1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Driver for Intel client SoC with integrated memory controller using IBECC
4 *
5 * Copyright (C) 2020 Intel Corporation
6 *
7 * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
8 * regions of the physical memory space. It's used for memory controllers
9 * that don't support the out-of-band ECC which often needs an additional
10 * storage device to each channel for storing ECC data.
11 */
12
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/pci.h>
16#include <linux/slab.h>
17#include <linux/irq_work.h>
18#include <linux/llist.h>
19#include <linux/genalloc.h>
20#include <linux/edac.h>
21#include <linux/bits.h>
22#include <linux/io.h>
23#include <asm/mach_traps.h>
24#include <asm/nmi.h>
25#include <asm/mce.h>
26
27#include "edac_mc.h"
28#include "edac_module.h"
29
30#define IGEN6_REVISION	"v2.5.1"
31
32#define EDAC_MOD_STR	"igen6_edac"
33#define IGEN6_NMI_NAME	"igen6_ibecc"
34
35/* Debug macros */
36#define igen6_printk(level, fmt, arg...)		\
37	edac_printk(level, "igen6", fmt, ##arg)
38
39#define igen6_mc_printk(mci, level, fmt, arg...)	\
40	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
41
42#define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
43
44#define NUM_IMC				2 /* Max memory controllers */
45#define NUM_CHANNELS			2 /* Max channels */
46#define NUM_DIMMS			2 /* Max DIMMs per channel */
47
48#define _4GB				BIT_ULL(32)
49
50/* Size of physical memory */
51#define TOM_OFFSET			0xa0
52/* Top of low usable DRAM */
53#define TOLUD_OFFSET			0xbc
54/* Capability register C */
55#define CAPID_C_OFFSET			0xec
56#define CAPID_C_IBECC			BIT(15)
57
58/* Capability register E */
59#define CAPID_E_OFFSET			0xf0
60#define CAPID_E_IBECC			BIT(12)
61#define CAPID_E_IBECC_BIT18		BIT(18)
62
63/* Error Status */
64#define ERRSTS_OFFSET			0xc8
65#define ERRSTS_CE			BIT_ULL(6)
66#define ERRSTS_UE			BIT_ULL(7)
67
68/* Error Command */
69#define ERRCMD_OFFSET			0xca
70#define ERRCMD_CE			BIT_ULL(6)
71#define ERRCMD_UE			BIT_ULL(7)
72
73/* IBECC MMIO base address */
74#define IBECC_BASE			(res_cfg->ibecc_base)
75#define IBECC_ACTIVATE_OFFSET		IBECC_BASE
76#define IBECC_ACTIVATE_EN		BIT(0)
77
78/* IBECC error log */
79#define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
80#define ECC_ERROR_LOG_CE		BIT_ULL(62)
81#define ECC_ERROR_LOG_UE		BIT_ULL(63)
82#define ECC_ERROR_LOG_ADDR_SHIFT	5
83#define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
84#define ECC_ERROR_LOG_ADDR45(v)		GET_BITFIELD(v, 5, 45)
85#define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
86
87/* Host MMIO base address */
88#define MCHBAR_OFFSET			0x48
89#define MCHBAR_EN			BIT_ULL(0)
90#define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
91#define MCHBAR_SIZE			0x10000
92
93/* Parameters for the channel decode stage */
94#define IMC_BASE			(res_cfg->imc_base)
95#define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
96#define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
97#define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
98#define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
99#define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
100
101/* Parameters for DRAM decode stage */
102#define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
103#define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
104
105/* DIMM characteristics */
106#define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
107#define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
108#define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
109#define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
110#define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
111
112/* Hash for memory controller selection */
113#define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
114#define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
115
116/* Hash for channel selection */
117#define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
118/* Hash for enhanced channel selection */
119#define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
120#define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
121#define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
122#define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
123
124/* Parameters for memory slice decode stage */
125#define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
126#define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
127
128static struct res_config {
129	bool machine_check;
130	int num_imc;
131	u32 imc_base;
132	u32 cmf_base;
133	u32 cmf_size;
134	u32 ms_hash_offset;
135	u32 ibecc_base;
136	u32 ibecc_error_log_offset;
137	bool (*ibecc_available)(struct pci_dev *pdev);
138	/* Extract error address logged in IBECC */
139	u64 (*err_addr)(u64 ecclog);
140	/* Convert error address logged in IBECC to system physical address */
141	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
142	/* Convert error address logged in IBECC to integrated memory controller address */
143	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
144} *res_cfg;
145
146struct igen6_imc {
147	int mc;
148	struct mem_ctl_info *mci;
149	struct pci_dev *pdev;
150	struct device dev;
151	void __iomem *window;
152	u64 size;
153	u64 ch_s_size;
154	int ch_l_map;
155	u64 dimm_s_size[NUM_CHANNELS];
156	u64 dimm_l_size[NUM_CHANNELS];
157	int dimm_l_map[NUM_CHANNELS];
158};
159
160static struct igen6_pvt {
161	struct igen6_imc imc[NUM_IMC];
162	u64 ms_hash;
163	u64 ms_s_size;
164	int ms_l_map;
165} *igen6_pvt;
166
167/* The top of low usable DRAM */
168static u32 igen6_tolud;
169/* The size of physical memory */
170static u64 igen6_tom;
171
172struct decoded_addr {
173	int mc;
174	u64 imc_addr;
175	u64 sys_addr;
176	int channel_idx;
177	u64 channel_addr;
178	int sub_channel_idx;
179	u64 sub_channel_addr;
180};
181
182struct ecclog_node {
183	struct llist_node llnode;
184	int mc;
185	u64 ecclog;
186};
187
188/*
189 * In the NMI handler, the driver uses the lock-less memory allocator
190 * to allocate memory to store the IBECC error logs and links the logs
191 * to the lock-less list. Delay printk() and the work of error reporting
192 * to EDAC core in a worker.
