1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Applied Micro X-Gene SoC DMA engine Driver
4 *
5 * Copyright (c) 2015, Applied Micro Circuits Corporation
6 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
7 *	    Loc Ho <lho@apm.com>
8 *
9 * NOTE: PM support is currently not available.
10 */
11
12#include <linux/acpi.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmaengine.h>
17#include <linux/dmapool.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/irq.h>
21#include <linux/mod_devicetable.h>
22#include <linux/module.h>
23#include <linux/platform_device.h>
24
25#include "dmaengine.h"
26
27/* X-Gene DMA ring csr registers and bit definations */
28#define XGENE_DMA_RING_CONFIG			0x04
29#define XGENE_DMA_RING_ENABLE			BIT(31)
30#define XGENE_DMA_RING_ID			0x08
31#define XGENE_DMA_RING_ID_SETUP(v)		((v) | BIT(31))
32#define XGENE_DMA_RING_ID_BUF			0x0C
33#define XGENE_DMA_RING_ID_BUF_SETUP(v)		(((v) << 9) | BIT(21))
34#define XGENE_DMA_RING_THRESLD0_SET1		0x30
35#define XGENE_DMA_RING_THRESLD0_SET1_VAL	0X64
36#define XGENE_DMA_RING_THRESLD1_SET1		0x34
37#define XGENE_DMA_RING_THRESLD1_SET1_VAL	0xC8
38#define XGENE_DMA_RING_HYSTERESIS		0x68
39#define XGENE_DMA_RING_HYSTERESIS_VAL		0xFFFFFFFF
40#define XGENE_DMA_RING_STATE			0x6C
41#define XGENE_DMA_RING_STATE_WR_BASE		0x70
42#define XGENE_DMA_RING_NE_INT_MODE		0x017C
43#define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)	\
44	((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
45#define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)	\
46	((m) &= (~BIT(31 - (v))))
47#define XGENE_DMA_RING_CLKEN			0xC208
48#define XGENE_DMA_RING_SRST			0xC200
49#define XGENE_DMA_RING_MEM_RAM_SHUTDOWN		0xD070
50#define XGENE_DMA_RING_BLK_MEM_RDY		0xD074
51#define XGENE_DMA_RING_BLK_MEM_RDY_VAL		0xFFFFFFFF
52#define XGENE_DMA_RING_ID_GET(owner, num)	(((owner) << 6) | (num))
53#define XGENE_DMA_RING_DST_ID(v)		((1 << 10) | (v))
54#define XGENE_DMA_RING_CMD_OFFSET		0x2C
55#define XGENE_DMA_RING_CMD_BASE_OFFSET(v)	((v) << 6)
56#define XGENE_DMA_RING_COHERENT_SET(m)		\
57	(((u32 *)(m))[2] |= BIT(4))
58#define XGENE_DMA_RING_ADDRL_SET(m, v)		\
59	(((u32 *)(m))[2] |= (((v) >> 8) << 5))
60#define XGENE_DMA_RING_ADDRH_SET(m, v)		\
61	(((u32 *)(m))[3] |= ((v) >> 35))
62#define XGENE_DMA_RING_ACCEPTLERR_SET(m)	\
63	(((u32 *)(m))[3] |= BIT(19))
64#define XGENE_DMA_RING_SIZE_SET(m, v)		\
65	(((u32 *)(m))[3] |= ((v) << 23))
66#define XGENE_DMA_RING_RECOMBBUF_SET(m)		\
67	(((u32 *)(m))[3] |= BIT(27))
68#define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)	\
69	(((u32 *)(m))[3] |= (0x7 << 28))
70#define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)	\
71	(((u32 *)(m))[4] |= 0x3)
72#define XGENE_DMA_RING_SELTHRSH_SET(m)		\
73	(((u32 *)(m))[4] |= BIT(3))
74#define XGENE_DMA_RING_TYPE_SET(m, v)		\
75	(((u32 *)(m))[4] |= ((v) << 19))
76
77/* X-Gene DMA device csr registers and bit definitions */
78#define XGENE_DMA_IPBRR				0x0
79#define XGENE_DMA_DEV_ID_RD(v)			((v) & 0x00000FFF)
80#define XGENE_DMA_BUS_ID_RD(v)			(((v) >> 12) & 3)
81#define XGENE_DMA_REV_NO_RD(v)			(((v) >> 14) & 3)
82#define XGENE_DMA_GCR				0x10
83#define XGENE_DMA_CH_SETUP(v)			\
84	((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
85#define XGENE_DMA_ENABLE(v)			((v) |= BIT(31))
86#define XGENE_DMA_DISABLE(v)			((v) &= ~BIT(31))
87#define XGENE_DMA_RAID6_CONT			0x14
88#define XGENE_DMA_RAID6_MULTI_CTRL(v)		((v) << 24)
89#define XGENE_DMA_INT				0x70
90#define XGENE_DMA_INT_MASK			0x74
91#define XGENE_DMA_INT_ALL_MASK			0xFFFFFFFF
92#define XGENE_DMA_INT_ALL_UNMASK		0x0
93#define XGENE_DMA_INT_MASK_SHIFT		0x14
94#define XGENE_DMA_RING_INT0_MASK		0x90A0
95#define XGENE_DMA_RING_INT1_MASK		0x90A8
96#define XGENE_DMA_RING_INT2_MASK		0x90B0
97#define XGENE_DMA_RING_INT3_MASK		0x90B8
98#define XGENE_DMA_RING_INT4_MASK		0x90C0
99#define XGENE_DMA_CFG_RING_WQ_ASSOC		0x90E0
100#define XGENE_DMA_ASSOC_RING_MNGR1		0xFFFFFFFF
101#define XGENE_DMA_MEM_RAM_SHUTDOWN		0xD070
102#define XGENE_DMA_BLK_MEM_RDY			0xD074
103#define XGENE_DMA_BLK_MEM_RDY_VAL		0xFFFFFFFF
104#define XGENE_DMA_RING_CMD_SM_OFFSET		0x8000
105
106/* X-Gene SoC EFUSE csr register and bit defination */
107#define XGENE_SOC_JTAG1_SHADOW			0x18
108#define XGENE_DMA_PQ_DISABLE_MASK		BIT(13)
109
110/* X-Gene DMA Descriptor format */
111#define XGENE_DMA_DESC_NV_BIT			BIT_ULL(50)
112#define XGENE_DMA_DESC_IN_BIT			BIT_ULL(55)
113#define XGENE_DMA_DESC_C_BIT			BIT_ULL(63)
114#define XGENE_DMA_DESC_DR_BIT			BIT_ULL(61)
115#define XGENE_DMA_DESC_ELERR_POS		46
116#define XGENE_DMA_DESC_RTYPE_POS		56
117#define XGENE_DMA_DESC_LERR_POS			60
118#define XGENE_DMA_DESC_BUFLEN_POS		48
119#define XGENE_DMA_DESC_HOENQ_NUM_POS		48
120#define XGENE_DMA_DESC_ELERR_RD(m)		\
