1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TI EDMA DMA engine driver
4 *
5 * Copyright 2012 Texas Instruments
6 */
7
8#include <linux/dmaengine.h>
9#include <linux/dma-mapping.h>
10#include <linux/bitmap.h>
11#include <linux/err.h>
12#include <linux/init.h>
13#include <linux/interrupt.h>
14#include <linux/list.h>
15#include <linux/module.h>
16#include <linux/platform_device.h>
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/of.h>
20#include <linux/of_dma.h>
21#include <linux/of_irq.h>
22#include <linux/of_address.h>
23#include <linux/pm_runtime.h>
24
25#include <linux/platform_data/edma.h>
26
27#include "../dmaengine.h"
28#include "../virt-dma.h"
29
30/* Offsets matching "struct edmacc_param" */
31#define PARM_OPT		0x00
32#define PARM_SRC		0x04
33#define PARM_A_B_CNT		0x08
34#define PARM_DST		0x0c
35#define PARM_SRC_DST_BIDX	0x10
36#define PARM_LINK_BCNTRLD	0x14
37#define PARM_SRC_DST_CIDX	0x18
38#define PARM_CCNT		0x1c
39
40#define PARM_SIZE		0x20
41
42/* Offsets for EDMA CC global channel registers and their shadows */
43#define SH_ER			0x00	/* 64 bits */
44#define SH_ECR			0x08	/* 64 bits */
45#define SH_ESR			0x10	/* 64 bits */
46#define SH_CER			0x18	/* 64 bits */
47#define SH_EER			0x20	/* 64 bits */
48#define SH_EECR			0x28	/* 64 bits */
49#define SH_EESR			0x30	/* 64 bits */
50#define SH_SER			0x38	/* 64 bits */
51#define SH_SECR			0x40	/* 64 bits */
52#define SH_IER			0x50	/* 64 bits */
53#define SH_IECR			0x58	/* 64 bits */
54#define SH_IESR			0x60	/* 64 bits */
55#define SH_IPR			0x68	/* 64 bits */
56#define SH_ICR			0x70	/* 64 bits */
57#define SH_IEVAL		0x78
58#define SH_QER			0x80
59#define SH_QEER			0x84
60#define SH_QEECR		0x88
61#define SH_QEESR		0x8c
62#define SH_QSER			0x90
63#define SH_QSECR		0x94
64#define SH_SIZE			0x200
65
66/* Offsets for EDMA CC global registers */
67#define EDMA_REV		0x0000
68#define EDMA_CCCFG		0x0004
69#define EDMA_QCHMAP		0x0200	/* 8 registers */
70#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
71#define EDMA_QDMAQNUM		0x0260
72#define EDMA_QUETCMAP		0x0280
73#define EDMA_QUEPRI		0x0284
74#define EDMA_EMR		0x0300	/* 64 bits */
75#define EDMA_EMCR		0x0308	/* 64 bits */
76#define EDMA_QEMR		0x0310
77#define EDMA_QEMCR		0x0314
78#define EDMA_CCERR		0x0318
79#define EDMA_CCERRCLR		0x031c
80#define EDMA_EEVAL		0x0320
81#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
82#define EDMA_QRAE		0x0380	/* 4 registers */
83#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
84#define EDMA_QSTAT		0x0600	/* 2 registers */
85#define EDMA_QWMTHRA		0x0620
86#define EDMA_QWMTHRB		0x0624
87#define EDMA_CCSTAT		0x0640
88
89#define EDMA_M			0x1000	/* global channel registers */
90#define EDMA_ECR		0x1008
91#define EDMA_ECRH		0x100C
92#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
93#define EDMA_PARM		0x4000	/* PaRAM entries */
94
95#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
96
97#define EDMA_DCHMAP		0x0100  /* 64 registers */
98
99/* CCCFG register */
100#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
101#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
102#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
103#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
104#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
105#define CHMAP_EXIST		BIT(24)
106
107/* CCSTAT register */
108#define EDMA_CCSTAT_ACTV	BIT(4)
109
110/*
111 * Max of 20 segments per channel to conserve PaRAM slots
112 * Also note that MAX_NR_SG should be at least the no.of periods
113 * that are required for ASoC, otherwise DMA prep calls will
114 * fail. Today davinci-pcm is the only user of this driver and
115 * requires at least 17 slots, so we setup the default to 20.
116 */
117#define MAX_NR_SG		20
118#define EDMA_MAX_SLOTS		MAX_NR_SG
119#define EDMA_DESCRIPTORS	16
120
121#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
122#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
123#define EDMA_CONT_PARAMS_ANY		 1001
124#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
125#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
126
127/*
128 * 64bit array registers are split into two 32bit registers:
129 * reg0: channel/event 0-31
130 * reg1: channel/event 32-63
131 *
132 * bit 5 in the channel number tells the array index (0/1)
133 * bit 0-4 (0x1f) is the bit offset within the register
134 */
135#define EDMA_REG_ARRAY_INDEX(channel)	((channel) >> 5)
136#define EDMA_CHANNEL_BIT(channel)	(BIT((channel) & 0x1f))
137
138/* PaRAM slots are laid out like this */
139struct edmacc_param {
140	u32 opt;
141	u32 src;
142	u32 a_b_cnt;
143	u32 dst;
144	u32 src_dst_bidx;
145	u32 link_bcntrld;
146	u32 src_dst_cidx;
147	u32 ccnt;
148} __packed;
149
150/* fields in edmacc_param.opt */
151#define SAM		BIT(0)
152#define DAM		BIT(1)
153#define SYNCDIM		BIT(2)
154#define STATIC		BIT(3)
155#define EDMA_FWID	(0x07 << 8)
156#define TCCMODE		BIT(11)
157#define EDMA_TCC(t)	((t) << 12)
158#define TCINTEN		BIT(20)
159#define ITCINTEN	BIT(21)
160#define TCCHEN		BIT(22)
161#define ITCCHEN		BIT(23)
162
163struct edma_pset {
164	u32				len;
165	dma_addr_t			addr;
166	struct edmacc_param		param;
167};
168
169struct edma_desc {
170	struct virt_dma_desc		vdesc;
171	struct list_head		node;
172	enum dma_transfer_direction	direction;
173	int				cyclic;
174	bool				polled;
175	int				absync;
176	int				pset_nr;
177	struct edma_chan		*echan;
178	int				processed;
179
180	/*
181	 * The following 4 elements are used for residue accounting.
182	 *
183	 * - processed_stat: the number of SG elements we have traversed
184	 * so far to cover accounting. This is updated directly to processed
185	 * during edma_callback and is always <= processed, because processed
186	 * refers to the number of pending transfer (programmed to EDMA
187	 * controller), where as processed_stat tracks number of transfers
188	 * accounted for so far.
189	 *
190	 * - residue: The amount of bytes we have left to transfer for this desc
191	 *
192	 * - residue_stat: The residue in bytes of data we have covered
193	 * so far for accounting. This is updated directly to residue
194	 * during callbacks to keep it current.
195	 *
196	 * - sg_len: Tracks the length of the current intermediate transfer,
197	 * this is required to update the residue during intermediate transfer
198	 * completion callback.
199	 */
200	int				processed_stat;
201	u32				sg_len;
202	u32				residue;
203	u32				residue_stat;
204
205	struct edma_pset		pset[] __counted_by(pset_nr);
206};
207
208struct edma_cc;
209
210struct edma_tc {
211	struct device_node		*node;
212	u16				id;
213};
214
215struct edma_chan {
216	struct virt_dma_chan		vchan;
217	struct list_head		node;
218	struct edma_desc		*edesc;
219	struct edma_cc			*ecc;
220	struct edma_tc			*tc;
221	int				ch_num;
222	bool				alloced;
223	bool				hw_triggered;
224	int				slot[EDMA_MAX_SLOTS];
225	int				missed;
226	struct dma_slave_config		cfg;
227};
228
229struct edma_cc {
230	struct device			*dev;
231	struct edma_soc_info		*info;
232	void __iomem			*base;
233	int				id;
234	bool				legacy_mode;
235
236	/* eDMA3 resource information */
237	unsigned			num_channels;
238	unsigned			num_qchannels;
239	unsigned			num_region;
240	unsigned			num_slots;
241	unsigned			num_tc;
242	bool				chmap_exist;
243	enum dma_event_q		default_queue;
244
245	unsigned int			ccint;
246	unsigned int			ccerrint;
247
248	/*
249	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
250	 * in use by Linux or if it is allocated to be used by DSP.
251	 */
252	unsigned long *slot_inuse;
253
254	/*
255	 * For tracking reserved channels used by DSP.
256	 * If the bit is cleared, the channel is allocated to be used by DSP
257	 * and Linux must not touch it.
