1/*
2 * drivers/dma/fsl_raid.c
3 *
4 * Freescale RAID Engine device driver
5 *
6 * Author:
7 *	Harninder Rai <harninder.rai@freescale.com>
8 *	Naveen Burmi <naveenburmi@freescale.com>
9 *
10 * Rewrite:
11 *	Xuelin Shi <xuelin.shi@freescale.com>
12 *
13 * Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions are met:
17 *     * Redistributions of source code must retain the above copyright
18 *       notice, this list of conditions and the following disclaimer.
19 *     * Redistributions in binary form must reproduce the above copyright
20 *       notice, this list of conditions and the following disclaimer in the
21 *       documentation and/or other materials provided with the distribution.
22 *     * Neither the name of Freescale Semiconductor nor the
23 *       names of its contributors may be used to endorse or promote products
24 *       derived from this software without specific prior written permission.
25 *
26 * ALTERNATIVELY, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") as published by the Free Software
28 * Foundation, either version 2 of that License or (at your option) any
29 * later version.
30 *
31 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
34 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
40 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Theory of operation:
43 *
44 * General capabilities:
45 *	RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
46 *	calculations required in RAID5 and RAID6 operations. RE driver
47 *	registers with Linux's ASYNC layer as dma driver. RE hardware
48 *	maintains strict ordering of the requests through chained
49 *	command queueing.
50 *
51 * Data flow:
52 *	Software RAID layer of Linux (MD layer) maintains RAID partitions,
53 *	strips, stripes etc. It sends requests to the underlying ASYNC layer
54 *	which further passes it to RE driver. ASYNC layer decides which request
55 *	goes to which job ring of RE hardware. For every request processed by
56 *	RAID Engine, driver gets an interrupt unless coalescing is set. The
57 *	per job ring interrupt handler checks the status register for errors,
58 *	clears the interrupt and leave the post interrupt processing to the irq
59 *	thread.
60 */
61#include <linux/interrupt.h>
62#include <linux/module.h>
63#include <linux/of.h>
64#include <linux/of_irq.h>
65#include <linux/of_platform.h>
66#include <linux/platform_device.h>
67#include <linux/dma-mapping.h>
68#include <linux/dmapool.h>
69#include <linux/dmaengine.h>
70#include <linux/io.h>
71#include <linux/spinlock.h>
72#include <linux/slab.h>
73
74#include "dmaengine.h"
75#include "fsl_raid.h"
76
77#define FSL_RE_MAX_XOR_SRCS	16
78#define FSL_RE_MAX_PQ_SRCS	16
79#define FSL_RE_MIN_DESCS	256
80#define FSL_RE_MAX_DESCS	(4 * FSL_RE_MIN_DESCS)
81#define FSL_RE_FRAME_FORMAT	0x1
82#define FSL_RE_MAX_DATA_LEN	(1024*1024)
83
84#define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
85
86/* Add descriptors into per chan software queue - submit_q */
87static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx)
88{
89	struct fsl_re_desc *desc;
90	struct fsl_re_chan *re_chan;
91	dma_cookie_t cookie;
92	unsigned long flags;
93
94	desc = to_fsl_re_dma_desc(tx);
95	re_chan = container_of(tx->chan, struct fsl_re_chan, chan);
96
97	spin_lock_irqsave(&re_chan->desc_lock, flags);
98	cookie = dma_cookie_assign(tx);
99	list_add_tail(&desc->node, &re_chan->submit_q);
100	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
101
102	return cookie;
103}
104
105/* Copy descriptor from per chan software queue into hardware job ring */
106static void fsl_re_issue_pending(struct dma_chan *chan)
107{
108	struct fsl_re_chan *re_chan;
109	int avail;
110	struct fsl_re_desc *desc, *_desc;
111	unsigned long flags;
112
113	re_chan = container_of(chan, struct fsl_re_chan, chan);
114
115	spin_lock_irqsave(&re_chan->desc_lock, flags);
116	avail = FSL_RE_SLOT_AVAIL(
117		in_be32(&re_chan->jrregs->inbring_slot_avail));
