1/*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22#include "amdgpu.h"
23#include "amdgpu_amdkfd.h"
24#include "amdgpu_amdkfd_gfx_v10.h"
25#include "gc/gc_10_1_0_offset.h"
26#include "gc/gc_10_1_0_sh_mask.h"
27#include "athub/athub_2_0_0_offset.h"
28#include "athub/athub_2_0_0_sh_mask.h"
29#include "oss/osssys_5_0_0_offset.h"
30#include "oss/osssys_5_0_0_sh_mask.h"
31#include "soc15_common.h"
32#include "v10_structs.h"
33#include "nv.h"
34#include "nvd.h"
35#include <uapi/linux/kfd_ioctl.h>
36
37enum hqd_dequeue_request_type {
38	NO_ACTION = 0,
39	DRAIN_PIPE,
40	RESET_WAVES,
41	SAVE_WAVES
42};
43
44static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
45			uint32_t queue, uint32_t vmid)
46{
47	mutex_lock(&adev->srbm_mutex);
48	nv_grbm_select(adev, mec, pipe, queue, vmid);
49}
50
51static void unlock_srbm(struct amdgpu_device *adev)
52{
53	nv_grbm_select(adev, 0, 0, 0, 0);
54	mutex_unlock(&adev->srbm_mutex);
55}
56
57static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
58				uint32_t queue_id)
59{
60	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
61	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
62
63	lock_srbm(adev, mec, pipe, queue_id, 0);
64}
65
66static uint64_t get_queue_mask(struct amdgpu_device *adev,
67			       uint32_t pipe_id, uint32_t queue_id)
68{
69	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
70			queue_id;
71
72	return 1ull << bit;
73}
74
75static void release_queue(struct amdgpu_device *adev)
76{
77	unlock_srbm(adev);
78}
79
80static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
81					uint32_t sh_mem_config,
82					uint32_t sh_mem_ape1_base,
83					uint32_t sh_mem_ape1_limit,
84					uint32_t sh_mem_bases, uint32_t inst)
85{
86	lock_srbm(adev, 0, 0, 0, vmid);
87
88	WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, sh_mem_config);
89	WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases);
90	/* APE1 no longer exists on GFX9 */
91
92	unlock_srbm(adev);
93}
94
95static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
96					unsigned int vmid, uint32_t inst)
97{
98	/*
99	 * We have to assume that there is no outstanding mapping.
100	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
101	 * a mapping is in progress or because a mapping finished
102	 * and the SW cleared it.
103	 * So the protocol is to always wait & clear.
104	 */
105	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
106			ATC_VMID0_PASID_MAPPING__VALID_MASK;
107
108	pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping);
109
110	pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid);
111	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
112	       pasid_mapping);
113
114#if 0
115	/* TODO: uncomment this code when the hardware support is ready. */
116	while (!(RREG32(SOC15_REG_OFFSET(
117				ATHUB, 0,
118				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
119		 (1U << vmid)))
120		cpu_relax();
121
122	pr_debug("ATHUB mapping update finished\n");
123	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
124				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
125	       1U << vmid);
126#endif
127
128	/* Mapping vmid to pasid also for IH block */
129	pr_debug("update mapping for IH block and mmhub");
130	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
131	       pasid_mapping);
132
133	return 0;
134}
135
136/* TODO - RING0 form of field is obsolete, seems to date back to SI
137 * but still works
138 */
139
140static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
141				uint32_t inst)
142{
143	uint32_t mec;
144	uint32_t pipe;
145
146	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
147	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
148
149	lock_srbm(adev, mec, pipe, 0, 0);
150
151	WREG32_SOC15(GC, 0, mmCPC_INT_CNTL,
152		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
153		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
154
155	unlock_srbm(adev);
156
157	return 0;
158}
159
160static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
161				unsigned int engine_id,
162				unsigned int queue_id)
163{
164	uint32_t sdma_engine_reg_base[2] = {
165		SOC15_REG_OFFSET(SDMA0, 0,
166				 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL,
167		/* On gfx10, mmSDMA1_xxx registers are defined NOT based
168		 * on SDMA1 base address (dw 0x1860) but based on SDMA0
169		 * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL
170		 * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc
171		 * below
172		 */
173		SOC15_REG_OFFSET(SDMA1, 0,
174				 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL
175	};
176
177	uint32_t retval = sdma_engine_reg_base[engine_id]
178		+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
179
180	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
181			queue_id, retval);
182
183	return retval;
184}
185
186#if 0
187static uint32_t get_watch_base_addr(struct amdgpu_device *adev)
188{
189	uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) -
190			mmTCP_WATCH0_ADDR_H;
191
192	pr_debug("kfd: reg watch base address: 0x%x\n", retval);
193
