1/*
2 * Copyright 2014-2018 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22#include "amdgpu.h"
23#include "amdgpu_amdkfd.h"
24#include "gc/gc_9_0_offset.h"
25#include "gc/gc_9_0_sh_mask.h"
26#include "vega10_enum.h"
27#include "sdma0/sdma0_4_0_offset.h"
28#include "sdma0/sdma0_4_0_sh_mask.h"
29#include "sdma1/sdma1_4_0_offset.h"
30#include "sdma1/sdma1_4_0_sh_mask.h"
31#include "athub/athub_1_0_offset.h"
32#include "athub/athub_1_0_sh_mask.h"
33#include "oss/osssys_4_0_offset.h"
34#include "oss/osssys_4_0_sh_mask.h"
35#include "soc15_common.h"
36#include "v9_structs.h"
37#include "soc15.h"
38#include "soc15d.h"
39#include "gfx_v9_0.h"
40#include "amdgpu_amdkfd_gfx_v9.h"
41#include <uapi/linux/kfd_ioctl.h>
42
43enum hqd_dequeue_request_type {
44	NO_ACTION = 0,
45	DRAIN_PIPE,
46	RESET_WAVES,
47	SAVE_WAVES
48};
49
50static void kgd_gfx_v9_lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
51			uint32_t queue, uint32_t vmid, uint32_t inst)
52{
53	mutex_lock(&adev->srbm_mutex);
54	soc15_grbm_select(adev, mec, pipe, queue, vmid, GET_INST(GC, inst));
55}
56
57static void kgd_gfx_v9_unlock_srbm(struct amdgpu_device *adev, uint32_t inst)
58{
59	soc15_grbm_select(adev, 0, 0, 0, 0, GET_INST(GC, inst));
60	mutex_unlock(&adev->srbm_mutex);
61}
62
63void kgd_gfx_v9_acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
64				uint32_t queue_id, uint32_t inst)
65{
66	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
67	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
68
69	kgd_gfx_v9_lock_srbm(adev, mec, pipe, queue_id, 0, inst);
70}
71
72uint64_t kgd_gfx_v9_get_queue_mask(struct amdgpu_device *adev,
73			       uint32_t pipe_id, uint32_t queue_id)
74{
75	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
76			queue_id;
77
78	return 1ull << bit;
79}
80
81void kgd_gfx_v9_release_queue(struct amdgpu_device *adev, uint32_t inst)
82{
83	kgd_gfx_v9_unlock_srbm(adev, inst);
84}
85
86void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
87					uint32_t sh_mem_config,
88					uint32_t sh_mem_ape1_base,
89					uint32_t sh_mem_ape1_limit,
90					uint32_t sh_mem_bases, uint32_t inst)
91{
92	kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
93
94	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmSH_MEM_CONFIG, sh_mem_config);
95	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmSH_MEM_BASES, sh_mem_bases);
96	/* APE1 no longer exists on GFX9 */
97
98	kgd_gfx_v9_unlock_srbm(adev, inst);
99}
100
101int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
102					unsigned int vmid, uint32_t inst)
103{
104	/*
105	 * We have to assume that there is no outstanding mapping.
106	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
107	 * a mapping is in progress or because a mapping finished
108	 * and the SW cleared it.
109	 * So the protocol is to always wait & clear.
110	 */
111	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
112			ATC_VMID0_PASID_MAPPING__VALID_MASK;
113
114	/*
115	 * need to do this twice, once for gfx and once for mmhub
116	 * for ATC add 16 to VMID for mmhub, for IH different registers.