118
119	list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) {
120		if (!avail)
121			break;
122
123		list_move_tail(&desc->node, &re_chan->active_q);
124
125		memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count],
126		       &desc->hwdesc, sizeof(struct fsl_re_hw_desc));
127
128		re_chan->inb_count = (re_chan->inb_count + 1) &
129						FSL_RE_RING_SIZE_MASK;
130		out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1));
131		avail--;
132	}
133	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
134}
135
136static void fsl_re_desc_done(struct fsl_re_desc *desc)
137{
138	dma_cookie_complete(&desc->async_tx);
139	dma_descriptor_unmap(&desc->async_tx);
140	dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
141}
142
143static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan)
144{
145	struct fsl_re_desc *desc, *_desc;
146	unsigned long flags;
147
148	spin_lock_irqsave(&re_chan->desc_lock, flags);
149	list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) {
150		if (async_tx_test_ack(&desc->async_tx))
151			list_move_tail(&desc->node, &re_chan->free_q);
152	}
153	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
154
155	fsl_re_issue_pending(&re_chan->chan);
156}
157
158static void fsl_re_dequeue(struct tasklet_struct *t)
159{
160	struct fsl_re_chan *re_chan = from_tasklet(re_chan, t, irqtask);
161	struct fsl_re_desc *desc, *_desc;
162	struct fsl_re_hw_desc *hwdesc;
163	unsigned long flags;
164	unsigned int count, oub_count;
165	int found;
166
167	fsl_re_cleanup_descs(re_chan);
168
169	spin_lock_irqsave(&re_chan->desc_lock, flags);
170	count =	FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full));
171	while (count--) {
172		found = 0;
173		hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count];
174		list_for_each_entry_safe(desc, _desc, &re_chan->active_q,
175					 node) {
176			/* compare the hw dma addr to find the completed */
177			if (desc->hwdesc.lbea32 == hwdesc->lbea32 &&
178			    desc->hwdesc.addr_low == hwdesc->addr_low) {
179				found = 1;
180				break;
181			}
182		}
183
184		if (found) {
185			fsl_re_desc_done(desc);
186			list_move_tail(&desc->node, &re_chan->ack_q);
187		} else {
188			dev_err(re_chan->dev,
189				"found hwdesc not in sw queue, discard it\n");
190		}
191
192		oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK;
193		re_chan->oub_count = oub_count;
194
195		out_be32(&re_chan->jrregs->oubring_job_rmvd,
196			 FSL_RE_RMVD_JOB(1));
197	}
198	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
199}
200
201/* Per Job Ring interrupt handler */
202static irqreturn_t fsl_re_isr(int irq, void *data)
203{
204	struct fsl_re_chan *re_chan;
205	u32 irqstate, status;
206
207	re_chan = dev_get_drvdata((struct device *)data);
208
209	irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status);
210	if (!irqstate)
211		return IRQ_NONE;
212
213	/*
214	 * There's no way in upper layer (read MD layer) to recover from
215	 * error conditions except restart everything. In long term we
216	 * need to do something more than just crashing
217	 */
218	if (irqstate & FSL_RE_ERROR) {
219		status = in_be32(&re_chan->jrregs->jr_status);
220		dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n",
221			irqstate, status);
222	}
223
224	/* Clear interrupt */
225	out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR);
226
227	tasklet_schedule(&re_chan->irqtask);
228
229	return IRQ_HANDLED;
230}
231
232static enum dma_status fsl_re_tx_status(struct dma_chan *chan,
233					dma_cookie_t cookie,
234					struct dma_tx_state *txstate)
235{
236	return dma_cookie_status(chan, cookie, txstate);
237}
238
239static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index,
240			   size_t length, dma_addr_t addr, bool final)
241{
242	u32 efrl = length & FSL_RE_CF_LENGTH_MASK;
243
244	efrl |= final << FSL_RE_CF_FINAL_SHIFT;
245	cf[index].efrl32 = efrl;
246	cf[index].addr_high = upper_32_bits(addr);