194	return retval;
195}
196#endif
197
198static inline struct v10_compute_mqd *get_mqd(void *mqd)
199{
200	return (struct v10_compute_mqd *)mqd;
201}
202
203static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
204{
205	return (struct v10_sdma_mqd *)mqd;
206}
207
208static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd,
209			uint32_t pipe_id, uint32_t queue_id,
210			uint32_t __user *wptr, uint32_t wptr_shift,
211			uint32_t wptr_mask, struct mm_struct *mm, uint32_t inst)
212{
213	struct v10_compute_mqd *m;
214	uint32_t *mqd_hqd;
215	uint32_t reg, hqd_base, data;
216
217	m = get_mqd(mqd);
218
219	pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
220	acquire_queue(adev, pipe_id, queue_id);
221
222	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
223	mqd_hqd = &m->cp_mqd_base_addr_lo;
224	hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
225
226	for (reg = hqd_base;
227	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
228		WREG32_SOC15_IP(GC, reg, mqd_hqd[reg - hqd_base]);
229
230
231	/* Activate doorbell logic before triggering WPTR poll. */
232	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
233			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
234	WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, data);
235
236	if (wptr) {
237		/* Don't read wptr with get_user because the user
238		 * context may not be accessible (if this function
239		 * runs in a work queue). Instead trigger a one-shot
240		 * polling read from memory in the CP. This assumes
241		 * that wptr is GPU-accessible in the queue's VMID via
242		 * ATC or SVM. WPTR==RPTR before starting the poll so
243		 * the CP starts fetching new commands from the right
244		 * place.
245		 *
246		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
247		 * tricky. Assume that the queue didn't overflow. The
248		 * number of valid bits in the 32-bit RPTR depends on
249		 * the queue size. The remaining bits are taken from
250		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
251		 * queue size.
252		 */
253		uint32_t queue_size =
254			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
255					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
256		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
257
258		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
259			guessed_wptr += queue_size;
260		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
261		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
262
263		WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO,
264		       lower_32_bits(guessed_wptr));
265		WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI,
266		       upper_32_bits(guessed_wptr));
267		WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR,
268		       lower_32_bits((uint64_t)wptr));
269		WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI,
270		       upper_32_bits((uint64_t)wptr));
271		pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
272			 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
273		WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1,
274		       (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
275	}
276
277	/* Start the EOP fetcher */
278	WREG32_SOC15(GC, 0, mmCP_HQD_EOP_RPTR,
279	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
280			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
281
282	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
283	WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE, data);
284
285	release_queue(adev);
286
287	return 0;
288}
289
290static int kgd_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
291			    uint32_t pipe_id, uint32_t queue_id,
292			    uint32_t doorbell_off, uint32_t inst)
293{
294	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[0].ring;
295	struct v10_compute_mqd *m;
296	uint32_t mec, pipe;
297	int r;
298
299	m = get_mqd(mqd);
300
301	acquire_queue(adev, pipe_id, queue_id);
302
303	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
304	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
305
306	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
307		 mec, pipe, queue_id);
308
309	spin_lock(&adev->gfx.kiq[0].ring_lock);
310	r = amdgpu_ring_alloc(kiq_ring, 7);
311	if (r) {
312		pr_err("Failed to alloc KIQ (%d).\n", r);
313		goto out_unlock;
314	}
315
316	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
317	amdgpu_ring_write(kiq_ring,
318			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
319			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
320			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
321			  PACKET3_MAP_QUEUES_PIPE(pipe) |
322			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
323			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
324			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
325			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
326			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
327	amdgpu_ring_write(kiq_ring,
328			  PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
329	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
