1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Intel 7300 class Memory Controllers kernel module (Clarksboro)
4 *
5 * Copyright (c) 2010 by:
6 *	 Mauro Carvalho Chehab
7 *
8 * Red Hat Inc. https://www.redhat.com
9 *
10 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
11 *	http://www.intel.com/Assets/PDF/datasheet/318082.pdf
12 *
13 * TODO: The chipset allow checking for PCI Express errors also. Currently,
14 *	 the driver covers only memory error errors
15 *
16 * This driver uses "csrows" EDAC attribute to represent DIMM slot#
17 */
18
19#include <linux/module.h>
20#include <linux/init.h>
21#include <linux/pci.h>
22#include <linux/pci_ids.h>
23#include <linux/slab.h>
24#include <linux/edac.h>
25#include <linux/mmzone.h>
26
27#include "edac_module.h"
28
29/*
30 * Alter this version for the I7300 module when modifications are made
31 */
32#define I7300_REVISION    " Ver: 1.0.0"
33
34#define EDAC_MOD_STR      "i7300_edac"
35
36#define i7300_printk(level, fmt, arg...) \
37	edac_printk(level, "i7300", fmt, ##arg)
38
39#define i7300_mc_printk(mci, level, fmt, arg...) \
40	edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
41
42/***********************************************
43 * i7300 Limit constants Structs and static vars
44 ***********************************************/
45
46/*
47 * Memory topology is organized as:
48 *	Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
49 *	Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
50 * Each channel can have to 8 DIMM sets (called as SLOTS)
51 * Slots should generally be filled in pairs
52 *	Except on Single Channel mode of operation
53 *		just slot 0/channel0 filled on this mode
54 *	On normal operation mode, the two channels on a branch should be
55 *		filled together for the same SLOT#
56 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
57 *		channels on both branches should be filled
58 */
59
60/* Limits for i7300 */
61#define MAX_SLOTS		8
62#define MAX_BRANCHES		2
63#define MAX_CH_PER_BRANCH	2
64#define MAX_CHANNELS		(MAX_CH_PER_BRANCH * MAX_BRANCHES)
65#define MAX_MIR			3
66
67#define to_channel(ch, branch)	((((branch)) << 1) | (ch))
68
69#define to_csrow(slot, ch, branch)					\
70		(to_channel(ch, branch) | ((slot) << 2))
71
72/* Device name and register DID (Device ID) */
73struct i7300_dev_info {
74	const char *ctl_name;	/* name for this device */
75	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
76};
77
78/* Table of devices attributes supported by this driver */
79static const struct i7300_dev_info i7300_devs[] = {
80	{
81		.ctl_name = "I7300",
82		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
83	},
84};
85
86struct i7300_dimm_info {
87	int megabytes;		/* size, 0 means not present  */
88};
89
90/* driver private data structure */
91struct i7300_pvt {
92	struct pci_dev *pci_dev_16_0_fsb_ctlr;		/* 16.0 */
93	struct pci_dev *pci_dev_16_1_fsb_addr_map;	/* 16.1 */
94	struct pci_dev *pci_dev_16_2_fsb_err_regs;	/* 16.2 */
95	struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES];	/* 21.0  and 22.0 */
96
97	u16 tolm;				/* top of low memory */
98	u64 ambase;				/* AMB BAR */
99
100	u32 mc_settings;			/* Report several settings */
101	u32 mc_settings_a;
102
103	u16 mir[MAX_MIR];			/* Memory Interleave Reg*/
104
105	u16 mtr[MAX_SLOTS][MAX_BRANCHES];	/* Memory Technlogy Reg */
106	u16 ambpresent[MAX_CHANNELS];		/* AMB present regs */
107
108	/* DIMM information matrix, allocating architecture maximums */
109	struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
110
111	/* Temporary buffer for use when preparing error messages */
112	char *tmp_prt_buffer;
113};
114
115/* FIXME: Why do we need to have this static? */
116static struct edac_pci_ctl_info *i7300_pci;
117
118/***************************************************
119 * i7300 Register definitions for memory enumeration
120 ***************************************************/
121
122/*
123 * Device 16,
124 * Function 0: System Address (not documented)
125 * Function 1: Memory Branch Map, Control, Errors Register
126 */
127
128	/* OFFSETS for Function 0 */
129#define AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
130#define MAXCH			0x56 /* Max Channel Number */
131#define MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
132
133	/* OFFSETS for Function 1 */
134#define MC_SETTINGS		0x40
135  #define IS_MIRRORED(mc)		((mc) & (1 << 16))
136  #define IS_ECC_ENABLED(mc)		((mc) & (1 << 5))
137  #define IS_RETRY_ENABLED(mc)		((mc) & (1 << 31))
138  #define IS_SCRBALGO_ENHANCED(mc)	((mc) & (1 << 8))
139
140#define MC_SETTINGS_A		0x58
141  #define IS_SINGLE_MODE(mca)		((mca) & (1 << 14))
142
143#define TOLM			0x6C
144
145#define MIR0			0x80
146#define MIR1			0x84
147#define MIR2			0x88
148
149/*
150 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
151 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
152 * seems that we cannot use this information directly for the same usage.