247	cf[index].addr_low = lower_32_bits(addr);
248}
249
250static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan,
251					    struct fsl_re_desc *desc,
252					    void *cf, dma_addr_t paddr)
253{
254	desc->re_chan = re_chan;
255	desc->async_tx.tx_submit = fsl_re_tx_submit;
256	dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan);
257	INIT_LIST_HEAD(&desc->node);
258
259	desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT;
260	desc->hwdesc.lbea32 = upper_32_bits(paddr);
261	desc->hwdesc.addr_low = lower_32_bits(paddr);
262	desc->cf_addr = cf;
263	desc->cf_paddr = paddr;
264
265	desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE);
266	desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE;
267
268	return desc;
269}
270
271static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan,
272						  unsigned long flags)
273{
274	struct fsl_re_desc *desc = NULL;
275	void *cf;
276	dma_addr_t paddr;
277	unsigned long lock_flag;
278
279	fsl_re_cleanup_descs(re_chan);
280
281	spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
282	if (!list_empty(&re_chan->free_q)) {
283		/* take one desc from free_q */
284		desc = list_first_entry(&re_chan->free_q,
285					struct fsl_re_desc, node);
286		list_del(&desc->node);
287
288		desc->async_tx.flags = flags;
289	}
290	spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
291
292	if (!desc) {
293		desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
294		if (!desc)
295			return NULL;
296
297		cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT,
298				    &paddr);
299		if (!cf) {
300			kfree(desc);
301			return NULL;
302		}
303
304		desc = fsl_re_init_desc(re_chan, desc, cf, paddr);
305		desc->async_tx.flags = flags;
306
307		spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
308		re_chan->alloc_count++;
309		spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
310	}
311
312	return desc;
313}
314
315static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq(
316		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
317		unsigned int src_cnt, const unsigned char *scf, size_t len,
318		unsigned long flags)
319{
320	struct fsl_re_chan *re_chan;
321	struct fsl_re_desc *desc;
322	struct fsl_re_xor_cdb *xor;
323	struct fsl_re_cmpnd_frame *cf;
324	u32 cdb;
325	unsigned int i, j;
326	unsigned int save_src_cnt = src_cnt;
327	int cont_q = 0;
328
329	re_chan = container_of(chan, struct fsl_re_chan, chan);
330	if (len > FSL_RE_MAX_DATA_LEN) {
331		dev_err(re_chan->dev, "genq tx length %zu, max length %d\n",
332			len, FSL_RE_MAX_DATA_LEN);
333		return NULL;
334	}
335
336	desc = fsl_re_chan_alloc_desc(re_chan, flags);
337	if (desc <= 0)
338		return NULL;
339
340	if (scf && (flags & DMA_PREP_CONTINUE)) {
341		cont_q = 1;
342		src_cnt += 1;
343	}
344
345	/* Filling xor CDB */
346	cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
347	cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
348	cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
349	cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
350	cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
351	xor = desc->cdb_addr;
352	xor->cdb32 = cdb;
353
354	if (scf) {
355		/* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
356		for (i = 0; i < save_src_cnt; i++)
357			xor->gfm[i] = scf[i];
358		if (cont_q)
359			xor->gfm[i++] = 1;
360	} else {
361		/* compute P, that is XOR all srcs */
362		for (i = 0; i < src_cnt; i++)
363			xor->gfm[i] = 1;
364	}
365
366	/* Filling frame 0 of compound frame descriptor with CDB */
367	cf = desc->cf_addr;
368	fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0);
369
370	/* Fill CFD's 1st frame with dest buffer */
371	fill_cfd_frame(cf, 1, len, dest, 0);
372
373	/* Fill CFD's rest of the frames with source buffers */
374	for (i = 2, j = 0; j < save_src_cnt; i++, j++)
375		fill_cfd_frame(cf, i, len, src[j], 0);
376
377	if (cont_q)
378		fill_cfd_frame(cf, i++, len, dest, 0);
