1// SPDX-License-Identifier: GPL-2.0
2// Copyright (c) 2017-2018 MediaTek Inc.
3
4/*
5 * Driver for MediaTek High-Speed DMA Controller
6 *
7 * Author: Sean Wang <sean.wang@mediatek.com>
8 *
9 */
10
11#include <linux/bitops.h>
12#include <linux/clk.h>
13#include <linux/dmaengine.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/iopoll.h>
17#include <linux/list.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_dma.h>
21#include <linux/platform_device.h>
22#include <linux/pm_runtime.h>
23#include <linux/refcount.h>
24#include <linux/slab.h>
25
26#include "../virt-dma.h"
27
28#define MTK_HSDMA_USEC_POLL		20
29#define MTK_HSDMA_TIMEOUT_POLL		200000
30#define MTK_HSDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
31
32/* The default number of virtual channel */
33#define MTK_HSDMA_NR_VCHANS		3
34
35/* Only one physical channel supported */
36#define MTK_HSDMA_NR_MAX_PCHANS		1
37
38/* Macro for physical descriptor (PD) manipulation */
39/* The number of PD which must be 2 of power */
40#define MTK_DMA_SIZE			64
41#define MTK_HSDMA_NEXT_DESP_IDX(x, y)	(((x) + 1) & ((y) - 1))
42#define MTK_HSDMA_LAST_DESP_IDX(x, y)	(((x) - 1) & ((y) - 1))
43#define MTK_HSDMA_MAX_LEN		0x3f80
44#define MTK_HSDMA_ALIGN_SIZE		4
45#define MTK_HSDMA_PLEN_MASK		0x3fff
46#define MTK_HSDMA_DESC_PLEN(x)		(((x) & MTK_HSDMA_PLEN_MASK) << 16)
47#define MTK_HSDMA_DESC_PLEN_GET(x)	(((x) >> 16) & MTK_HSDMA_PLEN_MASK)
48
49/* Registers for underlying ring manipulation */
50#define MTK_HSDMA_TX_BASE		0x0
51#define MTK_HSDMA_TX_CNT		0x4
52#define MTK_HSDMA_TX_CPU		0x8
53#define MTK_HSDMA_TX_DMA		0xc
54#define MTK_HSDMA_RX_BASE		0x100
55#define MTK_HSDMA_RX_CNT		0x104
56#define MTK_HSDMA_RX_CPU		0x108
57#define MTK_HSDMA_RX_DMA		0x10c
58
59/* Registers for global setup */
60#define MTK_HSDMA_GLO			0x204
61#define MTK_HSDMA_GLO_MULTI_DMA		BIT(10)
62#define MTK_HSDMA_TX_WB_DDONE		BIT(6)
63#define MTK_HSDMA_BURST_64BYTES		(0x2 << 4)
64#define MTK_HSDMA_GLO_RX_BUSY		BIT(3)
65#define MTK_HSDMA_GLO_RX_DMA		BIT(2)
66#define MTK_HSDMA_GLO_TX_BUSY		BIT(1)
67#define MTK_HSDMA_GLO_TX_DMA		BIT(0)
68#define MTK_HSDMA_GLO_DMA		(MTK_HSDMA_GLO_TX_DMA |	\
69					 MTK_HSDMA_GLO_RX_DMA)
70#define MTK_HSDMA_GLO_BUSY		(MTK_HSDMA_GLO_RX_BUSY | \
71					 MTK_HSDMA_GLO_TX_BUSY)
72#define MTK_HSDMA_GLO_DEFAULT		(MTK_HSDMA_GLO_TX_DMA | \
73					 MTK_HSDMA_GLO_RX_DMA | \
74					 MTK_HSDMA_TX_WB_DDONE | \
75					 MTK_HSDMA_BURST_64BYTES | \
76					 MTK_HSDMA_GLO_MULTI_DMA)
77
78/* Registers for reset */
79#define MTK_HSDMA_RESET			0x208
80#define MTK_HSDMA_RST_TX		BIT(0)
81#define MTK_HSDMA_RST_RX		BIT(16)
82
83/* Registers for interrupt control */
84#define MTK_HSDMA_DLYINT		0x20c
85#define MTK_HSDMA_RXDLY_INT_EN		BIT(15)
86
87/* Interrupt fires when the pending number's more than the specified */
88#define MTK_HSDMA_RXMAX_PINT(x)		(((x) & 0x7f) << 8)
89
90/* Interrupt fires when the pending time's more than the specified in 20 us */
91#define MTK_HSDMA_RXMAX_PTIME(x)	((x) & 0x7f)
92#define MTK_HSDMA_DLYINT_DEFAULT	(MTK_HSDMA_RXDLY_INT_EN | \
93					 MTK_HSDMA_RXMAX_PINT(20) | \
94					 MTK_HSDMA_RXMAX_PTIME(20))
95#define MTK_HSDMA_INT_STATUS		0x220
96#define MTK_HSDMA_INT_ENABLE		0x228
97#define MTK_HSDMA_INT_RXDONE		BIT(16)
98
99enum mtk_hsdma_vdesc_flag {
100	MTK_HSDMA_VDESC_FINISHED	= 0x01,
101};
102
103#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
104
105/**
106 * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
107 *			    descriptor (PD) and its placement must be kept at
108 *			    4-bytes alignment in little endian order.
