doesn't like it when BOs cross a 4GB segment, so align
285	 * the GART base on a 4GB boundary as well.
286	 */
287	size_bf = mc->fb_start;
288	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
289
290	if (mc->gart_size > max(size_bf, size_af)) {
291		dev_warn(adev->dev, "limiting GART\n");
292		mc->gart_size = max(size_bf, size_af);
293	}
294
295	switch (gart_placement) {
296	case AMDGPU_GART_PLACEMENT_HIGH:
297		mc->gart_start = max_mc_address - mc->gart_size + 1;
298		break;
299	case AMDGPU_GART_PLACEMENT_LOW:
300		mc->gart_start = 0;
301		break;
302	case AMDGPU_GART_PLACEMENT_BEST_FIT:
303	default:
304		if ((size_bf >= mc->gart_size && size_bf < size_af) ||
305		    (size_af < mc->gart_size))
306			mc->gart_start = 0;
307		else
308			mc->gart_start = max_mc_address - mc->gart_size + 1;
309		break;
310	}
311
312	mc->gart_start &= ~(four_gb - 1);
313	mc->gart_end = mc->gart_start + mc->gart_size - 1;
314	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
315			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
316}
317
318/**
319 * amdgpu_gmc_agp_location - try to find AGP location
320 * @adev: amdgpu device structure holding all necessary information
321 * @mc: memory controller structure holding memory information
322 *
323 * Function will place try to find a place for the AGP BAR in the MC address
324 * space.
325 *
326 * AGP BAR will be assigned the largest available hole in the address space.
327 * Should be called after VRAM and GART locations are setup.
328 */
329void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
330{
331	const uint64_t sixteen_gb = 1ULL << 34;
332	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
333	u64 size_af, size_bf;
334
335	if (mc->fb_start > mc->gart_start) {
336		size_bf = (mc->fb_start & sixteen_gb_mask) -
337			ALIGN(mc->gart_end + 1, sixteen_gb);
338		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
339	} else {
340		size_bf = mc->fb_start & sixteen_gb_mask;
341		size_af = (mc->gart_start & sixteen_gb_mask) -
342			ALIGN(mc->fb_end + 1, sixteen_gb);
343	}
344
345	if (size_bf > size_af) {
346		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
347		mc->agp_size = size_bf;
348	} else {
349		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
350		mc->agp_size = size_af;
351	}
352
353	mc->agp_end = mc->agp_start + mc->agp_size - 1;
354	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
355			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
356}
357
358/**
359 * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
360 * @adev: amdgpu device structure holding all necessary information
361 * @mc: memory controller structure holding memory information
362 *
363 * To disable the AGP aperture, you need to set the start to a larger
364 * value than the end.  This function sets the default value which
365 * can then be overridden using amdgpu_gmc_agp_location() if you want
366 * to enable the AGP aperture on a specific chip.
367 *
368 */
369void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
370				struct amdgpu_gmc *mc)
371{
372	mc->agp_start = 0xffffffffffff;
373	mc->agp_end = 0;
374	mc->agp_size = 0;
375}
376
377/**
378 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
379 *
380 * @addr: 48 bit physical address, page aligned (36 significant bits)
381 * @pasid: 16 bit process address space identifier
382 */
383static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
384{
385	return addr << 4 | pasid;
386}
387
388/**
389 * amdgpu_gmc_filter_faults - filter VM faults
390 *
391 * @adev: amdgpu device structure
392 * @ih: interrupt ring that the fault received from
393 * @addr: address of the VM fault
394 * @pasid: PASID of the process causing the fault
395 * @timestamp: timestamp of the fault
396 *
397 * Returns:
398 * True if the fault was filtered and should not be processed further.
399 * False if the fault is a new one and needs to be handled.
400 */
401bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
402			      struct amdgpu_ih_ring *ih, uint64_t addr,
403			      uint16_t pasid, uint64_t timestamp)
404{
405	struct amdgpu_gmc *gmc = &adev->gmc;
406	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
407	struct amdgpu_gmc_fault *fault;
408	uint32_t hash;
409
410	/* Stale retry fault if timestamp goes backward */
411	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
412		return true;
413
414	/* If we don't have space left in the ring buffer return immediately */
415	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
416		AMDGPU_GMC_FAULT_TIMEOUT;
417	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
418		return true;
419
420	/* Try to find the fault in the hash */
421	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
422	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
423	while (fault->timestamp >= stamp) {
424		uint64_t tmp;
425
426		if (atomic64_read(&fault->key) == key) {
427			/*
428			 * if we get a fault which is already present in
429			 * the fault_ring and the timestamp of
430			 * the fault is after the expired timestamp,
431			 * then this is a new fault that needs to be added
432			 * into the fault ring.