330	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
331	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
332	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
333	amdgpu_ring_commit(kiq_ring);
334
335out_unlock:
336	spin_unlock(&adev->gfx.kiq[0].ring_lock);
337	release_queue(adev);
338
339	return r;
340}
341
342static int kgd_hqd_dump(struct amdgpu_device *adev,
343			uint32_t pipe_id, uint32_t queue_id,
344			uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
345{
346	uint32_t i = 0, reg;
347#define HQD_N_REGS 56
348#define DUMP_REG(addr) do {				\
349		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
350			break;				\
351		(*dump)[i][0] = (addr) << 2;		\
352		(*dump)[i++][1] = RREG32_SOC15_IP(GC, addr);		\
353	} while (0)
354
355	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
356	if (*dump == NULL)
357		return -ENOMEM;
358
359	acquire_queue(adev, pipe_id, queue_id);
360
361	for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
362	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
363		DUMP_REG(reg);
364
365	release_queue(adev);
366
367	WARN_ON_ONCE(i != HQD_N_REGS);
368	*n_regs = i;
369
370	return 0;
371}
372
373static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
374			     uint32_t __user *wptr, struct mm_struct *mm)
375{
376	struct v10_sdma_mqd *m;
377	uint32_t sdma_rlc_reg_offset;
378	unsigned long end_jiffies;
379	uint32_t data;
380	uint64_t data64;
381	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
382
383	m = get_sdma_mqd(mqd);
384	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
385					    m->sdma_queue_id);
386
387	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
388		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
389
390	end_jiffies = msecs_to_jiffies(2000) + jiffies;
391	while (true) {
392		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
393		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
394			break;
395		if (time_after(jiffies, end_jiffies)) {
396			pr_err("SDMA RLC not idle in %s\n", __func__);
397			return -ETIME;
398		}
399		usleep_range(500, 1000);
400	}
401
402	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
403	       m->sdmax_rlcx_doorbell_offset);
404
405	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
406			     ENABLE, 1);
407	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
408	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
409				m->sdmax_rlcx_rb_rptr);
410	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
411				m->sdmax_rlcx_rb_rptr_hi);
412
413	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
414	if (read_user_wptr(mm, wptr64, data64)) {
415		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
416		       lower_32_bits(data64));
417		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
418		       upper_32_bits(data64));
419	} else {
420		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
421		       m->sdmax_rlcx_rb_rptr);
422		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
423		       m->sdmax_rlcx_rb_rptr_hi);
424	}
425	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
426
427	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
428	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
429			m->sdmax_rlcx_rb_base_hi);
430	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
431			m->sdmax_rlcx_rb_rptr_addr_lo);
432	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
433			m->sdmax_rlcx_rb_rptr_addr_hi);
434
435	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
436			     RB_ENABLE, 1);
437	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
438
439	return 0;
440}
441
442static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
443			     uint32_t engine_id, uint32_t queue_id,
444			     uint32_t (**dump)[2], uint32_t *n_regs)
445{
446	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
447			engine_id, queue_id);
448	uint32_t i = 0, reg;
449#undef HQD_N_REGS
450#define HQD_N_REGS (19+6+7+10)
451
452	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
453	if (*dump == NULL)
454		return -ENOMEM;
455
456	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
457		DUMP_REG(sdma_rlc_reg_offset + reg);
458	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
459		DUMP_REG(sdma_rlc_reg_offset + reg);
460	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
461	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
462		DUMP_REG(sdma_rlc_reg_offset + reg);
463	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
464	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
465		DUMP_REG(sdma_rlc_reg_offset + reg);
466
467	WARN_ON_ONCE(i != HQD_N_REGS);
468	*n_regs = i;
469
470	return 0;
471}
472
473static bool kgd_hqd_is_occupied(struct amdgpu_device *adev,
474				uint64_t queue_address, uint32_t pipe_id,
475				uint32_t queue_id, uint32_t inst)
476{
477	uint32_t act;
478	bool retval = false;
479	uint32_t low, high;
480
481	acquire_queue(adev, pipe_id, queue_id);
482	act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
483	if (act) {
484		low = lower_32_bits(queue_address >> 8);
485		high = upper_32_bits(queue_address >> 8);
