1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/types.h>
3#include <linux/string.h>
4#include <linux/init.h>
5#include <linux/module.h>
6#include <linux/ctype.h>
7#include <linux/dmi.h>
8#include <linux/efi.h>
9#include <linux/memblock.h>
10#include <linux/random.h>
11#include <asm/dmi.h>
12#include <asm/unaligned.h>
13
14#ifndef SMBIOS_ENTRY_POINT_SCAN_START
15#define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
16#endif
17
18struct kobject *dmi_kobj;
19EXPORT_SYMBOL_GPL(dmi_kobj);
20
21/*
22 * DMI stands for "Desktop Management Interface".  It is part
23 * of and an antecedent to, SMBIOS, which stands for System
24 * Management BIOS.  See further: https://www.dmtf.org/standards
25 */
26static const char dmi_empty_string[] = "";
27
28static u32 dmi_ver __initdata;
29static u32 dmi_len;
30static u16 dmi_num;
31static u8 smbios_entry_point[32];
32static int smbios_entry_point_size;
33
34/* DMI system identification string used during boot */
35static char dmi_ids_string[128] __initdata;
36
37static struct dmi_memdev_info {
38	const char *device;
39	const char *bank;
40	u64 size;		/* bytes */
41	u16 handle;
42	u8 type;		/* DDR2, DDR3, DDR4 etc */
43} *dmi_memdev;
44static int dmi_memdev_nr;
45
46static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
47{
48	const u8 *bp = ((u8 *) dm) + dm->length;
49	const u8 *nsp;
50
51	if (s) {
52		while (--s > 0 && *bp)
53			bp += strlen(bp) + 1;
54
55		/* Strings containing only spaces are considered empty */
56		nsp = bp;
57		while (*nsp == ' ')
58			nsp++;
59		if (*nsp != '\0')
60			return bp;
61	}
62
63	return dmi_empty_string;
64}
65
66static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
67{
68	const char *bp = dmi_string_nosave(dm, s);
69	char *str;
70	size_t len;
71
72	if (bp == dmi_empty_string)
73		return dmi_empty_string;
74
75	len = strlen(bp) + 1;
76	str = dmi_alloc(len);
77	if (str != NULL)
78		strcpy(str, bp);
79
80	return str;
81}
82
83/*
84 *	We have to be cautious here. We have seen BIOSes with DMI pointers
85 *	pointing to completely the wrong place for example
86 */
87static void dmi_decode_table(u8 *buf,
88			     void (*decode)(const struct dmi_header *, void *),
89			     void *private_data)
90{
91	u8 *data = buf;
92	int i = 0;
93
94	/*
95	 * Stop when we have seen all the items the table claimed to have
96	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
97	 * >= 3.0 only) OR we run off the end of the table (should never
98	 * happen but sometimes does on bogus implementations.)
99	 */
100	while ((!dmi_num || i < dmi_num) &&
101	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
102		const struct dmi_header *dm = (const struct dmi_header *)data;
103
104		/*
105		 *  We want to know the total length (formatted area and
106		 *  strings) before decoding to make sure we won't run off the
107		 *  table in dmi_decode or dmi_string
108		 */
109		data += dm->length;
110		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
111			data++;
112		if (data - buf < dmi_len - 1)
113			decode(dm, private_data);
114
115		data += 2;
116		i++;
117
118		/*
119		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
120		 * For tables behind a 64-bit entry point, we have no item
121		 * count and no exact table length, so stop on end-of-table
122		 * marker. For tables behind a 32-bit entry point, we have
123		 * seen OEM structures behind the end-of-table marker on
124		 * some systems, so don't trust it.