153 * Each memory slot may have up to 2 AMB interfaces, one for income and another
154 * for outcome interface to the next slot.
155 * For now, the driver just stores the AMB present registers, but rely only at
156 * the MTR info to detect memory.
157 * Datasheet is also not clear about how to map each AMBPRESENT registers to
158 * one of the 4 available channels.
159 */
160#define AMBPRESENT_0	0x64
161#define AMBPRESENT_1	0x66
162
163static const u16 mtr_regs[MAX_SLOTS] = {
164	0x80, 0x84, 0x88, 0x8c,
165	0x82, 0x86, 0x8a, 0x8e
166};
167
168/*
169 * Defines to extract the vaious fields from the
170 *	MTRx - Memory Technology Registers
171 */
172#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 8))
173#define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 7))
174#define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
175#define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 5)) ? 8 : 4)
176#define MTR_DIMM_RANKS(mtr)		(((mtr) & (1 << 4)) ? 1 : 0)
177#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
178#define MTR_DRAM_BANKS_ADDR_BITS	2
179#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
180#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
181#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
182
183/************************************************
184 * i7300 Register definitions for error detection
185 ************************************************/
186
187/*
188 * Device 16.1: FBD Error Registers
189 */
190#define FERR_FAT_FBD	0x98
191static const char *ferr_fat_fbd_name[] = {
192	[22] = "Non-Redundant Fast Reset Timeout",
193	[2]  = ">Tmid Thermal event with intelligent throttling disabled",
194	[1]  = "Memory or FBD configuration CRC read error",
195	[0]  = "Memory Write error on non-redundant retry or "
196	       "FBD configuration Write error on retry",
197};
198#define GET_FBD_FAT_IDX(fbderr)	(((fbderr) >> 28) & 3)
199#define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22))
200
201#define FERR_NF_FBD	0xa0
202static const char *ferr_nf_fbd_name[] = {
203	[24] = "DIMM-Spare Copy Completed",
204	[23] = "DIMM-Spare Copy Initiated",
205	[22] = "Redundant Fast Reset Timeout",
206	[21] = "Memory Write error on redundant retry",
207	[18] = "SPD protocol Error",
208	[17] = "FBD Northbound parity error on FBD Sync Status",
209	[16] = "Correctable Patrol Data ECC",
210	[15] = "Correctable Resilver- or Spare-Copy Data ECC",
211	[14] = "Correctable Mirrored Demand Data ECC",
212	[13] = "Correctable Non-Mirrored Demand Data ECC",
213	[11] = "Memory or FBD configuration CRC read error",
214	[10] = "FBD Configuration Write error on first attempt",
215	[9]  = "Memory Write error on first attempt",
216	[8]  = "Non-Aliased Uncorrectable Patrol Data ECC",
217	[7]  = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
218	[6]  = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
219	[5]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
220	[4]  = "Aliased Uncorrectable Patrol Data ECC",
221	[3]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
222	[2]  = "Aliased Uncorrectable Mirrored Demand Data ECC",
223	[1]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
224	[0]  = "Uncorrectable Data ECC on Replay",
225};
226#define GET_FBD_NF_IDX(fbderr)	(((fbderr) >> 28) & 3)
227#define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
228			      (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
229			      (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
230			      (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
231			      (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
232			      (1 << 1)  | (1 << 0))
233
234#define EMASK_FBD	0xa8
235#define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
236			    (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
237			    (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
238			    (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
239			    (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
240			    (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
241			    (1 << 1)  | (1 << 0))
242
243/*
244 * Device 16.2: Global Error Registers
245 */
246
247#define FERR_GLOBAL_HI	0x48
248static const char *ferr_global_hi_name[] = {
249	[3] = "FSB 3 Fatal Error",
250	[2] = "FSB 2 Fatal Error",
251	[1] = "FSB 1 Fatal Error",
252	[0] = "FSB 0 Fatal Error",
253};
254#define ferr_global_hi_is_fatal(errno)	1
255
256#define FERR_GLOBAL_LO	0x40
257static const char *ferr_global_lo_name[] = {
258	[31] = "Internal MCH Fatal Error",
259	[30] = "Intel QuickData Technology Device Fatal Error",
260	[29] = "FSB1 Fatal Error",
261	[28] = "FSB0 Fatal Error",
262	[27] = "FBD Channel 3 Fatal Error",
263	[26] = "FBD Channel 2 Fatal Error",
264	[25] = "FBD Channel 1 Fatal Error",
265	[24] = "FBD Channel 0 Fatal Error",
266	[23] = "PCI Express Device 7Fatal Error",
267	[22] = "PCI Express Device 6 Fatal Error",
268	[21] = "PCI Express Device 5 Fatal Error",
269	[20] = "PCI Express Device 4 Fatal Error",
270	[19] = "PCI Express Device 3 Fatal Error",
271	[18] = "PCI Express Device 2 Fatal Error",
272	[17] = "PCI Express Device 1 Fatal Error",
273	[16] = "ESI Fatal Error",
