1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5
6/*
7 * This code implements the DMA subsystem. It provides a HW-neutral interface
8 * for other kernel code to use asynchronous memory copy capabilities,
9 * if present, and allows different HW DMA drivers to register as providing
10 * this capability.
11 *
12 * Due to the fact we are accelerating what is already a relatively fast
13 * operation, the code goes to great lengths to avoid additional overhead,
14 * such as locking.
15 *
16 * LOCKING:
17 *
18 * The subsystem keeps a global list of dma_device structs it is protected by a
19 * mutex, dma_list_mutex.
20 *
21 * A subsystem can get access to a channel by calling dmaengine_get() followed
22 * by dma_find_channel(), or if it has need for an exclusive channel it can call
23 * dma_request_channel().  Once a channel is allocated a reference is taken
24 * against its corresponding driver to disable removal.
25 *
26 * Each device has a channels list, which runs unlocked but is never modified
27 * once the device is registered, it's just setup by the driver.
28 *
29 * See Documentation/driver-api/dmaengine for more details
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/platform_device.h>
35#include <linux/dma-mapping.h>
36#include <linux/init.h>
37#include <linux/module.h>
38#include <linux/mm.h>
39#include <linux/device.h>
40#include <linux/dmaengine.h>
41#include <linux/hardirq.h>
42#include <linux/spinlock.h>
43#include <linux/percpu.h>
44#include <linux/rcupdate.h>
45#include <linux/mutex.h>
46#include <linux/jiffies.h>
47#include <linux/rculist.h>
48#include <linux/idr.h>
49#include <linux/slab.h>
50#include <linux/acpi.h>
51#include <linux/acpi_dma.h>
52#include <linux/of_dma.h>
53#include <linux/mempool.h>
54#include <linux/numa.h>
55
56#include "dmaengine.h"
57
58static DEFINE_MUTEX(dma_list_mutex);
59static DEFINE_IDA(dma_ida);
60static LIST_HEAD(dma_device_list);
61static long dmaengine_ref_count;
62
63/* --- debugfs implementation --- */
64#ifdef CONFIG_DEBUG_FS
65#include <linux/debugfs.h>
66
67static struct dentry *rootdir;
68
69static void dmaengine_debug_register(struct dma_device *dma_dev)
70{
71	dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
72						   rootdir);
73	if (IS_ERR(dma_dev->dbg_dev_root))
74		dma_dev->dbg_dev_root = NULL;
75}
76
77static void dmaengine_debug_unregister(struct dma_device *dma_dev)
78{
79	debugfs_remove_recursive(dma_dev->dbg_dev_root);
80	dma_dev->dbg_dev_root = NULL;
81}
82
83static void dmaengine_dbg_summary_show(struct seq_file *s,
84				       struct dma_device *dma_dev)
85{
86	struct dma_chan *chan;
87
88	list_for_each_entry(chan, &dma_dev->channels, device_node) {
89		if (chan->client_count) {
90			seq_printf(s, " %-13s| %s", dma_chan_name(chan),
91				   chan->dbg_client_name ?: "in-use");
92
93			if (chan->router)
94				seq_printf(s, " (via router: %s)\n",
95					dev_name(chan->router->dev));
96			else
97				seq_puts(s, "\n");
98		}
99	}
100}
101
102static int dmaengine_summary_show(struct seq_file *s, void *data)
103{
104	struct dma_device *dma_dev = NULL;
105
106	mutex_lock(&dma_list_mutex);
107	list_for_each_entry(dma_dev, &dma_device_list, global_node) {
108		seq_printf(s, "dma%d (%s): number of channels: %u\n",
109			   dma_dev->dev_id, dev_name(dma_dev->dev),
110			   dma_dev->chancnt);
111
112		if (dma_dev->dbg_summary_show)
113			dma_dev->dbg_summary_show(s, dma_dev);
114		else
115			dmaengine_dbg_summary_show(s, dma_dev);
116
117		if (!list_is_last(&dma_dev->global_node, &dma_device_list))
118			seq_puts(s, "\n");
119	}
120	mutex_unlock(&dma_list_mutex);
121
122	return 0;
123}
124DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
125
126static void __init dmaengine_debugfs_init(void)
127{
128	rootdir = debugfs_create_dir("dmaengine", NULL);
129
130	/* /sys/kernel/debug/dmaengine/summary */
131	debugfs_create_file("summary", 0444, rootdir, NULL,
132			    &dmaengine_summary_fops);
133}
134#else
135static inline void dmaengine_debugfs_init(void) { }
136static inline int dmaengine_debug_register(struct dma_device *dma_dev)
137{
138	return 0;
139}
140
141static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
142#endif	/* DEBUG_FS */
143
144/* --- sysfs implementation --- */
145
146#define DMA_SLAVE_NAME	"slave"
147
148/**
149 * dev_to_dma_chan - convert a device pointer to its sysfs container object
150 * @dev:	device node
151 *
152 * Must be called under dma_list_mutex.