109 * @desc1:		    | The control pad used to indicate hardware how to
110 * @desc2:		    | deal with the descriptor such as source and
111 * @desc3:		    | destination address and data length. The maximum
112 * @desc4:		    | data length each pdesc can handle is 0x3f80 bytes
113 */
114struct mtk_hsdma_pdesc {
115	__le32 desc1;
116	__le32 desc2;
117	__le32 desc3;
118	__le32 desc4;
119} __packed __aligned(4);
120
121/**
122 * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
123 *			    descriptor (VD)
124 * @vd:			    An instance for struct virt_dma_desc
125 * @len:		    The total data size device wants to move
126 * @residue:		    The remaining data size device will move
127 * @dest:		    The destination address device wants to move to
128 * @src:		    The source address device wants to move from
129 */
130struct mtk_hsdma_vdesc {
131	struct virt_dma_desc vd;
132	size_t len;
133	size_t residue;
134	dma_addr_t dest;
135	dma_addr_t src;
136};
137
138/**
139 * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
140 *			 ring to know what relevant VD the PD is being
141 *			 mapped to.
142 * @vd:			 Pointer to the relevant VD.
143 * @flag:		 Flag indicating what action should be taken when VD
144 *			 is completed.
145 */
146struct mtk_hsdma_cb {
147	struct virt_dma_desc *vd;
148	enum mtk_hsdma_vdesc_flag flag;
149};
150
151/**
152 * struct mtk_hsdma_ring - This struct holds info describing underlying ring
153 *			   space
154 * @txd:		   The descriptor TX ring which describes DMA source
155 *			   information
156 * @rxd:		   The descriptor RX ring which describes DMA
157 *			   destination information
158 * @cb:			   The extra information pointed at by RX ring
159 * @tphys:		   The physical addr of TX ring
160 * @rphys:		   The physical addr of RX ring
161 * @cur_tptr:		   Pointer to the next free descriptor used by the host
162 * @cur_rptr:		   Pointer to the last done descriptor by the device
163 */
164struct mtk_hsdma_ring {
165	struct mtk_hsdma_pdesc *txd;
166	struct mtk_hsdma_pdesc *rxd;
167	struct mtk_hsdma_cb *cb;
168	dma_addr_t tphys;
169	dma_addr_t rphys;
170	u16 cur_tptr;
171	u16 cur_rptr;
172};
173
174/**
175 * struct mtk_hsdma_pchan - This is the struct holding info describing physical
176 *			   channel (PC)
177 * @ring:		   An instance for the underlying ring
178 * @sz_ring:		   Total size allocated for the ring
179 * @nr_free:		   Total number of free rooms in the ring. It would
180 *			   be accessed and updated frequently between IRQ
181 *			   context and user context to reflect whether ring
182 *			   can accept requests from VD.