433			 */
434			if (fault->timestamp_expiry != 0 &&
435			    amdgpu_ih_ts_after(fault->timestamp_expiry,
436					       timestamp))
437				break;
438			else
439				return true;
440		}
441
442		tmp = fault->timestamp;
443		fault = &gmc->fault_ring[fault->next];
444
445		/* Check if the entry was reused */
446		if (fault->timestamp >= tmp)
447			break;
448	}
449
450	/* Add the fault to the ring */
451	fault = &gmc->fault_ring[gmc->last_fault];
452	atomic64_set(&fault->key, key);
453	fault->timestamp = timestamp;
454
455	/* And update the hash */
456	fault->next = gmc->fault_hash[hash].idx;
457	gmc->fault_hash[hash].idx = gmc->last_fault++;
458	return false;
459}
460
461/**
462 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
463 *
464 * @adev: amdgpu device structure
465 * @addr: address of the VM fault
466 * @pasid: PASID of the process causing the fault
467 *
468 * Remove the address from fault filter, then future vm fault on this address
469 * will pass to retry fault handler to recover.
470 */
471void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
472				     uint16_t pasid)
473{
474	struct amdgpu_gmc *gmc = &adev->gmc;
475	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
476	struct amdgpu_ih_ring *ih;
477	struct amdgpu_gmc_fault *fault;
478	uint32_t last_wptr;
479	uint64_t last_ts;
480	uint32_t hash;
481	uint64_t tmp;
482
483	if (adev->irq.retry_cam_enabled)
484		return;
485
486	ih = &adev->irq.ih1;
487	/* Get the WPTR of the last entry in IH ring */
488	last_wptr = amdgpu_ih_get_wptr(adev, ih);
489	/* Order wptr with ring data. */
490	rmb();
491	/* Get the timetamp of the last entry in IH ring */
492	last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
493
494	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
495	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
496	do {
497		if (atomic64_read(&fault->key) == key) {
498			/*
499			 * Update the timestamp when this fault
500			 * expired.
501			 */
502			fault->timestamp_expiry = last_ts;
503			break;
504		}
505
506		tmp = fault->timestamp;
507		fault = &gmc->fault_ring[fault->next];
508	} while (fault->timestamp < tmp);
509}
510
511int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
512{
513	int r;
514
515	/* umc ras block */
516	r = amdgpu_umc_ras_sw_init(adev);
517	if (r)
518		return r;
519
520	/* mmhub ras block */
521	r = amdgpu_mmhub_ras_sw_init(adev);
522	if (r)
523		return r;
524
525	/* hdp ras block */
526	r = amdgpu_hdp_ras_sw_init(adev);
527	if (r)
528		return r;
529
530	/* mca.x ras block */
531	r = amdgpu_mca_mp0_ras_sw_init(adev);
532	if (r)
533		return r;
534
535	r = amdgpu_mca_mp1_ras_sw_init(adev);
536	if (r)
537		return r;
538
539	r = amdgpu_mca_mpio_ras_sw_init(adev);
540	if (r)
541		return r;
542
543	/* xgmi ras block */
544	r = amdgpu_xgmi_ras_sw_init(adev);
545	if (r)
546		return r;
547
548	return 0;
549}
550
551int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
552{
553	return 0;
554}
555
556void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
557{
558
559}
560
561	/*
562	 * The latest engine allocation on gfx9/10 is:
563	 * Engine 2, 3: firmware
564	 * Engine 0, 1, 4~16: amdgpu ring,
565	 *                    subject to change when ring number changes
566	 * Engine 17: Gart flushes
567	 */
568#define AMDGPU_VMHUB_INV_ENG_BITMAP		0x1FFF3
569
570int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
571{
572	struct amdgpu_ring *ring;
573	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
574	unsigned i;
575	unsigned vmhub, inv_eng;
576
577	/* init the vm inv eng for all vmhubs */
578	for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
579		vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
580		/* reserve engine 5 for firmware */
581		if (adev->enable_mes)
582			vm_inv_engs[i] &= ~(1 << 5);
583		/* reserve mmhub engine 3 for firmware */
584		if (adev->enable_umsch_mm)
585			vm_inv_engs[i] &= ~(1 << 3);
586	}
587
588	for (i = 0; i < adev->num_rings; ++i) {
589		ring = adev->rings[i];
590		vmhub = ring->vm_hub;
591
592		if (ring == &adev->mes.ring ||
593		    ring == &adev->umsch_mm.ring)
594			continue;
595
596		inv_eng = ffs(vm_inv_engs[vmhub]);