258	 */
259	unsigned long *channels_mask;
260
261	struct dma_device		dma_slave;
262	struct dma_device		*dma_memcpy;
263	struct edma_chan		*slave_chans;
264	struct edma_tc			*tc_list;
265	int				dummy_slot;
266};
267
268/* dummy param set used to (re)initialize parameter RAM slots */
269static const struct edmacc_param dummy_paramset = {
270	.link_bcntrld = 0xffff,
271	.ccnt = 1,
272};
273
274#define EDMA_BINDING_LEGACY	0
275#define EDMA_BINDING_TPCC	1
276static const u32 edma_binding_type[] = {
277	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
278	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
279};
280
281static const struct of_device_id edma_of_ids[] = {
282	{
283		.compatible = "ti,edma3",
284		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
285	},
286	{
287		.compatible = "ti,edma3-tpcc",
288		.data = &edma_binding_type[EDMA_BINDING_TPCC],
289	},
290	{}
291};
292MODULE_DEVICE_TABLE(of, edma_of_ids);
293
294static const struct of_device_id edma_tptc_of_ids[] = {
295	{ .compatible = "ti,edma3-tptc", },
296	{}
297};
298MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
299
300static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
301{
302	return (unsigned int)__raw_readl(ecc->base + offset);
303}
304
305static inline void edma_write(struct edma_cc *ecc, int offset, int val)
306{
307	__raw_writel(val, ecc->base + offset);
308}
309
310static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
311			       unsigned or)
312{
313	unsigned val = edma_read(ecc, offset);
314
315	val &= and;
316	val |= or;
317	edma_write(ecc, offset, val);
318}
319
320static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
321{
322	unsigned val = edma_read(ecc, offset);
323
324	val |= or;
325	edma_write(ecc, offset, val);
326}
327
328static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
329					   int i)
330{
331	return edma_read(ecc, offset + (i << 2));
332}
333
334static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
335				    unsigned val)
336{
337	edma_write(ecc, offset + (i << 2), val);
338}
339
340static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
341				     unsigned and, unsigned or)
342{
343	edma_modify(ecc, offset + (i << 2), and, or);
344}
345
346static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
347				  unsigned or)
348{
349	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
350}
351
352static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
353				     int j, unsigned val)
354{
355	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
356}
357
358static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
359						   int offset, int i)
360{
361	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
362}
363
364static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
365				      unsigned val)
366{
367	edma_write(ecc, EDMA_SHADOW0 + offset, val);
368}
369
370static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
371					    int i, unsigned val)
372{
373	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
374}
375
376static inline void edma_param_modify(struct edma_cc *ecc, int offset,
377				     int param_no, unsigned and, unsigned or)
378{
379	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
380}
381
382static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
383					  int priority)
384{
385	int bit = queue_no * 4;
386
387	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
388}
389
390static void edma_set_chmap(struct edma_chan *echan, int slot)
391{
392	struct edma_cc *ecc = echan->ecc;
393	int channel = EDMA_CHAN_SLOT(echan->ch_num);
394
395	if (ecc->chmap_exist) {
396		slot = EDMA_CHAN_SLOT(slot);
397		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
398	}
399}
400
401static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
402{
403	struct edma_cc *ecc = echan->ecc;
404	int channel = EDMA_CHAN_SLOT(echan->ch_num);
405	int idx = EDMA_REG_ARRAY_INDEX(channel);
406	int ch_bit = EDMA_CHANNEL_BIT(channel);
407
408	if (enable) {
409		edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
410		edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
411	} else {
412		edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
413	}
414}
415
416/*
417 * paRAM slot management functions
418 */
419static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
420			    const struct edmacc_param *param)
421{
422	slot = EDMA_CHAN_SLOT(slot);
423	if (slot >= ecc->num_slots)
424		return;
425	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
426}
427
428static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
429			   struct edmacc_param *param)
430{
431	slot = EDMA_CHAN_SLOT(slot);
432	if (slot >= ecc->num_slots)
433		return -EINVAL;
434	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
435
436	return 0;
437}
438
439/**
440 * edma_alloc_slot - allocate DMA parameter RAM
441 * @ecc: pointer to edma_cc struct
442 * @slot: specific slot to allocate; negative for "any unused slot"
443 *
444 * This allocates a parameter RAM slot, initializing it to hold a
445 * dummy transfer.  Slots allocated using this routine have not been
446 * mapped to a hardware DMA channel, and will normally be used by
447 * linking to them from a slot associated with a DMA channel.
448 *
449 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
450 * slots may be allocated on behalf of DSP firmware.
451 *
452 * Returns the number of the slot, else negative errno.
453 */
454static int edma_alloc_slot(struct edma_cc *ecc, int slot)
455{
456	if (slot >= 0) {
457		slot = EDMA_CHAN_SLOT(slot);
458		/* Requesting entry paRAM slot for a HW triggered channel. */
459		if (ecc->chmap_exist && slot < ecc->num_channels)
460			slot = EDMA_SLOT_ANY;
461	}
462
463	if (slot < 0) {
464		if (ecc->chmap_exist)
465			slot = 0;
466		else
467			slot = ecc->num_channels;
468		for (;;) {
469			slot = find_next_zero_bit(ecc->slot_inuse,
470						  ecc->num_slots,
471						  slot);
472			if (slot == ecc->num_slots)
473				return -ENOMEM;
474			if (!test_and_set_bit(slot, ecc->slot_inuse))
475				break;
476		}
477	} else if (slot >= ecc->num_slots) {
478		return -EINVAL;
479	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
480		return -EBUSY;
481	}
482
483	edma_write_slot(ecc, slot, &dummy_paramset);
484
485	return EDMA_CTLR_CHAN(ecc->id, slot);
486}
487
488static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
489{
490	slot = EDMA_CHAN_SLOT(slot);
491	if (slot >= ecc->num_slots)
492		return;
493
494	edma_write_slot(ecc, slot, &dummy_paramset);
495	clear_bit(slot, ecc->slot_inuse);
496}
497
498/**
499 * edma_link - link one parameter RAM slot to another
500 * @ecc: pointer to edma_cc struct
501 * @from: parameter RAM slot originating the link
502 * @to: parameter RAM slot which is the link target
503 *
504 * The originating slot should not be part of any active DMA transfer.
505 */
506static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
507{
508	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
509		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
510
511	from = EDMA_CHAN_SLOT(from);
512	to = EDMA_CHAN_SLOT(to);
513	if (from >= ecc->num_slots || to >= ecc->num_slots)
514		return;
515
516	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
517			  PARM_OFFSET(to));
518}
519
520/**
521 * edma_get_position - returns the current transfer point
522 * @ecc: pointer to edma_cc struct
523 * @slot: parameter RAM slot being examined
524 * @dst:  true selects the dest position, false the source
525 *
526 * Returns the position of the current active slot
527 */
528static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
529				    bool dst)
530{
531	u32 offs;
532
533	slot = EDMA_CHAN_SLOT(slot);
534	offs = PARM_OFFSET(slot);
535	offs += dst ? PARM_DST : PARM_SRC;
536
537	return edma_read(ecc, offs);
538}
539
540/*
541 * Channels with event associations will be triggered by their hardware
542 * events, and channels without such associations will be triggered by
543 * software.  (At this writing there is no interface for using software
544 * triggers except with channels that don't support hardware triggers.)
545 */
546static void edma_start(struct edma_chan *echan)
547{
548	struct edma_cc *ecc = echan->ecc;
549	int channel = EDMA_CHAN_SLOT(echan->ch_num);
550	int idx = EDMA_REG_ARRAY_INDEX(channel);
551	int ch_bit = EDMA_CHANNEL_BIT(channel);
552
553	if (!echan->hw_triggered) {
554		/* EDMA channels without event association */
555		dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
556			edma_shadow0_read_array(ecc, SH_ESR, idx));
557		edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
558	} else {
559		/* EDMA channel with event association */
560		dev_dbg(ecc->dev, "ER%d %08x\n", idx,
561			edma_shadow0_read_array(ecc, SH_ER, idx));
562		/* Clear any pending event or error */
563		edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
564		edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
565		/* Clear any SER */
566		edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
567		edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
568		dev_dbg(ecc->dev, "EER%d %08x\n", idx,
569			edma_shadow0_read_array(ecc, SH_EER, idx));
570	}
571}
572
573static void edma_stop(struct edma_chan *echan)
574{
575	struct edma_cc *ecc = echan->ecc;
576	int channel = EDMA_CHAN_SLOT(echan->ch_num);
577	int idx = EDMA_REG_ARRAY_INDEX(channel);
578	int ch_bit = EDMA_CHANNEL_BIT(channel);
579
580	edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
581	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
582	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
583	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
584
585	/* clear possibly pending completion interrupt */
586	edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
587
588	dev_dbg(ecc->dev, "EER%d %08x\n", idx,
589		edma_shadow0_read_array(ecc, SH_EER, idx));
590
591	/* REVISIT:  consider guarding against inappropriate event
592	 * chaining by overwriting with dummy_paramset.
593	 */
594}
595
596/*
597 * Temporarily disable EDMA hardware events on the specified channel,
598 * preventing them from triggering new transfers
599 */
600static void edma_pause(struct edma_chan *echan)
601{
602	int channel = EDMA_CHAN_SLOT(echan->ch_num);
603
604	edma_shadow0_write_array(echan->ecc, SH_EECR,
605				 EDMA_REG_ARRAY_INDEX(channel),
606				 EDMA_CHANNEL_BIT(channel));
607}
608
609/* Re-enable EDMA hardware events on the specified channel.  */
610static void edma_resume(struct edma_chan *echan)
611{
612	int channel = EDMA_CHAN_SLOT(echan->ch_num);
613
614	edma_shadow0_write_array(echan->ecc, SH_EESR,
615				 EDMA_REG_ARRAY_INDEX(channel),
616				 EDMA_CHANNEL_BIT(channel));
617}
618
619static void edma_trigger_channel(struct edma_chan *echan)
620{
621	struct edma_cc *ecc = echan->ecc;
622	int channel = EDMA_CHAN_SLOT(echan->ch_num);
623	int idx = EDMA_REG_ARRAY_INDEX(channel);
624	int ch_bit = EDMA_CHANNEL_BIT(channel);
625
626	edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
627
628	dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
629		edma_shadow0_read_array(ecc, SH_ESR, idx));
630}
631
632static void edma_clean_channel(struct edma_chan *echan)
633{
634	struct edma_cc *ecc = echan->ecc;
635	int channel = EDMA_CHAN_SLOT(echan->ch_num);
636	int idx = EDMA_REG_ARRAY_INDEX(channel);