274	[15] = "Internal MCH Non-Fatal Error",
275	[14] = "Intel QuickData Technology Device Non Fatal Error",
276	[13] = "FSB1 Non-Fatal Error",
277	[12] = "FSB 0 Non-Fatal Error",
278	[11] = "FBD Channel 3 Non-Fatal Error",
279	[10] = "FBD Channel 2 Non-Fatal Error",
280	[9]  = "FBD Channel 1 Non-Fatal Error",
281	[8]  = "FBD Channel 0 Non-Fatal Error",
282	[7]  = "PCI Express Device 7 Non-Fatal Error",
283	[6]  = "PCI Express Device 6 Non-Fatal Error",
284	[5]  = "PCI Express Device 5 Non-Fatal Error",
285	[4]  = "PCI Express Device 4 Non-Fatal Error",
286	[3]  = "PCI Express Device 3 Non-Fatal Error",
287	[2]  = "PCI Express Device 2 Non-Fatal Error",
288	[1]  = "PCI Express Device 1 Non-Fatal Error",
289	[0]  = "ESI Non-Fatal Error",
290};
291#define ferr_global_lo_is_fatal(errno)	((errno < 16) ? 0 : 1)
292
293#define NRECMEMA	0xbe
294  #define NRECMEMA_BANK(v)	(((v) >> 12) & 7)
295  #define NRECMEMA_RANK(v)	(((v) >> 8) & 15)
296
297#define NRECMEMB	0xc0
298  #define NRECMEMB_IS_WR(v)	((v) & (1 << 31))
299  #define NRECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
300  #define NRECMEMB_RAS(v)	((v) & 0xffff)
301
302#define REDMEMA		0xdc
303
304#define REDMEMB		0x7c
305
306#define RECMEMA		0xe0
307  #define RECMEMA_BANK(v)	(((v) >> 12) & 7)
308  #define RECMEMA_RANK(v)	(((v) >> 8) & 15)
309
310#define RECMEMB		0xe4
311  #define RECMEMB_IS_WR(v)	((v) & (1 << 31))
312  #define RECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
313  #define RECMEMB_RAS(v)	((v) & 0xffff)
314
315/********************************************
316 * i7300 Functions related to error detection
317 ********************************************/
318
319/**
320 * get_err_from_table() - Gets the error message from a table
321 * @table:	table name (array of char *)
322 * @size:	number of elements at the table
323 * @pos:	position of the element to be returned
324 *
325 * This is a small routine that gets the pos-th element of a table. If the
326 * element doesn't exist (or it is empty), it returns "reserved".
327 * Instead of calling it directly, the better is to call via the macro
328 * GET_ERR_FROM_TABLE(), that automatically checks the table size via
329 * ARRAY_SIZE() macro
330 */
331static const char *get_err_from_table(const char *table[], int size, int pos)
332{
333	if (unlikely(pos >= size))
334		return "Reserved";
335
336	if (unlikely(!table[pos]))
337		return "Reserved";
338
339	return table[pos];
340}
341
342#define GET_ERR_FROM_TABLE(table, pos)				\
343	get_err_from_table(table, ARRAY_SIZE(table), pos)
344
345/**
346 * i7300_process_error_global() - Retrieve the hardware error information from
347 *				  the hardware global error registers and
348 *				  sends it to dmesg
349 * @mci: struct mem_ctl_info pointer
350 */
351static void i7300_process_error_global(struct mem_ctl_info *mci)
352{
353	struct i7300_pvt *pvt;
354	u32 errnum, error_reg;
355	unsigned long errors;
356	const char *specific;
357	bool is_fatal;
358
359	pvt = mci->pvt_info;
360
361	/* read in the 1st FATAL error register */
362	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
363			      FERR_GLOBAL_HI, &error_reg);
364	if (unlikely(error_reg)) {
365		errors = error_reg;
366		errnum = find_first_bit(&errors,
367					ARRAY_SIZE(ferr_global_hi_name));
368		specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
369		is_fatal = ferr_global_hi_is_fatal(errnum);
370
371		/* Clear the error bit */
372		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
373				       FERR_GLOBAL_HI, error_reg);
374
375		goto error_global;
376	}
377
378	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
379			      FERR_GLOBAL_LO, &error_reg);
380	if (unlikely(error_reg)) {
381		errors = error_reg;
382		errnum = find_first_bit(&errors,
383					ARRAY_SIZE(ferr_global_lo_name));
384		specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
385		is_fatal = ferr_global_lo_is_fatal(errnum);
386
387		/* Clear the error bit */
388		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
389				       FERR_GLOBAL_LO, error_reg);
390
391		goto error_global;
392	}
393	return;
394
395error_global:
396	i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
397			is_fatal ? "Fatal" : "NOT fatal", specific);
398}
399
400/**
401 * i7300_process_fbd_error() - Retrieve the hardware error information from
402 *			       the FBD error registers and sends it via
403 *			       EDAC error API calls
404 * @mci: struct mem_ctl_info pointer
405 */
406static void i7300_process_fbd_error(struct mem_ctl_info *mci)
407{
408	struct i7300_pvt *pvt;
409	u32 errnum, value, error_reg;
410	u16 val16;
411	unsigned branch, channel, bank, rank, cas, ras;
412	u32 syndrome;
413
414	unsigned long errors;
415	const char *specific;
416	bool is_wr;
417
418	pvt = mci->pvt_info;
419
420	/* read in the 1st FATAL error register */
421	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
422			      FERR_FAT_FBD, &error_reg);
423	if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
424		errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
425		errnum = find_first_bit(&errors,
426					ARRAY_SIZE(ferr_fat_fbd_name));
427		specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