193 */
194#define ECCLOG_POOL_SIZE	PAGE_SIZE
195static LLIST_HEAD(ecclog_llist);
196static struct gen_pool *ecclog_pool;
197static char ecclog_buf[ECCLOG_POOL_SIZE];
198static struct irq_work ecclog_irq_work;
199static struct work_struct ecclog_work;
200
201/* Compute die IDs for Elkhart Lake with IBECC */
202#define DID_EHL_SKU5	0x4514
203#define DID_EHL_SKU6	0x4528
204#define DID_EHL_SKU7	0x452a
205#define DID_EHL_SKU8	0x4516
206#define DID_EHL_SKU9	0x452c
207#define DID_EHL_SKU10	0x452e
208#define DID_EHL_SKU11	0x4532
209#define DID_EHL_SKU12	0x4518
210#define DID_EHL_SKU13	0x451a
211#define DID_EHL_SKU14	0x4534
212#define DID_EHL_SKU15	0x4536
213
214/* Compute die IDs for ICL-NNPI with IBECC */
215#define DID_ICL_SKU8	0x4581
216#define DID_ICL_SKU10	0x4585
217#define DID_ICL_SKU11	0x4589
218#define DID_ICL_SKU12	0x458d
219
220/* Compute die IDs for Tiger Lake with IBECC */
221#define DID_TGL_SKU	0x9a14
222
223/* Compute die IDs for Alder Lake with IBECC */
224#define DID_ADL_SKU1	0x4601
225#define DID_ADL_SKU2	0x4602
226#define DID_ADL_SKU3	0x4621
227#define DID_ADL_SKU4	0x4641
228
229/* Compute die IDs for Alder Lake-N with IBECC */
230#define DID_ADL_N_SKU1	0x4614
231#define DID_ADL_N_SKU2	0x4617
232#define DID_ADL_N_SKU3	0x461b
233#define DID_ADL_N_SKU4	0x461c
234#define DID_ADL_N_SKU5	0x4673
235#define DID_ADL_N_SKU6	0x4674
236#define DID_ADL_N_SKU7	0x4675
237#define DID_ADL_N_SKU8	0x4677
238#define DID_ADL_N_SKU9	0x4678
239#define DID_ADL_N_SKU10	0x4679
240#define DID_ADL_N_SKU11	0x467c
241#define DID_ADL_N_SKU12	0x4632
242
243/* Compute die IDs for Raptor Lake-P with IBECC */
244#define DID_RPL_P_SKU1	0xa706
245#define DID_RPL_P_SKU2	0xa707
246#define DID_RPL_P_SKU3	0xa708
247#define DID_RPL_P_SKU4	0xa716
248#define DID_RPL_P_SKU5	0xa718
249
250/* Compute die IDs for Meteor Lake-PS with IBECC */
251#define DID_MTL_PS_SKU1	0x7d21
252#define DID_MTL_PS_SKU2	0x7d22
253#define DID_MTL_PS_SKU3	0x7d23
254#define DID_MTL_PS_SKU4	0x7d24
255
256/* Compute die IDs for Meteor Lake-P with IBECC */
257#define DID_MTL_P_SKU1	0x7d01
258#define DID_MTL_P_SKU2	0x7d02
259#define DID_MTL_P_SKU3	0x7d14
260
261static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
262{
263	union  {
264		u64 v;
265		struct {
266			u32 v_lo;
267			u32 v_hi;
268		};
269	} u;
270
271	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
272		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
273		return -ENODEV;
274	}
275
276	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
277		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
278		return -ENODEV;
279	}
280
281	if (!(u.v & MCHBAR_EN)) {
282		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
283		return -ENODEV;
284	}
285
286	*mchbar = MCHBAR_BASE(u.v);
287
288	return 0;
289}
290
291static bool ehl_ibecc_available(struct pci_dev *pdev)
292{
293	u32 v;
294
295	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
296		return false;
297
298	return !!(CAPID_C_IBECC & v);
299}
300
301static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
302{
303	return eaddr;
304}
305
306static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
307{
308	if (eaddr < igen6_tolud)
309		return eaddr;
310
311	if (igen6_tom <= _4GB)
312		return eaddr + igen6_tolud - _4GB;
313
314	if (eaddr < _4GB)
315		return eaddr + igen6_tolud - igen6_tom;
316
317	return eaddr;
318}
319
320static bool icl_ibecc_available(struct pci_dev *pdev)
321{
322	u32 v;
323
324	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
325		return false;
326
327	return !(CAPID_C_IBECC & v) &&
328		(boot_cpu_data.x86_stepping >= 1);
329}
330
331static bool tgl_ibecc_available(struct pci_dev *pdev)
332{
333	u32 v;
334
335	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
336		return false;
337
338	return !(CAPID_E_IBECC & v);
339}
340
341static bool mtl_p_ibecc_available(struct pci_dev *pdev)
342{
343	u32 v;
344
345	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
346		return false;
347
348	return !(CAPID_E_IBECC_BIT18 & v);
349}
350
351static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
352{
353#define MCHBAR_MEMSS_IBECCDIS	0x13c00
354	void __iomem *window;
355	u64 mchbar;
356	u32 val;
357
358	if (get_mchbar(pdev, &mchbar))
359		return false;
360
361	window = ioremap(mchbar, MCHBAR_SIZE * 2);
362	if (!window) {
363		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
364		return false;
365	}
366
367	val = readl(window + MCHBAR_MEMSS_IBECCDIS);
368	iounmap(window);
369
370	/* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
371	return !GET_BITFIELD(val, 6, 6);
372}
373
374static u64 mem_addr_to_sys_addr(u64 maddr)
375{
376	if (maddr < igen6_tolud)
377		return maddr;
378
379	if (igen6_tom <= _4GB)
380		return maddr - igen6_tolud + _4GB;
381
382	if (maddr < _4GB)
383		return maddr - igen6_tolud + igen6_tom;
384
385	return maddr;
386}
387
388static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
389{
390	u64 hash_addr = addr & mask, hash = hash_init;
391	u64 intlv = (addr >> intlv_bit) & 1;
392	int i;
393
394	for (i = 6; i < 20; i++)
395		hash ^= (hash_addr >> i) & 1;
396
397	return hash ^ intlv;
398}
399
400static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
401{
402	u64 maddr, hash, mask, ms_s_size;
403	int intlv_bit;
404	u32 ms_hash;
405
406	ms_s_size = igen6_pvt->ms_s_size;
407	if (eaddr >= ms_s_size)
408		return eaddr + ms_s_size;
409
410	ms_hash = igen6_pvt->ms_hash;
411
412	mask = MEM_SLICE_HASH_MASK(ms_hash);
413	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
414
