1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Xilinx Versal memory controller driver
4 * Copyright (C) 2023 Advanced Micro Devices, Inc.
5 */
6#include <linux/bitfield.h>
7#include <linux/edac.h>
8#include <linux/interrupt.h>
9#include <linux/module.h>
10#include <linux/of.h>
11#include <linux/of_address.h>
12#include <linux/of_device.h>
13#include <linux/platform_device.h>
14#include <linux/sizes.h>
15#include <linux/firmware/xlnx-zynqmp.h>
16#include <linux/firmware/xlnx-event-manager.h>
17
18#include "edac_module.h"
19
20/* Granularity of reported error in bytes */
21#define XDDR_EDAC_ERR_GRAIN			1
22
23#define XDDR_EDAC_MSG_SIZE			256
24#define EVENT					2
25
26#define XDDR_PCSR_OFFSET			0xC
27#define XDDR_ISR_OFFSET				0x14
28#define XDDR_IRQ_EN_OFFSET			0x20
29#define XDDR_IRQ1_EN_OFFSET			0x2C
30#define XDDR_IRQ_DIS_OFFSET			0x24
31#define XDDR_IRQ_CE_MASK			GENMASK(18, 15)
32#define XDDR_IRQ_UE_MASK			GENMASK(14, 11)
33
34#define XDDR_REG_CONFIG0_OFFSET			0x258
35#define XDDR_REG_CONFIG0_BUS_WIDTH_MASK		GENMASK(19, 18)
36#define XDDR_REG_CONFIG0_NUM_CHANS_MASK		BIT(17)
37#define XDDR_REG_CONFIG0_NUM_RANKS_MASK		GENMASK(15, 14)
38#define XDDR_REG_CONFIG0_SIZE_MASK		GENMASK(10, 8)
39
40#define XDDR_REG_PINOUT_OFFSET			0x25C
41#define XDDR_REG_PINOUT_ECC_EN_MASK		GENMASK(7, 5)
42
43#define ECCW0_FLIP_CTRL				0x109C
44#define ECCW0_FLIP0_OFFSET			0x10A0
45#define ECCW0_FLIP0_BITS			31
46#define ECCW0_FLIP1_OFFSET			0x10A4
47#define ECCW1_FLIP_CTRL				0x10AC
48#define ECCW1_FLIP0_OFFSET			0x10B0
49#define ECCW1_FLIP1_OFFSET			0x10B4
50#define ECCR0_CERR_STAT_OFFSET			0x10BC
51#define ECCR0_CE_ADDR_LO_OFFSET			0x10C0
52#define ECCR0_CE_ADDR_HI_OFFSET			0x10C4
53#define ECCR0_CE_DATA_LO_OFFSET			0x10C8
54#define ECCR0_CE_DATA_HI_OFFSET			0x10CC
55#define ECCR0_CE_DATA_PAR_OFFSET		0x10D0
56
57#define ECCR0_UERR_STAT_OFFSET			0x10D4
58#define ECCR0_UE_ADDR_LO_OFFSET			0x10D8
59#define ECCR0_UE_ADDR_HI_OFFSET			0x10DC
60#define ECCR0_UE_DATA_LO_OFFSET			0x10E0
61#define ECCR0_UE_DATA_HI_OFFSET			0x10E4
62#define ECCR0_UE_DATA_PAR_OFFSET		0x10E8
63
64#define ECCR1_CERR_STAT_OFFSET			0x10F4
65#define ECCR1_CE_ADDR_LO_OFFSET			0x10F8
66#define ECCR1_CE_ADDR_HI_OFFSET			0x10FC
67#define ECCR1_CE_DATA_LO_OFFSET			0x1100
68#define ECCR1_CE_DATA_HI_OFFSET			0x110C
69#define ECCR1_CE_DATA_PAR_OFFSET		0x1108
70
71#define ECCR1_UERR_STAT_OFFSET			0x110C
72#define ECCR1_UE_ADDR_LO_OFFSET			0x1110
73#define ECCR1_UE_ADDR_HI_OFFSET			0x1114
74#define ECCR1_UE_DATA_LO_OFFSET			0x1118
75#define ECCR1_UE_DATA_HI_OFFSET			0x111C
76#define ECCR1_UE_DATA_PAR_OFFSET		0x1120
77
78#define XDDR_NOC_REG_ADEC4_OFFSET		0x44
79#define RANK_1_MASK				GENMASK(11, 6)
80#define LRANK_0_MASK				GENMASK(17, 12)
81#define LRANK_1_MASK				GENMASK(23, 18)
82#define MASK_24					GENMASK(29, 24)
83
84#define XDDR_NOC_REG_ADEC5_OFFSET		0x48
85#define XDDR_NOC_REG_ADEC6_OFFSET		0x4C
86#define XDDR_NOC_REG_ADEC7_OFFSET		0x50
87#define XDDR_NOC_REG_ADEC8_OFFSET		0x54
88#define XDDR_NOC_REG_ADEC9_OFFSET		0x58
89#define XDDR_NOC_REG_ADEC10_OFFSET		0x5C
90
91#define XDDR_NOC_REG_ADEC11_OFFSET		0x60
92#define MASK_0					GENMASK(5, 0)
93#define GRP_0_MASK				GENMASK(11, 6)
94#define GRP_1_MASK				GENMASK(17, 12)
95#define CH_0_MASK				GENMASK(23, 18)
96
97#define XDDR_NOC_REG_ADEC12_OFFSET		0x71C
98#define XDDR_NOC_REG_ADEC13_OFFSET		0x720
99
100#define XDDR_NOC_REG_ADEC14_OFFSET		0x724
101#define XDDR_NOC_ROW_MATCH_MASK			GENMASK(17, 0)
102#define XDDR_NOC_COL_MATCH_MASK			GENMASK(27, 18)