428		branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
429
430		pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
431				     NRECMEMA, &val16);
432		bank = NRECMEMA_BANK(val16);
433		rank = NRECMEMA_RANK(val16);
434
435		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
436				NRECMEMB, &value);
437		is_wr = NRECMEMB_IS_WR(value);
438		cas = NRECMEMB_CAS(value);
439		ras = NRECMEMB_RAS(value);
440
441		/* Clean the error register */
442		pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
443				FERR_FAT_FBD, error_reg);
444
445		snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
446			 "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))",
447			 bank, ras, cas, errors, specific);
448
449		edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
450				     branch, -1, rank,
451				     is_wr ? "Write error" : "Read error",
452				     pvt->tmp_prt_buffer);
453
454	}
455
456	/* read in the 1st NON-FATAL error register */
457	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
458			      FERR_NF_FBD, &error_reg);
459	if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
460		errors = error_reg & FERR_NF_FBD_ERR_MASK;
461		errnum = find_first_bit(&errors,
462					ARRAY_SIZE(ferr_nf_fbd_name));
463		specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
464		branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0;
465
466		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
467			REDMEMA, &syndrome);
468
469		pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
470				     RECMEMA, &val16);
471		bank = RECMEMA_BANK(val16);
472		rank = RECMEMA_RANK(val16);
473
474		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
475				RECMEMB, &value);
476		is_wr = RECMEMB_IS_WR(value);
477		cas = RECMEMB_CAS(value);
478		ras = RECMEMB_RAS(value);
479
480		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
481				     REDMEMB, &value);
482		channel = (branch << 1);
483
484		/* Second channel ? */
485		channel += !!(value & BIT(17));
486
487		/* Clear the error bit */
488		pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
489				FERR_NF_FBD, error_reg);
490
491		/* Form out message */
492		snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
493			 "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))",
494			 bank, ras, cas, errors, specific);
495
496		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0,
497				     syndrome,
498				     branch >> 1, channel % 2, rank,
499				     is_wr ? "Write error" : "Read error",
500				     pvt->tmp_prt_buffer);
501	}
502	return;
503}
504
505/**
506 * i7300_check_error() - Calls the error checking subroutines
507 * @mci: struct mem_ctl_info pointer
508 */
509static void i7300_check_error(struct mem_ctl_info *mci)
510{
511	i7300_process_error_global(mci);
512	i7300_process_fbd_error(mci);
513};
514
515/**
516 * i7300_clear_error() - Clears the error registers
517 * @mci: struct mem_ctl_info pointer
518 */
519static void i7300_clear_error(struct mem_ctl_info *mci)
520{
521	struct i7300_pvt *pvt = mci->pvt_info;
522	u32 value;
523	/*
524	 * All error values are RWC - we need to read and write 1 to the
525	 * bit that we want to cleanup
526	 */
527
528	/* Clear global error registers */
529	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
530			      FERR_GLOBAL_HI, &value);
531	pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
532			      FERR_GLOBAL_HI, value);
533
534	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
535			      FERR_GLOBAL_LO, &value);
536	pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
537			      FERR_GLOBAL_LO, value);
538
539	/* Clear FBD error registers */
540	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
541			      FERR_FAT_FBD, &value);
542	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
543			      FERR_FAT_FBD, value);
544
545	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
546			      FERR_NF_FBD, &value);
547	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
548			      FERR_NF_FBD, value);
549}
550
551/**
552 * i7300_enable_error_reporting() - Enable the memory reporting logic at the
553 *				    hardware
554 * @mci: struct mem_ctl_info pointer
555 */
556static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
557{
558	struct i7300_pvt *pvt = mci->pvt_info;
559	u32 fbd_error_mask;
560
561	/* Read the FBD Error Mask Register */
562	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
563			      EMASK_FBD, &fbd_error_mask);
564
565	/* Enable with a '0' */
566	fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
567
568	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
569			       EMASK_FBD, fbd_error_mask);
570}
571
572/************************************************
573 * i7300 Functions related to memory enumberation
574 ************************************************/
575
576/**
577 * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
578 * @pvt: pointer to the private data struct used by i7300 driver
579 * @slot: DIMM slot (0 to 7)
580 * @ch: Channel number within the branch (0 or 1)
581 * @branch: Branch number (0 or 1)
582 * @dinfo: Pointer to DIMM info where dimm size is stored