117	 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
118	 */
119
120	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
121	       pasid_mapping);
122
123	while (!(RREG32(SOC15_REG_OFFSET(
124				ATHUB, 0,
125				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
126		 (1U << vmid)))
127		cpu_relax();
128
129	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
130				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
131	       1U << vmid);
132
133	/* Mapping vmid to pasid also for IH block */
134	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
135	       pasid_mapping);
136
137	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
138	       pasid_mapping);
139
140	while (!(RREG32(SOC15_REG_OFFSET(
141				ATHUB, 0,
142				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
143		 (1U << (vmid + 16))))
144		cpu_relax();
145
146	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
147				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
148	       1U << (vmid + 16));
149
150	/* Mapping vmid to pasid also for IH block */
151	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
152	       pasid_mapping);
153	return 0;
154}
155
156/* TODO - RING0 form of field is obsolete, seems to date back to SI
157 * but still works
158 */
159
160int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
161				uint32_t inst)
162{
163	uint32_t mec;
164	uint32_t pipe;
165
166	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
167	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
168
169	kgd_gfx_v9_lock_srbm(adev, mec, pipe, 0, 0, inst);
170
171	WREG32_SOC15(GC, GET_INST(GC, inst), mmCPC_INT_CNTL,
172		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
173		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
174
175	kgd_gfx_v9_unlock_srbm(adev, inst);
176
177	return 0;
178}
179
180static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
181				unsigned int engine_id,
182				unsigned int queue_id)
183{
184	uint32_t sdma_engine_reg_base = 0;
185	uint32_t sdma_rlc_reg_offset;
186
187	switch (engine_id) {
188	default:
189		dev_warn(adev->dev,
190			 "Invalid sdma engine id (%d), using engine id 0\n",
191			 engine_id);
192		fallthrough;
193	case 0:
194		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
195				mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
196		break;
197	case 1:
198		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
199				mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
200		break;
201	}
202
203	sdma_rlc_reg_offset = sdma_engine_reg_base
204		+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
205
206	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
207		 queue_id, sdma_rlc_reg_offset);
208
209	return sdma_rlc_reg_offset;
210}
211
212static inline struct v9_mqd *get_mqd(void *mqd)
213{
214	return (struct v9_mqd *)mqd;
215}
216
217static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
218{
219	return (struct v9_sdma_mqd *)mqd;
220}
221
222int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd,
223			uint32_t pipe_id, uint32_t queue_id,
224			uint32_t __user *wptr, uint32_t wptr_shift,
225			uint32_t wptr_mask, struct mm_struct *mm,
226			uint32_t inst)
227{
228	struct v9_mqd *m;
229	uint32_t *mqd_hqd;
230	uint32_t reg, hqd_base, data;
231
232	m = get_mqd(mqd);
233
234	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
235
236	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
237	mqd_hqd = &m->cp_mqd_base_addr_lo;
238	hqd_base = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
239
240	for (reg = hqd_base;
241	     reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
242		WREG32_XCC(reg, mqd_hqd[reg - hqd_base], inst);
243
244
245	/* Activate doorbell logic before triggering WPTR poll. */
246	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
247			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
248	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_DOORBELL_CONTROL, data);
249
250	if (wptr) {
251		/* Don't read wptr with get_user because the user
252		 * context may not be accessible (if this function
253		 * runs in a work queue). Instead trigger a one-shot
254		 * polling read from memory in the CP. This assumes
255		 * that wptr is GPU-accessible in the queue's VMID via
256		 * ATC or SVM. WPTR==RPTR before starting the poll so
257		 * the CP starts fetching new commands from the right
258		 * place.
259		 *
260		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
261		 * tricky. Assume that the queue didn't overflow. The
262		 * number of valid bits in the 32-bit RPTR depends on
263		 * the queue size. The remaining bits are taken from
264		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
265		 * queue size.