125		 */
126		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
127			break;
128	}
129
130	/* Trim DMI table length if needed */
131	if (dmi_len > data - buf)
132		dmi_len = data - buf;
133}
134
135static phys_addr_t dmi_base;
136
137static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
138		void *))
139{
140	u8 *buf;
141	u32 orig_dmi_len = dmi_len;
142
143	buf = dmi_early_remap(dmi_base, orig_dmi_len);
144	if (buf == NULL)
145		return -ENOMEM;
146
147	dmi_decode_table(buf, decode, NULL);
148
149	add_device_randomness(buf, dmi_len);
150
151	dmi_early_unmap(buf, orig_dmi_len);
152	return 0;
153}
154
155static int __init dmi_checksum(const u8 *buf, u8 len)
156{
157	u8 sum = 0;
158	int a;
159
160	for (a = 0; a < len; a++)
161		sum += buf[a];
162
163	return sum == 0;
164}
165
166static const char *dmi_ident[DMI_STRING_MAX];
167static LIST_HEAD(dmi_devices);
168int dmi_available;
169EXPORT_SYMBOL_GPL(dmi_available);
170
171/*
172 *	Save a DMI string
173 */
174static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
175		int string)
176{
177	const char *d = (const char *) dm;
178	const char *p;
179
180	if (dmi_ident[slot] || dm->length <= string)
181		return;
182
183	p = dmi_string(dm, d[string]);
184	if (p == NULL)
185		return;
186
187	dmi_ident[slot] = p;
188}
189
190static void __init dmi_save_release(const struct dmi_header *dm, int slot,
191		int index)
192{
193	const u8 *minor, *major;
194	char *s;
195
196	/* If the table doesn't have the field, let's return */
197	if (dmi_ident[slot] || dm->length < index)
198		return;
199
200	minor = (u8 *) dm + index;
201	major = (u8 *) dm + index - 1;
202
203	/* As per the spec, if the system doesn't support this field,
204	 * the value is FF
205	 */
206	if (*major == 0xFF && *minor == 0xFF)
207		return;
208
209	s = dmi_alloc(8);
210	if (!s)
211		return;
212
213	sprintf(s, "%u.%u", *major, *minor);
214
215	dmi_ident[slot] = s;
216}
217
218static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
219		int index)
220{
221	const u8 *d;
222	char *s;
223	int is_ff = 1, is_00 = 1, i;
224
225	if (dmi_ident[slot] || dm->length < index + 16)
226		return;
227
228	d = (u8 *) dm + index;
229	for (i = 0; i < 16 && (is_ff || is_00); i++) {
230		if (d[i] != 0x00)
231			is_00 = 0;
232		if (d[i] != 0xFF)
233			is_ff = 0;
234	}
235
236	if (is_ff || is_00)
237		return;
238
239	s = dmi_alloc(16*2+4+1);
240	if (!s)
241		return;
242
243	/*
244	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
245	 * the UUID are supposed to be little-endian encoded.  The specification
246	 * says that this is the defacto standard.
247	 */
248	if (dmi_ver >= 0x020600)
249		sprintf(s, "%pUl", d);
250	else
251		sprintf(s, "%pUb", d);
252
253	dmi_ident[slot] = s;
254}
255
256static void __init dmi_save_type(const struct dmi_header *dm, int slot,
257		int index)
258{
259	const u8 *d;
260	char *s;
261
262	if (dmi_ident[slot] || dm->length <= index)
263		return;
264
265	s = dmi_alloc(4);
266	if (!s)
267		return;
268
269	d = (u8 *) dm + index;
270	sprintf(s, "%u", *d & 0x7F);
271	dmi_ident[slot] = s;
272}
273
274static void __init dmi_save_one_device(int type, const char *name)
275{
276	struct dmi_device *dev;
277
278	/* No duplicate device */
279	if (dmi_find_device(type, name, NULL))
280		return;
281
282	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
283	if (!dev)
284		return;
285
286	dev->type = type;
287	strcpy((char *)(dev + 1), name);
288	dev->name = (char *)(dev + 1);
289	dev->device_data = NULL;
290	list_add(&dev->list, &dmi_devices);
291}
292
293static void __init dmi_save_devices(const struct dmi_header *dm)
294{
295	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
296
297	for (i = 0; i < count; i++) {
298		const char *d = (char *)(dm + 1) + (i * 2);
299
300		/* Skip disabled device */
301		if ((*d & 0x80) == 0)
302			continue;
303
304		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
305	}
306}
307
308static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