637	int ch_bit = EDMA_CHANNEL_BIT(channel);
638
639	dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
640		edma_read_array(ecc, EDMA_EMR, idx));
641	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
642	/* Clear the corresponding EMR bits */
643	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
644	/* Clear any SER */
645	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
646	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
647}
648
649/* Move channel to a specific event queue */
650static void edma_assign_channel_eventq(struct edma_chan *echan,
651				       enum dma_event_q eventq_no)
652{
653	struct edma_cc *ecc = echan->ecc;
654	int channel = EDMA_CHAN_SLOT(echan->ch_num);
655	int bit = (channel & 0x7) * 4;
656
657	/* default to low priority queue */
658	if (eventq_no == EVENTQ_DEFAULT)
659		eventq_no = ecc->default_queue;
660	if (eventq_no >= ecc->num_tc)
661		return;
662
663	eventq_no &= 7;
664	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
665			  eventq_no << bit);
666}
667
668static int edma_alloc_channel(struct edma_chan *echan,
669			      enum dma_event_q eventq_no)
670{
671	struct edma_cc *ecc = echan->ecc;
672	int channel = EDMA_CHAN_SLOT(echan->ch_num);
673
674	if (!test_bit(echan->ch_num, ecc->channels_mask)) {
675		dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
676			echan->ch_num);
677		return -EINVAL;
678	}
679
680	/* ensure access through shadow region 0 */
681	edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
682		       EDMA_CHANNEL_BIT(channel));
683
684	/* ensure no events are pending */
685	edma_stop(echan);
686
687	edma_setup_interrupt(echan, true);
688
689	edma_assign_channel_eventq(echan, eventq_no);
690
691	return 0;
692}
693
694static void edma_free_channel(struct edma_chan *echan)
695{
696	/* ensure no events are pending */
697	edma_stop(echan);
698	/* REVISIT should probably take out of shadow region 0 */
699	edma_setup_interrupt(echan, false);
700}
701
702static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
703{
704	return container_of(c, struct edma_chan, vchan.chan);
705}
706
707static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
708{
709	return container_of(tx, struct edma_desc, vdesc.tx);
710}
711
712static void edma_desc_free(struct virt_dma_desc *vdesc)
713{
714	kfree(container_of(vdesc, struct edma_desc, vdesc));
715}
716
717/* Dispatch a queued descriptor to the controller (caller holds lock) */
718static void edma_execute(struct edma_chan *echan)
719{
720	struct edma_cc *ecc = echan->ecc;
721	struct virt_dma_desc *vdesc;
722	struct edma_desc *edesc;
723	struct device *dev = echan->vchan.chan.device->dev;
724	int i, j, left, nslots;
725
726	if (!echan->edesc) {
727		/* Setup is needed for the first transfer */
728		vdesc = vchan_next_desc(&echan->vchan);
729		if (!vdesc)
730			return;
731		list_del(&vdesc->node);
732		echan->edesc = to_edma_desc(&vdesc->tx);
733	}
734
735	edesc = echan->edesc;
736
737	/* Find out how many left */
738	left = edesc->pset_nr - edesc->processed;
739	nslots = min(MAX_NR_SG, left);
740	edesc->sg_len = 0;
741
742	/* Write descriptor PaRAM set(s) */
743	for (i = 0; i < nslots; i++) {
744		j = i + edesc->processed;
745		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
746		edesc->sg_len += edesc->pset[j].len;
747		dev_vdbg(dev,
748			 "\n pset[%d]:\n"
749			 "  chnum\t%d\n"
750			 "  slot\t%d\n"
751			 "  opt\t%08x\n"
752			 "  src\t%08x\n"
753			 "  dst\t%08x\n"
754			 "  abcnt\t%08x\n"
755			 "  ccnt\t%08x\n"
756			 "  bidx\t%08x\n"
757			 "  cidx\t%08x\n"
758			 "  lkrld\t%08x\n",
759			 j, echan->ch_num, echan->slot[i],
760			 edesc->pset[j].param.opt,
761			 edesc->pset[j].param.src,
762			 edesc->pset[j].param.dst,
763			 edesc->pset[j].param.a_b_cnt,
764			 edesc->pset[j].param.ccnt,
765			 edesc->pset[j].param.src_dst_bidx,
766			 edesc->pset[j].param.src_dst_cidx,
767			 edesc->pset[j].param.link_bcntrld);
768		/* Link to the previous slot if not the last set */
769		if (i != (nslots - 1))
770			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
771	}
772
773	edesc->processed += nslots;
774
775	/*
776	 * If this is either the last set in a set of SG-list transactions
777	 * then setup a link to the dummy slot, this results in all future
778	 * events being absorbed and that's OK because we're done
779	 */
780	if (edesc->processed == edesc->pset_nr) {
781		if (edesc->cyclic)
782			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
783		else
784			edma_link(ecc, echan->slot[nslots - 1],
785				  echan->ecc->dummy_slot);
786	}
787
788	if (echan->missed) {
789		/*
790		 * This happens due to setup times between intermediate
791		 * transfers in long SG lists which have to be broken up into
792		 * transfers of MAX_NR_SG
793		 */
794		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
795		edma_clean_channel(echan);
796		edma_stop(echan);
797		edma_start(echan);
798		edma_trigger_channel(echan);
799		echan->missed = 0;
800	} else if (edesc->processed <= MAX_NR_SG) {
801		dev_dbg(dev, "first transfer starting on channel %d\n",
802			echan->ch_num);
803		edma_start(echan);
804	} else {
805		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
806			echan->ch_num, edesc->processed);
807		edma_resume(echan);
808	}
809}
810
811static int edma_terminate_all(struct dma_chan *chan)
812{
813	struct edma_chan *echan = to_edma_chan(chan);
814	unsigned long flags;
815	LIST_HEAD(head);
816
817	spin_lock_irqsave(&echan->vchan.lock, flags);
818
819	/*
820	 * Stop DMA activity: we assume the callback will not be called
821	 * after edma_dma() returns (even if it does, it will see
822	 * echan->edesc is NULL and exit.)
823	 */
824	if (echan->edesc) {
825		edma_stop(echan);
826		/* Move the cyclic channel back to default queue */
827		if (!echan->tc && echan->edesc->cyclic)
828			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
829
830		vchan_terminate_vdesc(&echan->edesc->vdesc);
831		echan->edesc = NULL;
832	}
833
834	vchan_get_all_descriptors(&echan->vchan, &head);
835	spin_unlock_irqrestore(&echan->vchan.lock, flags);
836	vchan_dma_desc_free_list(&echan->vchan, &head);
837
838	return 0;
839}
840
841static void edma_synchronize(struct dma_chan *chan)
842{
843	struct edma_chan *echan = to_edma_chan(chan);
844
845	vchan_synchronize(&echan->vchan);
846}
847
848static int edma_slave_config(struct dma_chan *chan,
849	struct dma_slave_config *cfg)
850{
851	struct edma_chan *echan = to_edma_chan(chan);
852
853	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
854	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
855		return -EINVAL;
856
857	if (cfg->src_maxburst > chan->device->max_burst ||
858	    cfg->dst_maxburst > chan->device->max_burst)
859		return -EINVAL;
860
861	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
862
863	return 0;
864}
865
866static int edma_dma_pause(struct dma_chan *chan)
867{
868	struct edma_chan *echan = to_edma_chan(chan);
869
870	if (!echan->edesc)
871		return -EINVAL;
872
873	edma_pause(echan);
874	return 0;
875}
876
877static int edma_dma_resume(struct dma_chan *chan)
878{
879	struct edma_chan *echan = to_edma_chan(chan);
880
881	edma_resume(echan);
882	return 0;
883}
884
885/*
886 * A PaRAM set configuration abstraction used by other modes
887 * @chan: Channel who's PaRAM set we're configuring
888 * @pset: PaRAM set to initialize and setup.
889 * @src_addr: Source address of the DMA
890 * @dst_addr: Destination address of the DMA
891 * @burst: In units of dev_width, how much to send
892 * @dev_width: How much is the dev_width
893 * @dma_length: Total length of the DMA transfer
894 * @direction: Direction of the transfer
895 */
896static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
897			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
898			    unsigned int acnt, unsigned int dma_length,
899			    enum dma_transfer_direction direction)
900{
901	struct edma_chan *echan = to_edma_chan(chan);
902	struct device *dev = chan->device->dev;
903	struct edmacc_param *param = &epset->param;
904	int bcnt, ccnt, cidx;
905	int src_bidx, dst_bidx, src_cidx, dst_cidx;
906	int absync;
907
908	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
909	if (!burst)
910		burst = 1;
911	/*
912	 * If the maxburst is equal to the fifo width, use
913	 * A-synced transfers. This allows for large contiguous
914	 * buffer transfers using only one PaRAM set.
915	 */
916	if (burst == 1) {
917		/*
918		 * For the A-sync case, bcnt and ccnt are the remainder
919		 * and quotient respectively of the division of:
920		 * (dma_length / acnt) by (SZ_64K -1). This is so
921		 * that in case bcnt over flows, we have ccnt to use.
922		 * Note: In A-sync transfer only, bcntrld is used, but it
923		 * only applies for sg_dma_len(sg) >= SZ_64K.
924		 * In this case, the best way adopted is- bccnt for the
925		 * first frame will be the remainder below. Then for
926		 * every successive frame, bcnt will be SZ_64K-1. This
927		 * is assured as bcntrld = 0xffff in end of function.
928		 */
929		absync = false;
930		ccnt = dma_length / acnt / (SZ_64K - 1);
931		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
932		/*
933		 * If bcnt is non-zero, we have a remainder and hence an
934		 * extra frame to transfer, so increment ccnt.
935		 */
936		if (bcnt)
937			ccnt++;
938		else
939			bcnt = SZ_64K - 1;
940		cidx = acnt;
941	} else {
942		/*
943		 * If maxburst is greater than the fifo address_width,
944		 * use AB-synced transfers where A count is the fifo
945		 * address_width and B count is the maxburst. In this
946		 * case, we are limited to transfers of C count frames
947		 * of (address_width * maxburst) where C count is limited
948		 * to SZ_64K-1. This places an upper bound on the length
949		 * of an SG segment that can be handled.
950		 */
951		absync = true;
952		bcnt = burst;
953		ccnt = dma_length / (acnt * bcnt);
954		if (ccnt > (SZ_64K - 1)) {
955			dev_err(dev, "Exceeded max SG segment size\n");
956			return -EINVAL;
957		}
958		cidx = acnt * bcnt;
959	}
960
961	epset->len = dma_length;
962
963	if (direction == DMA_MEM_TO_DEV) {
964		src_bidx = acnt;
965		src_cidx = cidx;
966		dst_bidx = 0;
967		dst_cidx = 0;
968		epset->addr = src_addr;
969	} else if (direction == DMA_DEV_TO_MEM)  {
970		src_bidx = 0;
971		src_cidx = 0;
972		dst_bidx = acnt;
973		dst_cidx = cidx;
974		epset->addr = dst_addr;
975	} else if (direction == DMA_MEM_TO_MEM)  {
976		src_bidx = acnt;
977		src_cidx = cidx;
978		dst_bidx = acnt;
979		dst_cidx = cidx;
980		epset->addr = src_addr;
981	} else {
982		dev_err(dev, "%s: direction not implemented yet\n", __func__);
983		return -EINVAL;
984	}
985
986	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
987	/* Configure A or AB synchronized transfers */
988	if (absync)
989		param->opt |= SYNCDIM;
990
991	param->src = src_addr;
992	param->dst = dst_addr;
993
994	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
995	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
996
997	param->a_b_cnt = bcnt << 16 | acnt;
998	param->ccnt = ccnt;
999	/*
1000	 * Only time when (bcntrld) auto reload is required is for
1001	 * A-sync case, and in this case, a requirement of reload value
1002	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1003	 * and then later will be populated by edma_execute.