266		 */
267		uint32_t queue_size =
268			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
269					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
270		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
271
272		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
273			guessed_wptr += queue_size;
274		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
275		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
276
277		WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_LO,
278			lower_32_bits(guessed_wptr));
279		WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI,
280			upper_32_bits(guessed_wptr));
281		WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR,
282			lower_32_bits((uintptr_t)wptr));
283		WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR_HI,
284			upper_32_bits((uintptr_t)wptr));
285		WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_PQ_WPTR_POLL_CNTL1,
286			(uint32_t)kgd_gfx_v9_get_queue_mask(adev, pipe_id, queue_id));
287	}
288
289	/* Start the EOP fetcher */
290	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_EOP_RPTR,
291	       REG_SET_FIELD(m->cp_hqd_eop_rptr, CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
292
293	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
294	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE, data);
295
296	kgd_gfx_v9_release_queue(adev, inst);
297
298	return 0;
299}
300
301int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
302			    uint32_t pipe_id, uint32_t queue_id,
303			    uint32_t doorbell_off, uint32_t inst)
304{
305	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[inst].ring;
306	struct v9_mqd *m;
307	uint32_t mec, pipe;
308	int r;
309
310	m = get_mqd(mqd);
311
312	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
313
314	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
315	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
316
317	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
318		 mec, pipe, queue_id);
319
320	spin_lock(&adev->gfx.kiq[inst].ring_lock);
321	r = amdgpu_ring_alloc(kiq_ring, 7);
322	if (r) {
323		pr_err("Failed to alloc KIQ (%d).\n", r);
324		goto out_unlock;
325	}
326
327	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
328	amdgpu_ring_write(kiq_ring,
329			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
330			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
331			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
332			  PACKET3_MAP_QUEUES_PIPE(pipe) |
333			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
334			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
335			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
336			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
337			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
338	amdgpu_ring_write(kiq_ring,
339			  PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
340	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
341	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
342	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
343	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
344	amdgpu_ring_commit(kiq_ring);
345
346out_unlock:
347	spin_unlock(&adev->gfx.kiq[inst].ring_lock);
348	kgd_gfx_v9_release_queue(adev, inst);
349
350	return r;
351}
352
353int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev,
354			uint32_t pipe_id, uint32_t queue_id,
355			uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
356{
357	uint32_t i = 0, reg;
358#define HQD_N_REGS 56
359#define DUMP_REG(addr) do {				\
360		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
361			break;				\
362		(*dump)[i][0] = (addr) << 2;		\
363		(*dump)[i++][1] = RREG32(addr);		\
364	} while (0)
365
366	*dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL);
367	if (*dump == NULL)
368		return -ENOMEM;
369
370	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
371
372	for (reg = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
373	     reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
374		DUMP_REG(reg);
375
376	kgd_gfx_v9_release_queue(adev, inst);
377
378	WARN_ON_ONCE(i != HQD_N_REGS);
379	*n_regs = i;
380
381	return 0;
382}
383
384static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
385			     uint32_t __user *wptr, struct mm_struct *mm)
386{
387	struct v9_sdma_mqd *m;
388	uint32_t sdma_rlc_reg_offset;
389	unsigned long end_jiffies;
390	uint32_t data;
391	uint64_t data64;
392	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
393
394	m = get_sdma_mqd(mqd);
395	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
396					    m->sdma_queue_id);
397
398	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
399		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
400
401	end_jiffies = msecs_to_jiffies(2000) + jiffies;
402	while (true) {
403		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
404		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
405			break;
406		if (time_after(jiffies, end_jiffies)) {
407			pr_err("SDMA RLC not idle in %s\n", __func__);
408			return -ETIME;
409		}
410		usleep_range(500, 1000);
411	}
412
413	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
414	       m->sdmax_rlcx_doorbell_offset);
415
416	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
417			     ENABLE, 1);
418	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
419	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
420				m->sdmax_rlcx_rb_rptr);
421	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
422				m->sdmax_rlcx_rb_rptr_hi);
423
424	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
425	if (read_user_wptr(mm, wptr64, data64)) {
426		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
427		       lower_32_bits(data64));
428		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
429		       upper_32_bits(data64));
430	} else {
431		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
432		       m->sdmax_rlcx_rb_rptr);
433		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
434		       m->sdmax_rlcx_rb_rptr_hi);
435	}
436	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
437
438	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
439	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
440			m->sdmax_rlcx_rb_base_hi);
441	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
442			m->sdmax_rlcx_rb_rptr_addr_lo);
443	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