121	(((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
122#define XGENE_DMA_DESC_LERR_RD(m)		\
123	(((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
124#define XGENE_DMA_DESC_STATUS(elerr, lerr)	\
125	(((elerr) << 4) | (lerr))
126
127/* X-Gene DMA descriptor empty s/w signature */
128#define XGENE_DMA_DESC_EMPTY_SIGNATURE		~0ULL
129
130/* X-Gene DMA configurable parameters defines */
131#define XGENE_DMA_RING_NUM		512
132#define XGENE_DMA_BUFNUM		0x0
133#define XGENE_DMA_CPU_BUFNUM		0x18
134#define XGENE_DMA_RING_OWNER_DMA	0x03
135#define XGENE_DMA_RING_OWNER_CPU	0x0F
136#define XGENE_DMA_RING_TYPE_REGULAR	0x01
137#define XGENE_DMA_RING_WQ_DESC_SIZE	32	/* 32 Bytes */
138#define XGENE_DMA_RING_NUM_CONFIG	5
139#define XGENE_DMA_MAX_CHANNEL		4
140#define XGENE_DMA_XOR_CHANNEL		0
141#define XGENE_DMA_PQ_CHANNEL		1
142#define XGENE_DMA_MAX_BYTE_CNT		0x4000	/* 16 KB */
143#define XGENE_DMA_MAX_64B_DESC_BYTE_CNT	0x14000	/* 80 KB */
144#define XGENE_DMA_MAX_XOR_SRC		5
145#define XGENE_DMA_16K_BUFFER_LEN_CODE	0x0
146#define XGENE_DMA_INVALID_LEN_CODE	0x7800000000000000ULL
147
148/* X-Gene DMA descriptor error codes */
149#define ERR_DESC_AXI			0x01
150#define ERR_BAD_DESC			0x02
151#define ERR_READ_DATA_AXI		0x03
152#define ERR_WRITE_DATA_AXI		0x04
153#define ERR_FBP_TIMEOUT			0x05
154#define ERR_ECC				0x06
155#define ERR_DIFF_SIZE			0x08
156#define ERR_SCT_GAT_LEN			0x09
157#define ERR_CRC_ERR			0x11
158#define ERR_CHKSUM			0x12
159#define ERR_DIF				0x13
160
161/* X-Gene DMA error interrupt codes */
162#define ERR_DIF_SIZE_INT		0x0
163#define ERR_GS_ERR_INT			0x1
164#define ERR_FPB_TIMEO_INT		0x2
165#define ERR_WFIFO_OVF_INT		0x3
166#define ERR_RFIFO_OVF_INT		0x4
167#define ERR_WR_TIMEO_INT		0x5
168#define ERR_RD_TIMEO_INT		0x6
169#define ERR_WR_ERR_INT			0x7
170#define ERR_RD_ERR_INT			0x8
171#define ERR_BAD_DESC_INT		0x9
172#define ERR_DESC_DST_INT		0xA
173#define ERR_DESC_SRC_INT		0xB
174
175/* X-Gene DMA flyby operation code */
176#define FLYBY_2SRC_XOR			0x80
177#define FLYBY_3SRC_XOR			0x90
178#define FLYBY_4SRC_XOR			0xA0
179#define FLYBY_5SRC_XOR			0xB0
180
181/* X-Gene DMA SW descriptor flags */
182#define XGENE_DMA_FLAG_64B_DESC		BIT(0)
183
184/* Define to dump X-Gene DMA descriptor */
185#define XGENE_DMA_DESC_DUMP(desc, m)	\
186	print_hex_dump(KERN_ERR, (m),	\
187			DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
188
189#define to_dma_desc_sw(tx)		\
190	container_of(tx, struct xgene_dma_desc_sw, tx)
191#define to_dma_chan(dchan)		\
192	container_of(dchan, struct xgene_dma_chan, dma_chan)
193
194#define chan_dbg(chan, fmt, arg...)	\
195	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
196#define chan_err(chan, fmt, arg...)	\
197	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
198
199struct xgene_dma_desc_hw {
200	__le64 m0;
201	__le64 m1;
202	__le64 m2;
203	__le64 m3;
204};
205
206enum xgene_dma_ring_cfgsize {
207	XGENE_DMA_RING_CFG_SIZE_512B,
208	XGENE_DMA_RING_CFG_SIZE_2KB,
209	XGENE_DMA_RING_CFG_SIZE_16KB,
210	XGENE_DMA_RING_CFG_SIZE_64KB,
211	XGENE_DMA_RING_CFG_SIZE_512KB,
212	XGENE_DMA_RING_CFG_SIZE_INVALID
213};
214
215struct xgene_dma_ring {
216	struct xgene_dma *pdma;
217	u8 buf_num;
218	u16 id;
219	u16 num;
220	u16 head;
221	u16 owner;
222	u16 slots;
223	u16 dst_ring_num;
224	u32 size;
225	void __iomem *cmd;
226	void __iomem *cmd_base;
227	dma_addr_t desc_paddr;
228	u32 state[XGENE_DMA_RING_NUM_CONFIG];
229	enum xgene_dma_ring_cfgsize cfgsize;
230	union {
231		void *desc_vaddr;
232		struct xgene_dma_desc_hw *desc_hw;
233	};
234};
235
236struct xgene_dma_desc_sw {
237	struct xgene_dma_desc_hw desc1;
238	struct xgene_dma_desc_hw desc2;
239	u32 flags;
240	struct list_head node;
241	struct list_head tx_list;
242	struct dma_async_tx_descriptor tx;
243};
244
245/**
246 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
247 * @dma_chan: dmaengine channel object member
248 * @pdma: X-Gene DMA device structure reference
249 * @dev: struct device reference for dma mapping api
250 * @id: raw id of this channel
251 * @rx_irq: channel IRQ
252 * @name: name of X-Gene DMA channel
253 * @lock: serializes enqueue/dequeue operations to the descriptor pool
254 * @pending: number of transaction request pushed to DMA controller for
255 *	execution, but still waiting for completion,
256 * @max_outstanding: max number of outstanding request we can push to channel
257 * @ld_pending: descriptors which are queued to run, but have not yet been
258 *	submitted to the hardware for execution
259 * @ld_running: descriptors which are currently being executing by the hardware
260 * @ld_completed: descriptors which have finished execution by the hardware.
261 *	These descriptors have already had their cleanup actions run. They
262 *	are waiting for the ACK bit to be set by the async tx API.