309{
310	int i, count;
311	struct dmi_device *dev;
312
313	if (dm->length < 0x05)
314		return;
315
316	count = *(u8 *)(dm + 1);
317	for (i = 1; i <= count; i++) {
318		const char *devname = dmi_string(dm, i);
319
320		if (devname == dmi_empty_string)
321			continue;
322
323		dev = dmi_alloc(sizeof(*dev));
324		if (!dev)
325			break;
326
327		dev->type = DMI_DEV_TYPE_OEM_STRING;
328		dev->name = devname;
329		dev->device_data = NULL;
330
331		list_add(&dev->list, &dmi_devices);
332	}
333}
334
335static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
336{
337	struct dmi_device *dev;
338	void *data;
339
340	data = dmi_alloc(dm->length);
341	if (data == NULL)
342		return;
343
344	memcpy(data, dm, dm->length);
345
346	dev = dmi_alloc(sizeof(*dev));
347	if (!dev)
348		return;
349
350	dev->type = DMI_DEV_TYPE_IPMI;
351	dev->name = "IPMI controller";
352	dev->device_data = data;
353
354	list_add_tail(&dev->list, &dmi_devices);
355}
356
357static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
358					int devfn, const char *name, int type)
359{
360	struct dmi_dev_onboard *dev;
361
362	/* Ignore invalid values */
363	if (type == DMI_DEV_TYPE_DEV_SLOT &&
364	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
365		return;
366
367	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
368	if (!dev)
369		return;
370
371	dev->instance = instance;
372	dev->segment = segment;
373	dev->bus = bus;
374	dev->devfn = devfn;
375
376	strcpy((char *)&dev[1], name);
377	dev->dev.type = type;
378	dev->dev.name = (char *)&dev[1];
379	dev->dev.device_data = dev;
380
381	list_add(&dev->dev.list, &dmi_devices);
382}
383
384static void __init dmi_save_extended_devices(const struct dmi_header *dm)
385{
386	const char *name;
387	const u8 *d = (u8 *)dm;
388
389	if (dm->length < 0x0B)
390		return;
391
392	/* Skip disabled device */
393	if ((d[0x5] & 0x80) == 0)
394		return;
395
396	name = dmi_string_nosave(dm, d[0x4]);
397	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
398			     DMI_DEV_TYPE_DEV_ONBOARD);
399	dmi_save_one_device(d[0x5] & 0x7f, name);
400}
401
402static void __init dmi_save_system_slot(const struct dmi_header *dm)
403{
404	const u8 *d = (u8 *)dm;
405
406	/* Need SMBIOS 2.6+ structure */
407	if (dm->length < 0x11)
408		return;
409	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
410			     d[0x10], dmi_string_nosave(dm, d[0x4]),
411			     DMI_DEV_TYPE_DEV_SLOT);
412}
413
414static void __init count_mem_devices(const struct dmi_header *dm, void *v)
415{
416	if (dm->type != DMI_ENTRY_MEM_DEVICE)
417		return;
418	dmi_memdev_nr++;
419}
420
421static void __init save_mem_devices(const struct dmi_header *dm, void *v)
422{
423	const char *d = (const char *)dm;
424	static int nr;
425	u64 bytes;
426	u16 size;
427
428	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
429		return;
430	if (nr >= dmi_memdev_nr) {
431		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
432		return;
433	}
434	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
435	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
436	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
437	dmi_memdev[nr].type = d[0x12];
438
439	size = get_unaligned((u16 *)&d[0xC]);
440	if (size == 0)
441		bytes = 0;
442	else if (size == 0xffff)
443		bytes = ~0ull;
444	else if (size & 0x8000)
445		bytes = (u64)(size & 0x7fff) << 10;
446	else if (size != 0x7fff || dm->length < 0x20)
447		bytes = (u64)size << 20;
448	else
449		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
450
451	dmi_memdev[nr].size = bytes;
452	nr++;
453}
454
455static void __init dmi_memdev_walk(void)
456{
457	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
458		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
459		if (dmi_memdev)
460			dmi_walk_early(save_mem_devices);
461	}
462}
463
464/*
465 *	Process a DMI table entry. Right now all we care about are the BIOS
466 *	and machine entries. For 2.5 we should pull the smbus controller info
467 *	out of here.