415	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
416		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
417
418	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
419
420	return maddr | (hash << intlv_bit);
421}
422
423static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
424{
425	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
426
427	return mem_addr_to_sys_addr(maddr);
428}
429
430static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
431{
432	return eaddr;
433}
434
435static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
436{
437	return mem_addr_to_sys_addr(eaddr);
438}
439
440static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
441{
442	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
443	struct igen6_imc *imc = &igen6_pvt->imc[mc];
444	int intlv_bit;
445	u32 mc_hash;
446
447	if (eaddr >= 2 * ms_s_size)
448		return eaddr - ms_s_size;
449
450	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
451
452	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
453
454	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
455		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
456
457	return imc_addr;
458}
459
460static u64 rpl_p_err_addr(u64 ecclog)
461{
462	return ECC_ERROR_LOG_ADDR45(ecclog);
463}
464
465static struct res_config ehl_cfg = {
466	.num_imc		= 1,
467	.imc_base		= 0x5000,
468	.ibecc_base		= 0xdc00,
469	.ibecc_available	= ehl_ibecc_available,
470	.ibecc_error_log_offset	= 0x170,
471	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
472	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
473};
474
475static struct res_config icl_cfg = {
476	.num_imc		= 1,
477	.imc_base		= 0x5000,
478	.ibecc_base		= 0xd800,
479	.ibecc_error_log_offset	= 0x170,
480	.ibecc_available	= icl_ibecc_available,
481	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
482	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
483};
484
485static struct res_config tgl_cfg = {
486	.machine_check		= true,
487	.num_imc		= 2,
488	.imc_base		= 0x5000,
489	.cmf_base		= 0x11000,
490	.cmf_size		= 0x800,
491	.ms_hash_offset		= 0xac,
492	.ibecc_base		= 0xd400,
493	.ibecc_error_log_offset	= 0x170,
494	.ibecc_available	= tgl_ibecc_available,
495	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
496	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
497};
498
499static struct res_config adl_cfg = {
500	.machine_check		= true,
501	.num_imc		= 2,
502	.imc_base		= 0xd800,
503	.ibecc_base		= 0xd400,
504	.ibecc_error_log_offset	= 0x68,
505	.ibecc_available	= tgl_ibecc_available,
506	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
507	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
508};
509
510static struct res_config adl_n_cfg = {
511	.machine_check		= true,
512	.num_imc		= 1,
513	.imc_base		= 0xd800,
514	.ibecc_base		= 0xd400,
515	.ibecc_error_log_offset	= 0x68,
516	.ibecc_available	= tgl_ibecc_available,
517	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
518	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
519};
520
521static struct res_config rpl_p_cfg = {
522	.machine_check		= true,
523	.num_imc		= 2,
524	.imc_base		= 0xd800,
525	.ibecc_base		= 0xd400,
526	.ibecc_error_log_offset	= 0x68,
527	.ibecc_available	= tgl_ibecc_available,
528	.err_addr		= rpl_p_err_addr,
529	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
530	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
531};
532
533static struct res_config mtl_ps_cfg = {
534	.machine_check		= true,
535	.num_imc		= 2,
536	.imc_base		= 0xd800,
537	.ibecc_base		= 0xd400,
538	.ibecc_error_log_offset	= 0x170,
539	.ibecc_available	= mtl_ps_ibecc_available,
540	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
541	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
542};
543
544static struct res_config mtl_p_cfg = {
545	.machine_check		= true,
546	.num_imc		= 2,
547	.imc_base		= 0xd800,
548	.ibecc_base		= 0xd400,
549	.ibecc_error_log_offset	= 0x170,
550	.ibecc_available	= mtl_p_ibecc_available,
551	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
552	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
553};
554
555static const struct pci_device_id igen6_pci_tbl[] = {
556	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
557	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
558	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
559	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
560	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
561	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
562	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
563	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
564	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
565	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
566	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
567	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
568	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
569	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
570	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
571	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
572	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
573	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
574	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
575	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
576	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
577	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
578	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