263 * @desc_pool: descriptor pool for DMA operations
264 * @tasklet: bottom half where all completed descriptors cleans
265 * @tx_ring: transmit ring descriptor that we use to prepare actual
266 *	descriptors for further executions
267 * @rx_ring: receive ring descriptor that we use to get completed DMA
268 *	descriptors during cleanup time
269 */
270struct xgene_dma_chan {
271	struct dma_chan dma_chan;
272	struct xgene_dma *pdma;
273	struct device *dev;
274	int id;
275	int rx_irq;
276	char name[10];
277	spinlock_t lock;
278	int pending;
279	int max_outstanding;
280	struct list_head ld_pending;
281	struct list_head ld_running;
282	struct list_head ld_completed;
283	struct dma_pool *desc_pool;
284	struct tasklet_struct tasklet;
285	struct xgene_dma_ring tx_ring;
286	struct xgene_dma_ring rx_ring;
287};
288
289/**
290 * struct xgene_dma - internal representation of an X-Gene DMA device
291 * @dev: reference to this device's struct device
292 * @clk: reference to this device's clock
293 * @err_irq: DMA error irq number
294 * @ring_num: start id number for DMA ring
295 * @csr_dma: base for DMA register access
296 * @csr_ring: base for DMA ring register access
297 * @csr_ring_cmd: base for DMA ring command register access
298 * @csr_efuse: base for efuse register access
299 * @dma_dev: embedded struct dma_device
300 * @chan: reference to X-Gene DMA channels
301 */
302struct xgene_dma {
303	struct device *dev;
304	struct clk *clk;
305	int err_irq;
306	int ring_num;
307	void __iomem *csr_dma;
308	void __iomem *csr_ring;
309	void __iomem *csr_ring_cmd;
310	void __iomem *csr_efuse;
311	struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
312	struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
313};
314
315static const char * const xgene_dma_desc_err[] = {
316	[ERR_DESC_AXI] = "AXI error when reading src/dst link list",
317	[ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
318	[ERR_READ_DATA_AXI] = "AXI error when reading data",
319	[ERR_WRITE_DATA_AXI] = "AXI error when writing data",
320	[ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
321	[ERR_ECC] = "ECC double bit error",
322	[ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
323	[ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
324	[ERR_CRC_ERR] = "CRC error",
325	[ERR_CHKSUM] = "Checksum error",
326	[ERR_DIF] = "DIF error",
327};
328
329static const char * const xgene_dma_err[] = {
330	[ERR_DIF_SIZE_INT] = "DIF size error",
331	[ERR_GS_ERR_INT] = "Gather scatter not same size error",
332	[ERR_FPB_TIMEO_INT] = "Free pool time out error",
333	[ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
334	[ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
335	[ERR_WR_TIMEO_INT] = "Write time out error",
336	[ERR_RD_TIMEO_INT] = "Read time out error",
337	[ERR_WR_ERR_INT] = "HBF bus write error",
338	[ERR_RD_ERR_INT] = "HBF bus read error",
339	[ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
340	[ERR_DESC_DST_INT] = "HFB reading dst link address error",
341	[ERR_DESC_SRC_INT] = "HFB reading src link address error",
342};
343
344static bool is_pq_enabled(struct xgene_dma *pdma)
345{
346	u32 val;
347
348	val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
349	return !(val & XGENE_DMA_PQ_DISABLE_MASK);
350}
351
352static u64 xgene_dma_encode_len(size_t len)
353{
354	return (len < XGENE_DMA_MAX_BYTE_CNT) ?
355		((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
356		XGENE_DMA_16K_BUFFER_LEN_CODE;
357}
358
359static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
360{
361	static u8 flyby_type[] = {
362		FLYBY_2SRC_XOR, /* Dummy */
363		FLYBY_2SRC_XOR, /* Dummy */
364		FLYBY_2SRC_XOR,
365		FLYBY_3SRC_XOR,
366		FLYBY_4SRC_XOR,
367		FLYBY_5SRC_XOR
368	};
369
370	return flyby_type[src_cnt];
371}
372
373static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
374				     dma_addr_t *paddr)
375{
376	size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
377			*len : XGENE_DMA_MAX_BYTE_CNT;
378
379	*ext8 |= cpu_to_le64(*paddr);
380	*ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
381	*len -= nbytes;
382	*paddr += nbytes;
383}
384
385static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
386{
387	switch (idx) {
388	case 0:
389		return &desc->m1;
390	case 1:
391		return &desc->m0;
392	case 2:
393		return &desc->m3;
394	case 3:
395		return &desc->m2;
396	default:
397		pr_err("Invalid dma descriptor index\n");
398	}
399
400	return NULL;
401}
402
403static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
404				u16 dst_ring_num)
405{
406	desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
407	desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
408				XGENE_DMA_DESC_RTYPE_POS);
409	desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
410	desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
411				XGENE_DMA_DESC_HOENQ_NUM_POS);
412}
413
414static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
415				    struct xgene_dma_desc_sw *desc_sw,
416				    dma_addr_t *dst, dma_addr_t *src,
417				    u32 src_cnt, size_t *nbytes,
418				    const u8 *scf)
419{
420	struct xgene_dma_desc_hw *desc1, *desc2;
421	size_t len = *nbytes;
422	int i;
423
424	desc1 = &desc_sw->desc1;
425	desc2 = &desc_sw->desc2;
426
427	/* Initialize DMA descriptor */
428	xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
429
430	/* Set destination address */
431	desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
432	desc1->m3 |= cpu_to_le64(*dst);
433
434	/* We have multiple source addresses, so need to set NV bit*/
435	desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
436
437	/* Set flyby opcode */
438	desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
439
440	/* Set 1st to 5th source addresses */
441	for (i = 0; i < src_cnt; i++) {
442		len = *nbytes;
443		xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
444					 xgene_dma_lookup_ext8(desc2, i - 1),
445					 &len, &src[i]);
446		desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
447	}
448
449	/* Update meta data */
450	*nbytes = len;
451	*dst += XGENE_DMA_MAX_BYTE_CNT;
452
453	/* We need always 64B descriptor to perform xor or pq operations */
454	desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
455}
456
457static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
458{
459	struct xgene_dma_desc_sw *desc;
460	struct xgene_dma_chan *chan;
461	dma_cookie_t cookie;
462
463	if (unlikely(!tx))
464		return -EINVAL;
465
466	chan = to_dma_chan(tx->chan);
467	desc = to_dma_desc_sw(tx);
468
469	spin_lock_bh(&chan->lock);
470
471	cookie = dma_cookie_assign(tx);
472
473	/* Add this transaction list onto the tail of the pending queue */
474	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
475
476	spin_unlock_bh(&chan->lock);
477
478	return cookie;
479}
480
481static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
482				       struct xgene_dma_desc_sw *desc)
483{
484	list_del(&desc->node);
485	chan_dbg(chan, "LD %p free\n", desc);
486	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
487}
488
489static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
490				 struct xgene_dma_chan *chan)
491{
492	struct xgene_dma_desc_sw *desc;
493	dma_addr_t phys;
494
495	desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
496	if (!desc) {
497		chan_err(chan, "Failed to allocate LDs\n");
498		return NULL;
499	}
500
501	INIT_LIST_HEAD(&desc->tx_list);
502	desc->tx.phys = phys;
503	desc->tx.tx_submit = xgene_dma_tx_submit;
504	dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
505
506	chan_dbg(chan, "LD %p allocated\n", desc);
507
508	return desc;
509}
510
511/**
512 * xgene_dma_clean_completed_descriptor - free all descriptors which
513 * has been completed and acked
514 * @chan: X-Gene DMA channel
515 *
516 * This function is used on all completed and acked descriptors.
517 */
518static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
519{
520	struct xgene_dma_desc_sw *desc, *_desc;
521
522	/* Run the callback for each descriptor, in order */
523	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
524		if (async_tx_test_ack(&desc->tx))
525			xgene_dma_clean_descriptor(chan, desc);
526	}
527}
528
529/**
530 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
531 * @chan: X-Gene DMA channel
532 * @desc: descriptor to cleanup and free
533 *
534 * This function is used on a descriptor which has been executed by the DMA
535 * controller. It will run any callbacks, submit any dependencies.