444			m->sdmax_rlcx_rb_rptr_addr_hi);
445
446	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
447			     RB_ENABLE, 1);
448	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
449
450	return 0;
451}
452
453static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
454			     uint32_t engine_id, uint32_t queue_id,
455			     uint32_t (**dump)[2], uint32_t *n_regs)
456{
457	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
458			engine_id, queue_id);
459	uint32_t i = 0, reg;
460#undef HQD_N_REGS
461#define HQD_N_REGS (19+6+7+10)
462
463	*dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL);
464	if (*dump == NULL)
465		return -ENOMEM;
466
467	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
468		DUMP_REG(sdma_rlc_reg_offset + reg);
469	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
470		DUMP_REG(sdma_rlc_reg_offset + reg);
471	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
472	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
473		DUMP_REG(sdma_rlc_reg_offset + reg);
474	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
475	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
476		DUMP_REG(sdma_rlc_reg_offset + reg);
477
478	WARN_ON_ONCE(i != HQD_N_REGS);
479	*n_regs = i;
480
481	return 0;
482}
483
484bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev,
485				uint64_t queue_address, uint32_t pipe_id,
486				uint32_t queue_id, uint32_t inst)
487{
488	uint32_t act;
489	bool retval = false;
490	uint32_t low, high;
491
492	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
493	act = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
494	if (act) {
495		low = lower_32_bits(queue_address >> 8);
496		high = upper_32_bits(queue_address >> 8);
497
498		if (low == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE) &&
499		   high == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI))
500			retval = true;
501	}
502	kgd_gfx_v9_release_queue(adev, inst);
503	return retval;
504}
505
506static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
507{
508	struct v9_sdma_mqd *m;
509	uint32_t sdma_rlc_reg_offset;
510	uint32_t sdma_rlc_rb_cntl;
511
512	m = get_sdma_mqd(mqd);
513	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
514					    m->sdma_queue_id);
515
516	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
517
518	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
519		return true;
520
521	return false;
522}
523
524int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd,
525				enum kfd_preempt_type reset_type,
526				unsigned int utimeout, uint32_t pipe_id,
527				uint32_t queue_id, uint32_t inst)
528{
529	enum hqd_dequeue_request_type type;
530	unsigned long end_jiffies;
531	uint32_t temp;
532	struct v9_mqd *m = get_mqd(mqd);
533
534	if (amdgpu_in_reset(adev))
535		return -EIO;
536
537	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
538
539	if (m->cp_hqd_vmid == 0)
540		WREG32_FIELD15_RLC(GC, GET_INST(GC, inst), RLC_CP_SCHEDULERS, scheduler1, 0);
541
542	switch (reset_type) {
543	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
544		type = DRAIN_PIPE;
545		break;
546	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
547		type = RESET_WAVES;
548		break;
549	case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
550		type = SAVE_WAVES;
551		break;
552	default:
553		type = DRAIN_PIPE;
554		break;
555	}
556
557	WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_DEQUEUE_REQUEST, type);
558
559	end_jiffies = (utimeout * HZ / 1000) + jiffies;
560	while (true) {
561		temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
562		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
563			break;
564		if (time_after(jiffies, end_jiffies)) {
565			pr_err("cp queue preemption time out.\n");
566			kgd_gfx_v9_release_queue(adev, inst);
567			return -ETIME;
568		}
569		usleep_range(500, 1000);
570	}
571
572	kgd_gfx_v9_release_queue(adev, inst);
573	return 0;
574}
575
576static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
577				unsigned int utimeout)
578{
579	struct v9_sdma_mqd *m;
580	uint32_t sdma_rlc_reg_offset;
581	uint32_t temp;
582	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
583
584	m = get_sdma_mqd(mqd);
585	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
586					    m->sdma_queue_id);
587
588	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
589	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
590	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
591
592	while (true) {
593		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
594		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
595			break;
596		if (time_after(jiffies, end_jiffies)) {
597			pr_err("SDMA RLC not idle in %s\n", __func__);
598			return -ETIME;
599		}
600		usleep_range(500, 1000);
601	}
602
603	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
604	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
605		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
606		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
607
608	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
609	m->sdmax_rlcx_rb_rptr_hi =
610		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
611
612	return 0;
613}
614
615bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
616					uint8_t vmid, uint16_t *p_pasid)
617{
618	uint32_t value;
619
620	value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
621		     + vmid);
622	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
623
624	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
625}
626
627int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev,
628					uint32_t gfx_index_val,
629					uint32_t sq_cmd, uint32_t inst)
630{
631	uint32_t data = 0;
632
633	mutex_lock(&adev->grbm_idx_mutex);
634
635	WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, gfx_index_val);
636	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_CMD, sq_cmd);
637
638	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
639		INSTANCE_BROADCAST_WRITES, 1);
640	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
641		SH_BROADCAST_WRITES, 1);
642	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
643		SE_BROADCAST_WRITES, 1);
644
645	WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, data);
646	mutex_unlock(&adev->grbm_idx_mutex);
647
648	return 0;
649}
650
651/*
652 * GFX9 helper for wave launch stall requirements on debug trap setting.