103#define XDDR_NOC_BANK_MATCH_MASK		GENMASK(29, 28)
104#define XDDR_NOC_GRP_MATCH_MASK			GENMASK(31, 30)
105
106#define XDDR_NOC_REG_ADEC15_OFFSET		0x728
107#define XDDR_NOC_RANK_MATCH_MASK		GENMASK(1, 0)
108#define XDDR_NOC_LRANK_MATCH_MASK		GENMASK(4, 2)
109#define XDDR_NOC_CH_MATCH_MASK			BIT(5)
110#define XDDR_NOC_MOD_SEL_MASK			BIT(6)
111#define XDDR_NOC_MATCH_EN_MASK			BIT(8)
112
113#define ECCR_UE_CE_ADDR_HI_ROW_MASK		GENMASK(7, 0)
114
115#define XDDR_EDAC_NR_CSROWS			1
116#define XDDR_EDAC_NR_CHANS			1
117
118#define XDDR_BUS_WIDTH_64			0
119#define XDDR_BUS_WIDTH_32			1
120#define XDDR_BUS_WIDTH_16			2
121
122#define XDDR_MAX_ROW_CNT			18
123#define XDDR_MAX_COL_CNT			10
124#define XDDR_MAX_RANK_CNT			2
125#define XDDR_MAX_LRANK_CNT			3
126#define XDDR_MAX_BANK_CNT			2
127#define XDDR_MAX_GRP_CNT			2
128
129/*
130 * Config and system registers are usually locked. This is the
131 * code which unlocks them in order to accept writes. See
132 *
133 * https://docs.xilinx.com/r/en-US/am012-versal-register-reference/PCSR_LOCK-XRAM_SLCR-Register
134 */
135#define PCSR_UNLOCK_VAL				0xF9E8D7C6
136#define PCSR_LOCK_VAL				1
137#define XDDR_ERR_TYPE_CE			0
138#define XDDR_ERR_TYPE_UE			1
139
140#define XILINX_DRAM_SIZE_4G			0
141#define XILINX_DRAM_SIZE_6G			1
142#define XILINX_DRAM_SIZE_8G			2
143#define XILINX_DRAM_SIZE_12G			3
144#define XILINX_DRAM_SIZE_16G			4
145#define XILINX_DRAM_SIZE_32G			5
146#define NUM_UE_BITPOS				2
147
148/**
149 * struct ecc_error_info - ECC error log information.
150 * @burstpos:		Burst position.
151 * @lrank:		Logical Rank number.
152 * @rank:		Rank number.
153 * @group:		Group number.
154 * @bank:		Bank number.
155 * @col:		Column number.
156 * @row:		Row number.
157 * @rowhi:		Row number higher bits.
158 * @i:			ECC error info.
159 */
160union ecc_error_info {
161	struct {
162		u32 burstpos:3;
163		u32 lrank:3;
164		u32 rank:2;
165		u32 group:2;
166		u32 bank:2;
167		u32 col:10;
168		u32 row:10;
169		u32 rowhi;
170	};
171	u64 i;
172} __packed;
173
174union edac_info {
175	struct {
176		u32 row0:6;
177		u32 row1:6;
178		u32 row2:6;
179		u32 row3:6;
180		u32 row4:6;
181		u32 reserved:2;
182	};
183	struct {
184		u32 col1:6;
185		u32 col2:6;
186		u32 col3:6;
187		u32 col4:6;
188		u32 col5:6;
189		u32 reservedcol:2;
190	};
191	u32 i;
192} __packed;
193
194/**
195 * struct ecc_status - ECC status information to report.
196 * @ceinfo:	Correctable error log information.
197 * @ueinfo:	Uncorrectable error log information.
198 * @channel:	Channel number.
199 * @error_type:	Error type information.
200 */
201struct ecc_status {
202	union ecc_error_info ceinfo[2];
203	union ecc_error_info ueinfo[2];
204	u8 channel;
205	u8 error_type;
206};
207
208/**
209 * struct edac_priv - DDR memory controller private instance data.
210 * @ddrmc_baseaddr:	Base address of the DDR controller.
211 * @ddrmc_noc_baseaddr:	Base address of the DDRMC NOC.
212 * @message:		Buffer for framing the event specific info.
213 * @mc_id:		Memory controller ID.
214 * @ce_cnt:		Correctable error count.
215 * @ue_cnt:		UnCorrectable error count.
216 * @stat:		ECC status information.
217 * @lrank_bit:		Bit shifts for lrank bit.
218 * @rank_bit:		Bit shifts for rank bit.
219 * @row_bit:		Bit shifts for row bit.
220 * @col_bit:		Bit shifts for column bit.
221 * @bank_bit:		Bit shifts for bank bit.
222 * @grp_bit:		Bit shifts for group bit.
223 * @ch_bit:		Bit shifts for channel bit.
224 * @err_inject_addr:	Data poison address.
225 * @debugfs:		Debugfs handle.