536 */
537static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
538					      struct xgene_dma_desc_sw *desc)
539{
540	struct dma_async_tx_descriptor *tx = &desc->tx;
541
542	/*
543	 * If this is not the last transaction in the group,
544	 * then no need to complete cookie and run any callback as
545	 * this is not the tx_descriptor which had been sent to caller
546	 * of this DMA request
547	 */
548
549	if (tx->cookie == 0)
550		return;
551
552	dma_cookie_complete(tx);
553	dma_descriptor_unmap(tx);
554
555	/* Run the link descriptor callback function */
556	dmaengine_desc_get_callback_invoke(tx, NULL);
557
558	/* Run any dependencies */
559	dma_run_dependencies(tx);
560}
561
562/**
563 * xgene_dma_clean_running_descriptor - move the completed descriptor from
564 * ld_running to ld_completed
565 * @chan: X-Gene DMA channel
566 * @desc: the descriptor which is completed
567 *
568 * Free the descriptor directly if acked by async_tx api,
569 * else move it to queue ld_completed.
570 */
571static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
572					       struct xgene_dma_desc_sw *desc)
573{
574	/* Remove from the list of running transactions */
575	list_del(&desc->node);
576
577	/*
578	 * the client is allowed to attach dependent operations
579	 * until 'ack' is set
580	 */
581	if (!async_tx_test_ack(&desc->tx)) {
582		/*
583		 * Move this descriptor to the list of descriptors which is
584		 * completed, but still awaiting the 'ack' bit to be set.
585		 */
586		list_add_tail(&desc->node, &chan->ld_completed);
587		return;
588	}
589
590	chan_dbg(chan, "LD %p free\n", desc);
591	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
592}
593
594static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
595				    struct xgene_dma_desc_sw *desc_sw)
596{
597	struct xgene_dma_ring *ring = &chan->tx_ring;
598	struct xgene_dma_desc_hw *desc_hw;
599
600	/* Get hw descriptor from DMA tx ring */
601	desc_hw = &ring->desc_hw[ring->head];
602
603	/*
604	 * Increment the head count to point next
605	 * descriptor for next time
606	 */
607	if (++ring->head == ring->slots)
608		ring->head = 0;
609
610	/* Copy prepared sw descriptor data to hw descriptor */
611	memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
612
613	/*
614	 * Check if we have prepared 64B descriptor,
615	 * in this case we need one more hw descriptor
616	 */
617	if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
618		desc_hw = &ring->desc_hw[ring->head];
619
620		if (++ring->head == ring->slots)
621			ring->head = 0;
622
623		memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
624	}
625
626	/* Increment the pending transaction count */
627	chan->pending += ((desc_sw->flags &
628			  XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
629
630	/* Notify the hw that we have descriptor ready for execution */
631	iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
632		  2 : 1, ring->cmd);
633}
634
635/**
636 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
637 * @chan : X-Gene DMA channel
638 *
639 * LOCKING: must hold chan->lock
640 */
641static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
642{
643	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
644
645	/*
646	 * If the list of pending descriptors is empty, then we
647	 * don't need to do any work at all
648	 */
649	if (list_empty(&chan->ld_pending)) {
650		chan_dbg(chan, "No pending LDs\n");
651		return;
652	}
653
654	/*
655	 * Move elements from the queue of pending transactions onto the list
656	 * of running transactions and push it to hw for further executions
657	 */
658	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
659		/*
660		 * Check if have pushed max number of transactions to hw
661		 * as capable, so let's stop here and will push remaining
662		 * elements from pening ld queue after completing some
663		 * descriptors that we have already pushed
664		 */
665		if (chan->pending >= chan->max_outstanding)
666			return;
667
668		xgene_chan_xfer_request(chan, desc_sw);
669
670		/*
671		 * Delete this element from ld pending queue and append it to
672		 * ld running queue
673		 */
674		list_move_tail(&desc_sw->node, &chan->ld_running);
675	}
676}
677
678/**
679 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
680 * and move them to ld_completed to free until flag 'ack' is set
681 * @chan: X-Gene DMA channel
682 *
683 * This function is used on descriptors which have been executed by the DMA
684 * controller. It will run any callbacks, submit any dependencies, then
685 * free these descriptors if flag 'ack' is set.
686 */
687static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
688{
689	struct xgene_dma_ring *ring = &chan->rx_ring;
690	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
691	struct xgene_dma_desc_hw *desc_hw;
692	struct list_head ld_completed;
693	u8 status;
694
695	INIT_LIST_HEAD(&ld_completed);
696
697	spin_lock(&chan->lock);
698
699	/* Clean already completed and acked descriptors */
700	xgene_dma_clean_completed_descriptor(chan);
701
702	/* Move all completed descriptors to ld completed queue, in order */
703	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
704		/* Get subsequent hw descriptor from DMA rx ring */
705		desc_hw = &ring->desc_hw[ring->head];
706
707		/* Check if this descriptor has been completed */
708		if (unlikely(le64_to_cpu(desc_hw->m0) ==
709			     XGENE_DMA_DESC_EMPTY_SIGNATURE))
710			break;
711
712		if (++ring->head == ring->slots)
713			ring->head = 0;
714
715		/* Check if we have any error with DMA transactions */
716		status = XGENE_DMA_DESC_STATUS(
717				XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
718							desc_hw->m0)),
719				XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
720						       desc_hw->m0)));
721		if (status) {
722			/* Print the DMA error type */
723			chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
724
725			/*
726			 * We have DMA transactions error here. Dump DMA Tx
727			 * and Rx descriptors for this request */
728			XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
729					    "X-Gene DMA TX DESC1: ");
730
731			if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
732				XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
733						    "X-Gene DMA TX DESC2: ");
734
735			XGENE_DMA_DESC_DUMP(desc_hw,
736					    "X-Gene DMA RX ERR DESC: ");
737		}
738
739		/* Notify the hw about this completed descriptor */
740		iowrite32(-1, ring->cmd);
741
742		/* Mark this hw descriptor as processed */
743		desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
744
745		/*
746		 * Decrement the pending transaction count
747		 * as we have processed one
748		 */
749		chan->pending -= ((desc_sw->flags &
750				  XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
751
752		/*
753		 * Delete this node from ld running queue and append it to
754		 * ld completed queue for further processing
755		 */
756		list_move_tail(&desc_sw->node, &ld_completed);
757	}
758
759	/*
760	 * Start any pending transactions automatically
761	 * In the ideal case, we keep the DMA controller busy while we go
762	 * ahead and free the descriptors below.