1004	 */
1005	param->link_bcntrld = 0xffffffff;
1006	return absync;
1007}
1008
1009static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1010	struct dma_chan *chan, struct scatterlist *sgl,
1011	unsigned int sg_len, enum dma_transfer_direction direction,
1012	unsigned long tx_flags, void *context)
1013{
1014	struct edma_chan *echan = to_edma_chan(chan);
1015	struct device *dev = chan->device->dev;
1016	struct edma_desc *edesc;
1017	dma_addr_t src_addr = 0, dst_addr = 0;
1018	enum dma_slave_buswidth dev_width;
1019	u32 burst;
1020	struct scatterlist *sg;
1021	int i, nslots, ret;
1022
1023	if (unlikely(!echan || !sgl || !sg_len))
1024		return NULL;
1025
1026	if (direction == DMA_DEV_TO_MEM) {
1027		src_addr = echan->cfg.src_addr;
1028		dev_width = echan->cfg.src_addr_width;
1029		burst = echan->cfg.src_maxburst;
1030	} else if (direction == DMA_MEM_TO_DEV) {
1031		dst_addr = echan->cfg.dst_addr;
1032		dev_width = echan->cfg.dst_addr_width;
1033		burst = echan->cfg.dst_maxburst;
1034	} else {
1035		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1036		return NULL;
1037	}
1038
1039	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1040		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1041		return NULL;
1042	}
1043
1044	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1045	if (!edesc)
1046		return NULL;
1047
1048	edesc->pset_nr = sg_len;
1049	edesc->residue = 0;
1050	edesc->direction = direction;
1051	edesc->echan = echan;
1052
1053	/* Allocate a PaRAM slot, if needed */
1054	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1055
1056	for (i = 0; i < nslots; i++) {
1057		if (echan->slot[i] < 0) {
1058			echan->slot[i] =
1059				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1060			if (echan->slot[i] < 0) {
1061				kfree(edesc);
1062				dev_err(dev, "%s: Failed to allocate slot\n",
1063					__func__);
1064				return NULL;
1065			}
1066		}
1067	}
1068
1069	/* Configure PaRAM sets for each SG */
1070	for_each_sg(sgl, sg, sg_len, i) {
1071		/* Get address for each SG */
1072		if (direction == DMA_DEV_TO_MEM)
1073			dst_addr = sg_dma_address(sg);
1074		else
1075			src_addr = sg_dma_address(sg);
1076
1077		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1078				       dst_addr, burst, dev_width,
1079				       sg_dma_len(sg), direction);
1080		if (ret < 0) {
1081			kfree(edesc);
1082			return NULL;
1083		}
1084
1085		edesc->absync = ret;
1086		edesc->residue += sg_dma_len(sg);
1087
1088		if (i == sg_len - 1)
1089			/* Enable completion interrupt */
1090			edesc->pset[i].param.opt |= TCINTEN;
1091		else if (!((i+1) % MAX_NR_SG))
1092			/*
1093			 * Enable early completion interrupt for the
1094			 * intermediateset. In this case the driver will be
1095			 * notified when the paRAM set is submitted to TC. This
1096			 * will allow more time to set up the next set of slots.
1097			 */
1098			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1099	}
1100	edesc->residue_stat = edesc->residue;
1101
1102	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1103}
1104
1105static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1106	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1107	size_t len, unsigned long tx_flags)
1108{
1109	int ret, nslots;
1110	struct edma_desc *edesc;
1111	struct device *dev = chan->device->dev;
1112	struct edma_chan *echan = to_edma_chan(chan);
1113	unsigned int width, pset_len, array_size;
1114
1115	if (unlikely(!echan || !len))
1116		return NULL;
1117
1118	/* Align the array size (acnt block) with the transfer properties */
1119	switch (__ffs((src | dest | len))) {
1120	case 0:
1121		array_size = SZ_32K - 1;
1122		break;
1123	case 1:
1124		array_size = SZ_32K - 2;
1125		break;
1126	default:
1127		array_size = SZ_32K - 4;
1128		break;
1129	}
1130
1131	if (len < SZ_64K) {
1132		/*
1133		 * Transfer size less than 64K can be handled with one paRAM
1134		 * slot and with one burst.
1135		 * ACNT = length
1136		 */
1137		width = len;
1138		pset_len = len;
1139		nslots = 1;
1140	} else {
1141		/*
1142		 * Transfer size bigger than 64K will be handled with maximum of
1143		 * two paRAM slots.
1144		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1145		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1146		 * slot2: the remaining amount of data after slot1.
1147		 *	  ACNT = full_length - length1, length2 = ACNT
1148		 *
1149		 * When the full_length is a multiple of 32767 one slot can be
1150		 * used to complete the transfer.
1151		 */
1152		width = array_size;
1153		pset_len = rounddown(len, width);
1154		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1155		if (unlikely(pset_len == len))
1156			nslots = 1;
1157		else
1158			nslots = 2;
1159	}
1160
1161	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1162	if (!edesc)
1163		return NULL;
1164
1165	edesc->pset_nr = nslots;
1166	edesc->residue = edesc->residue_stat = len;
1167	edesc->direction = DMA_MEM_TO_MEM;
1168	edesc->echan = echan;
1169
1170	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1171			       width, pset_len, DMA_MEM_TO_MEM);
1172	if (ret < 0) {
1173		kfree(edesc);
1174		return NULL;
1175	}
1176
1177	edesc->absync = ret;
1178
1179	edesc->pset[0].param.opt |= ITCCHEN;
1180	if (nslots == 1) {
1181		/* Enable transfer complete interrupt if requested */
1182		if (tx_flags & DMA_PREP_INTERRUPT)
1183			edesc->pset[0].param.opt |= TCINTEN;
1184	} else {
1185		/* Enable transfer complete chaining for the first slot */
1186		edesc->pset[0].param.opt |= TCCHEN;
1187
1188		if (echan->slot[1] < 0) {
1189			echan->slot[1] = edma_alloc_slot(echan->ecc,
1190							 EDMA_SLOT_ANY);
1191			if (echan->slot[1] < 0) {
1192				kfree(edesc);
1193				dev_err(dev, "%s: Failed to allocate slot\n",
1194					__func__);
1195				return NULL;
1196			}
1197		}
1198		dest += pset_len;
1199		src += pset_len;
1200		pset_len = width = len % array_size;
1201
1202		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1203				       width, pset_len, DMA_MEM_TO_MEM);
1204		if (ret < 0) {
1205			kfree(edesc);
1206			return NULL;
1207		}
1208
1209		edesc->pset[1].param.opt |= ITCCHEN;
1210		/* Enable transfer complete interrupt if requested */
1211		if (tx_flags & DMA_PREP_INTERRUPT)
1212			edesc->pset[1].param.opt |= TCINTEN;
1213	}
1214
1215	if (!(tx_flags & DMA_PREP_INTERRUPT))
1216		edesc->polled = true;
1217
1218	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1219}
1220
1221static struct dma_async_tx_descriptor *
1222edma_prep_dma_interleaved(struct dma_chan *chan,
1223			  struct dma_interleaved_template *xt,
1224			  unsigned long tx_flags)
1225{
1226	struct device *dev = chan->device->dev;
1227	struct edma_chan *echan = to_edma_chan(chan);
1228	struct edmacc_param *param;
1229	struct edma_desc *edesc;
1230	size_t src_icg, dst_icg;
1231	int src_bidx, dst_bidx;
1232
1233	/* Slave mode is not supported */
1234	if (is_slave_direction(xt->dir))
1235		return NULL;
1236
1237	if (xt->frame_size != 1 || xt->numf == 0)
1238		return NULL;
1239
1240	if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1241		return NULL;
1242
1243	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1244	if (src_icg) {
1245		src_bidx = src_icg + xt->sgl[0].size;
1246	} else if (xt->src_inc) {
1247		src_bidx = xt->sgl[0].size;
1248	} else {
1249		dev_err(dev, "%s: SRC constant addressing is not supported\n",
1250			__func__);
1251		return NULL;
1252	}
1253
1254	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1255	if (dst_icg) {
1256		dst_bidx = dst_icg + xt->sgl[0].size;
1257	} else if (xt->dst_inc) {
1258		dst_bidx = xt->sgl[0].size;
1259	} else {
1260		dev_err(dev, "%s: DST constant addressing is not supported\n",
1261			__func__);
1262		return NULL;
1263	}
1264
1265	if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1266		return NULL;
1267
1268	edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1269	if (!edesc)
1270		return NULL;
1271
1272	edesc->direction = DMA_MEM_TO_MEM;
1273	edesc->echan = echan;
1274	edesc->pset_nr = 1;
1275
1276	param = &edesc->pset[0].param;
1277
1278	param->src = xt->src_start;
1279	param->dst = xt->dst_start;
1280	param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1281	param->ccnt = 1;
1282	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1283	param->src_dst_cidx = 0;
1284
1285	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1286	param->opt |= ITCCHEN;
1287	/* Enable transfer complete interrupt if requested */
1288	if (tx_flags & DMA_PREP_INTERRUPT)
1289		param->opt |= TCINTEN;
1290	else
1291		edesc->polled = true;
1292
1293	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1294}
1295
1296static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1297	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1298	size_t period_len, enum dma_transfer_direction direction,
1299	unsigned long tx_flags)
1300{
1301	struct edma_chan *echan = to_edma_chan(chan);
1302	struct device *dev = chan->device->dev;
1303	struct edma_desc *edesc;
1304	dma_addr_t src_addr, dst_addr;
1305	enum dma_slave_buswidth dev_width;
1306	bool use_intermediate = false;
1307	u32 burst;
1308	int i, ret, nslots;
1309
1310	if (unlikely(!echan || !buf_len || !period_len))
1311		return NULL;
1312
1313	if (direction == DMA_DEV_TO_MEM) {
1314		src_addr = echan->cfg.src_addr;
1315		dst_addr = buf_addr;
1316		dev_width = echan->cfg.src_addr_width;
1317		burst = echan->cfg.src_maxburst;
1318	} else if (direction == DMA_MEM_TO_DEV) {
1319		src_addr = buf_addr;
1320		dst_addr = echan->cfg.dst_addr;
1321		dev_width = echan->cfg.dst_addr_width;
1322		burst = echan->cfg.dst_maxburst;
1323	} else {
1324		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1325		return NULL;
1326	}
1327
1328	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1329		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1330		return NULL;
1331	}
1332
1333	if (unlikely(buf_len % period_len)) {
1334		dev_err(dev, "Period should be multiple of Buffer length\n");
1335		return NULL;
1336	}
1337
1338	nslots = (buf_len / period_len) + 1;
1339
1340	/*
1341	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1342	 * by cases where the number of periods is more than the maximum
1343	 * number of SGs the EDMA driver can handle at a time. For DMA types
1344	 * such as Slave SGs, such delays are tolerable and synchronized,
1345	 * but the synchronization is difficult to achieve with Cyclic and
1346	 * cannot be guaranteed, so we error out early.