226 */
227struct edac_priv {
228	void __iomem *ddrmc_baseaddr;
229	void __iomem *ddrmc_noc_baseaddr;
230	char message[XDDR_EDAC_MSG_SIZE];
231	u32 mc_id;
232	u32 ce_cnt;
233	u32 ue_cnt;
234	struct ecc_status stat;
235	u32 lrank_bit[3];
236	u32 rank_bit[2];
237	u32 row_bit[18];
238	u32 col_bit[10];
239	u32 bank_bit[2];
240	u32 grp_bit[2];
241	u32 ch_bit;
242#ifdef CONFIG_EDAC_DEBUG
243	u64 err_inject_addr;
244	struct dentry *debugfs;
245#endif
246};
247
248static void get_ce_error_info(struct edac_priv *priv)
249{
250	void __iomem *ddrmc_base;
251	struct ecc_status *p;
252	u32  regval;
253	u64  reghi;
254
255	ddrmc_base = priv->ddrmc_baseaddr;
256	p = &priv->stat;
257
258	p->error_type = XDDR_ERR_TYPE_CE;
259	regval = readl(ddrmc_base + ECCR0_CE_ADDR_LO_OFFSET);
260	reghi = regval & ECCR_UE_CE_ADDR_HI_ROW_MASK;
261	p->ceinfo[0].i = regval | reghi << 32;
262	regval = readl(ddrmc_base + ECCR0_CE_ADDR_HI_OFFSET);
263
264	edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n",
265		 readl(ddrmc_base + ECCR0_CE_DATA_LO_OFFSET),
266		 readl(ddrmc_base + ECCR0_CE_DATA_HI_OFFSET),
267		 readl(ddrmc_base + ECCR0_CE_DATA_PAR_OFFSET));
268
269	regval = readl(ddrmc_base + ECCR1_CE_ADDR_LO_OFFSET);
270	reghi = readl(ddrmc_base + ECCR1_CE_ADDR_HI_OFFSET);
271	p->ceinfo[1].i = regval | reghi << 32;
272	regval = readl(ddrmc_base + ECCR1_CE_ADDR_HI_OFFSET);
273
274	edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n",
275		 readl(ddrmc_base + ECCR1_CE_DATA_LO_OFFSET),
276		 readl(ddrmc_base + ECCR1_CE_DATA_HI_OFFSET),
277		 readl(ddrmc_base + ECCR1_CE_DATA_PAR_OFFSET));
278}
279
280static void get_ue_error_info(struct edac_priv *priv)
281{
282	void __iomem *ddrmc_base;
283	struct ecc_status *p;
284	u32  regval;
285	u64 reghi;
286
287	ddrmc_base = priv->ddrmc_baseaddr;
288	p = &priv->stat;
289
290	p->error_type = XDDR_ERR_TYPE_UE;
291	regval = readl(ddrmc_base + ECCR0_UE_ADDR_LO_OFFSET);
292	reghi = readl(ddrmc_base + ECCR0_UE_ADDR_HI_OFFSET);
293
294	p->ueinfo[0].i = regval | reghi << 32;
295	regval = readl(ddrmc_base + ECCR0_UE_ADDR_HI_OFFSET);
296
297	edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n",
298		 readl(ddrmc_base + ECCR0_UE_DATA_LO_OFFSET),
299		 readl(ddrmc_base + ECCR0_UE_DATA_HI_OFFSET),
300		 readl(ddrmc_base + ECCR0_UE_DATA_PAR_OFFSET));
301
302	regval = readl(ddrmc_base + ECCR1_UE_ADDR_LO_OFFSET);
303	reghi = readl(ddrmc_base + ECCR1_UE_ADDR_HI_OFFSET);
304	p->ueinfo[1].i = regval | reghi << 32;
305
306	edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n",
307		 readl(ddrmc_base + ECCR1_UE_DATA_LO_OFFSET),
308		 readl(ddrmc_base + ECCR1_UE_DATA_HI_OFFSET),
309		 readl(ddrmc_base + ECCR1_UE_DATA_PAR_OFFSET));
310}
311
312static bool get_error_info(struct edac_priv *priv)
313{
314	u32 eccr0_ceval, eccr1_ceval, eccr0_ueval, eccr1_ueval;
315	void __iomem *ddrmc_base;
316	struct ecc_status *p;
317
318	ddrmc_base = priv->ddrmc_baseaddr;
319	p = &priv->stat;
320
321	eccr0_ceval = readl(ddrmc_base + ECCR0_CERR_STAT_OFFSET);
322	eccr1_ceval = readl(ddrmc_base + ECCR1_CERR_STAT_OFFSET);
323	eccr0_ueval = readl(ddrmc_base + ECCR0_UERR_STAT_OFFSET);
324	eccr1_ueval = readl(ddrmc_base + ECCR1_UERR_STAT_OFFSET);
325
326	if (!eccr0_ceval && !eccr1_ceval && !eccr0_ueval && !eccr1_ueval)
327		return 1;
328	if (!eccr0_ceval)
329		p->channel = 1;
330	else
331		p->channel = 0;
332
333	if (eccr0_ceval || eccr1_ceval)
334		get_ce_error_info(priv);
335
336	if (eccr0_ueval || eccr1_ueval) {
337		if (!eccr0_ueval)
338			p->channel = 1;
339		else
340			p->channel = 0;
341		get_ue_error_info(priv);
342	}
343
344	/* Unlock the PCSR registers */
345	writel(PCSR_UNLOCK_VAL, ddrmc_base + XDDR_PCSR_OFFSET);
346
347	writel(0, ddrmc_base + ECCR0_CERR_STAT_OFFSET);
348	writel(0, ddrmc_base + ECCR1_CERR_STAT_OFFSET);
349	writel(0, ddrmc_base + ECCR0_UERR_STAT_OFFSET);
350	writel(0, ddrmc_base + ECCR1_UERR_STAT_OFFSET);
351
352	/* Lock the PCSR registers */
353	writel(1, ddrmc_base + XDDR_PCSR_OFFSET);
354
355	return 0;
356}
357
358/**
359 * convert_to_physical - Convert to physical address.
360 * @priv:	DDR memory controller private instance data.
361 * @pinf:	ECC error info structure.
362 *
363 * Return: Physical address of the DDR memory.
364 */
365static unsigned long convert_to_physical(struct edac_priv *priv, union ecc_error_info pinf)
366{
367	unsigned long err_addr = 0;
368	u32 index;
369	u32 row;
370
371	row = pinf.rowhi << 10 | pinf.row;
372	for (index = 0; index < XDDR_MAX_ROW_CNT; index++) {
373		err_addr |= (row & BIT(0)) << priv->row_bit[index];
374		row >>= 1;
375	}
376
377	for (index = 0; index < XDDR_MAX_COL_CNT; index++) {
378		err_addr |= (pinf.col & BIT(0)) << priv->col_bit[index];
379		pinf.col >>= 1;
380	}
381
382	for (index = 0; index < XDDR_MAX_BANK_CNT; index++) {
383		err_addr |= (pinf.bank & BIT(0)) << priv->bank_bit[index];
384		pinf.bank >>= 1;
385	}
386
387	for (index = 0; index < XDDR_MAX_GRP_CNT; index++) {
388		err_addr |= (pinf.group & BIT(0)) << priv->grp_bit[index];
389		pinf.group >>= 1;
390	}
391
392	for (index = 0; index < XDDR_MAX_RANK_CNT; index++) {
393		err_addr |= (pinf.rank & BIT(0)) << priv->rank_bit[index];
394		pinf.rank >>= 1;
395	}
396
397	for (index = 0; index < XDDR_MAX_LRANK_CNT; index++) {
398		err_addr |= (pinf.lrank & BIT(0)) << priv->lrank_bit[index];
399		pinf.lrank >>= 1;
400	}
401
402	err_addr |= (priv->stat.channel & BIT(0)) << priv->ch_bit;
403
404	return err_addr;
405}
406
407/**
408 * handle_error - Handle Correctable and Uncorrectable errors.