763	 */
764	xgene_chan_xfer_ld_pending(chan);
765
766	spin_unlock(&chan->lock);
767
768	/* Run the callback for each descriptor, in order */
769	list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
770		xgene_dma_run_tx_complete_actions(chan, desc_sw);
771		xgene_dma_clean_running_descriptor(chan, desc_sw);
772	}
773}
774
775static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
776{
777	struct xgene_dma_chan *chan = to_dma_chan(dchan);
778
779	/* Has this channel already been allocated? */
780	if (chan->desc_pool)
781		return 1;
782
783	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
784					  sizeof(struct xgene_dma_desc_sw),
785					  0, 0);
786	if (!chan->desc_pool) {
787		chan_err(chan, "Failed to allocate descriptor pool\n");
788		return -ENOMEM;
789	}
790
791	chan_dbg(chan, "Allocate descriptor pool\n");
792
793	return 1;
794}
795
796/**
797 * xgene_dma_free_desc_list - Free all descriptors in a queue
798 * @chan: X-Gene DMA channel
799 * @list: the list to free
800 *
801 * LOCKING: must hold chan->lock
802 */
803static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
804				     struct list_head *list)
805{
806	struct xgene_dma_desc_sw *desc, *_desc;
807
808	list_for_each_entry_safe(desc, _desc, list, node)
809		xgene_dma_clean_descriptor(chan, desc);
810}
811
812static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
813{
814	struct xgene_dma_chan *chan = to_dma_chan(dchan);
815
816	chan_dbg(chan, "Free all resources\n");
817
818	if (!chan->desc_pool)
819		return;
820
821	/* Process all running descriptor */
822	xgene_dma_cleanup_descriptors(chan);
823
824	spin_lock_bh(&chan->lock);
825
826	/* Clean all link descriptor queues */
827	xgene_dma_free_desc_list(chan, &chan->ld_pending);
828	xgene_dma_free_desc_list(chan, &chan->ld_running);
829	xgene_dma_free_desc_list(chan, &chan->ld_completed);
830
831	spin_unlock_bh(&chan->lock);
832
833	/* Delete this channel DMA pool */
834	dma_pool_destroy(chan->desc_pool);
835	chan->desc_pool = NULL;
836}
837
838static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
839	struct dma_chan *dchan, dma_addr_t dst,	dma_addr_t *src,
840	u32 src_cnt, size_t len, unsigned long flags)
841{
842	struct xgene_dma_desc_sw *first = NULL, *new;
843	struct xgene_dma_chan *chan;
844	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
845				0x01, 0x01, 0x01, 0x01, 0x01};
846
847	if (unlikely(!dchan || !len))
848		return NULL;
849
850	chan = to_dma_chan(dchan);
851
852	do {
853		/* Allocate the link descriptor from DMA pool */
854		new = xgene_dma_alloc_descriptor(chan);
855		if (!new)
856			goto fail;
857
858		/* Prepare xor DMA descriptor */
859		xgene_dma_prep_xor_desc(chan, new, &dst, src,
860					src_cnt, &len, multi);
861
862		if (!first)
863			first = new;
864
865		new->tx.cookie = 0;
866		async_tx_ack(&new->tx);
867
868		/* Insert the link descriptor to the LD ring */
869		list_add_tail(&new->node, &first->tx_list);
870	} while (len);
871
872	new->tx.flags = flags; /* client is in control of this ack */
873	new->tx.cookie = -EBUSY;
874	list_splice(&first->tx_list, &new->tx_list);
875
876	return &new->tx;
877
878fail:
879	if (!first)
880		return NULL;
881
882	xgene_dma_free_desc_list(chan, &first->tx_list);
883	return NULL;
884}
885
886static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
887	struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
888	u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
889{
890	struct xgene_dma_desc_sw *first = NULL, *new;
891	struct xgene_dma_chan *chan;
892	size_t _len = len;
893	dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
894	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
895
896	if (unlikely(!dchan || !len))
897		return NULL;
898
899	chan = to_dma_chan(dchan);
900
901	/*
902	 * Save source addresses on local variable, may be we have to
903	 * prepare two descriptor to generate P and Q if both enabled
904	 * in the flags by client
905	 */
906	memcpy(_src, src, sizeof(*src) * src_cnt);
907
908	if (flags & DMA_PREP_PQ_DISABLE_P)
909		len = 0;
910
911	if (flags & DMA_PREP_PQ_DISABLE_Q)
912		_len = 0;
913
914	do {
915		/* Allocate the link descriptor from DMA pool */
916		new = xgene_dma_alloc_descriptor(chan);
917		if (!new)
918			goto fail;
919
920		if (!first)
921			first = new;
922
923		new->tx.cookie = 0;
924		async_tx_ack(&new->tx);
925
926		/* Insert the link descriptor to the LD ring */
927		list_add_tail(&new->node, &first->tx_list);
928
929		/*
930		 * Prepare DMA descriptor to generate P,
931		 * if DMA_PREP_PQ_DISABLE_P flag is not set
932		 */
933		if (len) {
934			xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
935						src_cnt, &len, multi);
936			continue;
937		}
938
939		/*
940		 * Prepare DMA descriptor to generate Q,
941		 * if DMA_PREP_PQ_DISABLE_Q flag is not set
942		 */
943		if (_len) {
944			xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
945						src_cnt, &_len, scf);
946		}
947	} while (len || _len);
948
949	new->tx.flags = flags; /* client is in control of this ack */
950	new->tx.cookie = -EBUSY;
951	list_splice(&first->tx_list, &new->tx_list);
952
953	return &new->tx;
954
955fail:
956	if (!first)
957		return NULL;
958
959	xgene_dma_free_desc_list(chan, &first->tx_list);
960	return NULL;
961}
962
963static void xgene_dma_issue_pending(struct dma_chan *dchan)
964{
965	struct xgene_dma_chan *chan = to_dma_chan(dchan);
966
967	spin_lock_bh(&chan->lock);
968	xgene_chan_xfer_ld_pending(chan);
969	spin_unlock_bh(&chan->lock);
970}
971
972static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
973					   dma_cookie_t cookie,
974					   struct dma_tx_state *txstate)
975{
976	return dma_cookie_status(dchan, cookie, txstate);
977}
978
979static void xgene_dma_tasklet_cb(struct tasklet_struct *t)
980{
981	struct xgene_dma_chan *chan = from_tasklet(chan, t, tasklet);
982
983	/* Run all cleanup for descriptors which have been completed */
984	xgene_dma_cleanup_descriptors(chan);
985
986	/* Re-enable DMA channel IRQ */
987	enable_irq(chan->rx_irq);
988}
989
990static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
991{
992	struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
993
994	BUG_ON(!chan);
995
996	/*
997	 * Disable DMA channel IRQ until we process completed
998	 * descriptors
999	 */
1000	disable_irq_nosync(chan->rx_irq);
1001
1002	/*
1003	 * Schedule the tasklet to handle all cleanup of the current
1004	 * transaction. It will start a new transaction if there is
1005	 * one pending.