468 */
469static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
470{
471	switch (dm->type) {
472	case 0:		/* BIOS Information */
473		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
474		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
475		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
476		dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
477		dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
478		break;
479	case 1:		/* System Information */
480		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
481		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
482		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
483		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
484		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
485		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
486		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
487		break;
488	case 2:		/* Base Board Information */
489		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
490		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
491		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
492		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
493		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
494		break;
495	case 3:		/* Chassis Information */
496		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
497		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
498		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
499		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
500		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
501		break;
502	case 9:		/* System Slots */
503		dmi_save_system_slot(dm);
504		break;
505	case 10:	/* Onboard Devices Information */
506		dmi_save_devices(dm);
507		break;
508	case 11:	/* OEM Strings */
509		dmi_save_oem_strings_devices(dm);
510		break;
511	case 38:	/* IPMI Device Information */
512		dmi_save_ipmi_device(dm);
513		break;
514	case 41:	/* Onboard Devices Extended Information */
515		dmi_save_extended_devices(dm);
516	}
517}
518
519static int __init print_filtered(char *buf, size_t len, const char *info)
520{
521	int c = 0;
522	const char *p;
523
524	if (!info)
525		return c;
526
527	for (p = info; *p; p++)
528		if (isprint(*p))
529			c += scnprintf(buf + c, len - c, "%c", *p);
530		else
531			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
532	return c;
533}
534
535static void __init dmi_format_ids(char *buf, size_t len)
536{
537	int c = 0;
538	const char *board;	/* Board Name is optional */
539
540	c += print_filtered(buf + c, len - c,
541			    dmi_get_system_info(DMI_SYS_VENDOR));
542	c += scnprintf(buf + c, len - c, " ");
543	c += print_filtered(buf + c, len - c,
544			    dmi_get_system_info(DMI_PRODUCT_NAME));
545
546	board = dmi_get_system_info(DMI_BOARD_NAME);
547	if (board) {
548		c += scnprintf(buf + c, len - c, "/");
549		c += print_filtered(buf + c, len - c, board);
550	}
551	c += scnprintf(buf + c, len - c, ", BIOS ");
552	c += print_filtered(buf + c, len - c,
553			    dmi_get_system_info(DMI_BIOS_VERSION));
554	c += scnprintf(buf + c, len - c, " ");
555	c += print_filtered(buf + c, len - c,
556			    dmi_get_system_info(DMI_BIOS_DATE));
557}
558
559/*
560 * Check for DMI/SMBIOS headers in the system firmware image.  Any
561 * SMBIOS header must start 16 bytes before the DMI header, so take a
562 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
563 * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
564 * takes precedence) and return 0.  Otherwise return 1.
565 */
566static int __init dmi_present(const u8 *buf)
567{
568	u32 smbios_ver;
569
570	/*
571	 * The size of this structure is 31 bytes, but we also accept value
572	 * 30 due to a mistake in SMBIOS specification version 2.1.
573	 */
574	if (memcmp(buf, "_SM_", 4) == 0 &&
575	    buf[5] >= 30 && buf[5] <= 32 &&
576	    dmi_checksum(buf, buf[5])) {
577		smbios_ver = get_unaligned_be16(buf + 6);
578		smbios_entry_point_size = buf[5];
579		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
580
581		/* Some BIOS report weird SMBIOS version, fix that up */
582		switch (smbios_ver) {
583		case 0x021F:
584		case 0x0221:
585			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
586				 smbios_ver & 0xFF, 3);
587			smbios_ver = 0x0203;
588			break;
589		case 0x0233:
590			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
591			smbios_ver = 0x0206;
592			break;
593		}
594	} else {
595		smbios_ver = 0;
596	}
597
598	buf += 16;
599
600	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
601		if (smbios_ver)
602			dmi_ver = smbios_ver;
603		else
604			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
605		dmi_ver <<= 8;
606		dmi_num = get_unaligned_le16(buf + 12);
607		dmi_len = get_unaligned_le16(buf + 6);
608		dmi_base = get_unaligned_le32(buf + 8);
609
610		if (dmi_walk_early(dmi_decode) == 0) {
611			if (smbios_ver) {
612				pr_info("SMBIOS %d.%d present.\n",