653 *
654 * vmid:
655 *   Target VMID to stall/unstall.
656 *
657 * stall:
658 *   0-unstall wave launch (enable), 1-stall wave launch (disable).
659 *   After wavefront launch has been stalled, allocated waves must drain from
660 *   SPI in order for debug trap settings to take effect on those waves.
661 *   This is roughly a ~96 clock cycle wait on SPI where a read on
662 *   SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles.
663 *   KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required.
664 *
665 *   NOTE: We can afford to clear the entire STALL_VMID field on unstall
666 *   because GFX9.4.1 cannot support multi-process debugging due to trap
667 *   configuration and masking being limited to global scope.  Always assume
668 *   single process conditions.
669 */
670#define KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY	3
671void kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device *adev,
672					uint32_t vmid,
673					bool stall)
674{
675	int i;
676	uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
677
678	if (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 1))
679		data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID,
680							stall ? 1 << vmid : 0);
681	else
682		data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA,
683							stall ? 1 : 0);
684
685	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
686
687	if (!stall)
688		return;
689
690	for (i = 0; i < KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++)
691		RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
692}
693
694/*
695 * restore_dbg_registers is ignored here but is a general interface requirement
696 * for devices that support GFXOFF and where the RLC save/restore list
697 * does not support hw registers for debugging i.e. the driver has to manually
698 * initialize the debug mode registers after it has disabled GFX off during the
699 * debug session.
700 */
701uint32_t kgd_gfx_v9_enable_debug_trap(struct amdgpu_device *adev,
702				bool restore_dbg_registers,
703				uint32_t vmid)
704{
705	mutex_lock(&adev->grbm_idx_mutex);
706
707	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
708
709	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
710
711	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
712
713	mutex_unlock(&adev->grbm_idx_mutex);
714
715	return 0;
716}
717
718/*
719 * keep_trap_enabled is ignored here but is a general interface requirement
720 * for devices that support multi-process debugging where the performance
721 * overhead from trap temporary setup needs to be bypassed when the debug
722 * session has ended.
723 */
724uint32_t kgd_gfx_v9_disable_debug_trap(struct amdgpu_device *adev,
725					bool keep_trap_enabled,
726					uint32_t vmid)
727{
728	mutex_lock(&adev->grbm_idx_mutex);
729
730	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
731
732	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
733
734	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
735
736	mutex_unlock(&adev->grbm_idx_mutex);
737
738	return 0;
739}
740
741int kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device *adev,
742					uint32_t trap_override,
743					uint32_t *trap_mask_supported)
744{
745	*trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH;
746
747	/* The SPI_GDBG_TRAP_MASK register is global and affects all
748	 * processes. Only allow OR-ing the address-watch bit, since
749	 * this only affects processes under the debugger. Other bits
750	 * should stay 0 to avoid the debugger interfering with other
751	 * processes.
752	 */
753	if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR)
754		return -EINVAL;
755
756	return 0;
757}
758
759uint32_t kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device *adev,
760					     uint32_t vmid,
761					     uint32_t trap_override,
762					     uint32_t trap_mask_bits,
763					     uint32_t trap_mask_request,
764					     uint32_t *trap_mask_prev,
765					     uint32_t kfd_dbg_cntl_prev)
766{
767	uint32_t data, wave_cntl_prev;
768
769	mutex_lock(&adev->grbm_idx_mutex);
770
771	wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
772
773	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
774
775	data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK));
776	*trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN);
777
778	trap_mask_bits = (trap_mask_bits & trap_mask_request) |
779		(*trap_mask_prev & ~trap_mask_request);
780
781	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits);
782	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override);
783	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
784
785	/* We need to preserve wave launch mode stall settings. */
786	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev);
787
788	mutex_unlock(&adev->grbm_idx_mutex);
789
790	return 0;
791}
792
793uint32_t kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device *adev,
794					uint8_t wave_launch_mode,
795					uint32_t vmid)
796{
797	uint32_t data = 0;
798	bool is_mode_set = !!wave_launch_mode;
799
800	mutex_lock(&adev->grbm_idx_mutex);
801