597		if (!inv_eng) {
598			dev_err(adev->dev, "no VM inv eng for ring %s\n",
599				ring->name);
600			return -EINVAL;
601		}
602
603		ring->vm_inv_eng = inv_eng - 1;
604		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
605
606		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
607			 ring->name, ring->vm_inv_eng, ring->vm_hub);
608	}
609
610	return 0;
611}
612
613void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
614			      uint32_t vmhub, uint32_t flush_type)
615{
616	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
617	struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
618	struct dma_fence *fence;
619	struct amdgpu_job *job;
620	int r;
621
622	if (!hub->sdma_invalidation_workaround || vmid ||
623	    !adev->mman.buffer_funcs_enabled ||
624	    !adev->ib_pool_ready || amdgpu_in_reset(adev) ||
625	    !ring->sched.ready) {
626
627		/*
628		 * A GPU reset should flush all TLBs anyway, so no need to do
629		 * this while one is ongoing.
630		 */
631		if (!down_read_trylock(&adev->reset_domain->sem))
632			return;
633
634		if (adev->gmc.flush_tlb_needs_extra_type_2)
635			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
636							   vmhub, 2);
637
638		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
639			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
640							   vmhub, 0);
641
642		adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
643						   flush_type);
644		up_read(&adev->reset_domain->sem);
645		return;
646	}
647
648	/* The SDMA on Navi 1x has a bug which can theoretically result in memory
649	 * corruption if an invalidation happens at the same time as an VA
650	 * translation. Avoid this by doing the invalidation from the SDMA
651	 * itself at least for GART.
652	 */
653	mutex_lock(&adev->mman.gtt_window_lock);
654	r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
655				     AMDGPU_FENCE_OWNER_UNDEFINED,
656				     16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
657				     &job);
658	if (r)
659		goto error_alloc;
660
661	job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
662	job->vm_needs_flush = true;
663	job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
664	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
665	fence = amdgpu_job_submit(job);
666	mutex_unlock(&adev->mman.gtt_window_lock);
667
668	dma_fence_wait(fence, false);
669	dma_fence_put(fence);
670
671	return;
672
673error_alloc:
674	mutex_unlock(&adev->mman.gtt_window_lock);
675	dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
676}
677
678int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
679				   uint32_t flush_type, bool all_hub,
680				   uint32_t inst)
681{
682	u32 usec_timeout = amdgpu_sriov_vf(adev) ? SRIOV_USEC_TIMEOUT :
683		adev->usec_timeout;
684	struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
685	struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
686	unsigned int ndw;
687	signed long r;
688	uint32_t seq;
689
690	if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready ||
691	    !down_read_trylock(&adev->reset_domain->sem)) {
692
693		if (adev->gmc.flush_tlb_needs_extra_type_2)
694			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
695								 2, all_hub,
696								 inst);
697
698		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
699			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
700								 0, all_hub,
701								 inst);
702
703		adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
704							 flush_type, all_hub,
705							 inst);
706		return 0;
707	}
708
709	/* 2 dwords flush + 8 dwords fence */
710	ndw = kiq->pmf->invalidate_tlbs_size + 8;
711
712	if (adev->gmc.flush_tlb_needs_extra_type_2)
713		ndw += kiq->pmf->invalidate_tlbs_size;
714
715	if (adev->gmc.flush_tlb_needs_extra_type_0)
716		ndw += kiq->pmf->invalidate_tlbs_size;
717
718	spin_lock(&adev->gfx.kiq[inst].ring_lock);
719	amdgpu_ring_alloc(ring, ndw);
720	if (adev->gmc.flush_tlb_needs_extra_type_2)
721		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
722
723	if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
724		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