1006	 */
1007	tasklet_schedule(&chan->tasklet);
1008
1009	return IRQ_HANDLED;
1010}
1011
1012static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1013{
1014	struct xgene_dma *pdma = (struct xgene_dma *)id;
1015	unsigned long int_mask;
1016	u32 val, i;
1017
1018	val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1019
1020	/* Clear DMA interrupts */
1021	iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1022
1023	/* Print DMA error info */
1024	int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1025	for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1026		dev_err(pdma->dev,
1027			"Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1028
1029	return IRQ_HANDLED;
1030}
1031
1032static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1033{
1034	int i;
1035
1036	iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1037
1038	for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1039		iowrite32(ring->state[i], ring->pdma->csr_ring +
1040			  XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1041}
1042
1043static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1044{
1045	memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1046	xgene_dma_wr_ring_state(ring);
1047}
1048
1049static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1050{
1051	void *ring_cfg = ring->state;
1052	u64 addr = ring->desc_paddr;
1053	u32 i, val;
1054
1055	ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1056
1057	/* Clear DMA ring state */
1058	xgene_dma_clr_ring_state(ring);
1059
1060	/* Set DMA ring type */
1061	XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1062
1063	if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1064		/* Set recombination buffer and timeout */
1065		XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1066		XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1067		XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1068	}
1069
1070	/* Initialize DMA ring state */
1071	XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1072	XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1073	XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1074	XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1075	XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1076	XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1077
1078	/* Write DMA ring configurations */
1079	xgene_dma_wr_ring_state(ring);
1080
1081	/* Set DMA ring id */
1082	iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1083		  ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1084
1085	/* Set DMA ring buffer */
1086	iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1087		  ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1088
1089	if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1090		return;
1091
1092	/* Set empty signature to DMA Rx ring descriptors */
1093	for (i = 0; i < ring->slots; i++) {
1094		struct xgene_dma_desc_hw *desc;
1095
1096		desc = &ring->desc_hw[i];
1097		desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1098	}
1099
1100	/* Enable DMA Rx ring interrupt */
1101	val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1102	XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1103	iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1104}
1105
1106static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1107{
1108	u32 ring_id, val;
1109
1110	if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1111		/* Disable DMA Rx ring interrupt */
1112		val = ioread32(ring->pdma->csr_ring +
1113			       XGENE_DMA_RING_NE_INT_MODE);
1114		XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1115		iowrite32(val, ring->pdma->csr_ring +
1116			  XGENE_DMA_RING_NE_INT_MODE);
1117	}
1118
1119	/* Clear DMA ring state */
1120	ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1121	iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1122
1123	iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1124	xgene_dma_clr_ring_state(ring);
1125}
1126
1127static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1128{
1129	ring->cmd_base = ring->pdma->csr_ring_cmd +
1130				XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1131							  XGENE_DMA_RING_NUM));
1132
1133	ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1134}
1135
1136static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1137				   enum xgene_dma_ring_cfgsize cfgsize)
1138{
1139	int size;
1140
1141	switch (cfgsize) {
1142	case XGENE_DMA_RING_CFG_SIZE_512B:
1143		size = 0x200;
1144		break;
1145	case XGENE_DMA_RING_CFG_SIZE_2KB:
1146		size = 0x800;
1147		break;
1148	case XGENE_DMA_RING_CFG_SIZE_16KB:
1149		size = 0x4000;
1150		break;
1151	case XGENE_DMA_RING_CFG_SIZE_64KB:
1152		size = 0x10000;
1153		break;
1154	case XGENE_DMA_RING_CFG_SIZE_512KB:
1155		size = 0x80000;
1156		break;
1157	default:
1158		chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1159		return -EINVAL;
1160	}
1161
1162	return size;
1163}
1164
1165static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1166{
1167	/* Clear DMA ring configurations */
1168	xgene_dma_clear_ring(ring);
1169
1170	/* De-allocate DMA ring descriptor */
1171	if (ring->desc_vaddr) {
1172		dma_free_coherent(ring->pdma->dev, ring->size,
1173				  ring->desc_vaddr, ring->desc_paddr);
1174		ring->desc_vaddr = NULL;
1175	}
1176}
1177
1178static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1179{
1180	xgene_dma_delete_ring_one(&chan->rx_ring);
1181	xgene_dma_delete_ring_one(&chan->tx_ring);
1182}
1183
1184static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1185				     struct xgene_dma_ring *ring,
1186				     enum xgene_dma_ring_cfgsize cfgsize)
1187{
1188	int ret;
1189
1190	/* Setup DMA ring descriptor variables */
1191	ring->pdma = chan->pdma;
1192	ring->cfgsize = cfgsize;
1193	ring->num = chan->pdma->ring_num++;
1194	ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1195
1196	ret = xgene_dma_get_ring_size(chan, cfgsize);
1197	if (ret <= 0)
1198		return ret;
1199	ring->size = ret;
1200
1201	/* Allocate memory for DMA ring descriptor */
1202	ring->desc_vaddr = dma_alloc_coherent(chan->dev, ring->size,
1203					      &ring->desc_paddr, GFP_KERNEL);
1204	if (!ring->desc_vaddr) {
1205		chan_err(chan, "Failed to allocate ring desc\n");
1206		return -ENOMEM;
1207	}
1208
1209	/* Configure and enable DMA ring */
1210	xgene_dma_set_ring_cmd(ring);
1211	xgene_dma_setup_ring(ring);
1212
1213	return 0;
1214}
1215
1216static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1217{
1218	struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1219	struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1220	int ret;
1221
1222	/* Create DMA Rx ring descriptor */
1223	rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1224	rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1225
1226	ret = xgene_dma_create_ring_one(chan, rx_ring,
1227					XGENE_DMA_RING_CFG_SIZE_64KB);
1228	if (ret)
1229		return ret;
1230
1231	chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1232		 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1233
1234	/* Create DMA Tx ring descriptor */
1235	tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1236	tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1237
1238	ret = xgene_dma_create_ring_one(chan, tx_ring,
1239					XGENE_DMA_RING_CFG_SIZE_64KB);
1240	if (ret) {
1241		xgene_dma_delete_ring_one(rx_ring);
1242		return ret;
1243	}
1244
1245	tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1246
1247	chan_dbg(chan,
1248		 "Tx ring id 0x%X num %d desc 0x%p\n",
1249		 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1250
1251	/* Set the max outstanding request possible to this channel */
1252	chan->max_outstanding = tx_ring->slots;
1253
1254	return ret;
1255}
1256
1257static int xgene_dma_init_rings(struct xgene_dma *pdma)
1258{
1259	int ret, i, j;
1260
1261	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1262		ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1263		if (ret) {
1264			for (j = 0; j < i; j++)
1265				xgene_dma_delete_chan_rings(&pdma->chan[j]);
1266			return ret;
1267		}
1268	}
1269
1270	return ret;
1271}
1272
1273static void xgene_dma_enable(struct xgene_dma *pdma)
1274{
1275	u32 val;
1276
1277	/* Configure and enable DMA engine */
1278	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1279	XGENE_DMA_CH_SETUP(val);
1280	XGENE_DMA_ENABLE(val);
1281	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1282}
1283