802	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
803
804	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
805		VMID_MASK, is_mode_set ? 1 << vmid : 0);
806	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
807		MODE, is_mode_set ? wave_launch_mode : 0);
808	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
809
810	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
811
812	mutex_unlock(&adev->grbm_idx_mutex);
813
814	return 0;
815}
816
817#define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H)
818uint32_t kgd_gfx_v9_set_address_watch(struct amdgpu_device *adev,
819					uint64_t watch_address,
820					uint32_t watch_address_mask,
821					uint32_t watch_id,
822					uint32_t watch_mode,
823					uint32_t debug_vmid,
824					uint32_t inst)
825{
826	uint32_t watch_address_high;
827	uint32_t watch_address_low;
828	uint32_t watch_address_cntl;
829
830	watch_address_cntl = 0;
831
832	watch_address_low = lower_32_bits(watch_address);
833	watch_address_high = upper_32_bits(watch_address) & 0xffff;
834
835	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
836			TCP_WATCH0_CNTL,
837			VMID,
838			debug_vmid);
839	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
840			TCP_WATCH0_CNTL,
841			MODE,
842			watch_mode);
843	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
844			TCP_WATCH0_CNTL,
845			MASK,
846			watch_address_mask >> 6);
847
848	/* Turning off this watch point until we set all the registers */
849	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
850			TCP_WATCH0_CNTL,
851			VALID,
852			0);
853
854	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
855			(watch_id * TCP_WATCH_STRIDE)),
856			watch_address_cntl);
857
858	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) +
859			(watch_id * TCP_WATCH_STRIDE)),
860			watch_address_high);
861
862	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) +
863			(watch_id * TCP_WATCH_STRIDE)),
864			watch_address_low);
865
866	/* Enable the watch point */
867	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
868			TCP_WATCH0_CNTL,
869			VALID,
870			1);
871
872	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
873			(watch_id * TCP_WATCH_STRIDE)),
874			watch_address_cntl);
875
876	return 0;
877}
878
879uint32_t kgd_gfx_v9_clear_address_watch(struct amdgpu_device *adev,
880					uint32_t watch_id)
881{
882	uint32_t watch_address_cntl;
883
884	watch_address_cntl = 0;
885
886	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
887			(watch_id * TCP_WATCH_STRIDE)),
888			watch_address_cntl);
889
890	return 0;
891}
892
893/* kgd_gfx_v9_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
894 * The values read are:
895 *     ib_offload_wait_time     -- Wait Count for Indirect Buffer Offloads.
896 *     atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
897 *     wrm_offload_wait_time    -- Wait Count for WAIT_REG_MEM Offloads.
898 *     gws_wait_time            -- Wait Count for Global Wave Syncs.
899 *     que_sleep_wait_time      -- Wait Count for Dequeue Retry.
900 *     sch_wave_wait_time       -- Wait Count for Scheduling Wave Message.
901 *     sem_rearm_wait_time      -- Wait Count for Semaphore re-arm.
902 *     deq_retry_wait_time      -- Wait Count for Global Wave Syncs.
903 */
904void kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device *adev,
905					uint32_t *wait_times,
906					uint32_t inst)
907
908{
909	*wait_times = RREG32_SOC15_RLC(GC, GET_INST(GC, inst),
910			mmCP_IQ_WAIT_TIME2);
911}
912
913void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev,
914			uint32_t vmid, uint64_t page_table_base)
915{
916	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
917		pr_err("trying to set page table base for wrong VMID %u\n",
918		       vmid);
919		return;
920	}
921
922	adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
923
924	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
925}
926
927static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
928{
929	mutex_lock(&adev->srbm_mutex);
930	mutex_lock(&adev->grbm_idx_mutex);
931
932}
933
934static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
935{
936	mutex_unlock(&adev->grbm_idx_mutex);
937	mutex_unlock(&adev->srbm_mutex);
938}
939
940/**
941 * get_wave_count: Read device registers to get number of waves in flight for
942 * a particular queue. The method also returns the VMID associated with the
943 * queue.
944 *
945 * @adev: Handle of device whose registers are to be read
946 * @queue_idx: Index of queue in the queue-map bit-field
947 * @wave_cnt: Output parameter updated with number of waves in flight
948 * @vmid: Output parameter updated with VMID of queue whose wave count
949 *        is being collected
950 * @inst: xcc's instance number on a multi-XCC setup
951 */
952static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
953		int *wave_cnt, int *vmid, uint32_t inst)
954{
955	int pipe_idx;
956	int queue_slot;
957	unsigned int reg_val;
958
959	/*
960	 * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
961	 * parameters to read out waves in flight. Get VMID if there are
962	 * non-zero waves in flight.