183 */
184struct mtk_hsdma_pchan {
185	struct mtk_hsdma_ring ring;
186	size_t sz_ring;
187	atomic_t nr_free;
188};
189
190/**
191 * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
192 *			   channel (VC)
193 * @vc:			   An instance for struct virt_dma_chan
194 * @issue_completion:	   The wait for all issued descriptors completited
195 * @issue_synchronize:	   Bool indicating channel synchronization starts
196 * @desc_hw_processing:	   List those descriptors the hardware is processing,
197 *			   which is protected by vc.lock
198 */
199struct mtk_hsdma_vchan {
200	struct virt_dma_chan vc;
201	struct completion issue_completion;
202	bool issue_synchronize;
203	struct list_head desc_hw_processing;
204};
205
206/**
207 * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
208 * @ddone:		  Bit mask for DDONE
209 * @ls0:		  Bit mask for LS0
210 */
211struct mtk_hsdma_soc {
212	__le32 ddone;
213	__le32 ls0;
214};
215
216/**
217 * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
218 *			     device
219 * @ddev:		     An instance for struct dma_device
220 * @base:		     The mapped register I/O base
221 * @clk:		     The clock that device internal is using
222 * @irq:		     The IRQ that device are using
223 * @dma_requests:	     The number of VCs the device supports to
224 * @vc:			     The pointer to all available VCs
225 * @pc:			     The pointer to the underlying PC
226 * @pc_refcnt:		     Track how many VCs are using the PC
227 * @lock:		     Lock protect agaisting multiple VCs access PC
228 * @soc:		     The pointer to area holding differences among
229 *			     vaious platform
230 */
231struct mtk_hsdma_device {
232	struct dma_device ddev;
233	void __iomem *base;
234	struct clk *clk;
235	u32 irq;
236
237	u32 dma_requests;
238	struct mtk_hsdma_vchan *vc;
239	struct mtk_hsdma_pchan *pc;
240	refcount_t pc_refcnt;
241
242	/* Lock used to protect against multiple VCs access PC */
243	spinlock_t lock;
244
245	const struct mtk_hsdma_soc *soc;
246};
247
248static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
249{
250	return container_of(chan->device, struct mtk_hsdma_device, ddev);
251}
252
253static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
254{
255	return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
256}
257
258static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
259{
260	return container_of(vd, struct mtk_hsdma_vdesc, vd);
261}
262
263static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
264{
265	return hsdma->ddev.dev;
266}
267
268static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
269{
270	return readl(hsdma->base + reg);
271}
272
273static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
274{
275	writel(val, hsdma->base + reg);
276}
277
278static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
279			u32 mask, u32 set)
280{
281	u32 val;
282
283	val = mtk_dma_read(hsdma, reg);
284	val &= ~mask;
285	val |= set;
286	mtk_dma_write(hsdma, reg, val);
287}
288
289static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
290{
291	mtk_dma_rmw(hsdma, reg, 0, val);
292}
293
294static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
295{
296	mtk_dma_rmw(hsdma, reg, val, 0);
297}
298
299static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
300{
301	kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
302}
303
304static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
305{
306	u32 status = 0;
307
308	return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
309				  !(status & MTK_HSDMA_GLO_BUSY),
310				  MTK_HSDMA_USEC_POLL,
311				  MTK_HSDMA_TIMEOUT_POLL);
312}
313
314static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
315				 struct mtk_hsdma_pchan *pc)
316{
317	struct mtk_hsdma_ring *ring = &pc->ring;
318	int err;
319
320	memset(pc, 0, sizeof(*pc));
321
322	/*
323	 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
324	 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
325	 */
326	pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
327	ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
328				       &ring->tphys, GFP_NOWAIT);
329	if (!ring->txd)
330		return -ENOMEM;
331
332	ring->rxd = &ring->txd[MTK_DMA_SIZE];
333	ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
334	ring->cur_tptr = 0;
335	ring->cur_rptr = MTK_DMA_SIZE - 1;
336
337	ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
338	if (!ring->cb) {
339		err = -ENOMEM;
340		goto err_free_dma;
341	}
342
343	atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
344
345	/* Disable HSDMA and wait for the completion */
346	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