613					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
614			} else {
615				smbios_entry_point_size = 15;
616				memcpy(smbios_entry_point, buf,
617				       smbios_entry_point_size);
618				pr_info("Legacy DMI %d.%d present.\n",
619					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
620			}
621			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
622			pr_info("DMI: %s\n", dmi_ids_string);
623			return 0;
624		}
625	}
626
627	return 1;
628}
629
630/*
631 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
632 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
633 */
634static int __init dmi_smbios3_present(const u8 *buf)
635{
636	if (memcmp(buf, "_SM3_", 5) == 0 &&
637	    buf[6] >= 24 && buf[6] <= 32 &&
638	    dmi_checksum(buf, buf[6])) {
639		dmi_ver = get_unaligned_be24(buf + 7);
640		dmi_num = 0;			/* No longer specified */
641		dmi_len = get_unaligned_le32(buf + 12);
642		dmi_base = get_unaligned_le64(buf + 16);
643		smbios_entry_point_size = buf[6];
644		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
645
646		if (dmi_walk_early(dmi_decode) == 0) {
647			pr_info("SMBIOS %d.%d.%d present.\n",
648				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
649				dmi_ver & 0xFF);
650			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
651			pr_info("DMI: %s\n", dmi_ids_string);
652			return 0;
653		}
654	}
655	return 1;
656}
657
658static void __init dmi_scan_machine(void)
659{
660	char __iomem *p, *q;
661	char buf[32];
662
663	if (efi_enabled(EFI_CONFIG_TABLES)) {
664		/*
665		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
666		 * allowed to define both the 64-bit entry point (smbios3) and
667		 * the 32-bit entry point (smbios), in which case they should
668		 * either both point to the same SMBIOS structure table, or the
669		 * table pointed to by the 64-bit entry point should contain a
670		 * superset of the table contents pointed to by the 32-bit entry
671		 * point (section 5.2)
672		 * This implies that the 64-bit entry point should have
673		 * precedence if it is defined and supported by the OS. If we
674		 * have the 64-bit entry point, but fail to decode it, fall
675		 * back to the legacy one (if available)
676		 */
677		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
678			p = dmi_early_remap(efi.smbios3, 32);
679			if (p == NULL)
680				goto error;
681			memcpy_fromio(buf, p, 32);
682			dmi_early_unmap(p, 32);
683
684			if (!dmi_smbios3_present(buf)) {
685				dmi_available = 1;
686				return;
687			}
688		}
689		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
690			goto error;
691
692		/* This is called as a core_initcall() because it isn't
693		 * needed during early boot.  This also means we can
694		 * iounmap the space when we're done with it.
695		 */
696		p = dmi_early_remap(efi.smbios, 32);
697		if (p == NULL)
698			goto error;
699		memcpy_fromio(buf, p, 32);
700		dmi_early_unmap(p, 32);
701
702		if (!dmi_present(buf)) {
703			dmi_available = 1;
704			return;
705		}
706	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
707		p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
708		if (p == NULL)
709			goto error;
710
711		/*
712		 * Same logic as above, look for a 64-bit entry point
713		 * first, and if not found, fall back to 32-bit entry point.
714		 */
715		memcpy_fromio(buf, p, 16);
716		for (q = p + 16; q < p + 0x10000; q += 16) {
717			memcpy_fromio(buf + 16, q, 16);
718			if (!dmi_smbios3_present(buf)) {
719				dmi_available = 1;
720				dmi_early_unmap(p, 0x10000);
721				return;
722			}
723			memcpy(buf, buf + 16, 16);
724		}
725
726		/*
727		 * Iterate over all possible DMI header addresses q.
728		 * Maintain the 32 bytes around q in buf.  On the
729		 * first iteration, substitute zero for the
730		 * out-of-range bytes so there is no chance of falsely
731		 * detecting an SMBIOS header.
732		 */
733		memset(buf, 0, 16);
734		for (q = p; q < p + 0x10000; q += 16) {
735			memcpy_fromio(buf + 16, q, 16);
736			if (!dmi_present(buf)) {
737				dmi_available = 1;
738				dmi_early_unmap(p, 0x10000);
739				return;
740			}
741			memcpy(buf, buf + 16, 16);
742		}
743		dmi_early_unmap(p, 0x10000);
744	}
745 error:
746	pr_info("DMI not present or invalid.\n");
747}
748
749static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
750			      struct bin_attribute *attr, char *buf,
751			      loff_t pos, size_t count)
752{
753	memcpy(buf, attr->private + pos, count);
754	return count;
755}
756
757static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
758static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
759
760static int __init dmi_init(void)
761{
762	struct kobject *tables_kobj;
763	u8 *dmi_table;
764	int ret = -ENOMEM;
765
766	if (!dmi_available)
767		return 0;
768
769	/*
770	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
771	 * even after farther error, as it can be used by other modules like
772	 * dmi-sysfs.