963	 */
964	*vmid = 0xFF;
965	*wave_cnt = 0;
966	pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
967	queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
968	soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0, inst);
969	reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, inst, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
970			 queue_slot);
971	*wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
972	if (*wave_cnt != 0)
973		*vmid = (RREG32_SOC15(GC, inst, mmCP_HQD_VMID) &
974			 CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
975}
976
977/**
978 * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
979 * shader engine and aggregates the number of waves that are in flight for the
980 * process whose pasid is provided as a parameter. The process could have ZERO
981 * or more queues running and submitting waves to compute units.
982 *
983 * @adev: Handle of device from which to get number of waves in flight
984 * @pasid: Identifies the process for which this query call is invoked
985 * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
986 *                  belong to process with given pasid
987 * @max_waves_per_cu: Output parameter updated with maximum number of waves
988 *                    possible per Compute Unit
989 * @inst: xcc's instance number on a multi-XCC setup
990 *
991 * Note: It's possible that the device has too many queues (oversubscription)
992 * in which case a VMID could be remapped to a different PASID. This could lead
993 * to an inaccurate wave count. Following is a high-level sequence:
994 *    Time T1: vmid = getVmid(); vmid is associated with Pasid P1
995 *    Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
996 * In the sequence above wave count obtained from time T1 will be incorrectly
997 * lost or added to total wave count.
998 *
999 * The registers that provide the waves in flight are:
1000 *
1001 *  SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
1002 *  queue is slotted, OFF if there is no queue. A process could have ZERO or
1003 *  more queues slotted and submitting waves to be run on compute units. Even
1004 *  when there is a queue it is possible there could be zero wave fronts, this
1005 *  can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
1006 *  command
1007 *
1008 *  For each bit that is ON from above:
1009 *
1010 *    Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
1011 *    number of waves that are in flight for the queue at specified index. The
1012 *    index ranges from 0 to 7.
1013 *
1014 *    If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
1015 *    of the wave(s).
1016 *
1017 *    Determine if VMID from above step maps to pasid provided as parameter. If
1018 *    it matches agrregate the wave count. That the VMID will not match pasid is
1019 *    a normal condition i.e. a device is expected to support multiple queues
1020 *    from multiple proceses.
1021 *
1022 *  Reading registers referenced above involves programming GRBM appropriately
1023 */
1024void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid,
1025		int *pasid_wave_cnt, int *max_waves_per_cu, uint32_t inst)
1026{
1027	int qidx;
1028	int vmid;
1029	int se_idx;
1030	int sh_idx;
1031	int se_cnt;
1032	int sh_cnt;
1033	int wave_cnt;
1034	int queue_map;
1035	int pasid_tmp;
1036	int max_queue_cnt;
1037	int vmid_wave_cnt = 0;
1038	DECLARE_BITMAP(cp_queue_bitmap, AMDGPU_MAX_QUEUES);
1039
1040	lock_spi_csq_mutexes(adev);
1041	soc15_grbm_select(adev, 1, 0, 0, 0, inst);
1042
1043	/*
1044	 * Iterate through the shader engines and arrays of the device
1045	 * to get number of waves in flight
1046	 */
1047	bitmap_complement(cp_queue_bitmap, adev->gfx.mec_bitmap[0].queue_bitmap,
1048			  AMDGPU_MAX_QUEUES);
1049	max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
1050			adev->gfx.mec.num_queue_per_pipe;
1051	sh_cnt = adev->gfx.config.max_sh_per_se;
1052	se_cnt = adev->gfx.config.max_shader_engines;
1053	for (se_idx = 0; se_idx < se_cnt; se_idx++) {
1054		for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
1055
1056			amdgpu_gfx_select_se_sh(adev, se_idx, sh_idx, 0xffffffff, inst);
1057			queue_map = RREG32_SOC15(GC, inst, mmSPI_CSQ_WF_ACTIVE_STATUS);
1058
1059			/*
1060			 * Assumption: queue map encodes following schema: four