579	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
580	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
581	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
582	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
583	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
584	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
585	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
586	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
587	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU12), (kernel_ulong_t)&adl_n_cfg },
588	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
589	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
590	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
591	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
592	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
593	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
594	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
595	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
596	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
597	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
598	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
599	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
600	{ },
601};
602MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
603
604static enum dev_type get_width(int dimm_l, u32 mad_dimm)
605{
606	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
607			 MAD_DIMM_CH_DSW(mad_dimm);
608
609	switch (w) {
610	case 0:
611		return DEV_X8;
612	case 1:
613		return DEV_X16;
614	case 2:
615		return DEV_X32;
616	default:
617		return DEV_UNKNOWN;
618	}
619}
620
621static enum mem_type get_memory_type(u32 mad_inter)
622{
623	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
624
625	switch (t) {
626	case 0:
627		return MEM_DDR4;
628	case 1:
629		return MEM_DDR3;
630	case 2:
631		return MEM_LPDDR3;
632	case 3:
633		return MEM_LPDDR4;
634	case 4:
635		return MEM_WIO2;
636	default:
637		return MEM_UNKNOWN;
638	}
639}
640
641static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
642{
643	u64 hash_addr = addr & mask, hash = 0;
644	u64 intlv = (addr >> intlv_bit) & 1;
645	int i;
646
647	for (i = 6; i < 20; i++)
648		hash ^= (hash_addr >> i) & 1;
649
650	return (int)hash ^ intlv;
651}
652
653static u64 decode_channel_addr(u64 addr, int intlv_bit)
654{
655	u64 channel_addr;
656
657	/* Remove the interleave bit and shift upper part down to fill gap */
658	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
659	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
660
661	return channel_addr;
662}
663
664static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
665			int *idx, u64 *sub_addr)
666{
667	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
668
669	if (addr > 2 * s_size) {
670		*sub_addr = addr - s_size;
671		*idx = l_map;
672		return;
673	}
674
675	if (CHANNEL_HASH_MODE(hash)) {
676		*sub_addr = decode_channel_addr(addr, intlv_bit);
677		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
678	} else {
679		*sub_addr = decode_channel_addr(addr, 6);
680		*idx = GET_BITFIELD(addr, 6, 6);
681	}
682}
683
684static int igen6_decode(struct decoded_addr *res)
685{
686	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
687	u64 addr = res->imc_addr, sub_addr, s_size;
688	int idx, l_map;
689	u32 hash;
690
691	if (addr >= igen6_tom) {
692		edac_dbg(0, "Address 0x%llx out of range\n", addr);
693		return -EINVAL;
694	}
695
696	/* Decode channel */
697	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
698	s_size = imc->ch_s_size;
699	l_map  = imc->ch_l_map;
700	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
701	res->channel_idx  = idx;
702	res->channel_addr = sub_addr;
703
704	/* Decode sub-channel/DIMM */
705	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
706	s_size = imc->dimm_s_size[idx];
707	l_map  = imc->dimm_l_map[idx];
708	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
709	res->sub_channel_idx  = idx;
710	res->sub_channel_addr = sub_addr;
711
712	return 0;
713}
714
715static void igen6_output_error(struct decoded_addr *res,
716			       struct mem_ctl_info *mci, u64 ecclog)
717{
718	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
719					 HW_EVENT_ERR_UNCORRECTED :
720					 HW_EVENT_ERR_CORRECTED;
721
722	edac_mc_handle_error(type, mci, 1,
723			     res->sys_addr >> PAGE_SHIFT,
724			     res->sys_addr & ~PAGE_MASK,
725			     ECC_ERROR_LOG_SYND(ecclog),
726			     res->channel_idx, res->sub_channel_idx,
727			     -1, "", "");
728}
729
730static struct gen_pool *ecclog_gen_pool_create(void)
731{
732	struct gen_pool *pool;
733
734	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
735	if (!pool)
736		return NULL;
737
738	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
739		gen_pool_destroy(pool);
740		return NULL;
741	}
742
743	return pool;
744}
745
746static int ecclog_gen_pool_add(int mc, u64 ecclog)
747{
748	struct ecclog_node *node;
749
750	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
751	if (!node)
752		return -ENOMEM;
753
754	node->mc = mc;
755	node->ecclog = ecclog;
756	llist_add(&node->llnode, &ecclog_llist);
757
758	return 0;
759}
760
761/*
762 * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
763 * configuration space status register ERRSTS can indicate whether a
764 * correctable error or an uncorrectable error occurred. We only use the
765 * ECC_ERROR_LOG register to check error type, but need to clear both
766 * registers to enable future error events.