409 * @mci:	EDAC memory controller instance.
410 * @stat:	ECC status structure.
411 *
412 * Handles ECC correctable and uncorrectable errors.
413 */
414static void handle_error(struct mem_ctl_info *mci, struct ecc_status *stat)
415{
416	struct edac_priv *priv = mci->pvt_info;
417	union ecc_error_info pinf;
418
419	if (stat->error_type == XDDR_ERR_TYPE_CE) {
420		priv->ce_cnt++;
421		pinf = stat->ceinfo[stat->channel];
422		snprintf(priv->message, XDDR_EDAC_MSG_SIZE,
423			 "Error type:%s MC ID: %d Addr at %lx Burst Pos: %d\n",
424			 "CE", priv->mc_id,
425			 convert_to_physical(priv, pinf), pinf.burstpos);
426
427		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
428				     1, 0, 0, 0, 0, 0, -1,
429				     priv->message, "");
430	}
431
432	if (stat->error_type == XDDR_ERR_TYPE_UE) {
433		priv->ue_cnt++;
434		pinf = stat->ueinfo[stat->channel];
435		snprintf(priv->message, XDDR_EDAC_MSG_SIZE,
436			 "Error type:%s MC ID: %d Addr at %lx Burst Pos: %d\n",
437			 "UE", priv->mc_id,
438			 convert_to_physical(priv, pinf), pinf.burstpos);
439
440		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
441				     1, 0, 0, 0, 0, 0, -1,
442				     priv->message, "");
443	}
444
445	memset(stat, 0, sizeof(*stat));
446}
447
448/**
449 * err_callback - Handle Correctable and Uncorrectable errors.
450 * @payload:	payload data.
451 * @data:	mci controller data.
452 *
453 * Handles ECC correctable and uncorrectable errors.
454 */
455static void err_callback(const u32 *payload, void *data)
456{
457	struct mem_ctl_info *mci = (struct mem_ctl_info *)data;
458	struct edac_priv *priv;
459	struct ecc_status *p;
460	int regval;
461
462	priv = mci->pvt_info;
463	p = &priv->stat;
464
465	regval = readl(priv->ddrmc_baseaddr + XDDR_ISR_OFFSET);
466
467	if (payload[EVENT] == XPM_EVENT_ERROR_MASK_DDRMC_CR)
468		p->error_type = XDDR_ERR_TYPE_CE;
469	if (payload[EVENT] == XPM_EVENT_ERROR_MASK_DDRMC_NCR)
470		p->error_type = XDDR_ERR_TYPE_UE;
471
472	if (get_error_info(priv))
473		return;
474
475	handle_error(mci, &priv->stat);
476
477	/* Unlock the PCSR registers */
478	writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
479
480	/* Clear the ISR */
481	writel(regval, priv->ddrmc_baseaddr + XDDR_ISR_OFFSET);
482
483	/* Lock the PCSR registers */
484	writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
485	edac_dbg(3, "Total error count CE %d UE %d\n",
486		 priv->ce_cnt, priv->ue_cnt);
487}
488
489/**
490 * get_dwidth - Return the controller memory width.
491 * @base:	DDR memory controller base address.
492 *
493 * Get the EDAC device type width appropriate for the controller
494 * configuration.
495 *
496 * Return: a device type width enumeration.
497 */
498static enum dev_type get_dwidth(const void __iomem *base)
499{
500	enum dev_type dt;
501	u32 regval;
502	u32 width;
503
504	regval = readl(base + XDDR_REG_CONFIG0_OFFSET);
505	width  = FIELD_GET(XDDR_REG_CONFIG0_BUS_WIDTH_MASK, regval);
506
507	switch (width) {
508	case XDDR_BUS_WIDTH_16:
509		dt = DEV_X2;
510		break;
511	case XDDR_BUS_WIDTH_32:
512		dt = DEV_X4;
513		break;
514	case XDDR_BUS_WIDTH_64:
515		dt = DEV_X8;
516		break;
517	default:
518		dt = DEV_UNKNOWN;
519	}
520
521	return dt;
522}
523
524/**
525 * get_ecc_state - Return the controller ECC enable/disable status.
526 * @base:	DDR memory controller base address.
527 *
528 * Get the ECC enable/disable status for the controller.
529 *
530 * Return: a ECC status boolean i.e true/false - enabled/disabled.
531 */
532static bool get_ecc_state(void __iomem *base)
533{
534	enum dev_type dt;
535	u32 ecctype;
536
537	dt = get_dwidth(base);
538	if (dt == DEV_UNKNOWN)
539		return false;
540
541	ecctype = readl(base + XDDR_REG_PINOUT_OFFSET);
542	ecctype &= XDDR_REG_PINOUT_ECC_EN_MASK;
543
544	return !!ecctype;
545}
546
547/**
548 * get_memsize - Get the size of the attached memory device.
549 * @priv:	DDR memory controller private instance data.
550 *
551 * Return: the memory size in bytes.