347	err = mtk_hsdma_busy_wait(hsdma);
348	if (err)
349		goto err_free_cb;
350
351	/* Reset */
352	mtk_dma_set(hsdma, MTK_HSDMA_RESET,
353		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
354	mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
355		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
356
357	/* Setup HSDMA initial pointer in the ring */
358	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
359	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
360	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
361	mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
362	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
363	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
364	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
365	mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
366
367	/* Enable HSDMA */
368	mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
369
370	/* Setup delayed interrupt */
371	mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
372
373	/* Enable interrupt */
374	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
375
376	return 0;
377
378err_free_cb:
379	kfree(ring->cb);
380
381err_free_dma:
382	dma_free_coherent(hsdma2dev(hsdma),
383			  pc->sz_ring, ring->txd, ring->tphys);
384	return err;
385}
386
387static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
388				 struct mtk_hsdma_pchan *pc)
389{
390	struct mtk_hsdma_ring *ring = &pc->ring;
391
392	/* Disable HSDMA and then wait for the completion */
393	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
394	mtk_hsdma_busy_wait(hsdma);
395
396	/* Reset pointer in the ring */
397	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
398	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
399	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
400	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
401	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
402	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
403	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
404
405	kfree(ring->cb);
406
407	dma_free_coherent(hsdma2dev(hsdma),
408			  pc->sz_ring, ring->txd, ring->tphys);
409}
410
411static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
412					 struct mtk_hsdma_pchan *pc,
413					 struct mtk_hsdma_vdesc *hvd)
414{
415	struct mtk_hsdma_ring *ring = &pc->ring;
416	struct mtk_hsdma_pdesc *txd, *rxd;
417	u16 reserved, prev, tlen, num_sgs;
418	unsigned long flags;
419
420	/* Protect against PC is accessed by multiple VCs simultaneously */
421	spin_lock_irqsave(&hsdma->lock, flags);
422
423	/*
424	 * Reserve rooms, where pc->nr_free is used to track how many free
425	 * rooms in the ring being updated in user and IRQ context.
426	 */
427	num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
428	reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
429
430	if (!reserved) {
431		spin_unlock_irqrestore(&hsdma->lock, flags);
432		return -ENOSPC;
433	}
434
435	atomic_sub(reserved, &pc->nr_free);
436
437	while (reserved--) {
438		/* Limit size by PD capability for valid data moving */
439		tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
440		       MTK_HSDMA_MAX_LEN : hvd->len;
441
442		/*
443		 * Setup PDs using the remaining VD info mapped on those
444		 * reserved rooms. And since RXD is shared memory between the
445		 * host and the device allocated by dma_alloc_coherent call,
446		 * the helper macro WRITE_ONCE can ensure the data written to
447		 * RAM would really happens.
448		 */
449		txd = &ring->txd[ring->cur_tptr];
450		WRITE_ONCE(txd->desc1, hvd->src);
451		WRITE_ONCE(txd->desc2,
452			   hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
453
454		rxd = &ring->rxd[ring->cur_tptr];
455		WRITE_ONCE(rxd->desc1, hvd->dest);
456		WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
457
458		/* Associate VD, the PD belonged to */
459		ring->cb[ring->cur_tptr].vd = &hvd->vd;
460
461		/* Move forward the pointer of TX ring */
462		ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
463							 MTK_DMA_SIZE);
464
465		/* Update VD with remaining data */
466		hvd->src  += tlen;
467		hvd->dest += tlen;
468		hvd->len  -= tlen;
469	}
470
471	/*
472	 * Tagging flag for the last PD for VD will be responsible for
473	 * completing VD.
474	 */
475	if (!hvd->len) {
476		prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
477		ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
478	}
479
480	/* Ensure all changes indeed done before we're going on */
481	wmb();
482
483	/*
484	 * Updating into hardware the pointer of TX ring lets HSDMA to take
485	 * action for those pending PDs.