725
726	kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
727	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
728	if (r) {
729		amdgpu_ring_undo(ring);
730		spin_unlock(&adev->gfx.kiq[inst].ring_lock);
731		goto error_unlock_reset;
732	}
733
734	amdgpu_ring_commit(ring);
735	spin_unlock(&adev->gfx.kiq[inst].ring_lock);
736	r = amdgpu_fence_wait_polling(ring, seq, usec_timeout);
737	if (r < 1) {
738		dev_err(adev->dev, "wait for kiq fence error: %ld.\n", r);
739		r = -ETIME;
740		goto error_unlock_reset;
741	}
742	r = 0;
743
744error_unlock_reset:
745	up_read(&adev->reset_domain->sem);
746	return r;
747}
748
749void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
750				      uint32_t reg0, uint32_t reg1,
751				      uint32_t ref, uint32_t mask,
752				      uint32_t xcc_inst)
753{
754	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
755	struct amdgpu_ring *ring = &kiq->ring;
756	signed long r, cnt = 0;
757	unsigned long flags;
758	uint32_t seq;
759
760	if (adev->mes.ring.sched.ready) {
761		amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
762					      ref, mask);
763		return;
764	}
765
766	spin_lock_irqsave(&kiq->ring_lock, flags);
767	amdgpu_ring_alloc(ring, 32);
768	amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
769					    ref, mask);
770	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
771	if (r)
772		goto failed_undo;
773
774	amdgpu_ring_commit(ring);
775	spin_unlock_irqrestore(&kiq->ring_lock, flags);
776
777	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
778
779	/* don't wait anymore for IRQ context */
780	if (r < 1 && in_interrupt())
781		goto failed_kiq;
782
783	might_sleep();
784	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
785
786		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
787		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
788	}
789
790	if (cnt > MAX_KIQ_REG_TRY)
791		goto failed_kiq;
792
793	return;
794
795failed_undo:
796	amdgpu_ring_undo(ring);
797	spin_unlock_irqrestore(&kiq->ring_lock, flags);
798failed_kiq:
799	dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
800}
801
802/**
803 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
804 * @adev: amdgpu_device pointer
805 *
806 * Check and set if an the device @adev supports Trusted Memory
807 * Zones (TMZ).
808 */
809void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
810{
811	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
812	/* RAVEN */
813	case IP_VERSION(9, 2, 2):
814	case IP_VERSION(9, 1, 0):
815	/* RENOIR looks like RAVEN */
816	case IP_VERSION(9, 3, 0):
817	/* GC 10.3.7 */
818	case IP_VERSION(10, 3, 7):
819	/* GC 11.0.1 */
820	case IP_VERSION(11, 0, 1):
821		if (amdgpu_tmz == 0) {
822			adev->gmc.tmz_enabled = false;
823			dev_info(adev->dev,
824				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
825		} else {
826			adev->gmc.tmz_enabled = true;
827			dev_info(adev->dev,
828				 "Trusted Memory Zone (TMZ) feature enabled\n");
829		}
830		break;
831	case IP_VERSION(10, 1, 10):
832	case IP_VERSION(10, 1, 1):
833	case IP_VERSION(10, 1, 2):
834	case IP_VERSION(10, 1, 3):
835	case IP_VERSION(10, 3, 0):
836	case IP_VERSION(10, 3, 2):
837	case IP_VERSION(10, 3, 4):
838	case IP_VERSION(10, 3, 5):
839	case IP_VERSION(10, 3, 6):
840	/* VANGOGH */
841	case IP_VERSION(10, 3, 1):
842	/* YELLOW_CARP*/
843	case IP_VERSION(10, 3, 3):
844	case IP_VERSION(11, 0, 4):
845	case IP_VERSION(11, 5, 0):
846	case IP_VERSION(11, 5, 1):
847		/* Don't enable it by default yet.
848		 */
849		if (amdgpu_tmz < 1) {
850			adev->gmc.tmz_enabled = false;
851			dev_info(adev->dev,
852				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
853		} else {
854			adev->gmc.tmz_enabled = true;
855			dev_info(adev->dev,
856				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
857		}
858		break;
859	default:
860		adev->gmc.tmz_enabled = false;
861		dev_info(adev->dev,
862			 "Trusted Memory Zone (TMZ) feature not supported\n");
863		break;
864	}
865}
866
867/**
868 * amdgpu_gmc_noretry_set -- set per asic noretry defaults
869 * @adev: amdgpu_device pointer
870 *
871 * Set a per asic default for the no-retry parameter.