552 */
553static u64 get_memsize(struct edac_priv *priv)
554{
555	u32 regval;
556	u64 size;
557
558	regval = readl(priv->ddrmc_baseaddr + XDDR_REG_CONFIG0_OFFSET);
559	regval  = FIELD_GET(XDDR_REG_CONFIG0_SIZE_MASK, regval);
560
561	switch (regval) {
562	case XILINX_DRAM_SIZE_4G:
563		size = 4U;      break;
564	case XILINX_DRAM_SIZE_6G:
565		size = 6U;      break;
566	case XILINX_DRAM_SIZE_8G:
567		size = 8U;      break;
568	case XILINX_DRAM_SIZE_12G:
569		size = 12U;     break;
570	case XILINX_DRAM_SIZE_16G:
571		size = 16U;     break;
572	case XILINX_DRAM_SIZE_32G:
573		size = 32U;     break;
574	/* Invalid configuration */
575	default:
576		size = 0;	break;
577	}
578
579	size *= SZ_1G;
580	return size;
581}
582
583/**
584 * init_csrows - Initialize the csrow data.
585 * @mci:	EDAC memory controller instance.
586 *
587 * Initialize the chip select rows associated with the EDAC memory
588 * controller instance.
589 */
590static void init_csrows(struct mem_ctl_info *mci)
591{
592	struct edac_priv *priv = mci->pvt_info;
593	struct csrow_info *csi;
594	struct dimm_info *dimm;
595	unsigned long size;
596	u32 row;
597	int ch;
598
599	size = get_memsize(priv);
600	for (row = 0; row < mci->nr_csrows; row++) {
601		csi = mci->csrows[row];
602		for (ch = 0; ch < csi->nr_channels; ch++) {
603			dimm = csi->channels[ch]->dimm;
604			dimm->edac_mode	= EDAC_SECDED;
605			dimm->mtype = MEM_DDR4;
606			dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels;
607			dimm->grain = XDDR_EDAC_ERR_GRAIN;
608			dimm->dtype = get_dwidth(priv->ddrmc_baseaddr);
609		}
610	}
611}
612
613/**
614 * mc_init - Initialize one driver instance.
615 * @mci:	EDAC memory controller instance.
616 * @pdev:	platform device.
617 *
618 * Perform initialization of the EDAC memory controller instance and
619 * related driver-private data associated with the memory controller the
620 * instance is bound to.
621 */
622static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
623{
624	mci->pdev = &pdev->dev;
625	platform_set_drvdata(pdev, mci);
626
627	/* Initialize controller capabilities and configuration */
628	mci->mtype_cap = MEM_FLAG_DDR4;
629	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
630	mci->scrub_cap = SCRUB_HW_SRC;
631	mci->scrub_mode = SCRUB_NONE;
632
633	mci->edac_cap = EDAC_FLAG_SECDED;
634	mci->ctl_name = "xlnx_ddr_controller";
635	mci->dev_name = dev_name(&pdev->dev);
636	mci->mod_name = "xlnx_edac";
637
638	edac_op_state = EDAC_OPSTATE_INT;
639
640	init_csrows(mci);
641}
642
643static void enable_intr(struct edac_priv *priv)
644{
645	/* Unlock the PCSR registers */
646	writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
647
648	/* Enable UE and CE Interrupts to support the interrupt case */
649	writel(XDDR_IRQ_CE_MASK | XDDR_IRQ_UE_MASK,
650	       priv->ddrmc_baseaddr + XDDR_IRQ_EN_OFFSET);
651
652	writel(XDDR_IRQ_UE_MASK,
653	       priv->ddrmc_baseaddr + XDDR_IRQ1_EN_OFFSET);
654	/* Lock the PCSR registers */
655	writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
656}
657
658static void disable_intr(struct edac_priv *priv)
659{
660	/* Unlock the PCSR registers */
661	writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
662
663	/* Disable UE/CE Interrupts */
664	writel(XDDR_IRQ_CE_MASK | XDDR_IRQ_UE_MASK,
665	       priv->ddrmc_baseaddr + XDDR_IRQ_DIS_OFFSET);
666
667	/* Lock the PCSR registers */
668	writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
669}
670
671#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
672
673#ifdef CONFIG_EDAC_DEBUG
674/**
675 * poison_setup - Update poison registers.
676 * @priv:	DDR memory controller private instance data.
677 *
678 * Update poison registers as per DDR mapping upon write of the address
679 * location the fault is injected.
680 * Return: none.
681 */
682static void poison_setup(struct edac_priv *priv)
683{
684	u32 col = 0, row = 0, bank = 0, grp = 0, rank = 0, lrank = 0, ch = 0;
685	u32 index, regval;
686
687	for (index = 0; index < XDDR_MAX_ROW_CNT; index++) {
688		row |= (((priv->err_inject_addr >> priv->row_bit[index]) &
689						BIT(0)) << index);
690	}
691
692	for (index = 0; index < XDDR_MAX_COL_CNT; index++) {
693		col |= (((priv->err_inject_addr >> priv->col_bit[index]) &
694						BIT(0)) << index);
695	}
696
697	for (index = 0; index < XDDR_MAX_BANK_CNT; index++) {
698		bank |= (((priv->err_inject_addr >> priv->bank_bit[index]) &
699						BIT(0)) << index);
700	}
701
702	for (index = 0; index < XDDR_MAX_GRP_CNT; index++) {
703		grp |= (((priv->err_inject_addr >> priv->grp_bit[index]) &
704						BIT(0)) << index);
705	}
706
707	for (index = 0; index < XDDR_MAX_RANK_CNT; index++) {
708		rank |= (((priv->err_inject_addr >> priv->rank_bit[index]) &
709						BIT(0)) << index);
710	}
711
712	for (index = 0; index < XDDR_MAX_LRANK_CNT; index++) {
713		lrank |= (((priv->err_inject_addr >> priv->lrank_bit[index]) &
714						BIT(0)) << index);
715	}
716
717	ch = (priv->err_inject_addr >> priv->ch_bit) & BIT(0);
718	if (ch)