153 */
154static struct dma_chan *dev_to_dma_chan(struct device *dev)
155{
156	struct dma_chan_dev *chan_dev;
157
158	chan_dev = container_of(dev, typeof(*chan_dev), device);
159	return chan_dev->chan;
160}
161
162static ssize_t memcpy_count_show(struct device *dev,
163				 struct device_attribute *attr, char *buf)
164{
165	struct dma_chan *chan;
166	unsigned long count = 0;
167	int i;
168	int err;
169
170	mutex_lock(&dma_list_mutex);
171	chan = dev_to_dma_chan(dev);
172	if (chan) {
173		for_each_possible_cpu(i)
174			count += per_cpu_ptr(chan->local, i)->memcpy_count;
175		err = sysfs_emit(buf, "%lu\n", count);
176	} else
177		err = -ENODEV;
178	mutex_unlock(&dma_list_mutex);
179
180	return err;
181}
182static DEVICE_ATTR_RO(memcpy_count);
183
184static ssize_t bytes_transferred_show(struct device *dev,
185				      struct device_attribute *attr, char *buf)
186{
187	struct dma_chan *chan;
188	unsigned long count = 0;
189	int i;
190	int err;
191
192	mutex_lock(&dma_list_mutex);
193	chan = dev_to_dma_chan(dev);
194	if (chan) {
195		for_each_possible_cpu(i)
196			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
197		err = sysfs_emit(buf, "%lu\n", count);
198	} else
199		err = -ENODEV;
200	mutex_unlock(&dma_list_mutex);
201
202	return err;
203}
204static DEVICE_ATTR_RO(bytes_transferred);
205
206static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
207			   char *buf)
208{
209	struct dma_chan *chan;
210	int err;
211
212	mutex_lock(&dma_list_mutex);
213	chan = dev_to_dma_chan(dev);
214	if (chan)
215		err = sysfs_emit(buf, "%d\n", chan->client_count);
216	else
217		err = -ENODEV;
218	mutex_unlock(&dma_list_mutex);
219
220	return err;
221}
222static DEVICE_ATTR_RO(in_use);
223
224static struct attribute *dma_dev_attrs[] = {
225	&dev_attr_memcpy_count.attr,
226	&dev_attr_bytes_transferred.attr,
227	&dev_attr_in_use.attr,
228	NULL,
229};
230ATTRIBUTE_GROUPS(dma_dev);
231
232static void chan_dev_release(struct device *dev)
233{
234	struct dma_chan_dev *chan_dev;
235
236	chan_dev = container_of(dev, typeof(*chan_dev), device);
237	kfree(chan_dev);
238}
239
240static struct class dma_devclass = {
241	.name		= "dma",
242	.dev_groups	= dma_dev_groups,
243	.dev_release	= chan_dev_release,
244};
245
246/* --- client and device registration --- */
247
248/* enable iteration over all operation types */
249static dma_cap_mask_t dma_cap_mask_all;
250
251/**
252 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation
253 * @chan:	associated channel for this entry
254 */
255struct dma_chan_tbl_ent {
256	struct dma_chan *chan;
257};
258
259/* percpu lookup table for memory-to-memory offload providers */
260static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
261
262static int __init dma_channel_table_init(void)
263{
264	enum dma_transaction_type cap;
265	int err = 0;
266
267	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
268
269	/* 'interrupt', 'private', and 'slave' are channel capabilities,
270	 * but are not associated with an operation so they do not need
271	 * an entry in the channel_table
272	 */
273	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
274	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
275	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
276
277	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
278		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
279		if (!channel_table[cap]) {
280			err = -ENOMEM;
281			break;
282		}
283	}
284
285	if (err) {
286		pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
287		for_each_dma_cap_mask(cap, dma_cap_mask_all)
288			free_percpu(channel_table[cap]);
289	}
290
291	return err;
292}
293arch_initcall(dma_channel_table_init);
294
295/**
296 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU
297 * @chan:	DMA channel to test
298 * @cpu:	CPU index which the channel should be close to
299 *
300 * Returns true if the channel is in the same NUMA-node as the CPU.