583 * @dimm: Pointer to the struct dimm_info that corresponds to that element
584 */
585static int decode_mtr(struct i7300_pvt *pvt,
586		      int slot, int ch, int branch,
587		      struct i7300_dimm_info *dinfo,
588		      struct dimm_info *dimm)
589{
590	int mtr, ans, addrBits, channel;
591
592	channel = to_channel(ch, branch);
593
594	mtr = pvt->mtr[slot][branch];
595	ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
596
597	edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n",
598		 slot, channel, ans ? "" : "NOT ");
599
600	/* Determine if there is a DIMM present in this DIMM slot */
601	if (!ans)
602		return 0;
603
604	/* Start with the number of bits for a Bank
605	* on the DRAM */
606	addrBits = MTR_DRAM_BANKS_ADDR_BITS;
607	/* Add thenumber of ROW bits */
608	addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
609	/* add the number of COLUMN bits */
610	addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
611	/* add the number of RANK bits */
612	addrBits += MTR_DIMM_RANKS(mtr);
613
614	addrBits += 6;	/* add 64 bits per DIMM */
615	addrBits -= 20;	/* divide by 2^^20 */
616	addrBits -= 3;	/* 8 bits per bytes */
617
618	dinfo->megabytes = 1 << addrBits;
619
620	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
621
622	edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
623		 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
624
625	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
626	edac_dbg(2, "\t\tNUMRANK: %s\n",
627		 MTR_DIMM_RANKS(mtr) ? "double" : "single");
628	edac_dbg(2, "\t\tNUMROW: %s\n",
629		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
630		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
631		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
632		 "65,536 - 16 rows");
633	edac_dbg(2, "\t\tNUMCOL: %s\n",
634		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
635		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
636		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
637		 "reserved");
638	edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes);
639
640	/*
641	 * The type of error detection actually depends of the
642	 * mode of operation. When it is just one single memory chip, at
643	 * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
644	 * In normal or mirrored mode, it uses Lockstep mode,
645	 * with the possibility of using an extended algorithm for x8 memories
646	 * See datasheet Sections 7.3.6 to 7.3.8
647	 */
648
649	dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes);
650	dimm->grain = 8;
651	dimm->mtype = MEM_FB_DDR2;
652	if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
653		dimm->edac_mode = EDAC_SECDED;
654		edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
655	} else {
656		edac_dbg(2, "\t\tECC code is on Lockstep mode\n");
657		if (MTR_DRAM_WIDTH(mtr) == 8)
658			dimm->edac_mode = EDAC_S8ECD8ED;
659		else
660			dimm->edac_mode = EDAC_S4ECD4ED;
661	}
662
663	/* ask what device type on this row */
664	if (MTR_DRAM_WIDTH(mtr) == 8) {
665		edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n",
666			 IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
667			 "enhanced" : "normal");
668
669		dimm->dtype = DEV_X8;
670	} else
671		dimm->dtype = DEV_X4;
672
673	return mtr;
674}
675
676/**
677 * print_dimm_size() - Prints dump of the memory organization
678 * @pvt: pointer to the private data struct used by i7300 driver
679 *
680 * Useful for debug. If debug is disabled, this routine do nothing
681 */
682static void print_dimm_size(struct i7300_pvt *pvt)
683{
684#ifdef CONFIG_EDAC_DEBUG
685	struct i7300_dimm_info *dinfo;
686	char *p;
687	int space, n;
688	int channel, slot;
689
690	space = PAGE_SIZE;
691	p = pvt->tmp_prt_buffer;
692
693	n = snprintf(p, space, "              ");
694	p += n;
695	space -= n;
696	for (channel = 0; channel < MAX_CHANNELS; channel++) {
697		n = snprintf(p, space, "channel %d | ", channel);
698		p += n;
699		space -= n;
700	}
701	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
702	p = pvt->tmp_prt_buffer;
703	space = PAGE_SIZE;
704	n = snprintf(p, space, "-------------------------------"
705			       "------------------------------");
706	p += n;
707	space -= n;
708	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
709	p = pvt->tmp_prt_buffer;
710	space = PAGE_SIZE;
711
712	for (slot = 0; slot < MAX_SLOTS; slot++) {
713		n = snprintf(p, space, "csrow/SLOT %d  ", slot);
714		p += n;
715		space -= n;
716
717		for (channel = 0; channel < MAX_CHANNELS; channel++) {
718			dinfo = &pvt->dimm_info[slot][channel];
719			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
720			p += n;
721			space -= n;
722		}
723
724		edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
725		p = pvt->tmp_prt_buffer;
726		space = PAGE_SIZE;
727	}
728
729	n = snprintf(p, space, "-------------------------------"
730			       "------------------------------");
731	p += n;
732	space -= n;
733	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
734	p = pvt->tmp_prt_buffer;
735	space = PAGE_SIZE;
736#endif
737}
738
739/**
740 * i7300_init_csrows() - Initialize the 'csrows' table within
741 *			 the mci control structure with the
742 *			 addressing of memory.