1347	 */
1348	if (nslots > MAX_NR_SG) {
1349		/*
1350		 * If the burst and period sizes are the same, we can put
1351		 * the full buffer into a single period and activate
1352		 * intermediate interrupts. This will produce interrupts
1353		 * after each burst, which is also after each desired period.
1354		 */
1355		if (burst == period_len) {
1356			period_len = buf_len;
1357			nslots = 2;
1358			use_intermediate = true;
1359		} else {
1360			return NULL;
1361		}
1362	}
1363
1364	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1365	if (!edesc)
1366		return NULL;
1367
1368	edesc->cyclic = 1;
1369	edesc->pset_nr = nslots;
1370	edesc->residue = edesc->residue_stat = buf_len;
1371	edesc->direction = direction;
1372	edesc->echan = echan;
1373
1374	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1375		__func__, echan->ch_num, nslots, period_len, buf_len);
1376
1377	for (i = 0; i < nslots; i++) {
1378		/* Allocate a PaRAM slot, if needed */
1379		if (echan->slot[i] < 0) {
1380			echan->slot[i] =
1381				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1382			if (echan->slot[i] < 0) {
1383				kfree(edesc);
1384				dev_err(dev, "%s: Failed to allocate slot\n",
1385					__func__);
1386				return NULL;
1387			}
1388		}
1389
1390		if (i == nslots - 1) {
1391			memcpy(&edesc->pset[i], &edesc->pset[0],
1392			       sizeof(edesc->pset[0]));
1393			break;
1394		}
1395
1396		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1397				       dst_addr, burst, dev_width, period_len,
1398				       direction);
1399		if (ret < 0) {
1400			kfree(edesc);
1401			return NULL;
1402		}
1403
1404		if (direction == DMA_DEV_TO_MEM)
1405			dst_addr += period_len;
1406		else
1407			src_addr += period_len;
1408
1409		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1410		dev_vdbg(dev,
1411			"\n pset[%d]:\n"
1412			"  chnum\t%d\n"
1413			"  slot\t%d\n"
1414			"  opt\t%08x\n"
1415			"  src\t%08x\n"
1416			"  dst\t%08x\n"
1417			"  abcnt\t%08x\n"
1418			"  ccnt\t%08x\n"
1419			"  bidx\t%08x\n"
1420			"  cidx\t%08x\n"
1421			"  lkrld\t%08x\n",
1422			i, echan->ch_num, echan->slot[i],
1423			edesc->pset[i].param.opt,
1424			edesc->pset[i].param.src,
1425			edesc->pset[i].param.dst,
1426			edesc->pset[i].param.a_b_cnt,
1427			edesc->pset[i].param.ccnt,
1428			edesc->pset[i].param.src_dst_bidx,
1429			edesc->pset[i].param.src_dst_cidx,
1430			edesc->pset[i].param.link_bcntrld);
1431
1432		edesc->absync = ret;
1433
1434		/*
1435		 * Enable period interrupt only if it is requested
1436		 */
1437		if (tx_flags & DMA_PREP_INTERRUPT) {
1438			edesc->pset[i].param.opt |= TCINTEN;
1439
1440			/* Also enable intermediate interrupts if necessary */
1441			if (use_intermediate)
1442				edesc->pset[i].param.opt |= ITCINTEN;
1443		}
1444	}
1445
1446	/* Place the cyclic channel to highest priority queue */
1447	if (!echan->tc)
1448		edma_assign_channel_eventq(echan, EVENTQ_0);
1449
1450	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1451}
1452
1453static void edma_completion_handler(struct edma_chan *echan)
1454{
1455	struct device *dev = echan->vchan.chan.device->dev;
1456	struct edma_desc *edesc;
1457
1458	spin_lock(&echan->vchan.lock);
1459	edesc = echan->edesc;
1460	if (edesc) {
1461		if (edesc->cyclic) {
1462			vchan_cyclic_callback(&edesc->vdesc);
1463			spin_unlock(&echan->vchan.lock);
1464			return;
1465		} else if (edesc->processed == edesc->pset_nr) {
1466			edesc->residue = 0;
1467			edma_stop(echan);
1468			vchan_cookie_complete(&edesc->vdesc);
1469			echan->edesc = NULL;
1470
1471			dev_dbg(dev, "Transfer completed on channel %d\n",
1472				echan->ch_num);
1473		} else {
1474			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1475				echan->ch_num);
1476
1477			edma_pause(echan);
1478
1479			/* Update statistics for tx_status */
1480			edesc->residue -= edesc->sg_len;
1481			edesc->residue_stat = edesc->residue;
1482			edesc->processed_stat = edesc->processed;
1483		}
1484		edma_execute(echan);
1485	}
1486
1487	spin_unlock(&echan->vchan.lock);
1488}
1489
1490/* eDMA interrupt handler */
1491static irqreturn_t dma_irq_handler(int irq, void *data)
1492{
1493	struct edma_cc *ecc = data;
1494	int ctlr;
1495	u32 sh_ier;
1496	u32 sh_ipr;
1497	u32 bank;
1498
1499	ctlr = ecc->id;
1500	if (ctlr < 0)
1501		return IRQ_NONE;
1502
1503	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1504
1505	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1506	if (!sh_ipr) {
1507		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1508		if (!sh_ipr)
1509			return IRQ_NONE;
1510		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1511		bank = 1;
1512	} else {
1513		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1514		bank = 0;
1515	}
1516
1517	do {
1518		u32 slot;
1519		u32 channel;
1520
1521		slot = __ffs(sh_ipr);
1522		sh_ipr &= ~(BIT(slot));
1523
1524		if (sh_ier & BIT(slot)) {
1525			channel = (bank << 5) | slot;
1526			/* Clear the corresponding IPR bits */
1527			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1528			edma_completion_handler(&ecc->slave_chans[channel]);
1529		}
1530	} while (sh_ipr);
1531
1532	edma_shadow0_write(ecc, SH_IEVAL, 1);
1533	return IRQ_HANDLED;
1534}
1535
1536static void edma_error_handler(struct edma_chan *echan)
1537{
1538	struct edma_cc *ecc = echan->ecc;
1539	struct device *dev = echan->vchan.chan.device->dev;
1540	struct edmacc_param p;
1541	int err;
1542
1543	if (!echan->edesc)
1544		return;
1545
1546	spin_lock(&echan->vchan.lock);
1547
1548	err = edma_read_slot(ecc, echan->slot[0], &p);
1549
1550	/*
1551	 * Issue later based on missed flag which will be sure
1552	 * to happen as:
1553	 * (1) we finished transmitting an intermediate slot and
1554	 *     edma_execute is coming up.
1555	 * (2) or we finished current transfer and issue will
1556	 *     call edma_execute.
1557	 *
1558	 * Important note: issuing can be dangerous here and
1559	 * lead to some nasty recursion when we are in a NULL
1560	 * slot. So we avoid doing so and set the missed flag.
1561	 */
1562	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1563		dev_dbg(dev, "Error on null slot, setting miss\n");
1564		echan->missed = 1;
1565	} else {
1566		/*
1567		 * The slot is already programmed but the event got
1568		 * missed, so its safe to issue it here.
1569		 */
1570		dev_dbg(dev, "Missed event, TRIGGERING\n");
1571		edma_clean_channel(echan);
1572		edma_stop(echan);
1573		edma_start(echan);
1574		edma_trigger_channel(echan);
1575	}
1576	spin_unlock(&echan->vchan.lock);
1577}
1578
1579static inline bool edma_error_pending(struct edma_cc *ecc)
1580{
1581	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1582	    edma_read_array(ecc, EDMA_EMR, 1) ||
1583	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1584		return true;
1585
1586	return false;
1587}
1588
1589/* eDMA error interrupt handler */
1590static irqreturn_t dma_ccerr_handler(int irq, void *data)
1591{
1592	struct edma_cc *ecc = data;
1593	int i, j;
1594	int ctlr;
1595	unsigned int cnt = 0;
1596	unsigned int val;
1597
1598	ctlr = ecc->id;
1599	if (ctlr < 0)
1600		return IRQ_NONE;
1601
1602	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1603
1604	if (!edma_error_pending(ecc)) {
1605		/*
1606		 * The registers indicate no pending error event but the irq
1607		 * handler has been called.
1608		 * Ask eDMA to re-evaluate the error registers.