301 */
302static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
303{
304	int node = dev_to_node(chan->device->dev);
305	return node == NUMA_NO_NODE ||
306		cpumask_test_cpu(cpu, cpumask_of_node(node));
307}
308
309/**
310 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU
311 * @cap:	capability to match
312 * @cpu:	CPU index which the channel should be close to
313 *
314 * If some channels are close to the given CPU, the one with the lowest
315 * reference count is returned. Otherwise, CPU is ignored and only the
316 * reference count is taken into account.
317 *
318 * Must be called under dma_list_mutex.
319 */
320static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
321{
322	struct dma_device *device;
323	struct dma_chan *chan;
324	struct dma_chan *min = NULL;
325	struct dma_chan *localmin = NULL;
326
327	list_for_each_entry(device, &dma_device_list, global_node) {
328		if (!dma_has_cap(cap, device->cap_mask) ||
329		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
330			continue;
331		list_for_each_entry(chan, &device->channels, device_node) {
332			if (!chan->client_count)
333				continue;
334			if (!min || chan->table_count < min->table_count)
335				min = chan;
336
337			if (dma_chan_is_local(chan, cpu))
338				if (!localmin ||
339				    chan->table_count < localmin->table_count)
340					localmin = chan;
341		}
342	}
343
344	chan = localmin ? localmin : min;
345
346	if (chan)
347		chan->table_count++;
348
349	return chan;
350}
351
352/**
353 * dma_channel_rebalance - redistribute the available channels
354 *
355 * Optimize for CPU isolation (each CPU gets a dedicated channel for an
356 * operation type) in the SMP case, and operation isolation (avoid
357 * multi-tasking channels) in the non-SMP case.
358 *
359 * Must be called under dma_list_mutex.
360 */
361static void dma_channel_rebalance(void)
362{
363	struct dma_chan *chan;
364	struct dma_device *device;
365	int cpu;
366	int cap;
367
368	/* undo the last distribution */
369	for_each_dma_cap_mask(cap, dma_cap_mask_all)
370		for_each_possible_cpu(cpu)
371			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
372
373	list_for_each_entry(device, &dma_device_list, global_node) {
374		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
375			continue;
376		list_for_each_entry(chan, &device->channels, device_node)
377			chan->table_count = 0;
378	}
379
380	/* don't populate the channel_table if no clients are available */
381	if (!dmaengine_ref_count)
382		return;
383
384	/* redistribute available channels */
385	for_each_dma_cap_mask(cap, dma_cap_mask_all)
386		for_each_online_cpu(cpu) {
387			chan = min_chan(cap, cpu);
388			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
389		}
390}
391
392static int dma_device_satisfies_mask(struct dma_device *device,
393				     const dma_cap_mask_t *want)
394{
395	dma_cap_mask_t has;
396
397	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
398		DMA_TX_TYPE_END);
399	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
400}
401
402static struct module *dma_chan_to_owner(struct dma_chan *chan)
403{
404	return chan->device->owner;
405}
406
407/**
408 * balance_ref_count - catch up the channel reference count
409 * @chan:	channel to balance ->client_count versus dmaengine_ref_count
410 *
411 * Must be called under dma_list_mutex.