486	 */
487	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
488
489	spin_unlock_irqrestore(&hsdma->lock, flags);
490
491	return 0;
492}
493
494static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
495					  struct mtk_hsdma_vchan *hvc)
496{
497	struct virt_dma_desc *vd, *vd2;
498	int err;
499
500	lockdep_assert_held(&hvc->vc.lock);
501
502	list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
503		struct mtk_hsdma_vdesc *hvd;
504
505		hvd = to_hsdma_vdesc(vd);
506
507		/* Map VD into PC and all VCs shares a single PC */
508		err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
509
510		/*
511		 * Move VD from desc_issued to desc_hw_processing when entire
512		 * VD is fit into available PDs. Otherwise, the uncompleted
513		 * VDs would stay in list desc_issued and then restart the
514		 * processing as soon as possible once underlying ring space
515		 * got freed.
516		 */
517		if (err == -ENOSPC || hvd->len > 0)
518			break;
519
520		/*
521		 * The extra list desc_hw_processing is used because
522		 * hardware can't provide sufficient information allowing us
523		 * to know what VDs are still working on the underlying ring.
524		 * Through the additional list, it can help us to implement
525		 * terminate_all, residue calculation and such thing needed
526		 * to know detail descriptor status on the hardware.
527		 */
528		list_move_tail(&vd->node, &hvc->desc_hw_processing);
529	}
530}
531
532static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
533{
534	struct mtk_hsdma_vchan *hvc;
535	struct mtk_hsdma_pdesc *rxd;
536	struct mtk_hsdma_vdesc *hvd;
537	struct mtk_hsdma_pchan *pc;
538	struct mtk_hsdma_cb *cb;
539	int i = MTK_DMA_SIZE;
540	__le32 desc2;
541	u32 status;
542	u16 next;
543
544	/* Read IRQ status */
545	status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
546	if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
547		goto rx_done;
548
549	pc = hsdma->pc;
550
551	/*
552	 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
553	 * reclaim these finished descriptors: The most number of PDs the ISR
554	 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
555	 * take it as limited count instead of just using a dangerous infinite
556	 * poll.
557	 */
558	while (i--) {
559		next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
560					       MTK_DMA_SIZE);
561		rxd = &pc->ring.rxd[next];
562
563		/*
564		 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
565		 * moving for the PD is still under going.
566		 */
567		desc2 = READ_ONCE(rxd->desc2);
568		if (!(desc2 & hsdma->soc->ddone))
569			break;
570
571		cb = &pc->ring.cb[next];
572		if (unlikely(!cb->vd)) {
573			dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
574			break;
575		}
576
577		/* Update residue of VD the associated PD belonged to */
578		hvd = to_hsdma_vdesc(cb->vd);
579		hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
580
581		/* Complete VD until the relevant last PD is finished */
582		if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
583			hvc = to_hsdma_vchan(cb->vd->tx.chan);
584
585			spin_lock(&hvc->vc.lock);
586
587			/* Remove VD from list desc_hw_processing */
588			list_del(&cb->vd->node);
589
590			/* Add VD into list desc_completed */
591			vchan_cookie_complete(cb->vd);
592
593			if (hvc->issue_synchronize &&
594			    list_empty(&hvc->desc_hw_processing)) {
595				complete(&hvc->issue_completion);
596				hvc->issue_synchronize = false;
597			}
598			spin_unlock(&hvc->vc.lock);
599
600			cb->flag = 0;
601		}
602
603		cb->vd = NULL;
604
605		/*
606		 * Recycle the RXD with the helper WRITE_ONCE that can ensure
607		 * data written into RAM would really happens.
608		 */
609		WRITE_ONCE(rxd->desc1, 0);
610		WRITE_ONCE(rxd->desc2, 0);
611		pc->ring.cur_rptr = next;
612
613		/* Release rooms */
614		atomic_inc(&pc->nr_free);
615	}
616
617	/* Ensure all changes indeed done before we're going on */
618	wmb();
619
620	/* Update CPU pointer for those completed PDs */
621	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
622
623	/*
624	 * Acking the pending IRQ allows hardware no longer to keep the used
625	 * IRQ line in certain trigger state when software has completed all
626	 * the finished physical descriptors.