719		writel(0xFF, priv->ddrmc_baseaddr + ECCW1_FLIP_CTRL);
720	else
721		writel(0xFF, priv->ddrmc_baseaddr + ECCW0_FLIP_CTRL);
722
723	writel(0, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC12_OFFSET);
724	writel(0, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC13_OFFSET);
725
726	regval = row & XDDR_NOC_ROW_MATCH_MASK;
727	regval |= FIELD_PREP(XDDR_NOC_COL_MATCH_MASK, col);
728	regval |= FIELD_PREP(XDDR_NOC_BANK_MATCH_MASK, bank);
729	regval |= FIELD_PREP(XDDR_NOC_GRP_MATCH_MASK, grp);
730	writel(regval, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC14_OFFSET);
731
732	regval = rank & XDDR_NOC_RANK_MATCH_MASK;
733	regval |= FIELD_PREP(XDDR_NOC_LRANK_MATCH_MASK, lrank);
734	regval |= FIELD_PREP(XDDR_NOC_CH_MATCH_MASK, ch);
735	regval |= (XDDR_NOC_MOD_SEL_MASK | XDDR_NOC_MATCH_EN_MASK);
736	writel(regval, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC15_OFFSET);
737}
738
739static void xddr_inject_data_ce_store(struct mem_ctl_info *mci, u8 ce_bitpos)
740{
741	u32 ecc0_flip0, ecc1_flip0, ecc0_flip1, ecc1_flip1;
742	struct edac_priv *priv = mci->pvt_info;
743
744	if (ce_bitpos < ECCW0_FLIP0_BITS) {
745		ecc0_flip0 = BIT(ce_bitpos);
746		ecc1_flip0 = BIT(ce_bitpos);
747		ecc0_flip1 = 0;
748		ecc1_flip1 = 0;
749	} else {
750		ce_bitpos = ce_bitpos - ECCW0_FLIP0_BITS;
751		ecc0_flip1 = BIT(ce_bitpos);
752		ecc1_flip1 = BIT(ce_bitpos);
753		ecc0_flip0 = 0;
754		ecc1_flip0 = 0;
755	}
756
757	writel(ecc0_flip0, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET);
758	writel(ecc1_flip0, priv->ddrmc_baseaddr + ECCW1_FLIP0_OFFSET);
759	writel(ecc0_flip1, priv->ddrmc_baseaddr + ECCW0_FLIP1_OFFSET);
760	writel(ecc1_flip1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET);
761}
762
763/*
764 * To inject a correctable error, the following steps are needed:
765 *
766 * - Write the correctable error bit position value:
767 *	echo <bit_pos val> > /sys/kernel/debug/edac/<controller instance>/inject_ce
768 *
769 * poison_setup() derives the row, column, bank, group and rank and
770 * writes to the ADEC registers based on the address given by the user.
771 *
772 * The ADEC12 and ADEC13 are mask registers; write 0 to make sure default
773 * configuration is there and no addresses are masked.
774 *
775 * The row, column, bank, group and rank registers are written to the
776 * match ADEC bit to generate errors at the particular address. ADEC14
777 * and ADEC15 have the match bits.
778 *
779 * xddr_inject_data_ce_store() updates the ECC FLIP registers with the
780 * bits to be corrupted based on the bit position given by the user.
781 *
782 * Upon doing a read to the address the errors are injected.
783 */
784static ssize_t inject_data_ce_store(struct file *file, const char __user *data,
785				    size_t count, loff_t *ppos)
786{
787	struct device *dev = file->private_data;
788	struct mem_ctl_info *mci = to_mci(dev);
789	struct edac_priv *priv = mci->pvt_info;
790	u8 ce_bitpos;
791	int ret;
792
793	ret = kstrtou8_from_user(data, count, 0, &ce_bitpos);
794	if (ret)
795		return ret;
796
797	/* Unlock the PCSR registers */
798	writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
799	writel(PCSR_UNLOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
800
801	poison_setup(priv);
802
803	xddr_inject_data_ce_store(mci, ce_bitpos);
804	ret = count;
805
806	/* Lock the PCSR registers */
807	writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
808	writel(PCSR_LOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
809
810	return ret;
811}
812
813static const struct file_operations xddr_inject_ce_fops = {
814	.open = simple_open,
815	.write = inject_data_ce_store,
816	.llseek = generic_file_llseek,
817};
818
819static void xddr_inject_data_ue_store(struct mem_ctl_info *mci, u32 val0, u32 val1)
820{
821	struct edac_priv *priv = mci->pvt_info;
822
823	writel(val0, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET);
824	writel(val0, priv->ddrmc_baseaddr + ECCW0_FLIP1_OFFSET);
825	writel(val1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET);
826	writel(val1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET);
827}
828
829/*
830 * To inject an uncorrectable error, the following steps are needed:
831 *	echo <bit_pos val> > /sys/kernel/debug/edac/<controller instance>/inject_ue
832 *
833 * poison_setup() derives the row, column, bank, group and rank and
834 * writes to the ADEC registers based on the address given by the user.
835 *
836 * The ADEC12 and ADEC13 are mask registers; write 0 so that none of the
837 * addresses are masked. The row, column, bank, group and rank registers
838 * are written to the match ADEC bit to generate errors at the
839 * particular address. ADEC14 and ADEC15 have the match bits.
840 *
841 * xddr_inject_data_ue_store() updates the ECC FLIP registers with the
842 * bits to be corrupted based on the bit position given by the user. For
843 * uncorrectable errors
844 * 2 bit errors are injected.
845 *
846 * Upon doing a read to the address the errors are injected.