412 */
413static void balance_ref_count(struct dma_chan *chan)
414{
415	struct module *owner = dma_chan_to_owner(chan);
416
417	while (chan->client_count < dmaengine_ref_count) {
418		__module_get(owner);
419		chan->client_count++;
420	}
421}
422
423static void dma_device_release(struct kref *ref)
424{
425	struct dma_device *device = container_of(ref, struct dma_device, ref);
426
427	list_del_rcu(&device->global_node);
428	dma_channel_rebalance();
429
430	if (device->device_release)
431		device->device_release(device);
432}
433
434static void dma_device_put(struct dma_device *device)
435{
436	lockdep_assert_held(&dma_list_mutex);
437	kref_put(&device->ref, dma_device_release);
438}
439
440/**
441 * dma_chan_get - try to grab a DMA channel's parent driver module
442 * @chan:	channel to grab
443 *
444 * Must be called under dma_list_mutex.
445 */
446static int dma_chan_get(struct dma_chan *chan)
447{
448	struct module *owner = dma_chan_to_owner(chan);
449	int ret;
450
451	/* The channel is already in use, update client count */
452	if (chan->client_count) {
453		__module_get(owner);
454		chan->client_count++;
455		return 0;
456	}
457
458	if (!try_module_get(owner))
459		return -ENODEV;
460
461	ret = kref_get_unless_zero(&chan->device->ref);
462	if (!ret) {
463		ret = -ENODEV;
464		goto module_put_out;
465	}
466
467	/* allocate upon first client reference */
468	if (chan->device->device_alloc_chan_resources) {
469		ret = chan->device->device_alloc_chan_resources(chan);
470		if (ret < 0)
471			goto err_out;
472	}
473
474	chan->client_count++;
475
476	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
477		balance_ref_count(chan);
478
479	return 0;
480
481err_out:
482	dma_device_put(chan->device);
483module_put_out:
484	module_put(owner);
485	return ret;
486}
487
488/**
489 * dma_chan_put - drop a reference to a DMA channel's parent driver module
490 * @chan:	channel to release
491 *
492 * Must be called under dma_list_mutex.
493 */
494static void dma_chan_put(struct dma_chan *chan)
495{
496	/* This channel is not in use, bail out */
497	if (!chan->client_count)
498		return;
499
500	chan->client_count--;
501
502	/* This channel is not in use anymore, free it */
503	if (!chan->client_count && chan->device->device_free_chan_resources) {
504		/* Make sure all operations have completed */
505		dmaengine_synchronize(chan);
506		chan->device->device_free_chan_resources(chan);
507	}
508
509	/* If the channel is used via a DMA request router, free the mapping */
510	if (chan->router && chan->router->route_free) {
511		chan->router->route_free(chan->router->dev, chan->route_data);
512		chan->router = NULL;
513		chan->route_data = NULL;
514	}
515
516	dma_device_put(chan->device);
517	module_put(dma_chan_to_owner(chan));
518}
519
520enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
521{
522	enum dma_status status;
523	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
524
525	dma_async_issue_pending(chan);
526	do {
527		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
528		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
529			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
530			return DMA_ERROR;
531		}
532		if (status != DMA_IN_PROGRESS)
533			break;
534		cpu_relax();
535	} while (1);
536
537	return status;
538}
539EXPORT_SYMBOL(dma_sync_wait);
540
541/**
542 * dma_find_channel - find a channel to carry out the operation
543 * @tx_type:	transaction type
544 */
545struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
546{
547	return this_cpu_read(channel_table[tx_type]->chan);
548}
549EXPORT_SYMBOL(dma_find_channel);
550
551/**
552 * dma_issue_pending_all - flush all pending operations across all channels
553 */
554void dma_issue_pending_all(void)
555{
556	struct dma_device *device;
557	struct dma_chan *chan;
558
559	rcu_read_lock();
560	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
561		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
562			continue;
563		list_for_each_entry(chan, &device->channels, device_node)
564			if (chan->client_count)
565				device->device_issue_pending(chan);
566	}
567	rcu_read_unlock();
568}
569EXPORT_SYMBOL(dma_issue_pending_all);
570
571int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
572{
573	struct dma_device *device;
574
575	if (!chan || !caps)
576		return -EINVAL;
577
578	device = chan->device;
579
580	/* check if the channel supports slave transactions */
581	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
582	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
583		return -ENXIO;
584
585	/*
586	 * Check whether it reports it uses the generic slave
587	 * capabilities, if not, that means it doesn't support any
588	 * kind of slave capabilities reporting.