773	 */
774	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
775	if (!dmi_kobj)
776		goto err;
777
778	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
779	if (!tables_kobj)
780		goto err;
781
782	dmi_table = dmi_remap(dmi_base, dmi_len);
783	if (!dmi_table)
784		goto err_tables;
785
786	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
787	bin_attr_smbios_entry_point.private = smbios_entry_point;
788	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
789	if (ret)
790		goto err_unmap;
791
792	bin_attr_DMI.size = dmi_len;
793	bin_attr_DMI.private = dmi_table;
794	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
795	if (!ret)
796		return 0;
797
798	sysfs_remove_bin_file(tables_kobj,
799			      &bin_attr_smbios_entry_point);
800 err_unmap:
801	dmi_unmap(dmi_table);
802 err_tables:
803	kobject_del(tables_kobj);
804	kobject_put(tables_kobj);
805 err:
806	pr_err("dmi: Firmware registration failed.\n");
807
808	return ret;
809}
810subsys_initcall(dmi_init);
811
812/**
813 *	dmi_setup - scan and setup DMI system information
814 *
815 *	Scan the DMI system information. This setups DMI identifiers
816 *	(dmi_system_id) for printing it out on task dumps and prepares
817 *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
818 *	for using this when reporting memory errors.
819 */
820void __init dmi_setup(void)
821{
822	dmi_scan_machine();
823	if (!dmi_available)
824		return;
825
826	dmi_memdev_walk();
827	dump_stack_set_arch_desc("%s", dmi_ids_string);
828}
829
830/**
831 *	dmi_matches - check if dmi_system_id structure matches system DMI data
832 *	@dmi: pointer to the dmi_system_id structure to check
833 */
834static bool dmi_matches(const struct dmi_system_id *dmi)
835{
836	int i;
837
838	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
839		int s = dmi->matches[i].slot;
840		if (s == DMI_NONE)
841			break;
842		if (s == DMI_OEM_STRING) {
843			/* DMI_OEM_STRING must be exact match */
844			const struct dmi_device *valid;
845
846			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
847						dmi->matches[i].substr, NULL);
848			if (valid)
849				continue;
850		} else if (dmi_ident[s]) {
851			if (dmi->matches[i].exact_match) {
852				if (!strcmp(dmi_ident[s],
853					    dmi->matches[i].substr))
854					continue;
855			} else {
856				if (strstr(dmi_ident[s],
857					   dmi->matches[i].substr))
858					continue;
859			}
860		}
861
862		/* No match */
863		return false;
864	}
865	return true;
866}
867
868/**
869 *	dmi_is_end_of_table - check for end-of-table marker
870 *	@dmi: pointer to the dmi_system_id structure to check
871 */
872static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
873{
874	return dmi->matches[0].slot == DMI_NONE;
875}
876
877/**
878 *	dmi_check_system - check system DMI data
879 *	@list: array of dmi_system_id structures to match against
880 *		All non-null elements of the list must match
881 *		their slot's (field index's) data (i.e., each
882 *		list string must be a substring of the specified
883 *		DMI slot's string data) to be considered a
884 *		successful match.
885 *
886 *	Walk the blacklist table running matching functions until someone
887 *	returns non zero or we hit the end. Callback function is called for
888 *	each successful match. Returns the number of matches.
889 *
890 *	dmi_setup must be called before this function is called.
891 */
892int dmi_check_system(const struct dmi_system_id *list)
893{
894	int count = 0;
895	const struct dmi_system_id *d;
896
897	for (d = list; !dmi_is_end_of_table(d); d++)
898		if (dmi_matches(d)) {
899			count++;
900			if (d->callback && d->callback(d))
901				break;
902		}
903
904	return count;
905}
906EXPORT_SYMBOL(dmi_check_system);
907
908/**
909 *	dmi_first_match - find dmi_system_id structure matching system DMI data
910 *	@list: array of dmi_system_id structures to match against
911 *		All non-null elements of the list must match
912 *		their slot's (field index's) data (i.e., each
913 *		list string must be a substring of the specified
914 *		DMI slot's string data) to be considered a
915 *		successful match.
916 *
917 *	Walk the blacklist table until the first match is found.  Return the
918 *	pointer to the matching entry or NULL if there's no match.
919 *
920 *	dmi_setup must be called before this function is called.
921 */
922const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
923{
924	const struct dmi_system_id *d;
925
926	for (d = list; !dmi_is_end_of_table(d); d++)
927		if (dmi_matches(d))
928			return d;
929
930	return NULL;
931}
932EXPORT_SYMBOL(dmi_first_match);
933
934/**
935 *	dmi_get_system_info - return DMI data value
936 *	@field: data index (see enum dmi_field)
937 *
938 *	Returns one DMI data value, can be used to perform
939 *	complex DMI data checks.