743 * @mci: struct mem_ctl_info pointer
744 */
745static int i7300_init_csrows(struct mem_ctl_info *mci)
746{
747	struct i7300_pvt *pvt;
748	struct i7300_dimm_info *dinfo;
749	int rc = -ENODEV;
750	int mtr;
751	int ch, branch, slot, channel, max_channel, max_branch;
752	struct dimm_info *dimm;
753
754	pvt = mci->pvt_info;
755
756	edac_dbg(2, "Memory Technology Registers:\n");
757
758	if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
759		max_branch = 1;
760		max_channel = 1;
761	} else {
762		max_branch = MAX_BRANCHES;
763		max_channel = MAX_CH_PER_BRANCH;
764	}
765
766	/* Get the AMB present registers for the four channels */
767	for (branch = 0; branch < max_branch; branch++) {
768		/* Read and dump branch 0's MTRs */
769		channel = to_channel(0, branch);
770		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
771				     AMBPRESENT_0,
772				&pvt->ambpresent[channel]);
773		edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
774			 channel, pvt->ambpresent[channel]);
775
776		if (max_channel == 1)
777			continue;
778
779		channel = to_channel(1, branch);
780		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
781				     AMBPRESENT_1,
782				&pvt->ambpresent[channel]);
783		edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
784			 channel, pvt->ambpresent[channel]);
785	}
786
787	/* Get the set of MTR[0-7] regs by each branch */
788	for (slot = 0; slot < MAX_SLOTS; slot++) {
789		int where = mtr_regs[slot];
790		for (branch = 0; branch < max_branch; branch++) {
791			pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
792					where,
793					&pvt->mtr[slot][branch]);
794			for (ch = 0; ch < max_channel; ch++) {
795				int channel = to_channel(ch, branch);
796
797				dimm = edac_get_dimm(mci, branch, ch, slot);
798
799				dinfo = &pvt->dimm_info[slot][channel];
800
801				mtr = decode_mtr(pvt, slot, ch, branch,
802						 dinfo, dimm);
803
804				/* if no DIMMS on this row, continue */
805				if (!MTR_DIMMS_PRESENT(mtr))
806					continue;
807
808				rc = 0;
809
810			}
811		}
812	}
813
814	return rc;
815}
816
817/**
818 * decode_mir() - Decodes Memory Interleave Register (MIR) info
819 * @mir_no: number of the MIR register to decode
820 * @mir: array with the MIR data cached on the driver
821 */
822static void decode_mir(int mir_no, u16 mir[MAX_MIR])
823{
824	if (mir[mir_no] & 3)
825		edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
826			 mir_no,
827			 (mir[mir_no] >> 4) & 0xfff,
828			 (mir[mir_no] & 1) ? "B0" : "",
829			 (mir[mir_no] & 2) ? "B1" : "");
830}
831
832/**
833 * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
834 * @mci: struct mem_ctl_info pointer
835 *
836 * Data read is cached internally for its usage when needed
837 */
838static int i7300_get_mc_regs(struct mem_ctl_info *mci)
839{
840	struct i7300_pvt *pvt;
841	u32 actual_tolm;
842	int i, rc;
843
844	pvt = mci->pvt_info;
845
846	pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
847			(u32 *) &pvt->ambase);
848
849	edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
850
851	/* Get the Branch Map regs */
852	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
853	pvt->tolm >>= 12;
854	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
855		 pvt->tolm, pvt->tolm);
856
857	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
858	edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
859		 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
860
861	/* Get memory controller settings */
862	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
863			     &pvt->mc_settings);
864	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
865			     &pvt->mc_settings_a);
866
867	if (IS_SINGLE_MODE(pvt->mc_settings_a))
868		edac_dbg(0, "Memory controller operating on single mode\n");
869	else
870		edac_dbg(0, "Memory controller operating on %smirrored mode\n",
871			 IS_MIRRORED(pvt->mc_settings) ? "" : "non-");
872
873	edac_dbg(0, "Error detection is %s\n",
874		 IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
875	edac_dbg(0, "Retry is %s\n",
876		 IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
877
878	/* Get Memory Interleave Range registers */
879	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
880			     &pvt->mir[0]);
881	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
882			     &pvt->mir[1]);
883	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
884			     &pvt->mir[2]);
885
886	/* Decode the MIR regs */
887	for (i = 0; i < MAX_MIR; i++)
888		decode_mir(i, pvt->mir);
889
890	rc = i7300_init_csrows(mci);
891	if (rc < 0)
892		return rc;
893
894	/* Go and determine the size of each DIMM and place in an
895	 * orderly matrix */
896	print_dimm_size(pvt);
897
898	return 0;
899}
900
901/*************************************************