589	 */
590	if (!device->directions)
591		return -ENXIO;
592
593	caps->src_addr_widths = device->src_addr_widths;
594	caps->dst_addr_widths = device->dst_addr_widths;
595	caps->directions = device->directions;
596	caps->min_burst = device->min_burst;
597	caps->max_burst = device->max_burst;
598	caps->max_sg_burst = device->max_sg_burst;
599	caps->residue_granularity = device->residue_granularity;
600	caps->descriptor_reuse = device->descriptor_reuse;
601	caps->cmd_pause = !!device->device_pause;
602	caps->cmd_resume = !!device->device_resume;
603	caps->cmd_terminate = !!device->device_terminate_all;
604
605	/*
606	 * DMA engine device might be configured with non-uniformly
607	 * distributed slave capabilities per device channels. In this
608	 * case the corresponding driver may provide the device_caps
609	 * callback to override the generic capabilities with
610	 * channel-specific ones.
611	 */
612	if (device->device_caps)
613		device->device_caps(chan, caps);
614
615	return 0;
616}
617EXPORT_SYMBOL_GPL(dma_get_slave_caps);
618
619static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
620					  struct dma_device *dev,
621					  dma_filter_fn fn, void *fn_param)
622{
623	struct dma_chan *chan;
624
625	if (mask && !dma_device_satisfies_mask(dev, mask)) {
626		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
627		return NULL;
628	}
629	/* devices with multiple channels need special handling as we need to
630	 * ensure that all channels are either private or public.
631	 */
632	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
633		list_for_each_entry(chan, &dev->channels, device_node) {
634			/* some channels are already publicly allocated */
635			if (chan->client_count)
636				return NULL;
637		}
638
639	list_for_each_entry(chan, &dev->channels, device_node) {
640		if (chan->client_count) {
641			dev_dbg(dev->dev, "%s: %s busy\n",
642				 __func__, dma_chan_name(chan));
643			continue;
644		}
645		if (fn && !fn(chan, fn_param)) {
646			dev_dbg(dev->dev, "%s: %s filter said false\n",
647				 __func__, dma_chan_name(chan));
648			continue;
649		}
650		return chan;
651	}
652
653	return NULL;
654}
655
656static struct dma_chan *find_candidate(struct dma_device *device,
657				       const dma_cap_mask_t *mask,
658				       dma_filter_fn fn, void *fn_param)
659{
660	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
661	int err;
662
663	if (chan) {
664		/* Found a suitable channel, try to grab, prep, and return it.
665		 * We first set DMA_PRIVATE to disable balance_ref_count as this
666		 * channel will not be published in the general-purpose
667		 * allocator
668		 */
669		dma_cap_set(DMA_PRIVATE, device->cap_mask);
670		device->privatecnt++;
671		err = dma_chan_get(chan);
672
673		if (err) {
674			if (err == -ENODEV) {
675				dev_dbg(device->dev, "%s: %s module removed\n",
676					__func__, dma_chan_name(chan));
677				list_del_rcu(&device->global_node);
678			} else
679				dev_dbg(device->dev,
680					"%s: failed to get %s: (%d)\n",
681					 __func__, dma_chan_name(chan), err);
682
683			if (--device->privatecnt == 0)
684				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
685
686			chan = ERR_PTR(err);
687		}
688	}
689
690	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
691}
692
693/**
694 * dma_get_slave_channel - try to get specific channel exclusively
695 * @chan:	target channel
696 */
697struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
698{
699	/* lock against __dma_request_channel */
700	mutex_lock(&dma_list_mutex);
701
702	if (chan->client_count == 0) {
703		struct dma_device *device = chan->device;
704		int err;
705
706		dma_cap_set(DMA_PRIVATE, device->cap_mask);
707		device->privatecnt++;
708		err = dma_chan_get(chan);
709		if (err) {
710			dev_dbg(chan->device->dev,
711				"%s: failed to get %s: (%d)\n",
712				__func__, dma_chan_name(chan), err);
713			chan = NULL;
714			if (--device->privatecnt == 0)
715				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
716		}
717	} else
718		chan = NULL;
719
720	mutex_unlock(&dma_list_mutex);
721
722
723	return chan;
724}
725EXPORT_SYMBOL_GPL(dma_get_slave_channel);
726
727struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
728{
729	dma_cap_mask_t mask;
730	struct dma_chan *chan;
731
732	dma_cap_zero(mask);
733	dma_cap_set(DMA_SLAVE, mask);
734
735	/* lock against __dma_request_channel */
736	mutex_lock(&dma_list_mutex);
737
738	chan = find_candidate(device, &mask, NULL, NULL);
739
740	mutex_unlock(&dma_list_mutex);
741
742	return IS_ERR(chan) ? NULL : chan;
743}
744EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
745
746/**
747 * __dma_request_channel - try to allocate an exclusive channel
748 * @mask:	capabilities that the channel must satisfy
749 * @fn:		optional callback to disposition available channels
750 * @fn_param:	opaque parameter to pass to dma_filter_fn()
751 * @np:		device node to look for DMA channels
752 *
753 * Returns pointer to appropriate DMA channel on success or NULL.