767 */
768static u64 ecclog_read_and_clear(struct igen6_imc *imc)
769{
770	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
771
772	if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
773		/* Clear CE/UE bits by writing 1s */
774		writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
775		return ecclog;
776	}
777
778	return 0;
779}
780
781static void errsts_clear(struct igen6_imc *imc)
782{
783	u16 errsts;
784
785	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
786		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
787		return;
788	}
789
790	/* Clear CE/UE bits by writing 1s */
791	if (errsts & (ERRSTS_CE | ERRSTS_UE))
792		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
793}
794
795static int errcmd_enable_error_reporting(bool enable)
796{
797	struct igen6_imc *imc = &igen6_pvt->imc[0];
798	u16 errcmd;
799	int rc;
800
801	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
802	if (rc)
803		return rc;
804
805	if (enable)
806		errcmd |= ERRCMD_CE | ERRSTS_UE;
807	else
808		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
809
810	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
811	if (rc)
812		return rc;
813
814	return 0;
815}
816
817static int ecclog_handler(void)
818{
819	struct igen6_imc *imc;
820	int i, n = 0;
821	u64 ecclog;
822
823	for (i = 0; i < res_cfg->num_imc; i++) {
824		imc = &igen6_pvt->imc[i];
825
826		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
827
828		ecclog = ecclog_read_and_clear(imc);
829		if (!ecclog)
830			continue;
831
832		if (!ecclog_gen_pool_add(i, ecclog))
833			irq_work_queue(&ecclog_irq_work);
834
835		n++;
836	}
837
838	return n;
839}
840
841static void ecclog_work_cb(struct work_struct *work)
842{
843	struct ecclog_node *node, *tmp;
844	struct mem_ctl_info *mci;
845	struct llist_node *head;
846	struct decoded_addr res;
847	u64 eaddr;
848
849	head = llist_del_all(&ecclog_llist);
850	if (!head)
851		return;
852
853	llist_for_each_entry_safe(node, tmp, head, llnode) {
854		memset(&res, 0, sizeof(res));
855		if (res_cfg->err_addr)
856			eaddr = res_cfg->err_addr(node->ecclog);
857		else
858			eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
859				ECC_ERROR_LOG_ADDR_SHIFT;
860		res.mc	     = node->mc;
861		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
862		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
863
864		mci = igen6_pvt->imc[res.mc].mci;
865
866		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
867		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
868		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
869
870		if (!igen6_decode(&res))
871			igen6_output_error(&res, mci, node->ecclog);
872
873		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
874	}
875}
876
877static void ecclog_irq_work_cb(struct irq_work *irq_work)
878{
879	int i;
880
881	for (i = 0; i < res_cfg->num_imc; i++)
882		errsts_clear(&igen6_pvt->imc[i]);
883
884	if (!llist_empty(&ecclog_llist))
885		schedule_work(&ecclog_work);
886}
887
888static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
889{
890	unsigned char reason;
891
892	if (!ecclog_handler())
893		return NMI_DONE;
894
895	/*
896	 * Both In-Band ECC correctable error and uncorrectable error are
897	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
898	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
899	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
900	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
901	 */
902	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
903	reason |= NMI_REASON_CLEAR_SERR;
904	outb(reason, NMI_REASON_PORT);
905	reason &= ~NMI_REASON_CLEAR_SERR;
906	outb(reason, NMI_REASON_PORT);
907
908	return NMI_HANDLED;
909}
910
911static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
912			      void *data)
913{
914	struct mce *mce = (struct mce *)data;
915	char *type;
916
917	if (mce->kflags & MCE_HANDLED_CEC)
918		return NOTIFY_DONE;
919
920	/*
921	 * Ignore unless this is a memory related error.