847 */
848static ssize_t inject_data_ue_store(struct file *file, const char __user *data,
849				    size_t count, loff_t *ppos)
850{
851	struct device *dev = file->private_data;
852	struct mem_ctl_info *mci = to_mci(dev);
853	struct edac_priv *priv = mci->pvt_info;
854	char buf[6], *pbuf, *token[2];
855	u32 val0 = 0, val1 = 0;
856	u8 len, ue0, ue1;
857	int i, ret;
858
859	len = min_t(size_t, count, sizeof(buf));
860	if (copy_from_user(buf, data, len))
861		return -EFAULT;
862
863	buf[len] = '\0';
864	pbuf = &buf[0];
865	for (i = 0; i < NUM_UE_BITPOS; i++)
866		token[i] = strsep(&pbuf, ",");
867
868	if (!token[0] || !token[1])
869		return -EFAULT;
870
871	ret = kstrtou8(token[0], 0, &ue0);
872	if (ret)
873		return ret;
874
875	ret = kstrtou8(token[1], 0, &ue1);
876	if (ret)
877		return ret;
878
879	if (ue0 < ECCW0_FLIP0_BITS) {
880		val0 = BIT(ue0);
881	} else {
882		ue0 = ue0 - ECCW0_FLIP0_BITS;
883		val1 = BIT(ue0);
884	}
885
886	if (ue1 < ECCW0_FLIP0_BITS) {
887		val0 |= BIT(ue1);
888	} else {
889		ue1 = ue1 - ECCW0_FLIP0_BITS;
890		val1 |= BIT(ue1);
891	}
892
893	/* Unlock the PCSR registers */
894	writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
895	writel(PCSR_UNLOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
896
897	poison_setup(priv);
898
899	xddr_inject_data_ue_store(mci, val0, val1);
900
901	/* Lock the PCSR registers */
902	writel(PCSR_LOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
903	writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
904	return count;
905}
906
907static const struct file_operations xddr_inject_ue_fops = {
908	.open = simple_open,
909	.write = inject_data_ue_store,
910	.llseek = generic_file_llseek,
911};
912
913static void create_debugfs_attributes(struct mem_ctl_info *mci)
914{
915	struct edac_priv *priv = mci->pvt_info;
916
917	priv->debugfs = edac_debugfs_create_dir(mci->dev_name);
918	if (!priv->debugfs)
919		return;
920
921	if (!edac_debugfs_create_file("inject_ce", 0200, priv->debugfs,
922				      &mci->dev, &xddr_inject_ce_fops)) {
923		debugfs_remove_recursive(priv->debugfs);
924		return;
925	}
926
927	if (!edac_debugfs_create_file("inject_ue", 0200, priv->debugfs,
928				      &mci->dev, &xddr_inject_ue_fops)) {
929		debugfs_remove_recursive(priv->debugfs);
930		return;
931	}
932	debugfs_create_x64("address", 0600, priv->debugfs,
933			   &priv->err_inject_addr);
934	mci->debugfs = priv->debugfs;
935}
936
937static inline void process_bit(struct edac_priv *priv, unsigned int start, u32 regval)
938{
939	union edac_info rows;
940
941	rows.i  = regval;
942	priv->row_bit[start]	 = rows.row0;
943	priv->row_bit[start + 1] = rows.row1;
944	priv->row_bit[start + 2] = rows.row2;
945	priv->row_bit[start + 3] = rows.row3;
946	priv->row_bit[start + 4] = rows.row4;
947}
948
949static void setup_row_address_map(struct edac_priv *priv)
950{
951	u32 regval;
952	union edac_info rows;
953
954	regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC5_OFFSET);
955	process_bit(priv, 0, regval);
956
957	regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC6_OFFSET);
958	process_bit(priv, 5, regval);
959
960	regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC7_OFFSET);
961	process_bit(priv, 10, regval);
962
963	regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC8_OFFSET);
964	rows.i  = regval;
965
966	priv->row_bit[15] = rows.row0;
967	priv->row_bit[16] = rows.row1;
968	priv->row_bit[17] = rows.row2;
969}
970
971static void setup_column_address_map(struct edac_priv *priv)
972{
973	u32 regval;
974	union edac_info cols;
975
976	regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC8_OFFSET);
977	priv->col_bit[0] = FIELD_GET(MASK_24, regval);
978
979	regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC9_OFFSET);
980	cols.i  = regval;
981	priv->col_bit[1] = cols.col1;
982	priv->col_bit[2] = cols.col2;
983	priv->col_bit[3] = cols.col3;
984	priv->col_bit[4] = cols.col4;
985	priv->col_bit[5] = cols.col5;
986
987	regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC10_OFFSET);
988	cols.i  = regval;
989	priv->col_bit[6] = cols.col1;
990	priv->col_bit[7] = cols.col2;
991	priv->col_bit[8] = cols.col3;
992	priv->col_bit[9] = cols.col4;
993}
994
995static void setup_bank_grp_ch_address_map(struct edac_priv *priv)
996{
997	u32 regval;
998
999	regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC10_OFFSET);
1000	priv->bank_bit[0] = FIELD_GET(MASK_24, regval);
1001
1002	regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC11_OFFSET);
1003	priv->bank_bit[1] = (regval & MASK_0);
1004	priv->grp_bit[0] = FIELD_GET(GRP_0_MASK, regval);
1005	priv->grp_bit[1] = FIELD_GET(GRP_1_MASK, regval);
1006	priv->ch_bit = FIELD_GET(CH_0_MASK, regval);
1007}
1008
1009static void setup_rank_lrank_address_map(struct edac_priv *priv)
1010{
1011	u32 regval;
1012
1013	regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC4_OFFSET);
1014	priv->rank_bit[0] = (regval & MASK_0);
1015	priv->rank_bit[1] = FIELD_GET(RANK_1_MASK, regval);
1016	priv->lrank_bit[0] = FIELD_GET(LRANK_0_MASK, regval);
1017	priv->lrank_bit[1] = FIELD_GET(LRANK_1_MASK, regval);
1018	priv->lrank_bit[2] = FIELD_GET(MASK_24, regval);
1019}
1020
1021/**
1022 * setup_address_map - Set Address Map by querying ADDRMAP registers.
1023 * @priv:	DDR memory controller private instance data.
1024 *
1025 * Set Address Map by querying ADDRMAP registers.
1026 *
1027 * Return: none.