902 * i7300 Functions related to device probe/release
903 *************************************************/
904
905/**
906 * i7300_put_devices() - Release the PCI devices
907 * @mci: struct mem_ctl_info pointer
908 */
909static void i7300_put_devices(struct mem_ctl_info *mci)
910{
911	struct i7300_pvt *pvt;
912	int branch;
913
914	pvt = mci->pvt_info;
915
916	/* Decrement usage count for devices */
917	for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
918		pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
919	pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
920	pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
921}
922
923/**
924 * i7300_get_devices() - Find and perform 'get' operation on the MCH's
925 *			 device/functions we want to reference for this driver
926 * @mci: struct mem_ctl_info pointer
927 *
928 * Access and prepare the several devices for usage:
929 * I7300 devices used by this driver:
930 *    Device 16, functions 0,1 and 2:	PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
931 *    Device 21 function 0:		PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
932 *    Device 22 function 0:		PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
933 */
934static int i7300_get_devices(struct mem_ctl_info *mci)
935{
936	struct i7300_pvt *pvt;
937	struct pci_dev *pdev;
938
939	pvt = mci->pvt_info;
940
941	/* Attempt to 'get' the MCH register we want */
942	pdev = NULL;
943	while ((pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
944				      PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
945				      pdev))) {
946		/* Store device 16 funcs 1 and 2 */
947		switch (PCI_FUNC(pdev->devfn)) {
948		case 1:
949			if (!pvt->pci_dev_16_1_fsb_addr_map)
950				pvt->pci_dev_16_1_fsb_addr_map =
951							pci_dev_get(pdev);
952			break;
953		case 2:
954			if (!pvt->pci_dev_16_2_fsb_err_regs)
955				pvt->pci_dev_16_2_fsb_err_regs =
956							pci_dev_get(pdev);
957			break;
958		}
959	}
960
961	if (!pvt->pci_dev_16_1_fsb_addr_map ||
962	    !pvt->pci_dev_16_2_fsb_err_regs) {
963		/* At least one device was not found */
964		i7300_printk(KERN_ERR,
965			"'system address,Process Bus' device not found:"
966			"vendor 0x%x device 0x%x ERR funcs (broken BIOS?)\n",
967			PCI_VENDOR_ID_INTEL,
968			PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
969		goto error;
970	}
971
972	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
973		 pci_name(pvt->pci_dev_16_0_fsb_ctlr),
974		 pvt->pci_dev_16_0_fsb_ctlr->vendor,
975		 pvt->pci_dev_16_0_fsb_ctlr->device);
976	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
977		 pci_name(pvt->pci_dev_16_1_fsb_addr_map),
978		 pvt->pci_dev_16_1_fsb_addr_map->vendor,
979		 pvt->pci_dev_16_1_fsb_addr_map->device);
980	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
981		 pci_name(pvt->pci_dev_16_2_fsb_err_regs),
982		 pvt->pci_dev_16_2_fsb_err_regs->vendor,
983		 pvt->pci_dev_16_2_fsb_err_regs->device);
984
985	pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
986					    PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
987					    NULL);
988	if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
989		i7300_printk(KERN_ERR,
990			"MC: 'BRANCH 0' device not found:"
991			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
992			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
993		goto error;
994	}
995
996	pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
997					    PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
998					    NULL);
999	if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
1000		i7300_printk(KERN_ERR,
1001			"MC: 'BRANCH 1' device not found:"
1002			"vendor 0x%x device 0x%x Func 0 "
1003			"(broken BIOS?)\n",
1004			PCI_VENDOR_ID_INTEL,
1005			PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
1006		goto error;
1007	}
1008
1009	return 0;
1010
1011error:
1012	i7300_put_devices(mci);
1013	return -ENODEV;
1014}
1015
1016/**
1017 * i7300_init_one() - Probe for one instance of the device
1018 * @pdev: struct pci_dev pointer
1019 * @id: struct pci_device_id pointer - currently unused
1020 */
1021static int i7300_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1022{
1023	struct mem_ctl_info *mci;
1024	struct edac_mc_layer layers[3];
1025	struct i7300_pvt *pvt;
1026	int rc;
1027
1028	/* wake up device */
1029	rc = pci_enable_device(pdev);
1030	if (rc == -EIO)
1031		return rc;
1032
1033	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1034		 pdev->bus->number,
1035		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1036
1037	/* We only are looking for func 0 of the set */
1038	if (PCI_FUNC(pdev->devfn) != 0)
1039		return -ENODEV;
1040
1041	/* allocate a new MC control structure */
1042	layers[0].type = EDAC_MC_LAYER_BRANCH;