1061			 * pipes per each micro-engine, with each pipe mapping
1062			 * eight queues. This schema is true for GFX9 devices
1063			 * and must be verified for newer device families
1064			 */
1065			for (qidx = 0; qidx < max_queue_cnt; qidx++) {
1066
1067				/* Skip qeueus that are not associated with
1068				 * compute functions
1069				 */
1070				if (!test_bit(qidx, cp_queue_bitmap))
1071					continue;
1072
1073				if (!(queue_map & (1 << qidx)))
1074					continue;
1075
1076				/* Get number of waves in flight and aggregate them */
1077				get_wave_count(adev, qidx, &wave_cnt, &vmid,
1078						inst);
1079				if (wave_cnt != 0) {
1080					pasid_tmp =
1081					  RREG32(SOC15_REG_OFFSET(OSSSYS, inst,
1082						 mmIH_VMID_0_LUT) + vmid);
1083					if (pasid_tmp == pasid)
1084						vmid_wave_cnt += wave_cnt;
1085				}
1086			}
1087		}
1088	}
1089
1090	amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, inst);
1091	soc15_grbm_select(adev, 0, 0, 0, 0, inst);
1092	unlock_spi_csq_mutexes(adev);
1093
1094	/* Update the output parameters and return */
1095	*pasid_wave_cnt = vmid_wave_cnt;
1096	*max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
1097				adev->gfx.cu_info.max_waves_per_simd;
1098}
1099
1100void kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device *adev,
1101		uint32_t wait_times,
1102		uint32_t grace_period,
1103		uint32_t *reg_offset,
1104		uint32_t *reg_data)
1105{
1106	*reg_data = wait_times;
1107
1108	/*
1109	 * The CP cannot handle a 0 grace period input and will result in
1110	 * an infinite grace period being set so set to 1 to prevent this.
1111	 */
1112	if (grace_period == 0)
1113		grace_period = 1;
1114
1115	*reg_data = REG_SET_FIELD(*reg_data,
1116			CP_IQ_WAIT_TIME2,
1117			SCH_WAVE,
1118			grace_period);
1119
1120	*reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2);
1121}
1122
1123void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev,
1124		uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, uint32_t inst)
1125{
1126	kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
1127
1128	/*
1129	 * Program TBA registers
1130	 */
1131	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_LO,
1132			lower_32_bits(tba_addr >> 8));
1133	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_HI,
1134			upper_32_bits(tba_addr >> 8));
1135
1136	/*
1137	 * Program TMA registers
1138	 */
1139	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_LO,
1140			lower_32_bits(tma_addr >> 8));
1141	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_HI,
1142			upper_32_bits(tma_addr >> 8));
1143
1144	kgd_gfx_v9_unlock_srbm(adev, inst);
1145}
1146
1147const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
1148	.program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
1149	.set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
1150	.init_interrupts = kgd_gfx_v9_init_interrupts,
1151	.hqd_load = kgd_gfx_v9_hqd_load,
1152	.hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
1153	.hqd_sdma_load = kgd_hqd_sdma_load,
1154	.hqd_dump = kgd_gfx_v9_hqd_dump,
1155	.hqd_sdma_dump = kgd_hqd_sdma_dump,
1156	.hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
1157	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
1158	.hqd_destroy = kgd_gfx_v9_hqd_destroy,
1159	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
1160	.wave_control_execute = kgd_gfx_v9_wave_control_execute,
1161	.get_atc_vmid_pasid_mapping_info =
1162			kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
1163	.set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
1164	.enable_debug_trap = kgd_gfx_v9_enable_debug_trap,
1165	.disable_debug_trap = kgd_gfx_v9_disable_debug_trap,
1166	.validate_trap_override_request = kgd_gfx_v9_validate_trap_override_request,
1167	.set_wave_launch_trap_override = kgd_gfx_v9_set_wave_launch_trap_override,
1168	.set_wave_launch_mode = kgd_gfx_v9_set_wave_launch_mode,
1169	.set_address_watch = kgd_gfx_v9_set_address_watch,
1170	.clear_address_watch = kgd_gfx_v9_clear_address_watch,
1171	.get_iq_wait_times = kgd_gfx_v9_get_iq_wait_times,
1172	.build_grace_period_packet_info = kgd_gfx_v9_build_grace_period_packet_info,
1173	.get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
1174	.program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
1175};
1176