1028 */
1029static void setup_address_map(struct edac_priv *priv)
1030{
1031	setup_row_address_map(priv);
1032
1033	setup_column_address_map(priv);
1034
1035	setup_bank_grp_ch_address_map(priv);
1036
1037	setup_rank_lrank_address_map(priv);
1038}
1039#endif /* CONFIG_EDAC_DEBUG */
1040
1041static const struct of_device_id xlnx_edac_match[] = {
1042	{ .compatible = "xlnx,versal-ddrmc", },
1043	{
1044		/* end of table */
1045	}
1046};
1047
1048MODULE_DEVICE_TABLE(of, xlnx_edac_match);
1049static u32 emif_get_id(struct device_node *node)
1050{
1051	u32 addr, my_addr, my_id = 0;
1052	struct device_node *np;
1053	const __be32 *addrp;
1054
1055	addrp = of_get_address(node, 0, NULL, NULL);
1056	my_addr = (u32)of_translate_address(node, addrp);
1057
1058	for_each_matching_node(np, xlnx_edac_match) {
1059		if (np == node)
1060			continue;
1061
1062		addrp = of_get_address(np, 0, NULL, NULL);
1063		addr = (u32)of_translate_address(np, addrp);
1064
1065		edac_printk(KERN_INFO, EDAC_MC,
1066			    "addr=%x, my_addr=%x\n",
1067			    addr, my_addr);
1068
1069		if (addr < my_addr)
1070			my_id++;
1071	}
1072
1073	return my_id;
1074}
1075
1076static int mc_probe(struct platform_device *pdev)
1077{
1078	void __iomem *ddrmc_baseaddr, *ddrmc_noc_baseaddr;
1079	struct edac_mc_layer layers[2];
1080	struct mem_ctl_info *mci;
1081	u8 num_chans, num_csrows;
1082	struct edac_priv *priv;
1083	u32 edac_mc_id, regval;
1084	int rc;
1085
1086	ddrmc_baseaddr = devm_platform_ioremap_resource_byname(pdev, "base");
1087	if (IS_ERR(ddrmc_baseaddr))
1088		return PTR_ERR(ddrmc_baseaddr);
1089
1090	ddrmc_noc_baseaddr = devm_platform_ioremap_resource_byname(pdev, "noc");
1091	if (IS_ERR(ddrmc_noc_baseaddr))
1092		return PTR_ERR(ddrmc_noc_baseaddr);
1093
1094	if (!get_ecc_state(ddrmc_baseaddr))
1095		return -ENXIO;
1096
1097	/* Allocate ID number for the EMIF controller */
1098	edac_mc_id = emif_get_id(pdev->dev.of_node);
1099
1100	regval = readl(ddrmc_baseaddr + XDDR_REG_CONFIG0_OFFSET);
1101	num_chans = FIELD_GET(XDDR_REG_CONFIG0_NUM_CHANS_MASK, regval);
1102	num_chans++;
1103
1104	num_csrows = FIELD_GET(XDDR_REG_CONFIG0_NUM_RANKS_MASK, regval);
1105	num_csrows *= 2;
1106	if (!num_csrows)
1107		num_csrows = 1;
1108
1109	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1110	layers[0].size = num_csrows;
1111	layers[0].is_virt_csrow = true;
1112	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1113	layers[1].size = num_chans;
1114	layers[1].is_virt_csrow = false;
1115
1116	mci = edac_mc_alloc(edac_mc_id, ARRAY_SIZE(layers), layers,
1117			    sizeof(struct edac_priv));
1118	if (!mci) {
1119		edac_printk(KERN_ERR, EDAC_MC,
1120			    "Failed memory allocation for mc instance\n");
1121		return -ENOMEM;
1122	}
1123
1124	priv = mci->pvt_info;
1125	priv->ddrmc_baseaddr = ddrmc_baseaddr;
1126	priv->ddrmc_noc_baseaddr = ddrmc_noc_baseaddr;
1127	priv->ce_cnt = 0;
1128	priv->ue_cnt = 0;
1129	priv->mc_id = edac_mc_id;
1130
1131	mc_init(mci, pdev);
1132
1133	rc = edac_mc_add_mc(mci);
1134	if (rc) {
1135		edac_printk(KERN_ERR, EDAC_MC,
1136			    "Failed to register with EDAC core\n");
1137		goto free_edac_mc;
1138	}
1139
1140	rc = xlnx_register_event(PM_NOTIFY_CB, VERSAL_EVENT_ERROR_PMC_ERR1,
1141				 XPM_EVENT_ERROR_MASK_DDRMC_CR | XPM_EVENT_ERROR_MASK_DDRMC_NCR,
1142				 false, err_callback, mci);
1143	if (rc) {
1144		if (rc == -EACCES)
1145			rc = -EPROBE_DEFER;
1146
1147		goto del_mc;
1148	}
1149
1150#ifdef CONFIG_EDAC_DEBUG
1151	create_debugfs_attributes(mci);
1152	setup_address_map(priv);
1153#endif
1154	enable_intr(priv);
1155	return rc;
1156
1157del_mc:
1158	edac_mc_del_mc(&pdev->dev);
1159free_edac_mc:
1160	edac_mc_free(mci);
1161
1162	return rc;
1163}
1164
1165static void mc_remove(struct platform_device *pdev)
1166{
1167	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
1168	struct edac_priv *priv = mci->pvt_info;
1169
1170	disable_intr(priv);
1171
1172#ifdef CONFIG_EDAC_DEBUG
1173	debugfs_remove_recursive(priv->debugfs);
1174#endif
1175
1176	xlnx_unregister_event(PM_NOTIFY_CB, VERSAL_EVENT_ERROR_PMC_ERR1,
1177			      XPM_EVENT_ERROR_MASK_DDRMC_CR |
1178			      XPM_EVENT_ERROR_MASK_DDRMC_NCR, err_callback, mci);
1179	edac_mc_del_mc(&pdev->dev);
1180	edac_mc_free(mci);
1181}
1182
1183static struct platform_driver xilinx_ddr_edac_mc_driver = {
1184	.driver = {
1185		.name = "xilinx-ddrmc-edac",
1186		.of_match_table = xlnx_edac_match,
1187	},
1188	.probe = mc_probe,
1189	.remove_new = mc_remove,
1190};
1191
1192module_platform_driver(xilinx_ddr_edac_mc_driver);
1193
1194MODULE_AUTHOR("AMD Inc");
1195MODULE_DESCRIPTION("Xilinx DDRMC ECC driver");
1196MODULE_LICENSE("GPL");
1197