379
380	/* Setting the final bit in the last source buffer frame in CFD */
381	cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
382
383	return &desc->async_tx;
384}
385
386/*
387 * Prep function for P parity calculation.In RAID Engine terminology,
388 * XOR calculation is called GenQ calculation done through GenQ command
389 */
390static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor(
391		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
392		unsigned int src_cnt, size_t len, unsigned long flags)
393{
394	/* NULL let genq take all coef as 1 */
395	return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags);
396}
397
398/*
399 * Prep function for P/Q parity calculation.In RAID Engine terminology,
400 * P/Q calculation is called GenQQ done through GenQQ command
401 */
402static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq(
403		struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
404		unsigned int src_cnt, const unsigned char *scf, size_t len,
405		unsigned long flags)
406{
407	struct fsl_re_chan *re_chan;
408	struct fsl_re_desc *desc;
409	struct fsl_re_pq_cdb *pq;
410	struct fsl_re_cmpnd_frame *cf;
411	u32 cdb;
412	u8 *p;
413	int gfmq_len, i, j;
414	unsigned int save_src_cnt = src_cnt;
415
416	re_chan = container_of(chan, struct fsl_re_chan, chan);
417	if (len > FSL_RE_MAX_DATA_LEN) {
418		dev_err(re_chan->dev, "pq tx length is %zu, max length is %d\n",
419			len, FSL_RE_MAX_DATA_LEN);
420		return NULL;
421	}
422
423	/*
424	 * RE requires at least 2 sources, if given only one source, we pass the
425	 * second source same as the first one.
426	 * With only one source, generating P is meaningless, only generate Q.
427	 */
428	if (src_cnt == 1) {
429		struct dma_async_tx_descriptor *tx;
430		dma_addr_t dma_src[2];
431		unsigned char coef[2];
432
433		dma_src[0] = *src;
434		coef[0] = *scf;
435		dma_src[1] = *src;
436		coef[1] = 0;
437		tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len,
438					  flags);
439		if (tx)
440			desc = to_fsl_re_dma_desc(tx);
441
442		return tx;
443	}
444
445	/*
446	 * During RAID6 array creation, Linux's MD layer gets P and Q
447	 * calculated separately in two steps. But our RAID Engine has
448	 * the capability to calculate both P and Q with a single command
449	 * Hence to merge well with MD layer, we need to provide a hook
450	 * here and call re_jq_prep_dma_genq() function
451	 */
452
453	if (flags & DMA_PREP_PQ_DISABLE_P)
454		return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt,
455				scf, len, flags);
456
457	if (flags & DMA_PREP_CONTINUE)
458		src_cnt += 3;
459
460	desc = fsl_re_chan_alloc_desc(re_chan, flags);
461	if (desc <= 0)
462		return NULL;
463
464	/* Filling GenQQ CDB */
465	cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
466	cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
467	cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
468	cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT;
469	cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
470
471	pq = desc->cdb_addr;
472	pq->cdb32 = cdb;
473
474	p = pq->gfm_q1;
475	/* Init gfm_q1[] */
476	for (i = 0; i < src_cnt; i++)
477		p[i] = 1;
478
479	/* Align gfm[] to 32bit */
480	gfmq_len = ALIGN(src_cnt, 4);
481
482	/* Init gfm_q2[] */
483	p += gfmq_len;
484	for (i = 0; i < src_cnt; i++)
485		p[i] = scf[i];
486
487	/* Filling frame 0 of compound frame descriptor with CDB */
488	cf = desc->cf_addr;
489	fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0);
490
491	/* Fill CFD's 1st & 2nd frame with dest buffers */
492	for (i = 1, j = 0; i < 3; i++, j++)
493		fill_cfd_frame(cf, i, len, dest[j], 0);
494
495	/* Fill CFD's rest of the frames with source buffers */
496	for (i = 3, j = 0; j < save_src_cnt; i++, j++)
497		fill_cfd_frame(cf, i, len, src[j], 0);
498
499	/* PQ computation continuation */
500	if (flags & DMA_PREP_CONTINUE) {
501		if (src_cnt - save_src_cnt == 3) {