1284static void xgene_dma_disable(struct xgene_dma *pdma)
1285{
1286	u32 val;
1287
1288	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1289	XGENE_DMA_DISABLE(val);
1290	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1291}
1292
1293static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1294{
1295	/*
1296	 * Mask DMA ring overflow, underflow and
1297	 * AXI write/read error interrupts
1298	 */
1299	iowrite32(XGENE_DMA_INT_ALL_MASK,
1300		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1301	iowrite32(XGENE_DMA_INT_ALL_MASK,
1302		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1303	iowrite32(XGENE_DMA_INT_ALL_MASK,
1304		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1305	iowrite32(XGENE_DMA_INT_ALL_MASK,
1306		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1307	iowrite32(XGENE_DMA_INT_ALL_MASK,
1308		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1309
1310	/* Mask DMA error interrupts */
1311	iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1312}
1313
1314static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1315{
1316	/*
1317	 * Unmask DMA ring overflow, underflow and
1318	 * AXI write/read error interrupts
1319	 */
1320	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1321		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1322	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1323		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1324	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1325		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1326	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1327		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1328	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1329		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1330
1331	/* Unmask DMA error interrupts */
1332	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1333		  pdma->csr_dma + XGENE_DMA_INT_MASK);
1334}
1335
1336static void xgene_dma_init_hw(struct xgene_dma *pdma)
1337{
1338	u32 val;
1339
1340	/* Associate DMA ring to corresponding ring HW */
1341	iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1342		  pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1343
1344	/* Configure RAID6 polynomial control setting */
1345	if (is_pq_enabled(pdma))
1346		iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1347			  pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1348	else
1349		dev_info(pdma->dev, "PQ is disabled in HW\n");
1350
1351	xgene_dma_enable(pdma);
1352	xgene_dma_unmask_interrupts(pdma);
1353
1354	/* Get DMA id and version info */
1355	val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1356
1357	/* DMA device info */
1358	dev_info(pdma->dev,
1359		 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1360		 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1361		 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1362}
1363
1364static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1365{
1366	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1367	    (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1368		return 0;
1369
1370	iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1371	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1372
1373	/* Bring up memory */
1374	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1375
1376	/* Force a barrier */
1377	ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1378
1379	/* reset may take up to 1ms */
1380	usleep_range(1000, 1100);
1381
1382	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1383		!= XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1384		dev_err(pdma->dev,
1385			"Failed to release ring mngr memory from shutdown\n");
1386		return -ENODEV;
1387	}
1388
1389	/* program threshold set 1 and all hysteresis */
1390	iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1391		  pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1392	iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1393		  pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1394	iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1395		  pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1396
1397	/* Enable QPcore and assign error queue */
1398	iowrite32(XGENE_DMA_RING_ENABLE,
1399		  pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1400
1401	return 0;
1402}
1403
1404static int xgene_dma_init_mem(struct xgene_dma *pdma)
1405{
1406	int ret;
1407
1408	ret = xgene_dma_init_ring_mngr(pdma);
1409	if (ret)
1410		return ret;
1411
1412	/* Bring up memory */
1413	iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1414
1415	/* Force a barrier */
1416	ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1417
1418	/* reset may take up to 1ms */
1419	usleep_range(1000, 1100);
1420
1421	if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1422		!= XGENE_DMA_BLK_MEM_RDY_VAL) {
1423		dev_err(pdma->dev,
1424			"Failed to release DMA memory from shutdown\n");
1425		return -ENODEV;
1426	}
1427
1428	return 0;
1429}
1430
1431static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1432{
1433	struct xgene_dma_chan *chan;
1434	int ret, i, j;
1435
1436	/* Register DMA error irq */
1437	ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1438			       0, "dma_error", pdma);
1439	if (ret) {
1440		dev_err(pdma->dev,
1441			"Failed to register error IRQ %d\n", pdma->err_irq);
1442		return ret;
1443	}
1444
1445	/* Register DMA channel rx irq */
1446	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1447		chan = &pdma->chan[i];
1448		irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1449		ret = devm_request_irq(chan->dev, chan->rx_irq,
1450				       xgene_dma_chan_ring_isr,
1451				       0, chan->name, chan);
1452		if (ret) {
1453			chan_err(chan, "Failed to register Rx IRQ %d\n",
1454				 chan->rx_irq);
1455			devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1456
1457			for (j = 0; j < i; j++) {
1458				chan = &pdma->chan[i];
1459				irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1460				devm_free_irq(chan->dev, chan->rx_irq, chan);
1461			}
1462
1463			return ret;
1464		}
1465	}
1466
1467	return 0;
1468}
1469
1470static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1471{
1472	struct xgene_dma_chan *chan;
1473	int i;
1474
1475	/* Free DMA device error irq */
1476	devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1477
1478	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1479		chan = &pdma->chan[i];
1480		irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1481		devm_free_irq(chan->dev, chan->rx_irq, chan);
1482	}
1483}
1484
1485static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1486			       struct dma_device *dma_dev)
1487{
1488	/* Initialize DMA device capability mask */
1489	dma_cap_zero(dma_dev->cap_mask);
1490
1491	/* Set DMA device capability */
1492
1493	/* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1494	 * and channel 1 supports XOR, PQ both. First thing here is we have
1495	 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1496	 * we can make sure this by reading SoC Efuse register.
1497	 * Second thing, we have hw errata that if we run channel 0 and
1498	 * channel 1 simultaneously with executing XOR and PQ request,
1499	 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1500	 * if XOR and PQ supports on channel 1 is disabled.
1501	 */
1502	if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1503	    is_pq_enabled(chan->pdma)) {
1504		dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1505		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1506	} else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1507		   !is_pq_enabled(chan->pdma)) {
1508		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1509	}
1510
1511	/* Set base and prep routines */
1512	dma_dev->dev = chan->dev;
1513	dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1514	dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1515	dma_dev->device_issue_pending = xgene_dma_issue_pending;
1516	dma_dev->device_tx_status = xgene_dma_tx_status;
1517
1518	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1519		dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1520		dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1521		dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1522	}
1523
1524	if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1525		dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1526		dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1527		dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1528	}