627	 */
628	if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
629		mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
630
631	/* ASAP handles pending VDs in all VCs after freeing some rooms */
632	for (i = 0; i < hsdma->dma_requests; i++) {
633		hvc = &hsdma->vc[i];
634		spin_lock(&hvc->vc.lock);
635		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
636		spin_unlock(&hvc->vc.lock);
637	}
638
639rx_done:
640	/* All completed PDs are cleaned up, so enable interrupt again */
641	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
642}
643
644static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
645{
646	struct mtk_hsdma_device *hsdma = devid;
647
648	/*
649	 * Disable interrupt until all completed PDs are cleaned up in
650	 * mtk_hsdma_free_rooms call.
651	 */
652	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
653
654	mtk_hsdma_free_rooms_in_ring(hsdma);
655
656	return IRQ_HANDLED;
657}
658
659static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
660							dma_cookie_t cookie)
661{
662	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
663	struct virt_dma_desc *vd;
664
665	list_for_each_entry(vd, &hvc->desc_hw_processing, node)
666		if (vd->tx.cookie == cookie)
667			return vd;
668
669	list_for_each_entry(vd, &hvc->vc.desc_issued, node)
670		if (vd->tx.cookie == cookie)
671			return vd;
672
673	return NULL;
674}
675
676static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
677					   dma_cookie_t cookie,
678					   struct dma_tx_state *txstate)
679{
680	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
681	struct mtk_hsdma_vdesc *hvd;
682	struct virt_dma_desc *vd;
683	enum dma_status ret;
684	unsigned long flags;
685	size_t bytes = 0;
686
687	ret = dma_cookie_status(c, cookie, txstate);
688	if (ret == DMA_COMPLETE || !txstate)
689		return ret;
690
691	spin_lock_irqsave(&hvc->vc.lock, flags);
692	vd = mtk_hsdma_find_active_desc(c, cookie);
693	spin_unlock_irqrestore(&hvc->vc.lock, flags);
694
695	if (vd) {
696		hvd = to_hsdma_vdesc(vd);
697		bytes = hvd->residue;
698	}
699
700	dma_set_residue(txstate, bytes);
701
702	return ret;
703}
704
705static void mtk_hsdma_issue_pending(struct dma_chan *c)
706{
707	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
708	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
709	unsigned long flags;
710
711	spin_lock_irqsave(&hvc->vc.lock, flags);
712
713	if (vchan_issue_pending(&hvc->vc))
714		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
715
716	spin_unlock_irqrestore(&hvc->vc.lock, flags);
717}
718
719static struct dma_async_tx_descriptor *
720mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
721			  dma_addr_t src, size_t len, unsigned long flags)
722{
723	struct mtk_hsdma_vdesc *hvd;
724
725	hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
726	if (!hvd)
727		return NULL;
728
729	hvd->len = len;
730	hvd->residue = len;
731	hvd->src = src;
732	hvd->dest = dest;
733
734	return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
735}
736
737static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
738{
739	struct virt_dma_chan *vc = to_virt_chan(c);
740	unsigned long flags;
741	LIST_HEAD(head);
742
743	spin_lock_irqsave(&vc->lock, flags);
744	list_splice_tail_init(&vc->desc_allocated, &head);
745	list_splice_tail_init(&vc->desc_submitted, &head);
746	list_splice_tail_init(&vc->desc_issued, &head);
747	spin_unlock_irqrestore(&vc->lock, flags);
748
749	/* At the point, we don't expect users put descriptor into VC again */
750	vchan_dma_desc_free_list(vc, &head);
751
752	return 0;
753}
754
755static void mtk_hsdma_free_active_desc(struct dma_chan *c)
756{
757	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
758	bool sync_needed = false;
759
760	/*
761	 * Once issue_synchronize is being set, which means once the hardware
762	 * consumes all descriptors for the channel in the ring, the
763	 * synchronization must be notified immediately it is completed.
764	 */
765	spin_lock(&hvc->vc.lock);
766	if (!list_empty(&hvc->desc_hw_processing)) {
767		hvc->issue_synchronize = true;
768		sync_needed = true;
769	}
770	spin_unlock(&hvc->vc.lock);
771
772	if (sync_needed)
773		wait_for_completion(&hvc->issue_completion);
774	/*
775	 * At the point, we expect that all remaining descriptors in the ring
776	 * for the channel should be all processing done.