502			p[save_src_cnt] = 0;
503			p[save_src_cnt + 1] = 0;
504			p[save_src_cnt + 2] = 1;
505			fill_cfd_frame(cf, i++, len, dest[0], 0);
506			fill_cfd_frame(cf, i++, len, dest[1], 0);
507			fill_cfd_frame(cf, i++, len, dest[1], 0);
508		} else {
509			dev_err(re_chan->dev, "PQ tx continuation error!\n");
510			return NULL;
511		}
512	}
513
514	/* Setting the final bit in the last source buffer frame in CFD */
515	cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
516
517	return &desc->async_tx;
518}
519
520/*
521 * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
522 * command. Logic of this function will need to be modified once multipage
523 * support is added in Linux's MD/ASYNC Layer
524 */
525static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy(
526		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
527		size_t len, unsigned long flags)
528{
529	struct fsl_re_chan *re_chan;
530	struct fsl_re_desc *desc;
531	size_t length;
532	struct fsl_re_cmpnd_frame *cf;
533	struct fsl_re_move_cdb *move;
534	u32 cdb;
535
536	re_chan = container_of(chan, struct fsl_re_chan, chan);
537
538	if (len > FSL_RE_MAX_DATA_LEN) {
539		dev_err(re_chan->dev, "cp tx length is %zu, max length is %d\n",
540			len, FSL_RE_MAX_DATA_LEN);
541		return NULL;
542	}
543
544	desc = fsl_re_chan_alloc_desc(re_chan, flags);
545	if (desc <= 0)
546		return NULL;
547
548	/* Filling move CDB */
549	cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
550	cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
551	cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
552	cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
553
554	move = desc->cdb_addr;
555	move->cdb32 = cdb;
556
557	/* Filling frame 0 of CFD with move CDB */
558	cf = desc->cf_addr;
559	fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0);
560
561	length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN);
562
563	/* Fill CFD's 1st frame with dest buffer */
564	fill_cfd_frame(cf, 1, length, dest, 0);
565
566	/* Fill CFD's 2nd frame with src buffer */
567	fill_cfd_frame(cf, 2, length, src, 1);
568
569	return &desc->async_tx;
570}
571
572static int fsl_re_alloc_chan_resources(struct dma_chan *chan)
573{
574	struct fsl_re_chan *re_chan;
575	struct fsl_re_desc *desc;
576	void *cf;
577	dma_addr_t paddr;
578	int i;
579
580	re_chan = container_of(chan, struct fsl_re_chan, chan);
581	for (i = 0; i < FSL_RE_MIN_DESCS; i++) {
582		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
583		if (!desc)
584			break;
585
586		cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL,
587				    &paddr);
588		if (!cf) {
589			kfree(desc);
590			break;
591		}
592
593		INIT_LIST_HEAD(&desc->node);
594		fsl_re_init_desc(re_chan, desc, cf, paddr);
595
596		list_add_tail(&desc->node, &re_chan->free_q);
597		re_chan->alloc_count++;
598	}
599	return re_chan->alloc_count;
600}
601
602static void fsl_re_free_chan_resources(struct dma_chan *chan)
603{
604	struct fsl_re_chan *re_chan;
605	struct fsl_re_desc *desc;
606
607	re_chan = container_of(chan, struct fsl_re_chan, chan);
608	while (re_chan->alloc_count--) {
609		desc = list_first_entry(&re_chan->free_q,
610					struct fsl_re_desc,
611					node);
612
613		list_del(&desc->node);
614		dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr,
615			      desc->cf_paddr);
616		kfree(desc);
617	}
618
619	if (!list_empty(&re_chan->free_q))
620		dev_err(re_chan->dev, "chan resource cannot be cleaned!\n");
621}
622
623static int fsl_re_chan_probe(struct platform_device *ofdev,
624		      struct device_node *np, u8 q, u32 off)
625{
626	struct device *dev, *chandev;
627	struct fsl_re_drv_private *re_priv;
628	struct fsl_re_chan *chan;
629	struct dma_device *dma_dev;
630	u32 ptr;
631	u32 status;
632	int ret = 0, rc;
633	struct platform_device *chan_ofdev;
634
635	dev = &ofdev->dev;
636	re_priv = dev_get_drvdata(dev);
637	dma_dev = &re_priv->dma_dev;
638