1609		 */
1610		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1611			__func__);
1612		edma_write(ecc, EDMA_EEVAL, 1);
1613		return IRQ_NONE;
1614	}
1615
1616	while (1) {
1617		/* Event missed register(s) */
1618		for (j = 0; j < 2; j++) {
1619			unsigned long emr;
1620
1621			val = edma_read_array(ecc, EDMA_EMR, j);
1622			if (!val)
1623				continue;
1624
1625			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1626			emr = val;
1627			for_each_set_bit(i, &emr, 32) {
1628				int k = (j << 5) + i;
1629
1630				/* Clear the corresponding EMR bits */
1631				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1632				/* Clear any SER */
1633				edma_shadow0_write_array(ecc, SH_SECR, j,
1634							 BIT(i));
1635				edma_error_handler(&ecc->slave_chans[k]);
1636			}
1637		}
1638
1639		val = edma_read(ecc, EDMA_QEMR);
1640		if (val) {
1641			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1642			/* Not reported, just clear the interrupt reason. */
1643			edma_write(ecc, EDMA_QEMCR, val);
1644			edma_shadow0_write(ecc, SH_QSECR, val);
1645		}
1646
1647		val = edma_read(ecc, EDMA_CCERR);
1648		if (val) {
1649			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1650			/* Not reported, just clear the interrupt reason. */
1651			edma_write(ecc, EDMA_CCERRCLR, val);
1652		}
1653
1654		if (!edma_error_pending(ecc))
1655			break;
1656		cnt++;
1657		if (cnt > 10)
1658			break;
1659	}
1660	edma_write(ecc, EDMA_EEVAL, 1);
1661	return IRQ_HANDLED;
1662}
1663
1664/* Alloc channel resources */
1665static int edma_alloc_chan_resources(struct dma_chan *chan)
1666{
1667	struct edma_chan *echan = to_edma_chan(chan);
1668	struct edma_cc *ecc = echan->ecc;
1669	struct device *dev = ecc->dev;
1670	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1671	int ret;
1672
1673	if (echan->tc) {
1674		eventq_no = echan->tc->id;
1675	} else if (ecc->tc_list) {
1676		/* memcpy channel */
1677		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1678		eventq_no = echan->tc->id;
1679	}
1680
1681	ret = edma_alloc_channel(echan, eventq_no);
1682	if (ret)
1683		return ret;
1684
1685	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1686	if (echan->slot[0] < 0) {
1687		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1688			EDMA_CHAN_SLOT(echan->ch_num));
1689		ret = echan->slot[0];
1690		goto err_slot;
1691	}
1692
1693	/* Set up channel -> slot mapping for the entry slot */
1694	edma_set_chmap(echan, echan->slot[0]);
1695	echan->alloced = true;
1696
1697	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1698		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1699		echan->hw_triggered ? "HW" : "SW");
1700
1701	return 0;
1702
1703err_slot:
1704	edma_free_channel(echan);
1705	return ret;
1706}
1707
1708/* Free channel resources */
1709static void edma_free_chan_resources(struct dma_chan *chan)
1710{
1711	struct edma_chan *echan = to_edma_chan(chan);
1712	struct device *dev = echan->ecc->dev;
1713	int i;
1714
1715	/* Terminate transfers */
1716	edma_stop(echan);
1717
1718	vchan_free_chan_resources(&echan->vchan);
1719
1720	/* Free EDMA PaRAM slots */
1721	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1722		if (echan->slot[i] >= 0) {
1723			edma_free_slot(echan->ecc, echan->slot[i]);
1724			echan->slot[i] = -1;
1725		}
1726	}
1727
1728	/* Set entry slot to the dummy slot */
1729	edma_set_chmap(echan, echan->ecc->dummy_slot);
1730
1731	/* Free EDMA channel */
1732	if (echan->alloced) {
1733		edma_free_channel(echan);
1734		echan->alloced = false;
1735	}
1736
1737	echan->tc = NULL;
1738	echan->hw_triggered = false;
1739
1740	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1741		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1742}
1743
1744/* Send pending descriptor to hardware */
1745static void edma_issue_pending(struct dma_chan *chan)
1746{
1747	struct edma_chan *echan = to_edma_chan(chan);
1748	unsigned long flags;
1749
1750	spin_lock_irqsave(&echan->vchan.lock, flags);
1751	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1752		edma_execute(echan);
1753	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1754}
1755
1756/*
1757 * This limit exists to avoid a possible infinite loop when waiting for proof
1758 * that a particular transfer is completed. This limit can be hit if there
1759 * are large bursts to/from slow devices or the CPU is never able to catch
1760 * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
1761 * RX-FIFO, as many as 55 loops have been seen.
1762 */
1763#define EDMA_MAX_TR_WAIT_LOOPS 1000
1764
1765static u32 edma_residue(struct edma_desc *edesc)
1766{
1767	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1768	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1769	struct edma_chan *echan = edesc->echan;
1770	struct edma_pset *pset = edesc->pset;
1771	dma_addr_t done, pos, pos_old;
1772	int channel = EDMA_CHAN_SLOT(echan->ch_num);
1773	int idx = EDMA_REG_ARRAY_INDEX(channel);
1774	int ch_bit = EDMA_CHANNEL_BIT(channel);
1775	int event_reg;
1776	int i;
1777
1778	/*
1779	 * We always read the dst/src position from the first RamPar
1780	 * pset. That's the one which is active now.
1781	 */
1782	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1783
1784	/*
1785	 * "pos" may represent a transfer request that is still being
1786	 * processed by the EDMACC or EDMATC. We will busy wait until
1787	 * any one of the situations occurs:
1788	 *   1. while and event is pending for the channel
1789	 *   2. a position updated
1790	 *   3. we hit the loop limit
1791	 */
1792	if (is_slave_direction(edesc->direction))
1793		event_reg = SH_ER;
1794	else
1795		event_reg = SH_ESR;
1796
1797	pos_old = pos;
1798	while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1799		pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1800		if (pos != pos_old)
1801			break;
1802
1803		if (!--loop_count) {
1804			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1805				"%s: timeout waiting for PaRAM update\n",
1806				__func__);
1807			break;
1808		}
1809
1810		cpu_relax();
1811	}
1812
1813	/*
1814	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1815	 *
1816	 * We never update edesc->residue in the cyclic case, so we
1817	 * can tell the remaining room to the end of the circular
1818	 * buffer.
1819	 */
1820	if (edesc->cyclic) {
1821		done = pos - pset->addr;
1822		edesc->residue_stat = edesc->residue - done;
1823		return edesc->residue_stat;
1824	}
1825
1826	/*
1827	 * If the position is 0, then EDMA loaded the closing dummy slot, the
1828	 * transfer is completed
1829	 */
1830	if (!pos)
1831		return 0;
1832	/*
1833	 * For SG operation we catch up with the last processed
1834	 * status.
1835	 */
1836	pset += edesc->processed_stat;
1837
1838	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1839		/*
1840		 * If we are inside this pset address range, we know
1841		 * this is the active one. Get the current delta and
1842		 * stop walking the psets.
1843		 */
1844		if (pos >= pset->addr && pos < pset->addr + pset->len)
1845			return edesc->residue_stat - (pos - pset->addr);
1846
1847		/* Otherwise mark it done and update residue_stat. */
1848		edesc->processed_stat++;
1849		edesc->residue_stat -= pset->len;
1850	}
1851	return edesc->residue_stat;
1852}
1853
1854/* Check request completion status */
1855static enum dma_status edma_tx_status(struct dma_chan *chan,
1856				      dma_cookie_t cookie,
1857				      struct dma_tx_state *txstate)
1858{
1859	struct edma_chan *echan = to_edma_chan(chan);
1860	struct dma_tx_state txstate_tmp;
1861	enum dma_status ret;
1862	unsigned long flags;
1863
1864	ret = dma_cookie_status(chan, cookie, txstate);
1865
1866	if (ret == DMA_COMPLETE)
1867		return ret;
1868
1869	/* Provide a dummy dma_tx_state for completion checking */
1870	if (!txstate)
1871		txstate = &txstate_tmp;
1872
1873	spin_lock_irqsave(&echan->vchan.lock, flags);
1874	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1875		txstate->residue = edma_residue(echan->edesc);
1876	} else {
1877		struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1878							      cookie);
1879
1880		if (vdesc)
1881			txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1882		else
1883			txstate->residue = 0;
1884	}
1885
1886	/*
1887	 * Mark the cookie completed if the residue is 0 for non cyclic
1888	 * transfers
1889	 */
1890	if (ret != DMA_COMPLETE && !txstate->residue &&
1891	    echan->edesc && echan->edesc->polled &&
1892	    echan->edesc->vdesc.tx.cookie == cookie) {
1893		edma_stop(echan);
1894		vchan_cookie_complete(&echan->edesc->vdesc);
1895		echan->edesc = NULL;
1896		edma_execute(echan);
1897		ret = DMA_COMPLETE;
1898	}
1899
1900	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1901
1902	return ret;
1903}
1904
1905static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1906{
1907	if (!memcpy_channels)
1908		return false;
1909	while (*memcpy_channels != -1) {
1910		if (*memcpy_channels == ch_num)
1911			return true;
1912		memcpy_channels++;
1913	}
1914	return false;
1915}
1916
1917#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1918				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1919				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1920				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1921
1922static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1923{
1924	struct dma_device *s_ddev = &ecc->dma_slave;
1925	struct dma_device *m_ddev = NULL;
1926	s32 *memcpy_channels = ecc->info->memcpy_channels;
1927	int i, j;
1928
1929	dma_cap_zero(s_ddev->cap_mask);
1930	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1931	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1932	if (ecc->legacy_mode && !memcpy_channels) {
1933		dev_warn(ecc->dev,
1934			 "Legacy memcpy is enabled, things might not work\n");
1935
1936		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1937		dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1938		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1939		s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1940		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1941	}
1942
1943	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1944	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1945	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1946	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1947	s_ddev->device_issue_pending = edma_issue_pending;
1948	s_ddev->device_tx_status = edma_tx_status;
1949	s_ddev->device_config = edma_slave_config;
1950	s_ddev->device_pause = edma_dma_pause;
1951	s_ddev->device_resume = edma_dma_resume;
1952	s_ddev->device_terminate_all = edma_terminate_all;
1953	s_ddev->device_synchronize = edma_synchronize;
1954
1955	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1956	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1957	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1958	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1959	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1960
1961	s_ddev->dev = ecc->dev;
1962	INIT_LIST_HEAD(&s_ddev->channels);
1963
1964	if (memcpy_channels) {
1965		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1966		if (!m_ddev) {
1967			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1968			memcpy_channels = NULL;
1969			goto ch_setup;
1970		}
1971		ecc->dma_memcpy = m_ddev;
1972
1973		dma_cap_zero(m_ddev->cap_mask);
1974		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1975		dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
1976
1977		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1978		m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1979		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1980		m_ddev->device_free_chan_resources = edma_free_chan_resources;
1981		m_ddev->device_issue_pending = edma_issue_pending;
1982		m_ddev->device_tx_status = edma_tx_status;
1983		m_ddev->device_config = edma_slave_config;
1984		m_ddev->device_pause = edma_dma_pause;
1985		m_ddev->device_resume = edma_dma_resume;
1986		m_ddev->device_terminate_all = edma_terminate_all;
1987		m_ddev->device_synchronize = edma_synchronize;
1988
1989		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1990		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1991		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1992		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1993
1994		m_ddev->dev = ecc->dev;
1995		INIT_LIST_HEAD(&m_ddev->channels);
1996	} else if (!ecc->legacy_mode) {
1997		dev_info(ecc->dev, "memcpy is disabled\n");
1998	}
1999
2000ch_setup:
2001	for (i = 0; i < ecc->num_channels; i++) {
2002		struct edma_chan *echan = &ecc->slave_chans[i];
2003		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2004		echan->ecc = ecc;
2005		echan->vchan.desc_free = edma_desc_free;
2006
2007		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2008			vchan_init(&echan->vchan, m_ddev);
2009		else
2010			vchan_init(&echan->vchan, s_ddev);
2011
2012		INIT_LIST_HEAD(&echan->node);
2013		for (j = 0; j < EDMA_MAX_SLOTS; j++)
2014			echan->slot[j] = -1;
2015	}
2016}
2017
2018static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2019			      struct edma_cc *ecc)
2020{
2021	int i;
2022	u32 value, cccfg;
2023	s8 (*queue_priority_map)[2];
2024
2025	/* Decode the eDMA3 configuration from CCCFG register */
2026	cccfg = edma_read(ecc, EDMA_CCCFG);
2027
2028	value = GET_NUM_REGN(cccfg);
2029	ecc->num_region = BIT(value);
2030
2031	value = GET_NUM_DMACH(cccfg);
2032	ecc->num_channels = BIT(value + 1);
2033
2034	value = GET_NUM_QDMACH(cccfg);
2035	ecc->num_qchannels = value * 2;
2036
2037	value = GET_NUM_PAENTRY(cccfg);
2038	ecc->num_slots = BIT(value + 4);
2039
2040	value = GET_NUM_EVQUE(cccfg);
2041	ecc->num_tc = value + 1;
2042
2043	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2044
2045	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2046	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2047	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2048	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2049	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2050	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2051	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2052
2053	/* Nothing need to be done if queue priority is provided */
2054	if (pdata->queue_priority_mapping)
2055		return 0;
2056
2057	/*
2058	 * Configure TC/queue priority as follows:
2059	 * Q0 - priority 0
2060	 * Q1 - priority 1
2061	 * Q2 - priority 2
2062	 * ...