872 *
873 */
874void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
875{
876	struct amdgpu_gmc *gmc = &adev->gmc;
877	uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
878	bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
879				gc_ver == IP_VERSION(9, 3, 0) ||
880				gc_ver == IP_VERSION(9, 4, 0) ||
881				gc_ver == IP_VERSION(9, 4, 1) ||
882				gc_ver == IP_VERSION(9, 4, 2) ||
883				gc_ver == IP_VERSION(9, 4, 3) ||
884				gc_ver >= IP_VERSION(10, 3, 0));
885
886	if (!amdgpu_sriov_xnack_support(adev))
887		gmc->noretry = 1;
888	else
889		gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
890}
891
892void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
893				   bool enable)
894{
895	struct amdgpu_vmhub *hub;
896	u32 tmp, reg, i;
897
898	hub = &adev->vmhub[hub_type];
899	for (i = 0; i < 16; i++) {
900		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
901
902		tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
903			RREG32_SOC15_IP(GC, reg) :
904			RREG32_SOC15_IP(MMHUB, reg);
905
906		if (enable)
907			tmp |= hub->vm_cntx_cntl_vm_fault;
908		else
909			tmp &= ~hub->vm_cntx_cntl_vm_fault;
910
911		(hub_type == AMDGPU_GFXHUB(0)) ?
912			WREG32_SOC15_IP(GC, reg, tmp) :
913			WREG32_SOC15_IP(MMHUB, reg, tmp);
914	}
915}
916
917void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
918{
919	unsigned size;
920
921	/*
922	 * Some ASICs need to reserve a region of video memory to avoid access
923	 * from driver
924	 */
925	adev->mman.stolen_reserved_offset = 0;
926	adev->mman.stolen_reserved_size = 0;
927
928	/*
929	 * TODO:
930	 * Currently there is a bug where some memory client outside
931	 * of the driver writes to first 8M of VRAM on S3 resume,
932	 * this overrides GART which by default gets placed in first 8M and
933	 * causes VM_FAULTS once GTT is accessed.
934	 * Keep the stolen memory reservation until the while this is not solved.
935	 */
936	switch (adev->asic_type) {
937	case CHIP_VEGA10:
938		adev->mman.keep_stolen_vga_memory = true;
939		/*
940		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
941		 */
942#ifdef CONFIG_X86
943		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
944			adev->mman.stolen_reserved_offset = 0x500000;
945			adev->mman.stolen_reserved_size = 0x200000;
946		}
947#endif
948		break;
949	case CHIP_RAVEN:
950	case CHIP_RENOIR:
951		adev->mman.keep_stolen_vga_memory = true;
952		break;
953	default:
954		adev->mman.keep_stolen_vga_memory = false;
955		break;
956	}
957
958	if (amdgpu_sriov_vf(adev) ||
959	    !amdgpu_device_has_display_hardware(adev)) {
960		size = 0;
961	} else {
962		size = amdgpu_gmc_get_vbios_fb_size(adev);
963
964		if (adev->mman.keep_stolen_vga_memory)
965			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
966	}
967
968	/* set to 0 if the pre-OS buffer uses up most of vram */
969	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
970		size = 0;
971
972	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
973		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
974		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
975	} else {
976		adev->mman.stolen_vga_size = size;
977		adev->mman.stolen_extended_size = 0;
978	}
979}
980
981/**
982 * amdgpu_gmc_init_pdb0 - initialize PDB0
983 *
984 * @adev: amdgpu_device pointer
985 *
986 * This function is only used when GART page table is used
987 * for FB address translatioin. In such a case, we construct
988 * a 2-level system VM page table: PDB0->PTB, to cover both
989 * VRAM of the hive and system memory.
990 *
991 * PDB0 is static, initialized once on driver initialization.
992 * The first n entries of PDB0 are used as PTE by setting
993 * P bit to 1, pointing to VRAM. The n+1'th entry points
994 * to a big PTB covering system memory.