486
487		if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) &&
488		   high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI))
489			retval = true;
490	}
491	release_queue(adev);
492	return retval;
493}
494
495static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
496{
497	struct v10_sdma_mqd *m;
498	uint32_t sdma_rlc_reg_offset;
499	uint32_t sdma_rlc_rb_cntl;
500
501	m = get_sdma_mqd(mqd);
502	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
503					    m->sdma_queue_id);
504
505	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
506
507	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
508		return true;
509
510	return false;
511}
512
513static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd,
514				enum kfd_preempt_type reset_type,
515				unsigned int utimeout, uint32_t pipe_id,
516				uint32_t queue_id, uint32_t inst)
517{
518	enum hqd_dequeue_request_type type;
519	unsigned long end_jiffies;
520	uint32_t temp;
521	struct v10_compute_mqd *m = get_mqd(mqd);
522
523	if (amdgpu_in_reset(adev))
524		return -EIO;
525
526#if 0
527	unsigned long flags;
528	int retry;
529#endif
530
531	acquire_queue(adev, pipe_id, queue_id);
532
533	if (m->cp_hqd_vmid == 0)
534		WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
535
536	switch (reset_type) {
537	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
538		type = DRAIN_PIPE;
539		break;
540	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
541		type = RESET_WAVES;
542		break;
543	case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
544		type = SAVE_WAVES;
545		break;
546	default:
547		type = DRAIN_PIPE;
548		break;
549	}
550
551#if 0 /* Is this still needed? */
552	/* Workaround: If IQ timer is active and the wait time is close to or
553	 * equal to 0, dequeueing is not safe. Wait until either the wait time
554	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
555	 * cleared before continuing. Also, ensure wait times are set to at
556	 * least 0x3.
557	 */
558	local_irq_save(flags);
559	preempt_disable();
560	retry = 5000; /* wait for 500 usecs at maximum */
561	while (true) {
562		temp = RREG32(mmCP_HQD_IQ_TIMER);
563		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
564			pr_debug("HW is processing IQ\n");
565			goto loop;
566		}
567		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
568			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
569					== 3) /* SEM-rearm is safe */
570				break;
571			/* Wait time 3 is safe for CP, but our MMIO read/write
572			 * time is close to 1 microsecond, so check for 10 to
573			 * leave more buffer room
574			 */
575			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
576					>= 10)
577				break;
578			pr_debug("IQ timer is active\n");
579		} else
580			break;
581loop:
582		if (!retry) {
583			pr_err("CP HQD IQ timer status time out\n");
584			break;
585		}
586		ndelay(100);
587		--retry;
588	}
589	retry = 1000;
590	while (true) {
591		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
592		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
593			break;
594		pr_debug("Dequeue request is pending\n");
595
596		if (!retry) {
597			pr_err("CP HQD dequeue request time out\n");
598			break;
599		}
600		ndelay(100);
601		--retry;
602	}
603	local_irq_restore(flags);
604	preempt_enable();
605#endif
606
607	WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, type);
608
609	end_jiffies = (utimeout * HZ / 1000) + jiffies;
610	while (true) {
611		temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
612		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
613			break;
614		if (time_after(jiffies, end_jiffies)) {
615			pr_err("cp queue preemption time out.\n");
616			release_queue(adev);
617			return -ETIME;
618		}
619		usleep_range(500, 1000);
620	}
621
622	release_queue(adev);
623	return 0;
624}
625
626static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
627				unsigned int utimeout)
628{
629	struct v10_sdma_mqd *m;
630	uint32_t sdma_rlc_reg_offset;
631	uint32_t temp;
632	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
633
634	m = get_sdma_mqd(mqd);
635	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
636					    m->sdma_queue_id);
637
638	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
639	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
640	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
641
642	while (true) {
643		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
644		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
645			break;
646		if (time_after(jiffies, end_jiffies)) {
647			pr_err("SDMA RLC not idle in %s\n", __func__);
648			return -ETIME;
649		}
650		usleep_range(500, 1000);
651	}
652
653	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
654	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
655		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
656		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
657
658	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
659	m->sdmax_rlcx_rb_rptr_hi =
660		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