2063	 * The meaning of priority numbers: 0 highest priority, 7 lowest
2064	 * priority. So Q0 is the highest priority queue and the last queue has
2065	 * the lowest priority.
2066	 */
2067	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2068					  GFP_KERNEL);
2069	if (!queue_priority_map)
2070		return -ENOMEM;
2071
2072	for (i = 0; i < ecc->num_tc; i++) {
2073		queue_priority_map[i][0] = i;
2074		queue_priority_map[i][1] = i;
2075	}
2076	queue_priority_map[i][0] = -1;
2077	queue_priority_map[i][1] = -1;
2078
2079	pdata->queue_priority_mapping = queue_priority_map;
2080	/* Default queue has the lowest priority */
2081	pdata->default_queue = i - 1;
2082
2083	return 0;
2084}
2085
2086#if IS_ENABLED(CONFIG_OF)
2087static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2088			       size_t sz)
2089{
2090	const char pname[] = "ti,edma-xbar-event-map";
2091	struct resource res;
2092	void __iomem *xbar;
2093	s16 (*xbar_chans)[2];
2094	size_t nelm = sz / sizeof(s16);
2095	u32 shift, offset, mux;
2096	int ret, i;
2097
2098	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2099	if (!xbar_chans)
2100		return -ENOMEM;
2101
2102	ret = of_address_to_resource(dev->of_node, 1, &res);
2103	if (ret)
2104		return -ENOMEM;
2105
2106	xbar = devm_ioremap(dev, res.start, resource_size(&res));
2107	if (!xbar)
2108		return -ENOMEM;
2109
2110	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2111					 nelm);
2112	if (ret)
2113		return -EIO;
2114
2115	/* Invalidate last entry for the other user of this mess */
2116	nelm >>= 1;
2117	xbar_chans[nelm][0] = -1;
2118	xbar_chans[nelm][1] = -1;
2119
2120	for (i = 0; i < nelm; i++) {
2121		shift = (xbar_chans[i][1] & 0x03) << 3;
2122		offset = xbar_chans[i][1] & 0xfffffffc;
2123		mux = readl(xbar + offset);
2124		mux &= ~(0xff << shift);
2125		mux |= xbar_chans[i][0] << shift;
2126		writel(mux, (xbar + offset));
2127	}
2128
2129	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2130	return 0;
2131}
2132
2133static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2134						     bool legacy_mode)
2135{
2136	struct edma_soc_info *info;
2137	struct property *prop;
2138	int sz, ret;
2139
2140	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2141	if (!info)
2142		return ERR_PTR(-ENOMEM);
2143
2144	if (legacy_mode) {
2145		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2146					&sz);
2147		if (prop) {
2148			ret = edma_xbar_event_map(dev, info, sz);
2149			if (ret)
2150				return ERR_PTR(ret);
2151		}
2152		return info;
2153	}
2154
2155	/* Get the list of channels allocated to be used for memcpy */
2156	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2157	if (prop) {
2158		const char pname[] = "ti,edma-memcpy-channels";
2159		size_t nelm = sz / sizeof(s32);
2160		s32 *memcpy_ch;
2161
2162		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2163					 GFP_KERNEL);
2164		if (!memcpy_ch)
2165			return ERR_PTR(-ENOMEM);
2166
2167		ret = of_property_read_u32_array(dev->of_node, pname,
2168						 (u32 *)memcpy_ch, nelm);
2169		if (ret)
2170			return ERR_PTR(ret);
2171
2172		memcpy_ch[nelm] = -1;
2173		info->memcpy_channels = memcpy_ch;
2174	}
2175
2176	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2177				&sz);
2178	if (prop) {
2179		const char pname[] = "ti,edma-reserved-slot-ranges";
2180		u32 (*tmp)[2];
2181		s16 (*rsv_slots)[2];
2182		size_t nelm = sz / sizeof(*tmp);
2183		struct edma_rsv_info *rsv_info;
2184		int i;
2185
2186		if (!nelm)
2187			return info;
2188
2189		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2190		if (!tmp)
2191			return ERR_PTR(-ENOMEM);
2192
2193		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2194		if (!rsv_info) {
2195			kfree(tmp);
2196			return ERR_PTR(-ENOMEM);
2197		}
2198
2199		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2200					 GFP_KERNEL);
2201		if (!rsv_slots) {
2202			kfree(tmp);
2203			return ERR_PTR(-ENOMEM);
2204		}
2205
2206		ret = of_property_read_u32_array(dev->of_node, pname,
2207						 (u32 *)tmp, nelm * 2);
2208		if (ret) {
2209			kfree(tmp);
2210			return ERR_PTR(ret);
2211		}
2212
2213		for (i = 0; i < nelm; i++) {
2214			rsv_slots[i][0] = tmp[i][0];
2215			rsv_slots[i][1] = tmp[i][1];
2216		}
2217		rsv_slots[nelm][0] = -1;
2218		rsv_slots[nelm][1] = -1;
2219
2220		info->rsv = rsv_info;
2221		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2222
2223		kfree(tmp);
2224	}
2225
2226	return info;
2227}
2228
2229static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2230				      struct of_dma *ofdma)
2231{
2232	struct edma_cc *ecc = ofdma->of_dma_data;
2233	struct dma_chan *chan = NULL;
2234	struct edma_chan *echan;
2235	int i;
2236
2237	if (!ecc || dma_spec->args_count < 1)
2238		return NULL;
2239
2240	for (i = 0; i < ecc->num_channels; i++) {
2241		echan = &ecc->slave_chans[i];
2242		if (echan->ch_num == dma_spec->args[0]) {
2243			chan = &echan->vchan.chan;
2244			break;
2245		}
2246	}
2247
2248	if (!chan)
2249		return NULL;
2250
2251	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2252		goto out;
2253
2254	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2255	    dma_spec->args[1] < echan->ecc->num_tc) {
2256		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2257		goto out;
2258	}
2259
2260	return NULL;
2261out:
2262	/* The channel is going to be used as HW synchronized */
2263	echan->hw_triggered = true;
2264	return dma_get_slave_channel(chan);
2265}
2266#else
2267static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2268						     bool legacy_mode)
2269{
2270	return ERR_PTR(-EINVAL);
2271}
2272
2273static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2274				      struct of_dma *ofdma)
2275{
2276	return NULL;
2277}
2278#endif
2279
2280static bool edma_filter_fn(struct dma_chan *chan, void *param);
2281
2282static int edma_probe(struct platform_device *pdev)
2283{
2284	struct edma_soc_info	*info = pdev->dev.platform_data;
2285	s8			(*queue_priority_mapping)[2];
2286	const s16		(*reserved)[2];
2287	int			i, irq;
2288	char			*irq_name;
2289	struct resource		*mem;
2290	struct device_node	*node = pdev->dev.of_node;
2291	struct device		*dev = &pdev->dev;
2292	struct edma_cc		*ecc;
2293	bool			legacy_mode = true;
2294	int ret;
2295
2296	if (node) {
2297		const struct of_device_id *match;
2298
2299		match = of_match_node(edma_of_ids, node);
2300		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2301			legacy_mode = false;
2302
2303		info = edma_setup_info_from_dt(dev, legacy_mode);
2304		if (IS_ERR(info)) {
2305			dev_err(dev, "failed to get DT data\n");
2306			return PTR_ERR(info);
2307		}
2308	}
2309
2310	if (!info)
2311		return -ENODEV;
2312
2313	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2314	if (ret)
2315		return ret;
2316
2317	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2318	if (!ecc)
2319		return -ENOMEM;
2320
2321	ecc->dev = dev;
2322	ecc->id = pdev->id;
2323	ecc->legacy_mode = legacy_mode;
2324	/* When booting with DT the pdev->id is -1 */
2325	if (ecc->id < 0)
2326		ecc->id = 0;
2327
2328	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2329	if (!mem) {
2330		dev_dbg(dev, "mem resource not found, using index 0\n");
2331		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2332		if (!mem) {
2333			dev_err(dev, "no mem resource?\n");
2334			return -ENODEV;
2335		}
2336	}
2337	ecc->base = devm_ioremap_resource(dev, mem);
2338	if (IS_ERR(ecc->base))
2339		return PTR_ERR(ecc->base);
2340
2341	platform_set_drvdata(pdev, ecc);
2342
2343	pm_runtime_enable(dev);
2344	ret = pm_runtime_get_sync(dev);
2345	if (ret < 0) {
2346		dev_err(dev, "pm_runtime_get_sync() failed\n");
2347		pm_runtime_disable(dev);
2348		return ret;
2349	}
2350
2351	/* Get eDMA3 configuration from IP */
2352	ret = edma_setup_from_hw(dev, info, ecc);
2353	if (ret)
2354		goto err_disable_pm;
2355
2356	/* Allocate memory based on the information we got from the IP */
2357	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2358					sizeof(*ecc->slave_chans), GFP_KERNEL);
2359
2360	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2361				       sizeof(unsigned long), GFP_KERNEL);
2362
2363	ecc->channels_mask = devm_kcalloc(dev,
2364					   BITS_TO_LONGS(ecc->num_channels),
2365					   sizeof(unsigned long), GFP_KERNEL);
2366	if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2367		ret = -ENOMEM;
2368		goto err_disable_pm;
2369	}
2370
2371	/* Mark all channels available initially */
2372	bitmap_fill(ecc->channels_mask, ecc->num_channels);
2373
2374	ecc->default_queue = info->default_queue;
2375
2376	if (info->rsv) {
2377		/* Set the reserved slots in inuse list */
2378		reserved = info->rsv->rsv_slots;
2379		if (reserved) {
2380			for (i = 0; reserved[i][0] != -1; i++)
2381				bitmap_set(ecc->slot_inuse, reserved[i][0],
2382					   reserved[i][1]);
2383		}
2384
2385		/* Clear channels not usable for Linux */
2386		reserved = info->rsv->rsv_chans;
2387		if (reserved) {
2388			for (i = 0; reserved[i][0] != -1; i++)