754 */
755struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
756				       dma_filter_fn fn, void *fn_param,
757				       struct device_node *np)
758{
759	struct dma_device *device, *_d;
760	struct dma_chan *chan = NULL;
761
762	/* Find a channel */
763	mutex_lock(&dma_list_mutex);
764	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
765		/* Finds a DMA controller with matching device node */
766		if (np && device->dev->of_node && np != device->dev->of_node)
767			continue;
768
769		chan = find_candidate(device, mask, fn, fn_param);
770		if (!IS_ERR(chan))
771			break;
772
773		chan = NULL;
774	}
775	mutex_unlock(&dma_list_mutex);
776
777	pr_debug("%s: %s (%s)\n",
778		 __func__,
779		 chan ? "success" : "fail",
780		 chan ? dma_chan_name(chan) : NULL);
781
782	return chan;
783}
784EXPORT_SYMBOL_GPL(__dma_request_channel);
785
786static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
787						    const char *name,
788						    struct device *dev)
789{
790	int i;
791
792	if (!device->filter.mapcnt)
793		return NULL;
794
795	for (i = 0; i < device->filter.mapcnt; i++) {
796		const struct dma_slave_map *map = &device->filter.map[i];
797
798		if (!strcmp(map->devname, dev_name(dev)) &&
799		    !strcmp(map->slave, name))
800			return map;
801	}
802
803	return NULL;
804}
805
806/**
807 * dma_request_chan - try to allocate an exclusive slave channel
808 * @dev:	pointer to client device structure
809 * @name:	slave channel name
810 *
811 * Returns pointer to appropriate DMA channel on success or an error pointer.
812 */
813struct dma_chan *dma_request_chan(struct device *dev, const char *name)
814{
815	struct dma_device *d, *_d;
816	struct dma_chan *chan = NULL;
817
818	/* If device-tree is present get slave info from here */
819	if (dev->of_node)
820		chan = of_dma_request_slave_channel(dev->of_node, name);
821
822	/* If device was enumerated by ACPI get slave info from here */
823	if (has_acpi_companion(dev) && !chan)
824		chan = acpi_dma_request_slave_chan_by_name(dev, name);
825
826	if (PTR_ERR(chan) == -EPROBE_DEFER)
827		return chan;
828
829	if (!IS_ERR_OR_NULL(chan))
830		goto found;
831
832	/* Try to find the channel via the DMA filter map(s) */
833	mutex_lock(&dma_list_mutex);
834	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
835		dma_cap_mask_t mask;
836		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
837
838		if (!map)
839			continue;
840
841		dma_cap_zero(mask);
842		dma_cap_set(DMA_SLAVE, mask);
843
844		chan = find_candidate(d, &mask, d->filter.fn, map->param);
845		if (!IS_ERR(chan))
846			break;
847	}
848	mutex_unlock(&dma_list_mutex);
849
850	if (IS_ERR(chan))
851		return chan;
852	if (!chan)
853		return ERR_PTR(-EPROBE_DEFER);
854
855found:
856#ifdef CONFIG_DEBUG_FS
857	chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev),
858					  name);
859#endif
860
861	chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
862	if (!chan->name)
863		return chan;
864	chan->slave = dev;
865
866	if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
867			      DMA_SLAVE_NAME))
868		dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
869	if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
870		dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
871
872	return chan;
873}
874EXPORT_SYMBOL_GPL(dma_request_chan);
875
876/**
877 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
878 * @mask:	capabilities that the channel must satisfy
879 *
880 * Returns pointer to appropriate DMA channel on success or an error pointer.