940 */
941const char *dmi_get_system_info(int field)
942{
943	return dmi_ident[field];
944}
945EXPORT_SYMBOL(dmi_get_system_info);
946
947/**
948 * dmi_name_in_serial - Check if string is in the DMI product serial information
949 * @str: string to check for
950 */
951int dmi_name_in_serial(const char *str)
952{
953	int f = DMI_PRODUCT_SERIAL;
954	if (dmi_ident[f] && strstr(dmi_ident[f], str))
955		return 1;
956	return 0;
957}
958
959/**
960 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
961 *	@str: Case sensitive Name
962 */
963int dmi_name_in_vendors(const char *str)
964{
965	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
966	int i;
967	for (i = 0; fields[i] != DMI_NONE; i++) {
968		int f = fields[i];
969		if (dmi_ident[f] && strstr(dmi_ident[f], str))
970			return 1;
971	}
972	return 0;
973}
974EXPORT_SYMBOL(dmi_name_in_vendors);
975
976/**
977 *	dmi_find_device - find onboard device by type/name
978 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
979 *	@name: device name string or %NULL to match all
980 *	@from: previous device found in search, or %NULL for new search.
981 *
982 *	Iterates through the list of known onboard devices. If a device is
983 *	found with a matching @type and @name, a pointer to its device
984 *	structure is returned.  Otherwise, %NULL is returned.
985 *	A new search is initiated by passing %NULL as the @from argument.
986 *	If @from is not %NULL, searches continue from next device.
987 */
988const struct dmi_device *dmi_find_device(int type, const char *name,
989				    const struct dmi_device *from)
990{
991	const struct list_head *head = from ? &from->list : &dmi_devices;
992	struct list_head *d;
993
994	for (d = head->next; d != &dmi_devices; d = d->next) {
995		const struct dmi_device *dev =
996			list_entry(d, struct dmi_device, list);
997
998		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
999		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
1000			return dev;
1001	}
1002
1003	return NULL;
1004}
1005EXPORT_SYMBOL(dmi_find_device);
1006
1007/**
1008 *	dmi_get_date - parse a DMI date
1009 *	@field:	data index (see enum dmi_field)
1010 *	@yearp: optional out parameter for the year
1011 *	@monthp: optional out parameter for the month
1012 *	@dayp: optional out parameter for the day
1013 *
1014 *	The date field is assumed to be in the form resembling
1015 *	[mm[/dd]]/yy[yy] and the result is stored in the out
1016 *	parameters any or all of which can be omitted.
1017 *
1018 *	If the field doesn't exist, all out parameters are set to zero
1019 *	and false is returned.  Otherwise, true is returned with any
1020 *	invalid part of date set to zero.
1021 *
1022 *	On return, year, month and day are guaranteed to be in the
1023 *	range of [0,9999], [0,12] and [0,31] respectively.
1024 */
1025bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1026{
1027	int year = 0, month = 0, day = 0;
1028	bool exists;
1029	const char *s, *y;
1030	char *e;
1031
1032	s = dmi_get_system_info(field);
1033	exists = s;
1034	if (!exists)
1035		goto out;
1036
1037	/*
1038	 * Determine year first.  We assume the date string resembles
1039	 * mm/dd/yy[yy] but the original code extracted only the year
1040	 * from the end.  Keep the behavior in the spirit of no
1041	 * surprises.
1042	 */
1043	y = strrchr(s, '/');
1044	if (!y)
1045		goto out;
1046
1047	y++;
1048	year = simple_strtoul(y, &e, 10);
1049	if (y != e && year < 100) {	/* 2-digit year */
1050		year += 1900;
1051		if (year < 1996)	/* no dates < spec 1.0 */
1052			year += 100;
1053	}
1054	if (year > 9999)		/* year should fit in %04d */
1055		year = 0;
1056
1057	/* parse the mm and dd */
1058	month = simple_strtoul(s, &e, 10);
1059	if (s == e || *e != '/' || !month || month > 12) {
1060		month = 0;
1061		goto out;
1062	}
1063
1064	s = e + 1;
1065	day = simple_strtoul(s, &e, 10);
1066	if (s == y || s == e || *e != '/' || day > 31)
1067		day = 0;
1068out:
1069	if (yearp)
1070		*yearp = year;
1071	if (monthp)
1072		*monthp = month;
1073	if (dayp)
1074		*dayp = day;
1075	return exists;
1076}
1077EXPORT_SYMBOL(dmi_get_date);
1078
1079/**
1080 *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1081 *
1082 *	Returns year on success, -ENXIO if DMI is not selected,
1083 *	or a different negative error code if DMI field is not present
1084 *	or not parseable.