2389				bitmap_clear(ecc->channels_mask, reserved[i][0],
2390					     reserved[i][1]);
2391		}
2392	}
2393
2394	for (i = 0; i < ecc->num_slots; i++) {
2395		/* Reset only unused - not reserved - paRAM slots */
2396		if (!test_bit(i, ecc->slot_inuse))
2397			edma_write_slot(ecc, i, &dummy_paramset);
2398	}
2399
2400	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2401	if (irq < 0 && node)
2402		irq = irq_of_parse_and_map(node, 0);
2403
2404	if (irq > 0) {
2405		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2406					  dev_name(dev));
2407		if (!irq_name) {
2408			ret = -ENOMEM;
2409			goto err_disable_pm;
2410		}
2411
2412		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2413				       ecc);
2414		if (ret) {
2415			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2416			goto err_disable_pm;
2417		}
2418		ecc->ccint = irq;
2419	}
2420
2421	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2422	if (irq < 0 && node)
2423		irq = irq_of_parse_and_map(node, 2);
2424
2425	if (irq > 0) {
2426		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2427					  dev_name(dev));
2428		if (!irq_name) {
2429			ret = -ENOMEM;
2430			goto err_disable_pm;
2431		}
2432
2433		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2434				       ecc);
2435		if (ret) {
2436			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2437			goto err_disable_pm;
2438		}
2439		ecc->ccerrint = irq;
2440	}
2441
2442	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2443	if (ecc->dummy_slot < 0) {
2444		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2445		ret = ecc->dummy_slot;
2446		goto err_disable_pm;
2447	}
2448
2449	queue_priority_mapping = info->queue_priority_mapping;
2450
2451	if (!ecc->legacy_mode) {
2452		int lowest_priority = 0;
2453		unsigned int array_max;
2454		struct of_phandle_args tc_args;
2455
2456		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2457					    sizeof(*ecc->tc_list), GFP_KERNEL);
2458		if (!ecc->tc_list) {
2459			ret = -ENOMEM;
2460			goto err_reg1;
2461		}
2462
2463		for (i = 0;; i++) {
2464			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2465							       1, i, &tc_args);
2466			if (ret || i == ecc->num_tc)
2467				break;
2468
2469			ecc->tc_list[i].node = tc_args.np;
2470			ecc->tc_list[i].id = i;
2471			queue_priority_mapping[i][1] = tc_args.args[0];
2472			if (queue_priority_mapping[i][1] > lowest_priority) {
2473				lowest_priority = queue_priority_mapping[i][1];
2474				info->default_queue = i;
2475			}
2476		}
2477
2478		/* See if we have optional dma-channel-mask array */
2479		array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2480		ret = of_property_read_variable_u32_array(node,
2481						"dma-channel-mask",
2482						(u32 *)ecc->channels_mask,
2483						1, array_max);
2484		if (ret > 0 && ret != array_max)
2485			dev_warn(dev, "dma-channel-mask is not complete.\n");
2486		else if (ret == -EOVERFLOW || ret == -ENODATA)
2487			dev_warn(dev,
2488				 "dma-channel-mask is out of range or empty\n");
2489	}
2490
2491	/* Event queue priority mapping */
2492	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2493		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2494					      queue_priority_mapping[i][1]);
2495
2496	edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2497	edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2498	edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2499
2500	ecc->info = info;
2501
2502	/* Init the dma device and channels */
2503	edma_dma_init(ecc, legacy_mode);
2504
2505	for (i = 0; i < ecc->num_channels; i++) {
2506		/* Do not touch reserved channels */
2507		if (!test_bit(i, ecc->channels_mask))
2508			continue;
2509
2510		/* Assign all channels to the default queue */
2511		edma_assign_channel_eventq(&ecc->slave_chans[i],
2512					   info->default_queue);
2513		/* Set entry slot to the dummy slot */
2514		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2515	}
2516
2517	ecc->dma_slave.filter.map = info->slave_map;
2518	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2519	ecc->dma_slave.filter.fn = edma_filter_fn;
2520
2521	ret = dma_async_device_register(&ecc->dma_slave);
2522	if (ret) {
2523		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2524		goto err_reg1;
2525	}
2526
2527	if (ecc->dma_memcpy) {
2528		ret = dma_async_device_register(ecc->dma_memcpy);
2529		if (ret) {
2530			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2531				ret);
2532			dma_async_device_unregister(&ecc->dma_slave);
2533			goto err_reg1;
2534		}
2535	}
2536
2537	if (node)
2538		of_dma_controller_register(node, of_edma_xlate, ecc);
2539
2540	dev_info(dev, "TI EDMA DMA engine driver\n");
2541
2542	return 0;
2543
2544err_reg1:
2545	edma_free_slot(ecc, ecc->dummy_slot);
2546err_disable_pm:
2547	pm_runtime_put_sync(dev);
2548	pm_runtime_disable(dev);
2549	return ret;
2550}
2551
2552static void edma_cleanupp_vchan(struct dma_device *dmadev)
2553{
2554	struct edma_chan *echan, *_echan;
2555
2556	list_for_each_entry_safe(echan, _echan,
2557			&dmadev->channels, vchan.chan.device_node) {
2558		list_del(&echan->vchan.chan.device_node);
2559		tasklet_kill(&echan->vchan.task);
2560	}
2561}
2562
2563static void edma_remove(struct platform_device *pdev)
2564{
2565	struct device *dev = &pdev->dev;
2566	struct edma_cc *ecc = dev_get_drvdata(dev);
2567
2568	devm_free_irq(dev, ecc->ccint, ecc);
2569	devm_free_irq(dev, ecc->ccerrint, ecc);
2570
2571	edma_cleanupp_vchan(&ecc->dma_slave);
2572
2573	if (dev->of_node)
2574		of_dma_controller_free(dev->of_node);
2575	dma_async_device_unregister(&ecc->dma_slave);
2576	if (ecc->dma_memcpy)
2577		dma_async_device_unregister(ecc->dma_memcpy);
2578	edma_free_slot(ecc, ecc->dummy_slot);
2579	pm_runtime_put_sync(dev);
2580	pm_runtime_disable(dev);
2581}
2582
2583#ifdef CONFIG_PM_SLEEP
2584static int edma_pm_suspend(struct device *dev)
2585{
2586	struct edma_cc *ecc = dev_get_drvdata(dev);
2587	struct edma_chan *echan = ecc->slave_chans;
2588	int i;
2589
2590	for (i = 0; i < ecc->num_channels; i++) {
2591		if (echan[i].alloced)
2592			edma_setup_interrupt(&echan[i], false);
2593	}
2594
2595	return 0;
2596}
2597
2598static int edma_pm_resume(struct device *dev)
2599{
2600	struct edma_cc *ecc = dev_get_drvdata(dev);
2601	struct edma_chan *echan = ecc->slave_chans;
2602	int i;
2603	s8 (*queue_priority_mapping)[2];
2604
2605	/* re initialize dummy slot to dummy param set */
2606	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2607
2608	queue_priority_mapping = ecc->info->queue_priority_mapping;
2609
2610	/* Event queue priority mapping */
2611	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2612		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2613					      queue_priority_mapping[i][1]);
2614
2615	for (i = 0; i < ecc->num_channels; i++) {
2616		if (echan[i].alloced) {
2617			/* ensure access through shadow region 0 */
2618			edma_or_array2(ecc, EDMA_DRAE, 0,
2619				       EDMA_REG_ARRAY_INDEX(i),
2620				       EDMA_CHANNEL_BIT(i));
2621
2622			edma_setup_interrupt(&echan[i], true);
2623
2624			/* Set up channel -> slot mapping for the entry slot */
2625			edma_set_chmap(&echan[i], echan[i].slot[0]);
2626		}
2627	}
2628
2629	return 0;
2630}
2631#endif
2632
2633static const struct dev_pm_ops edma_pm_ops = {
2634	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2635};
2636
2637static struct platform_driver edma_driver = {
2638	.probe		= edma_probe,
2639	.remove_new	= edma_remove,
2640	.driver = {
2641		.name	= "edma",
2642		.pm	= &edma_pm_ops,
2643		.of_match_table = edma_of_ids,
2644	},
2645};
2646
2647static int edma_tptc_probe(struct platform_device *pdev)
2648{
2649	pm_runtime_enable(&pdev->dev);
2650	return pm_runtime_get_sync(&pdev->dev);
2651}
2652
2653static struct platform_driver edma_tptc_driver = {
2654	.probe		= edma_tptc_probe,
2655	.driver = {
2656		.name	= "edma3-tptc",
2657		.of_match_table = edma_tptc_of_ids,
2658	},
2659};
2660
2661static bool edma_filter_fn(struct dma_chan *chan, void *param)
2662{
2663	bool match = false;
2664
2665	if (chan->device->dev->driver == &edma_driver.driver) {
2666		struct edma_chan *echan = to_edma_chan(chan);
2667		unsigned ch_req = *(unsigned *)param;
2668		if (ch_req == echan->ch_num) {
2669			/* The channel is going to be used as HW synchronized */
2670			echan->hw_triggered = true;
2671			match = true;
2672		}
2673	}
2674	return match;
2675}
2676
2677static int edma_init(void)
2678{
2679	int ret;
2680
2681	ret = platform_driver_register(&edma_tptc_driver);
2682	if (ret)
2683		return ret;
2684
2685	return platform_driver_register(&edma_driver);
2686}
2687subsys_initcall(edma_init);
2688
2689static void __exit edma_exit(void)
2690{
2691	platform_driver_unregister(&edma_driver);
2692	platform_driver_unregister(&edma_tptc_driver);
2693}
2694module_exit(edma_exit);
2695
2696MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2697MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2698MODULE_LICENSE("GPL v2");
2699