777	 */
778	WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
779		  "Desc pending still in list desc_hw_processing\n");
780
781	/* Free all descriptors in list desc_completed */
782	vchan_synchronize(&hvc->vc);
783
784	WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
785		  "Desc pending still in list desc_completed\n");
786}
787
788static int mtk_hsdma_terminate_all(struct dma_chan *c)
789{
790	/*
791	 * Free pending descriptors not processed yet by hardware that have
792	 * previously been submitted to the channel.
793	 */
794	mtk_hsdma_free_inactive_desc(c);
795
796	/*
797	 * However, the DMA engine doesn't provide any way to stop these
798	 * descriptors being processed currently by hardware. The only way is
799	 * to just waiting until these descriptors are all processed completely
800	 * through mtk_hsdma_free_active_desc call.
801	 */
802	mtk_hsdma_free_active_desc(c);
803
804	return 0;
805}
806
807static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
808{
809	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
810	int err;
811
812	/*
813	 * Since HSDMA has only one PC, the resource for PC is being allocated
814	 * when the first VC is being created and the other VCs would run on
815	 * the same PC.
816	 */
817	if (!refcount_read(&hsdma->pc_refcnt)) {
818		err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
819		if (err)
820			return err;
821		/*
822		 * refcount_inc would complain increment on 0; use-after-free.
823		 * Thus, we need to explicitly set it as 1 initially.
824		 */
825		refcount_set(&hsdma->pc_refcnt, 1);
826	} else {
827		refcount_inc(&hsdma->pc_refcnt);
828	}
829
830	return 0;
831}
832
833static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
834{
835	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
836
837	/* Free all descriptors in all lists on the VC */
838	mtk_hsdma_terminate_all(c);
839
840	/* The resource for PC is not freed until all the VCs are destroyed */
841	if (!refcount_dec_and_test(&hsdma->pc_refcnt))
842		return;
843
844	mtk_hsdma_free_pchan(hsdma, hsdma->pc);
845}
846
847static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
848{
849	int err;
850
851	pm_runtime_enable(hsdma2dev(hsdma));
852	pm_runtime_get_sync(hsdma2dev(hsdma));
853
854	err = clk_prepare_enable(hsdma->clk);
855	if (err)
856		return err;
857
858	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
859	mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
860
861	return 0;
862}
863
864static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
865{
866	mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
867
868	clk_disable_unprepare(hsdma->clk);
869
870	pm_runtime_put_sync(hsdma2dev(hsdma));
871	pm_runtime_disable(hsdma2dev(hsdma));
872
873	return 0;
874}
875
876static const struct mtk_hsdma_soc mt7623_soc = {
877	.ddone = BIT(31),
878	.ls0 = BIT(30),
879};
880
881static const struct mtk_hsdma_soc mt7622_soc = {
882	.ddone = BIT(15),
883	.ls0 = BIT(14),
884};
885
886static const struct of_device_id mtk_hsdma_match[] = {
887	{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
888	{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
889	{ /* sentinel */ }
890};
891MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
892
893static int mtk_hsdma_probe(struct platform_device *pdev)
894{
895	struct mtk_hsdma_device *hsdma;
896	struct mtk_hsdma_vchan *vc;
897	struct dma_device *dd;
898	int i, err;
899
900	hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
901	if (!hsdma)
902		return -ENOMEM;
903
904	dd = &hsdma->ddev;
905
906	hsdma->base = devm_platform_ioremap_resource(pdev, 0);
907	if (IS_ERR(hsdma->base))
908		return PTR_ERR(hsdma->base);
909
910	hsdma->soc = of_device_get_match_data(&pdev->dev);
911	if (!hsdma->soc) {
912		dev_err(&pdev->dev, "No device match found\n");
913		return -ENODEV;
914	}
915
916	hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
917	if (IS_ERR(hsdma->clk)) {