661
662	return 0;
663}
664
665static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
666					uint8_t vmid, uint16_t *p_pasid)
667{
668	uint32_t value;
669
670	value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
671		     + vmid);
672	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
673
674	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
675}
676
677static int kgd_wave_control_execute(struct amdgpu_device *adev,
678					uint32_t gfx_index_val,
679					uint32_t sq_cmd, uint32_t inst)
680{
681	uint32_t data = 0;
682
683	mutex_lock(&adev->grbm_idx_mutex);
684
685	WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
686	WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd);
687
688	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
689		INSTANCE_BROADCAST_WRITES, 1);
690	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
691		SA_BROADCAST_WRITES, 1);
692	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
693		SE_BROADCAST_WRITES, 1);
694
695	WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data);
696	mutex_unlock(&adev->grbm_idx_mutex);
697
698	return 0;
699}
700
701static void set_vm_context_page_table_base(struct amdgpu_device *adev,
702		uint32_t vmid, uint64_t page_table_base)
703{
704	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
705		pr_err("trying to set page table base for wrong VMID %u\n",
706		       vmid);
707		return;
708	}
709
710	/* SDMA is on gfxhub as well for Navi1* series */
711	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
712}
713
714/*
715 * GFX10 helper for wave launch stall requirements on debug trap setting.
716 *
717 * vmid:
718 *   Target VMID to stall/unstall.
719 *
720 * stall:
721 *   0-unstall wave launch (enable), 1-stall wave launch (disable).
722 *   After wavefront launch has been stalled, allocated waves must drain from
723 *   SPI in order for debug trap settings to take effect on those waves.
724 *   This is roughly a ~3500 clock cycle wait on SPI where a read on
725 *   SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles.
726 *   KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required.
727 *
728 *   NOTE: We can afford to clear the entire STALL_VMID field on unstall
729 *   because current GFX10 chips cannot support multi-process debugging due to
730 *   trap configuration and masking being limited to global scope.  Always
731 *   assume single process conditions.
732 *
733 */
734
735#define KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY	110
736static void kgd_gfx_v10_set_wave_launch_stall(struct amdgpu_device *adev, uint32_t vmid, bool stall)
737{
738	uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
739	int i;
740
741	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID,
742							stall ? 1 << vmid : 0);
743
744	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
745
746	if (!stall)
747		return;
748
749	for (i = 0; i < KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++)
750		RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
751}
752
753uint32_t kgd_gfx_v10_enable_debug_trap(struct amdgpu_device *adev,
754				bool restore_dbg_registers,
755				uint32_t vmid)
756{
757
758	mutex_lock(&adev->grbm_idx_mutex);
759
760	kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
761
762	/* assume gfx off is disabled for the debug session if rlc restore not supported. */
763	if (restore_dbg_registers) {
764		uint32_t data = 0;
765
766		data = REG_SET_FIELD(data, SPI_GDBG_TRAP_CONFIG,
767				VMID_SEL, 1 << vmid);
768		data = REG_SET_FIELD(data, SPI_GDBG_TRAP_CONFIG,
769				TRAP_EN, 1);
770		WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_CONFIG), data);
771		WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_DATA0), 0);
772		WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_DATA1), 0);
773
774		kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
775
776		mutex_unlock(&adev->grbm_idx_mutex);
777
778		return 0;
779	}
780
781	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
782
783	kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
784
785	mutex_unlock(&adev->grbm_idx_mutex);
786
787	return 0;
788}
789
790uint32_t kgd_gfx_v10_disable_debug_trap(struct amdgpu_device *adev,
791					bool keep_trap_enabled,
792					uint32_t vmid)
793{
794	mutex_lock(&adev->grbm_idx_mutex);
795
796	kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
797
798	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
799
800	kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
801
802	mutex_unlock(&adev->grbm_idx_mutex);
803
804	return 0;
805}
806
807int kgd_gfx_v10_validate_trap_override_request(struct amdgpu_device *adev,
808					      uint32_t trap_override,
809					      uint32_t *trap_mask_supported)
810{
811	*trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH;
812
813	/* The SPI_GDBG_TRAP_MASK register is global and affects all
814	 * processes. Only allow OR-ing the address-watch bit, since
815	 * this only affects processes under the debugger. Other bits
816	 * should stay 0 to avoid the debugger interfering with other
817	 * processes.