922	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
923	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
924	 */
925	if ((mce->status & 0xefff) >> 7 != 1)
926		return NOTIFY_DONE;
927
928	if (mce->mcgstatus & MCG_STATUS_MCIP)
929		type = "Exception";
930	else
931		type = "Event";
932
933	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
934		 mce->extcpu, type, mce->mcgstatus,
935		 mce->bank, mce->status);
936	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
937	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
938	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
939	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
940		 mce->cpuvendor, mce->cpuid, mce->time,
941		 mce->socketid, mce->apicid);
942	/*
943	 * We just use the Machine Check for the memory error notification.
944	 * Each memory controller is associated with an IBECC instance.
945	 * Directly read and clear the error information(error address and
946	 * error type) on all the IBECC instances so that we know on which
947	 * memory controller the memory error(s) occurred.
948	 */
949	if (!ecclog_handler())
950		return NOTIFY_DONE;
951
952	mce->kflags |= MCE_HANDLED_EDAC;
953
954	return NOTIFY_DONE;
955}
956
957static struct notifier_block ecclog_mce_dec = {
958	.notifier_call	= ecclog_mce_handler,
959	.priority	= MCE_PRIO_EDAC,
960};
961
962static bool igen6_check_ecc(struct igen6_imc *imc)
963{
964	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
965
966	return !!(activate & IBECC_ACTIVATE_EN);
967}
968
969static int igen6_get_dimm_config(struct mem_ctl_info *mci)
970{
971	struct igen6_imc *imc = mci->pvt_info;
972	u32 mad_inter, mad_intra, mad_dimm;
973	int i, j, ndimms, mc = imc->mc;
974	struct dimm_info *dimm;
975	enum mem_type mtype;
976	enum dev_type dtype;
977	u64 dsize;
978	bool ecc;
979
980	edac_dbg(2, "\n");
981
982	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
983	mtype = get_memory_type(mad_inter);
984	ecc = igen6_check_ecc(imc);
985	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
986	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
987
988	for (i = 0; i < NUM_CHANNELS; i++) {
989		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
990		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
991
992		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
993		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
994		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
995		imc->size += imc->dimm_s_size[i];
996		imc->size += imc->dimm_l_size[i];
997		ndimms = 0;
998
999		for (j = 0; j < NUM_DIMMS; j++) {
1000			dimm = edac_get_dimm(mci, i, j, 0);
1001
1002			if (j ^ imc->dimm_l_map[i]) {
1003				dtype = get_width(0, mad_dimm);
1004				dsize = imc->dimm_s_size[i];
1005			} else {
1006				dtype = get_width(1, mad_dimm);
1007				dsize = imc->dimm_l_size[i];
1008			}
1009
1010			if (!dsize)
1011				continue;
1012
1013			dimm->grain = 64;
1014			dimm->mtype = mtype;
1015			dimm->dtype = dtype;
1016			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
1017			dimm->edac_mode = EDAC_SECDED;
1018			snprintf(dimm->label, sizeof(dimm->label),
1019				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
1020			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
1021				 mc, i, j, dsize >> 20, dimm->nr_pages);
1022
1023			ndimms++;
1024		}
1025
1026		if (ndimms && !ecc) {
1027			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
1028			return -ENODEV;
1029		}
1030	}
1031
1032	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
1033
1034	return 0;
1035}
1036
1037#ifdef CONFIG_EDAC_DEBUG
1038/* Top of upper usable DRAM */
1039static u64 igen6_touud;
1040#define TOUUD_OFFSET	0xa8
1041
1042static void igen6_reg_dump(struct igen6_imc *imc)
1043{
1044	int i;
1045
1046	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
1047		 readl(imc->window + CHANNEL_HASH_OFFSET));
1048	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
1049		 readl(imc->window + CHANNEL_EHASH_OFFSET));
1050	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
1051		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
1052	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
1053		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
1054
1055	for (i = 0; i < NUM_CHANNELS; i++) {
1056		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
1057			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
1058		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
1059			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
1060	}
1061	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
1062	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
1063	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
1064}
1065
1066static struct dentry *igen6_test;
1067
1068static int debugfs_u64_set(void *data, u64 val)
1069{