1043	layers[0].size = MAX_BRANCHES;
1044	layers[0].is_virt_csrow = false;
1045	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1046	layers[1].size = MAX_CH_PER_BRANCH;
1047	layers[1].is_virt_csrow = true;
1048	layers[2].type = EDAC_MC_LAYER_SLOT;
1049	layers[2].size = MAX_SLOTS;
1050	layers[2].is_virt_csrow = true;
1051	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1052	if (mci == NULL)
1053		return -ENOMEM;
1054
1055	edac_dbg(0, "MC: mci = %p\n", mci);
1056
1057	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1058
1059	pvt = mci->pvt_info;
1060	pvt->pci_dev_16_0_fsb_ctlr = pdev;	/* Record this device in our private */
1061
1062	pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1063	if (!pvt->tmp_prt_buffer) {
1064		edac_mc_free(mci);
1065		return -ENOMEM;
1066	}
1067
1068	/* 'get' the pci devices we want to reserve for our use */
1069	if (i7300_get_devices(mci))
1070		goto fail0;
1071
1072	mci->mc_idx = 0;
1073	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1074	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1075	mci->edac_cap = EDAC_FLAG_NONE;
1076	mci->mod_name = "i7300_edac.c";
1077	mci->ctl_name = i7300_devs[0].ctl_name;
1078	mci->dev_name = pci_name(pdev);
1079	mci->ctl_page_to_phys = NULL;
1080
1081	/* Set the function pointer to an actual operation function */
1082	mci->edac_check = i7300_check_error;
1083
1084	/* initialize the MC control structure 'csrows' table
1085	 * with the mapping and control information */
1086	if (i7300_get_mc_regs(mci)) {
1087		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n");
1088		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1089	} else {
1090		edac_dbg(1, "MC: Enable error reporting now\n");
1091		i7300_enable_error_reporting(mci);
1092	}
1093
1094	/* add this new MC control structure to EDAC's list of MCs */
1095	if (edac_mc_add_mc(mci)) {
1096		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1097		/* FIXME: perhaps some code should go here that disables error
1098		 * reporting if we just enabled it
1099		 */
1100		goto fail1;
1101	}
1102
1103	i7300_clear_error(mci);
1104
1105	/* allocating generic PCI control info */
1106	i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1107	if (!i7300_pci) {
1108		printk(KERN_WARNING
1109			"%s(): Unable to create PCI control\n",
1110			__func__);
1111		printk(KERN_WARNING
1112			"%s(): PCI error report via EDAC not setup\n",
1113			__func__);
1114	}
1115
1116	return 0;
1117
1118	/* Error exit unwinding stack */
1119fail1:
1120
1121	i7300_put_devices(mci);
1122
1123fail0:
1124	kfree(pvt->tmp_prt_buffer);
1125	edac_mc_free(mci);
1126	return -ENODEV;
1127}
1128
1129/**
1130 * i7300_remove_one() - Remove the driver
1131 * @pdev: struct pci_dev pointer
1132 */
1133static void i7300_remove_one(struct pci_dev *pdev)
1134{
1135	struct mem_ctl_info *mci;
1136	char *tmp;
1137
1138	edac_dbg(0, "\n");
1139
1140	if (i7300_pci)
1141		edac_pci_release_generic_ctl(i7300_pci);
1142
1143	mci = edac_mc_del_mc(&pdev->dev);
1144	if (!mci)
1145		return;
1146
1147	tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
1148
1149	/* retrieve references to resources, and free those resources */
1150	i7300_put_devices(mci);
1151
1152	kfree(tmp);
1153	edac_mc_free(mci);
1154}
1155
1156/*
1157 * pci_device_id: table for which devices we are looking for
1158 *
1159 * Has only 8086:360c PCI ID
1160 */
1161static const struct pci_device_id i7300_pci_tbl[] = {
1162	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
1163	{0,}			/* 0 terminated list. */
1164};
1165
1166MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
1167
1168/*
1169 * i7300_driver: pci_driver structure for this module
1170 */
1171static struct pci_driver i7300_driver = {
1172	.name = "i7300_edac",
1173	.probe = i7300_init_one,
1174	.remove = i7300_remove_one,
1175	.id_table = i7300_pci_tbl,
1176};
1177
1178/**
1179 * i7300_init() - Registers the driver
1180 */
1181static int __init i7300_init(void)
1182{
1183	int pci_rc;
1184
1185	edac_dbg(2, "\n");
1186
1187	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1188	opstate_init();
1189
1190	pci_rc = pci_register_driver(&i7300_driver);
1191
1192	return (pci_rc < 0) ? pci_rc : 0;
1193}
1194
1195/**
1196 * i7300_exit() - Unregisters the driver
1197 */
1198static void __exit i7300_exit(void)
1199{
1200	edac_dbg(2, "\n");
1201	pci_unregister_driver(&i7300_driver);
1202}
1203
1204module_init(i7300_init);
1205module_exit(i7300_exit);
1206
1207MODULE_LICENSE("GPL");
1208MODULE_AUTHOR("Mauro Carvalho Chehab");
1209MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
1210MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
1211		   I7300_REVISION);
1212
1213module_param(edac_op_state, int, 0444);
1214MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1215