818	 */
819	if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR)
820		return -EINVAL;
821
822	return 0;
823}
824
825uint32_t kgd_gfx_v10_set_wave_launch_trap_override(struct amdgpu_device *adev,
826					      uint32_t vmid,
827					      uint32_t trap_override,
828					      uint32_t trap_mask_bits,
829					      uint32_t trap_mask_request,
830					      uint32_t *trap_mask_prev,
831					      uint32_t kfd_dbg_trap_cntl_prev)
832{
833	uint32_t data, wave_cntl_prev;
834
835	mutex_lock(&adev->grbm_idx_mutex);
836
837	wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
838
839	kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
840
841	data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK));
842	*trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN);
843
844	trap_mask_bits = (trap_mask_bits & trap_mask_request) |
845		(*trap_mask_prev & ~trap_mask_request);
846
847	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits);
848	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override);
849	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
850
851	/* We need to preserve wave launch mode stall settings. */
852	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev);
853
854	mutex_unlock(&adev->grbm_idx_mutex);
855
856	return 0;
857}
858
859uint32_t kgd_gfx_v10_set_wave_launch_mode(struct amdgpu_device *adev,
860					uint8_t wave_launch_mode,
861					uint32_t vmid)
862{
863	uint32_t data = 0;
864	bool is_mode_set = !!wave_launch_mode;
865
866	mutex_lock(&adev->grbm_idx_mutex);
867
868	kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
869
870	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
871			VMID_MASK, is_mode_set ? 1 << vmid : 0);
872	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
873			MODE, is_mode_set ? wave_launch_mode : 0);
874	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
875
876	kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
877
878	mutex_unlock(&adev->grbm_idx_mutex);
879
880	return 0;
881}
882
883#define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H)
884uint32_t kgd_gfx_v10_set_address_watch(struct amdgpu_device *adev,
885					uint64_t watch_address,
886					uint32_t watch_address_mask,
887					uint32_t watch_id,
888					uint32_t watch_mode,
889					uint32_t debug_vmid,
890					uint32_t inst)
891{
892	uint32_t watch_address_high;
893	uint32_t watch_address_low;
894	uint32_t watch_address_cntl;
895
896	watch_address_cntl = 0;
897
898	watch_address_low = lower_32_bits(watch_address);
899	watch_address_high = upper_32_bits(watch_address) & 0xffff;
900
901	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
902			TCP_WATCH0_CNTL,
903			VMID,
904			debug_vmid);
905	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
906			TCP_WATCH0_CNTL,
907			MODE,
908			watch_mode);
909	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
910			TCP_WATCH0_CNTL,
911			MASK,
912			watch_address_mask >> 7);
913
914	/* Turning off this watch point until we set all the registers */
915	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
916			TCP_WATCH0_CNTL,
917			VALID,
918			0);
919
920	WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
921			(watch_id * TCP_WATCH_STRIDE)),
922			watch_address_cntl);
923
924	WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) +
925			(watch_id * TCP_WATCH_STRIDE)),
926			watch_address_high);
927
928	WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) +
929			(watch_id * TCP_WATCH_STRIDE)),
930			watch_address_low);
931
932	/* Enable the watch point */
933	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
934			TCP_WATCH0_CNTL,
935			VALID,
936			1);
937
938	WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
939			(watch_id * TCP_WATCH_STRIDE)),
940			watch_address_cntl);
941
942	return 0;
943}
944
945uint32_t kgd_gfx_v10_clear_address_watch(struct amdgpu_device *adev,
946					uint32_t watch_id)
947{
948	uint32_t watch_address_cntl;
949
950	watch_address_cntl = 0;
951
952	WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
953			(watch_id * TCP_WATCH_STRIDE)),
954			watch_address_cntl);
955
956	return 0;
957}
958
959
960/* kgd_gfx_v10_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
961 * The values read are:
962 *     ib_offload_wait_time     -- Wait Count for Indirect Buffer Offloads.