918		dev_err(&pdev->dev, "No clock for %s\n",
919			dev_name(&pdev->dev));
920		return PTR_ERR(hsdma->clk);
921	}
922
923	err = platform_get_irq(pdev, 0);
924	if (err < 0)
925		return err;
926	hsdma->irq = err;
927
928	refcount_set(&hsdma->pc_refcnt, 0);
929	spin_lock_init(&hsdma->lock);
930
931	dma_cap_set(DMA_MEMCPY, dd->cap_mask);
932
933	dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
934	dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
935	dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
936	dd->device_tx_status = mtk_hsdma_tx_status;
937	dd->device_issue_pending = mtk_hsdma_issue_pending;
938	dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
939	dd->device_terminate_all = mtk_hsdma_terminate_all;
940	dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
941	dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
942	dd->directions = BIT(DMA_MEM_TO_MEM);
943	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
944	dd->dev = &pdev->dev;
945	INIT_LIST_HEAD(&dd->channels);
946
947	hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
948	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
949						      "dma-requests",
950						      &hsdma->dma_requests)) {
951		dev_info(&pdev->dev,
952			 "Using %u as missing dma-requests property\n",
953			 MTK_HSDMA_NR_VCHANS);
954	}
955
956	hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
957				 sizeof(*hsdma->pc), GFP_KERNEL);
958	if (!hsdma->pc)
959		return -ENOMEM;
960
961	hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
962				 sizeof(*hsdma->vc), GFP_KERNEL);
963	if (!hsdma->vc)
964		return -ENOMEM;
965
966	for (i = 0; i < hsdma->dma_requests; i++) {
967		vc = &hsdma->vc[i];
968		vc->vc.desc_free = mtk_hsdma_vdesc_free;
969		vchan_init(&vc->vc, dd);
970		init_completion(&vc->issue_completion);
971		INIT_LIST_HEAD(&vc->desc_hw_processing);
972	}
973
974	err = dma_async_device_register(dd);
975	if (err)
976		return err;
977
978	err = of_dma_controller_register(pdev->dev.of_node,
979					 of_dma_xlate_by_chan_id, hsdma);
980	if (err) {
981		dev_err(&pdev->dev,
982			"MediaTek HSDMA OF registration failed %d\n", err);
983		goto err_unregister;
984	}
985
986	mtk_hsdma_hw_init(hsdma);
987
988	err = devm_request_irq(&pdev->dev, hsdma->irq,
989			       mtk_hsdma_irq, 0,
990			       dev_name(&pdev->dev), hsdma);
991	if (err) {
992		dev_err(&pdev->dev,
993			"request_irq failed with err %d\n", err);
994		goto err_free;
995	}
996
997	platform_set_drvdata(pdev, hsdma);
998
999	dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
1000
1001	return 0;
1002
1003err_free:
1004	mtk_hsdma_hw_deinit(hsdma);
1005	of_dma_controller_free(pdev->dev.of_node);
1006err_unregister:
1007	dma_async_device_unregister(dd);
1008
1009	return err;
1010}
1011
1012static void mtk_hsdma_remove(struct platform_device *pdev)
1013{
1014	struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
1015	struct mtk_hsdma_vchan *vc;
1016	int i;
1017
1018	/* Kill VC task */
1019	for (i = 0; i < hsdma->dma_requests; i++) {
1020		vc = &hsdma->vc[i];
1021
1022		list_del(&vc->vc.chan.device_node);
1023		tasklet_kill(&vc->vc.task);
1024	}
1025
1026	/* Disable DMA interrupt */
1027	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
1028
1029	/* Waits for any pending IRQ handlers to complete */
1030	synchronize_irq(hsdma->irq);
1031
1032	/* Disable hardware */
1033	mtk_hsdma_hw_deinit(hsdma);
1034
1035	dma_async_device_unregister(&hsdma->ddev);
1036	of_dma_controller_free(pdev->dev.of_node);
1037}
1038
1039static struct platform_driver mtk_hsdma_driver = {
1040	.probe		= mtk_hsdma_probe,
1041	.remove_new	= mtk_hsdma_remove,
1042	.driver = {
1043		.name		= KBUILD_MODNAME,
1044		.of_match_table	= mtk_hsdma_match,
1045	},
1046};
1047module_platform_driver(mtk_hsdma_driver);
1048
1049MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
1050MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1051MODULE_LICENSE("GPL v2");
1052