1085 */
1086int dmi_get_bios_year(void)
1087{
1088	bool exists;
1089	int year;
1090
1091	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1092	if (!exists)
1093		return -ENODATA;
1094
1095	return year ? year : -ERANGE;
1096}
1097EXPORT_SYMBOL(dmi_get_bios_year);
1098
1099/**
1100 *	dmi_walk - Walk the DMI table and get called back for every record
1101 *	@decode: Callback function
1102 *	@private_data: Private data to be passed to the callback function
1103 *
1104 *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1105 *	or a different negative error code if DMI walking fails.
1106 */
1107int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1108	     void *private_data)
1109{
1110	u8 *buf;
1111
1112	if (!dmi_available)
1113		return -ENXIO;
1114
1115	buf = dmi_remap(dmi_base, dmi_len);
1116	if (buf == NULL)
1117		return -ENOMEM;
1118
1119	dmi_decode_table(buf, decode, private_data);
1120
1121	dmi_unmap(buf);
1122	return 0;
1123}
1124EXPORT_SYMBOL_GPL(dmi_walk);
1125
1126/**
1127 * dmi_match - compare a string to the dmi field (if exists)
1128 * @f: DMI field identifier
1129 * @str: string to compare the DMI field to
1130 *
1131 * Returns true if the requested field equals to the str (including NULL).
1132 */
1133bool dmi_match(enum dmi_field f, const char *str)
1134{
1135	const char *info = dmi_get_system_info(f);
1136
1137	if (info == NULL || str == NULL)
1138		return info == str;
1139
1140	return !strcmp(info, str);
1141}
1142EXPORT_SYMBOL_GPL(dmi_match);
1143
1144void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1145{
1146	int n;
1147
1148	if (dmi_memdev == NULL)
1149		return;
1150
1151	for (n = 0; n < dmi_memdev_nr; n++) {
1152		if (handle == dmi_memdev[n].handle) {
1153			*bank = dmi_memdev[n].bank;
1154			*device = dmi_memdev[n].device;
1155			break;
1156		}
1157	}
1158}
1159EXPORT_SYMBOL_GPL(dmi_memdev_name);
1160
1161u64 dmi_memdev_size(u16 handle)
1162{
1163	int n;
1164
1165	if (dmi_memdev) {
1166		for (n = 0; n < dmi_memdev_nr; n++) {
1167			if (handle == dmi_memdev[n].handle)
1168				return dmi_memdev[n].size;
1169		}
1170	}
1171	return ~0ull;
1172}
1173EXPORT_SYMBOL_GPL(dmi_memdev_size);
1174
1175/**
1176 * dmi_memdev_type - get the memory type
1177 * @handle: DMI structure handle
1178 *
1179 * Return the DMI memory type of the module in the slot associated with the
1180 * given DMI handle, or 0x0 if no such DMI handle exists.
1181 */
1182u8 dmi_memdev_type(u16 handle)
1183{
1184	int n;
1185
1186	if (dmi_memdev) {
1187		for (n = 0; n < dmi_memdev_nr; n++) {
1188			if (handle == dmi_memdev[n].handle)
1189				return dmi_memdev[n].type;
1190		}
1191	}
1192	return 0x0;	/* Not a valid value */
1193}
1194EXPORT_SYMBOL_GPL(dmi_memdev_type);
1195
1196/**
1197 *	dmi_memdev_handle - get the DMI handle of a memory slot
1198 *	@slot: slot number
1199 *
1200 *	Return the DMI handle associated with a given memory slot, or %0xFFFF
1201 *      if there is no such slot.
1202 */
1203u16 dmi_memdev_handle(int slot)
1204{
1205	if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1206		return dmi_memdev[slot].handle;
1207
1208	return 0xffff;	/* Not a valid value */
1209}
1210EXPORT_SYMBOL_GPL(dmi_memdev_handle);
1211