963 *     atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
964 *     wrm_offload_wait_time    -- Wait Count for WAIT_REG_MEM Offloads.
965 *     gws_wait_time            -- Wait Count for Global Wave Syncs.
966 *     que_sleep_wait_time      -- Wait Count for Dequeue Retry.
967 *     sch_wave_wait_time       -- Wait Count for Scheduling Wave Message.
968 *     sem_rearm_wait_time      -- Wait Count for Semaphore re-arm.
969 *     deq_retry_wait_time      -- Wait Count for Global Wave Syncs.
970 */
971void kgd_gfx_v10_get_iq_wait_times(struct amdgpu_device *adev,
972					uint32_t *wait_times,
973					uint32_t inst)
974
975{
976	*wait_times = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2));
977}
978
979void kgd_gfx_v10_build_grace_period_packet_info(struct amdgpu_device *adev,
980						uint32_t wait_times,
981						uint32_t grace_period,
982						uint32_t *reg_offset,
983						uint32_t *reg_data)
984{
985	*reg_data = wait_times;
986
987	/*
988	 * The CP cannont handle a 0 grace period input and will result in
989	 * an infinite grace period being set so set to 1 to prevent this.
990	 */
991	if (grace_period == 0)
992		grace_period = 1;
993
994	*reg_data = REG_SET_FIELD(*reg_data,
995			CP_IQ_WAIT_TIME2,
996			SCH_WAVE,
997			grace_period);
998
999	*reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2);
1000}
1001
1002static void program_trap_handler_settings(struct amdgpu_device *adev,
1003		uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr,
1004		uint32_t inst)
1005{
1006	lock_srbm(adev, 0, 0, 0, vmid);
1007
1008	/*
1009	 * Program TBA registers
1010	 */
1011	WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_LO),
1012			lower_32_bits(tba_addr >> 8));
1013	WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_HI),
1014			upper_32_bits(tba_addr >> 8) |
1015			(1 << SQ_SHADER_TBA_HI__TRAP_EN__SHIFT));
1016
1017	/*
1018	 * Program TMA registers
1019	 */
1020	WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_LO),
1021			lower_32_bits(tma_addr >> 8));
1022	WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_HI),
1023			upper_32_bits(tma_addr >> 8));
1024
1025	unlock_srbm(adev);
1026}
1027
1028const struct kfd2kgd_calls gfx_v10_kfd2kgd = {
1029	.program_sh_mem_settings = kgd_program_sh_mem_settings,
1030	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
1031	.init_interrupts = kgd_init_interrupts,
1032	.hqd_load = kgd_hqd_load,
1033	.hiq_mqd_load = kgd_hiq_mqd_load,
1034	.hqd_sdma_load = kgd_hqd_sdma_load,
1035	.hqd_dump = kgd_hqd_dump,
1036	.hqd_sdma_dump = kgd_hqd_sdma_dump,
1037	.hqd_is_occupied = kgd_hqd_is_occupied,
1038	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
1039	.hqd_destroy = kgd_hqd_destroy,
1040	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
1041	.wave_control_execute = kgd_wave_control_execute,
1042	.get_atc_vmid_pasid_mapping_info =
1043			get_atc_vmid_pasid_mapping_info,
1044	.set_vm_context_page_table_base = set_vm_context_page_table_base,
1045	.enable_debug_trap = kgd_gfx_v10_enable_debug_trap,
1046	.disable_debug_trap = kgd_gfx_v10_disable_debug_trap,
1047	.validate_trap_override_request = kgd_gfx_v10_validate_trap_override_request,
1048	.set_wave_launch_trap_override = kgd_gfx_v10_set_wave_launch_trap_override,
1049	.set_wave_launch_mode = kgd_gfx_v10_set_wave_launch_mode,
1050	.set_address_watch = kgd_gfx_v10_set_address_watch,
1051	.clear_address_watch = kgd_gfx_v10_clear_address_watch,
1052	.get_iq_wait_times = kgd_gfx_v10_get_iq_wait_times,
1053	.build_grace_period_packet_info = kgd_gfx_v10_build_grace_period_packet_info,
1054	.program_trap_handler_settings = program_trap_handler_settings,
1055};
1056