995 *
996 */
997void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
998{
999	int i;
1000	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1001	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1002	 */
1003	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1004	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1005	u64 vram_addr = adev->vm_manager.vram_base_offset -
1006		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1007	u64 vram_end = vram_addr + vram_size;
1008	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1009	int idx;
1010
1011	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1012		return;
1013
1014	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1015	flags |= AMDGPU_PTE_WRITEABLE;
1016	flags |= AMDGPU_PTE_SNOOPED;
1017	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1018	flags |= AMDGPU_PDE_PTE;
1019
1020	/* The first n PDE0 entries are used as PTE,
1021	 * pointing to vram
1022	 */
1023	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1024		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1025
1026	/* The n+1'th PDE0 entry points to a huge
1027	 * PTB who has more than 512 entries each
1028	 * pointing to a 4K system page
1029	 */
1030	flags = AMDGPU_PTE_VALID;
1031	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
1032	/* Requires gart_ptb_gpu_pa to be 4K aligned */
1033	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1034	drm_dev_exit(idx);
1035}
1036
1037/**
1038 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1039 * address
1040 *
1041 * @adev: amdgpu_device pointer
1042 * @mc_addr: MC address of buffer
1043 */
1044uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1045{
1046	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1047}
1048
1049/**
1050 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1051 * GPU's view
1052 *
1053 * @adev: amdgpu_device pointer
1054 * @bo: amdgpu buffer object
1055 */
1056uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1057{
1058	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1059}
1060
1061/**
1062 * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
1063 * from CPU's view
1064 *
1065 * @adev: amdgpu_device pointer
1066 * @bo: amdgpu buffer object
1067 */
1068uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1069{
1070	return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
1071}
1072
1073int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1074{
1075	struct amdgpu_bo *vram_bo = NULL;
1076	uint64_t vram_gpu = 0;
1077	void *vram_ptr = NULL;
1078
1079	int ret, size = 0x100000;
1080	uint8_t cptr[10];
1081
1082	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1083				AMDGPU_GEM_DOMAIN_VRAM,
1084				&vram_bo,
1085				&vram_gpu,
1086				&vram_ptr);
1087	if (ret)
1088		return ret;
1089
1090	memset(vram_ptr, 0x86, size);
1091	memset(cptr, 0x86, 10);
1092
1093	/**
1094	 * Check the start, the mid, and the end of the memory if the content of
1095	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1096	 * workable.
1097	 *
1098	 * Note: If check the each byte of whole 1M bo, it will cost too many
1099	 * seconds, so here, we just pick up three parts for emulation.
1100	 */
1101	ret = memcmp(vram_ptr, cptr, 10);
1102	if (ret) {
1103		ret = -EIO;
1104		goto release_buffer;
1105	}
1106
1107	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1108	if (ret) {
1109		ret = -EIO;
1110		goto release_buffer;
1111	}
1112
1113	ret = memcmp(vram_ptr + size - 10, cptr, 10);
1114	if (ret) {
1115		ret = -EIO;
1116		goto release_buffer;
1117	}
1118
1119release_buffer:
1120	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1121			&vram_ptr);
1122
1123	return ret;
1124}
1125
1126static ssize_t current_memory_partition_show(
1127	struct device *dev, struct device_attribute *addr, char *buf)
1128{
1129	struct drm_device *ddev = dev_get_drvdata(dev);
1130	struct amdgpu_device *adev = drm_to_adev(ddev);
1131	enum amdgpu_memory_partition mode;
1132
1133	mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1134	switch (mode) {
1135	case AMDGPU_NPS1_PARTITION_MODE:
1136		return sysfs_emit(buf, "NPS1\n");
1137	case AMDGPU_NPS2_PARTITION_MODE:
1138		return sysfs_emit(buf, "NPS2\n");
1139	case AMDGPU_NPS3_PARTITION_MODE:
1140		return sysfs_emit(buf, "NPS3\n");
1141	case AMDGPU_NPS4_PARTITION_MODE:
1142		return sysfs_emit(buf, "NPS4\n");
1143	case AMDGPU_NPS6_PARTITION_MODE:
1144		return sysfs_emit(buf, "NPS6\n");
1145	case AMDGPU_NPS8_PARTITION_MODE:
1146		return sysfs_emit(buf, "NPS8\n");
1147	default:
1148		return sysfs_emit(buf, "UNKNOWN\n");
1149	}
1150
1151	return sysfs_emit(buf, "UNKNOWN\n");
1152}
1153
1154static DEVICE_ATTR_RO(current_memory_partition);
1155
1156int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1157{
1158	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1159		return 0;
1160
1161	return device_create_file(adev->dev,
1162				  &dev_attr_current_memory_partition);
1163}
1164
1165void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1166{
1167	device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1168}
1169