1070	u64 ecclog;
1071
1072	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
1073		edac_dbg(0, "Address 0x%llx out of range\n", val);
1074		return 0;
1075	}
1076
1077	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
1078
1079	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
1080	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
1081
1082	if (!ecclog_gen_pool_add(0, ecclog))
1083		irq_work_queue(&ecclog_irq_work);
1084
1085	return 0;
1086}
1087DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1088
1089static void igen6_debug_setup(void)
1090{
1091	igen6_test = edac_debugfs_create_dir("igen6_test");
1092	if (!igen6_test)
1093		return;
1094
1095	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
1096				      NULL, &fops_u64_wo)) {
1097		debugfs_remove(igen6_test);
1098		igen6_test = NULL;
1099	}
1100}
1101
1102static void igen6_debug_teardown(void)
1103{
1104	debugfs_remove_recursive(igen6_test);
1105}
1106#else
1107static void igen6_reg_dump(struct igen6_imc *imc) {}
1108static void igen6_debug_setup(void) {}
1109static void igen6_debug_teardown(void) {}
1110#endif
1111
1112static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
1113{
1114	union  {
1115		u64 v;
1116		struct {
1117			u32 v_lo;
1118			u32 v_hi;
1119		};
1120	} u;
1121
1122	edac_dbg(2, "\n");
1123
1124	if (!res_cfg->ibecc_available(pdev)) {
1125		edac_dbg(2, "No In-Band ECC IP\n");
1126		goto fail;
1127	}
1128
1129	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
1130		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
1131		goto fail;
1132	}
1133
1134	igen6_tolud &= GENMASK(31, 20);
1135
1136	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
1137		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
1138		goto fail;
1139	}
1140
1141	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
1142		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
1143		goto fail;
1144	}
1145
1146	igen6_tom = u.v & GENMASK_ULL(38, 20);
1147
1148	if (get_mchbar(pdev, mchbar))
1149		goto fail;
1150
1151#ifdef CONFIG_EDAC_DEBUG
1152	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
1153		edac_dbg(2, "Failed to read lower TOUUD\n");
1154	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
1155		edac_dbg(2, "Failed to read upper TOUUD\n");
1156	else
1157		igen6_touud = u.v & GENMASK_ULL(38, 20);
1158#endif
1159
1160	return 0;
1161fail:
1162	return -ENODEV;
1163}
1164
1165static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1166{
1167	struct edac_mc_layer layers[2];
1168	struct mem_ctl_info *mci;
1169	struct igen6_imc *imc;
1170	void __iomem *window;
1171	int rc;
1172
1173	edac_dbg(2, "\n");
1174
1175	mchbar += mc * MCHBAR_SIZE;
1176	window = ioremap(mchbar, MCHBAR_SIZE);
1177	if (!window) {
1178		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1179		return -ENODEV;
1180	}
1181
1182	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1183	layers[0].size = NUM_CHANNELS;
1184	layers[0].is_virt_csrow = false;
1185	layers[1].type = EDAC_MC_LAYER_SLOT;
1186	layers[1].size = NUM_DIMMS;
1187	layers[1].is_virt_csrow = true;
1188
1189	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1190	if (!mci) {
1191		rc = -ENOMEM;
1192		goto fail;
1193	}
1194
1195	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1196	if (!mci->ctl_name) {
1197		rc = -ENOMEM;
1198		goto fail2;
1199	}
1200
1201	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1202	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1203	mci->edac_cap = EDAC_FLAG_SECDED;
1204	mci->mod_name = EDAC_MOD_STR;
1205	mci->dev_name = pci_name(pdev);
1206	mci->pvt_info = &igen6_pvt->imc[mc];
1207
1208	imc = mci->pvt_info;
1209	device_initialize(&imc->dev);
1210	/*
1211	 * EDAC core uses mci->pdev(pointer of structure device) as
1212	 * memory controller ID. The client SoCs attach one or more
1213	 * memory controllers to single pci_dev (single pci_dev->dev
1214	 * can be for multiple memory controllers).
1215	 *
1216	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1217	 * for the first memory controller and assign a unique imc->dev
1218	 * to mci->pdev for each non-first memory controller.
1219	 */
1220	mci->pdev = mc ? &imc->dev : &pdev->dev;
1221	imc->mc	= mc;
1222	imc->pdev = pdev;
1223	imc->window = window;
1224
1225	igen6_reg_dump(imc);
1226
1227	rc = igen6_get_dimm_config(mci);
1228	if (rc)
1229		goto fail3;
1230
1231	rc = edac_mc_add_mc(mci);
1232	if (rc) {
1233		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1234		goto fail3;
1235	}
1236
1237	imc->mci = mci;
1238	return 0;
1239fail3:
1240	kfree(mci->ctl_name);
1241fail2:
1242	edac_mc_free(mci);
1243fail:
1244	iounmap(window);
1245	return rc;
1246}
1247
1248static void igen6_unregister_mcis(void)
1249{
1250	struct mem_ctl_info *mci;
1251	struct igen6_imc *imc;
1252	int i;
1253
1254	edac_dbg(2, "\n");
1255