639	chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
640	if (!chan)
641		return -ENOMEM;
642
643	/* create platform device for chan node */
644	chan_ofdev = of_platform_device_create(np, NULL, dev);
645	if (!chan_ofdev) {
646		dev_err(dev, "Not able to create ofdev for jr %d\n", q);
647		ret = -EINVAL;
648		goto err_free;
649	}
650
651	/* read reg property from dts */
652	rc = of_property_read_u32(np, "reg", &ptr);
653	if (rc) {
654		dev_err(dev, "Reg property not found in jr %d\n", q);
655		ret = -ENODEV;
656		goto err_free;
657	}
658
659	chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs +
660			off + ptr);
661
662	/* read irq property from dts */
663	chan->irq = irq_of_parse_and_map(np, 0);
664	if (!chan->irq) {
665		dev_err(dev, "No IRQ defined for JR %d\n", q);
666		ret = -ENODEV;
667		goto err_free;
668	}
669
670	snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q);
671
672	chandev = &chan_ofdev->dev;
673	tasklet_setup(&chan->irqtask, fsl_re_dequeue);
674
675	ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev);
676	if (ret) {
677		dev_err(dev, "Unable to register interrupt for JR %d\n", q);
678		ret = -EINVAL;
679		goto err_free;
680	}
681
682	re_priv->re_jrs[q] = chan;
683	chan->chan.device = dma_dev;
684	chan->chan.private = chan;
685	chan->dev = chandev;
686	chan->re_dev = re_priv;
687
688	spin_lock_init(&chan->desc_lock);
689	INIT_LIST_HEAD(&chan->ack_q);
690	INIT_LIST_HEAD(&chan->active_q);
691	INIT_LIST_HEAD(&chan->submit_q);
692	INIT_LIST_HEAD(&chan->free_q);
693
694	chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
695		GFP_KERNEL, &chan->inb_phys_addr);
696	if (!chan->inb_ring_virt_addr) {
697		dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
698		ret = -ENOMEM;
699		goto err_free;
700	}
701
702	chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
703		GFP_KERNEL, &chan->oub_phys_addr);
704	if (!chan->oub_ring_virt_addr) {
705		dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
706		ret = -ENOMEM;
707		goto err_free_1;
708	}
709
710	/* Program the Inbound/Outbound ring base addresses and size */
711	out_be32(&chan->jrregs->inbring_base_h,
712		 chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK);
713	out_be32(&chan->jrregs->oubring_base_h,
714		 chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK);
715	out_be32(&chan->jrregs->inbring_base_l,
716		 chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
717	out_be32(&chan->jrregs->oubring_base_l,
718		 chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
719	out_be32(&chan->jrregs->inbring_size,
720		 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
721	out_be32(&chan->jrregs->oubring_size,
722		 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
723
724	/* Read LIODN value from u-boot */
725	status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK;
726
727	/* Program the CFG reg */
728	out_be32(&chan->jrregs->jr_config_1,
729		 FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status);
730
731	dev_set_drvdata(chandev, chan);
732
733	/* Enable RE/CHAN */
734	out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE);
735
736	return 0;
737
738err_free_1:
739	dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
740		      chan->inb_phys_addr);
741err_free:
742	return ret;
743}
744
745/* Probe function for RAID Engine */
746static int fsl_re_probe(struct platform_device *ofdev)
747{
748	struct fsl_re_drv_private *re_priv;
749	struct device_node *np;
750	struct device_node *child;
751	u32 off;
752	u8 ridx = 0;
753	struct dma_device *dma_dev;
754	struct resource *res;
755	int rc;
756	struct device *dev = &ofdev->dev;
757
758	re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL);
759	if (!re_priv)
760		return -ENOMEM;
761
762	res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
763	if (!res)
764		return -ENODEV;
765
766	/* IOMAP the entire RAID Engine region */
767	re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