1529}
1530
1531static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1532{
1533	struct xgene_dma_chan *chan = &pdma->chan[id];
1534	struct dma_device *dma_dev = &pdma->dma_dev[id];
1535	int ret;
1536
1537	chan->dma_chan.device = dma_dev;
1538
1539	spin_lock_init(&chan->lock);
1540	INIT_LIST_HEAD(&chan->ld_pending);
1541	INIT_LIST_HEAD(&chan->ld_running);
1542	INIT_LIST_HEAD(&chan->ld_completed);
1543	tasklet_setup(&chan->tasklet, xgene_dma_tasklet_cb);
1544
1545	chan->pending = 0;
1546	chan->desc_pool = NULL;
1547	dma_cookie_init(&chan->dma_chan);
1548
1549	/* Setup dma device capabilities and prep routines */
1550	xgene_dma_set_caps(chan, dma_dev);
1551
1552	/* Initialize DMA device list head */
1553	INIT_LIST_HEAD(&dma_dev->channels);
1554	list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1555
1556	/* Register with Linux async DMA framework*/
1557	ret = dma_async_device_register(dma_dev);
1558	if (ret) {
1559		chan_err(chan, "Failed to register async device %d", ret);
1560		tasklet_kill(&chan->tasklet);
1561
1562		return ret;
1563	}
1564
1565	/* DMA capability info */
1566	dev_info(pdma->dev,
1567		 "%s: CAPABILITY ( %s%s)\n", dma_chan_name(&chan->dma_chan),
1568		 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1569		 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1570
1571	return 0;
1572}
1573
1574static int xgene_dma_init_async(struct xgene_dma *pdma)
1575{
1576	int ret, i, j;
1577
1578	for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1579		ret = xgene_dma_async_register(pdma, i);
1580		if (ret) {
1581			for (j = 0; j < i; j++) {
1582				dma_async_device_unregister(&pdma->dma_dev[j]);
1583				tasklet_kill(&pdma->chan[j].tasklet);
1584			}
1585
1586			return ret;
1587		}
1588	}
1589
1590	return ret;
1591}
1592
1593static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1594{
1595	int i;
1596
1597	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1598		dma_async_device_unregister(&pdma->dma_dev[i]);
1599}
1600
1601static void xgene_dma_init_channels(struct xgene_dma *pdma)
1602{
1603	struct xgene_dma_chan *chan;
1604	int i;
1605
1606	pdma->ring_num = XGENE_DMA_RING_NUM;
1607
1608	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1609		chan = &pdma->chan[i];
1610		chan->dev = pdma->dev;
1611		chan->pdma = pdma;
1612		chan->id = i;
1613		snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1614	}
1615}
1616
1617static int xgene_dma_get_resources(struct platform_device *pdev,
1618				   struct xgene_dma *pdma)
1619{
1620	struct resource *res;
1621	int irq, i;
1622
1623	/* Get DMA csr region */
1624	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1625	if (!res) {
1626		dev_err(&pdev->dev, "Failed to get csr region\n");
1627		return -ENXIO;
1628	}
1629
1630	pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1631				     resource_size(res));
1632	if (!pdma->csr_dma) {
1633		dev_err(&pdev->dev, "Failed to ioremap csr region");
1634		return -ENOMEM;
1635	}
1636
1637	/* Get DMA ring csr region */
1638	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1639	if (!res) {
1640		dev_err(&pdev->dev, "Failed to get ring csr region\n");
1641		return -ENXIO;
1642	}
1643
1644	pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1645				       resource_size(res));
1646	if (!pdma->csr_ring) {
1647		dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1648		return -ENOMEM;
1649	}
1650
1651	/* Get DMA ring cmd csr region */
1652	res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1653	if (!res) {
1654		dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1655		return -ENXIO;
1656	}
1657
1658	pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1659					  resource_size(res));
1660	if (!pdma->csr_ring_cmd) {
1661		dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1662		return -ENOMEM;
1663	}
1664
1665	pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1666
1667	/* Get efuse csr region */
1668	res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1669	if (!res) {
1670		dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1671		return -ENXIO;
1672	}
1673
1674	pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1675				       resource_size(res));
1676	if (!pdma->csr_efuse) {
1677		dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1678		return -ENOMEM;
1679	}
1680
1681	/* Get DMA error interrupt */
1682	irq = platform_get_irq(pdev, 0);
1683	if (irq <= 0)
1684		return -ENXIO;
1685
1686	pdma->err_irq = irq;
1687
1688	/* Get DMA Rx ring descriptor interrupts for all DMA channels */
1689	for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1690		irq = platform_get_irq(pdev, i);
1691		if (irq <= 0)
1692			return -ENXIO;
1693
1694		pdma->chan[i - 1].rx_irq = irq;
1695	}
1696
1697	return 0;
1698}
1699
1700static int xgene_dma_probe(struct platform_device *pdev)
1701{
1702	struct xgene_dma *pdma;
1703	int ret, i;
1704
1705	pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1706	if (!pdma)
1707		return -ENOMEM;
1708
1709	pdma->dev = &pdev->dev;
1710	platform_set_drvdata(pdev, pdma);
1711
1712	ret = xgene_dma_get_resources(pdev, pdma);
1713	if (ret)
1714		return ret;
1715
1716	pdma->clk = devm_clk_get(&pdev->dev, NULL);
1717	if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1718		dev_err(&pdev->dev, "Failed to get clk\n");
1719		return PTR_ERR(pdma->clk);
1720	}
1721
1722	/* Enable clk before accessing registers */
1723	if (!IS_ERR(pdma->clk)) {
1724		ret = clk_prepare_enable(pdma->clk);
1725		if (ret) {
1726			dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1727			return ret;
1728		}
1729	}
1730
1731	/* Remove DMA RAM out of shutdown */
1732	ret = xgene_dma_init_mem(pdma);
1733	if (ret)
1734		goto err_clk_enable;
1735
1736	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1737	if (ret) {
1738		dev_err(&pdev->dev, "No usable DMA configuration\n");
1739		goto err_dma_mask;
1740	}
1741
1742	/* Initialize DMA channels software state */
1743	xgene_dma_init_channels(pdma);
1744
1745	/* Configue DMA rings */
1746	ret = xgene_dma_init_rings(pdma);
1747	if (ret)
1748		goto err_clk_enable;
1749
1750	ret = xgene_dma_request_irqs(pdma);
1751	if (ret)
1752		goto err_request_irq;
1753
1754	/* Configure and enable DMA engine */
1755	xgene_dma_init_hw(pdma);
1756
1757	/* Register DMA device with linux async framework */
1758	ret = xgene_dma_init_async(pdma);
1759	if (ret)
1760		goto err_async_init;
1761
1762	return 0;
1763
1764err_async_init:
1765	xgene_dma_free_irqs(pdma);
1766
1767err_request_irq:
1768	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1769		xgene_dma_delete_chan_rings(&pdma->chan[i]);
1770
1771err_dma_mask:
1772err_clk_enable:
1773	if (!IS_ERR(pdma->clk))
1774		clk_disable_unprepare(pdma->clk);
1775
1776	return ret;
1777}
1778
1779static void xgene_dma_remove(struct platform_device *pdev)
1780{
1781	struct xgene_dma *pdma = platform_get_drvdata(pdev);
1782	struct xgene_dma_chan *chan;
1783	int i;
1784
1785	xgene_dma_async_unregister(pdma);
1786
1787	/* Mask interrupts and disable DMA engine */
1788	xgene_dma_mask_interrupts(pdma);
1789	xgene_dma_disable(pdma);
1790	xgene_dma_free_irqs(pdma);
1791
1792	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1793		chan = &pdma->chan[i];
1794		tasklet_kill(&chan->tasklet);
1795		xgene_dma_delete_chan_rings(chan);
1796	}
1797
1798	if (!IS_ERR(pdma->clk))
1799		clk_disable_unprepare(pdma->clk);
1800}
1801
1802#ifdef CONFIG_ACPI
1803static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1804	{"APMC0D43", 0},
1805	{},
1806};
1807MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1808#endif
1809
1810static const struct of_device_id xgene_dma_of_match_ptr[] = {
1811	{.compatible = "apm,xgene-storm-dma",},
1812	{},
1813};
1814MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1815
1816static struct platform_driver xgene_dma_driver = {
1817	.probe = xgene_dma_probe,
1818	.remove_new = xgene_dma_remove,
1819	.driver = {
1820		.name = "X-Gene-DMA",
1821		.of_match_table = xgene_dma_of_match_ptr,
1822		.acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1823	},
1824};
1825
1826module_platform_driver(xgene_dma_driver);
1827
1828MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
1829MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
1830MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1831MODULE_LICENSE("GPL");
1832MODULE_VERSION("1.0");
1833