1256	for (i = 0; i < res_cfg->num_imc; i++) {
1257		imc = &igen6_pvt->imc[i];
1258		mci = imc->mci;
1259		if (!mci)
1260			continue;
1261
1262		edac_mc_del_mc(mci->pdev);
1263		kfree(mci->ctl_name);
1264		edac_mc_free(mci);
1265		iounmap(imc->window);
1266	}
1267}
1268
1269static int igen6_mem_slice_setup(u64 mchbar)
1270{
1271	struct igen6_imc *imc = &igen6_pvt->imc[0];
1272	u64 base = mchbar + res_cfg->cmf_base;
1273	u32 offset = res_cfg->ms_hash_offset;
1274	u32 size = res_cfg->cmf_size;
1275	u64 ms_s_size, ms_hash;
1276	void __iomem *cmf;
1277	int ms_l_map;
1278
1279	edac_dbg(2, "\n");
1280
1281	if (imc[0].size < imc[1].size) {
1282		ms_s_size = imc[0].size;
1283		ms_l_map  = 1;
1284	} else {
1285		ms_s_size = imc[1].size;
1286		ms_l_map  = 0;
1287	}
1288
1289	igen6_pvt->ms_s_size = ms_s_size;
1290	igen6_pvt->ms_l_map  = ms_l_map;
1291
1292	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1293		 ms_s_size >> 20, ms_l_map);
1294
1295	if (!size)
1296		return 0;
1297
1298	cmf = ioremap(base, size);
1299	if (!cmf) {
1300		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1301		return -ENODEV;
1302	}
1303
1304	ms_hash = readq(cmf + offset);
1305	igen6_pvt->ms_hash = ms_hash;
1306
1307	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1308
1309	iounmap(cmf);
1310
1311	return 0;
1312}
1313
1314static int register_err_handler(void)
1315{
1316	int rc;
1317
1318	if (res_cfg->machine_check) {
1319		mce_register_decode_chain(&ecclog_mce_dec);
1320		return 0;
1321	}
1322
1323	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1324				  0, IGEN6_NMI_NAME);
1325	if (rc) {
1326		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1327		return rc;
1328	}
1329
1330	return 0;
1331}
1332
1333static void unregister_err_handler(void)
1334{
1335	if (res_cfg->machine_check) {
1336		mce_unregister_decode_chain(&ecclog_mce_dec);
1337		return;
1338	}
1339
1340	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1341}
1342
1343static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1344{
1345	u64 mchbar;
1346	int i, rc;
1347
1348	edac_dbg(2, "\n");
1349
1350	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1351	if (!igen6_pvt)
1352		return -ENOMEM;
1353
1354	res_cfg = (struct res_config *)ent->driver_data;
1355
1356	rc = igen6_pci_setup(pdev, &mchbar);
1357	if (rc)
1358		goto fail;
1359
1360	for (i = 0; i < res_cfg->num_imc; i++) {
1361		rc = igen6_register_mci(i, mchbar, pdev);
1362		if (rc)
1363			goto fail2;
1364	}
1365
1366	if (res_cfg->num_imc > 1) {
1367		rc = igen6_mem_slice_setup(mchbar);
1368		if (rc)
1369			goto fail2;
1370	}
1371
1372	ecclog_pool = ecclog_gen_pool_create();
1373	if (!ecclog_pool) {
1374		rc = -ENOMEM;
1375		goto fail2;
1376	}
1377
1378	INIT_WORK(&ecclog_work, ecclog_work_cb);
1379	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1380
1381	rc = register_err_handler();
1382	if (rc)
1383		goto fail3;
1384
1385	/* Enable error reporting */
1386	rc = errcmd_enable_error_reporting(true);
1387	if (rc) {
1388		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1389		goto fail4;
1390	}
1391
1392	/* Check if any pending errors before/during the registration of the error handler */
1393	ecclog_handler();
1394
1395	igen6_debug_setup();
1396	return 0;
1397fail4:
1398	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1399fail3:
1400	gen_pool_destroy(ecclog_pool);
1401fail2:
1402	igen6_unregister_mcis();
1403fail:
1404	kfree(igen6_pvt);
1405	return rc;
1406}
1407
1408static void igen6_remove(struct pci_dev *pdev)
1409{
1410	edac_dbg(2, "\n");
1411
1412	igen6_debug_teardown();
1413	errcmd_enable_error_reporting(false);
1414	unregister_err_handler();
1415	irq_work_sync(&ecclog_irq_work);
1416	flush_work(&ecclog_work);
1417	gen_pool_destroy(ecclog_pool);
1418	igen6_unregister_mcis();
1419	kfree(igen6_pvt);
1420}
1421
1422static struct pci_driver igen6_driver = {
1423	.name     = EDAC_MOD_STR,
1424	.probe    = igen6_probe,
1425	.remove   = igen6_remove,
1426	.id_table = igen6_pci_tbl,
1427};
1428
1429static int __init igen6_init(void)
1430{
1431	const char *owner;
1432	int rc;
1433
1434	edac_dbg(2, "\n");
1435
1436	if (ghes_get_devices())
1437		return -EBUSY;
1438
1439	owner = edac_get_owner();
1440	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1441		return -EBUSY;
1442
1443	edac_op_state = EDAC_OPSTATE_NMI;
1444
1445	rc = pci_register_driver(&igen6_driver);
1446	if (rc)
1447		return rc;
1448
1449	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1450
1451	return 0;
1452}
1453
1454static void __exit igen6_exit(void)
1455{
1456	edac_dbg(2, "\n");
1457
1458	pci_unregister_driver(&igen6_driver);
1459}
1460
1461module_init(igen6_init);
1462module_exit(igen6_exit);
1463
1464MODULE_LICENSE("GPL v2");
1465MODULE_AUTHOR("Qiuxu Zhuo");
1466MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
1467