768	if (!re_priv->re_regs)
769		return -EBUSY;
770
771	/* Program the RE mode */
772	out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE);
773
774	/* Program Galois Field polynomial */
775	out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY);
776
777	dev_info(dev, "version %x, mode %x, gfp %x\n",
778		 in_be32(&re_priv->re_regs->re_version_id),
779		 in_be32(&re_priv->re_regs->global_config),
780		 in_be32(&re_priv->re_regs->galois_field_config));
781
782	dma_dev = &re_priv->dma_dev;
783	dma_dev->dev = dev;
784	INIT_LIST_HEAD(&dma_dev->channels);
785	dma_set_mask(dev, DMA_BIT_MASK(40));
786
787	dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources;
788	dma_dev->device_tx_status = fsl_re_tx_status;
789	dma_dev->device_issue_pending = fsl_re_issue_pending;
790
791	dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS;
792	dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor;
793	dma_cap_set(DMA_XOR, dma_dev->cap_mask);
794
795	dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS;
796	dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq;
797	dma_cap_set(DMA_PQ, dma_dev->cap_mask);
798
799	dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy;
800	dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
801
802	dma_dev->device_free_chan_resources = fsl_re_free_chan_resources;
803
804	re_priv->total_chans = 0;
805
806	re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev,
807					FSL_RE_CF_CDB_SIZE,
808					FSL_RE_CF_CDB_ALIGN, 0);
809
810	if (!re_priv->cf_desc_pool) {
811		dev_err(dev, "No memory for fsl re_cf desc pool\n");
812		return -ENOMEM;
813	}
814
815	re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev,
816			sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE,
817			FSL_RE_FRAME_ALIGN, 0);
818	if (!re_priv->hw_desc_pool) {
819		dev_err(dev, "No memory for fsl re_hw desc pool\n");
820		return -ENOMEM;
821	}
822
823	dev_set_drvdata(dev, re_priv);
824
825	/* Parse Device tree to find out the total number of JQs present */
826	for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
827		rc = of_property_read_u32(np, "reg", &off);
828		if (rc) {
829			dev_err(dev, "Reg property not found in JQ node\n");
830			of_node_put(np);
831			return -ENODEV;
832		}
833		/* Find out the Job Rings present under each JQ */
834		for_each_child_of_node(np, child) {
835			rc = of_device_is_compatible(child,
836					     "fsl,raideng-v1.0-job-ring");
837			if (rc) {
838				fsl_re_chan_probe(ofdev, child, ridx++, off);
839				re_priv->total_chans++;
840			}
841		}
842	}
843
844	dma_async_device_register(dma_dev);
845
846	return 0;
847}
848
849static void fsl_re_remove_chan(struct fsl_re_chan *chan)
850{
851	tasklet_kill(&chan->irqtask);
852
853	dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
854		      chan->inb_phys_addr);
855
856	dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr,
857		      chan->oub_phys_addr);
858}
859
860static void fsl_re_remove(struct platform_device *ofdev)
861{
862	struct fsl_re_drv_private *re_priv;
863	struct device *dev;
864	int i;
865
866	dev = &ofdev->dev;
867	re_priv = dev_get_drvdata(dev);
868
869	/* Cleanup chan related memory areas */
870	for (i = 0; i < re_priv->total_chans; i++)
871		fsl_re_remove_chan(re_priv->re_jrs[i]);
872
873	/* Unregister the driver */
874	dma_async_device_unregister(&re_priv->dma_dev);
875}
876
877static const struct of_device_id fsl_re_ids[] = {
878	{ .compatible = "fsl,raideng-v1.0", },
879	{}
880};
881MODULE_DEVICE_TABLE(of, fsl_re_ids);
882
883static struct platform_driver fsl_re_driver = {
884	.driver = {
885		.name = "fsl-raideng",
886		.of_match_table = fsl_re_ids,
887	},
888	.probe = fsl_re_probe,
889	.remove_new = fsl_re_remove,
890};
891
892module_platform_driver(fsl_re_driver);
893
894MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
895MODULE_LICENSE("GPL v2");
896MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");
897