881 */
882struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
883{
884	struct dma_chan *chan;
885
886	if (!mask)
887		return ERR_PTR(-ENODEV);
888
889	chan = __dma_request_channel(mask, NULL, NULL, NULL);
890	if (!chan) {
891		mutex_lock(&dma_list_mutex);
892		if (list_empty(&dma_device_list))
893			chan = ERR_PTR(-EPROBE_DEFER);
894		else
895			chan = ERR_PTR(-ENODEV);
896		mutex_unlock(&dma_list_mutex);
897	}
898
899	return chan;
900}
901EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
902
903void dma_release_channel(struct dma_chan *chan)
904{
905	mutex_lock(&dma_list_mutex);
906	WARN_ONCE(chan->client_count != 1,
907		  "chan reference count %d != 1\n", chan->client_count);
908	dma_chan_put(chan);
909	/* drop PRIVATE cap enabled by __dma_request_channel() */
910	if (--chan->device->privatecnt == 0)
911		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
912
913	if (chan->slave) {
914		sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
915		sysfs_remove_link(&chan->slave->kobj, chan->name);
916		kfree(chan->name);
917		chan->name = NULL;
918		chan->slave = NULL;
919	}
920
921#ifdef CONFIG_DEBUG_FS
922	kfree(chan->dbg_client_name);
923	chan->dbg_client_name = NULL;
924#endif
925	mutex_unlock(&dma_list_mutex);
926}
927EXPORT_SYMBOL_GPL(dma_release_channel);
928
929/**
930 * dmaengine_get - register interest in dma_channels
931 */
932void dmaengine_get(void)
933{
934	struct dma_device *device, *_d;
935	struct dma_chan *chan;
936	int err;
937
938	mutex_lock(&dma_list_mutex);
939	dmaengine_ref_count++;
940
941	/* try to grab channels */
942	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
943		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
944			continue;
945		list_for_each_entry(chan, &device->channels, device_node) {
946			err = dma_chan_get(chan);
947			if (err == -ENODEV) {
948				/* module removed before we could use it */
949				list_del_rcu(&device->global_node);
950				break;
951			} else if (err)
952				dev_dbg(chan->device->dev,
953					"%s: failed to get %s: (%d)\n",
954					__func__, dma_chan_name(chan), err);
955		}
956	}
957
958	/* if this is the first reference and there were channels
959	 * waiting we need to rebalance to get those channels
960	 * incorporated into the channel table
961	 */
962	if (dmaengine_ref_count == 1)
963		dma_channel_rebalance();
964	mutex_unlock(&dma_list_mutex);
965}
966EXPORT_SYMBOL(dmaengine_get);
967
968/**
969 * dmaengine_put - let DMA drivers be removed when ref_count == 0
970 */
971void dmaengine_put(void)
972{
973	struct dma_device *device, *_d;
974	struct dma_chan *chan;
975
976	mutex_lock(&dma_list_mutex);
977	dmaengine_ref_count--;
978	BUG_ON(dmaengine_ref_count < 0);
979	/* drop channel references */
980	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
981		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
982			continue;
983		list_for_each_entry(chan, &device->channels, device_node)
984			dma_chan_put(chan);
985	}
986	mutex_unlock(&dma_list_mutex);
987}
988EXPORT_SYMBOL(dmaengine_put);
989
990static bool device_has_all_tx_types(struct dma_device *device)
991{
992	/* A device that satisfies this test has channels that will never cause
993	 * an async_tx channel switch event as all possible operation types can
994	 * be handled.
995	 */
996	#ifdef CONFIG_ASYNC_TX_DMA
997	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
998		return false;
999	#endif
1000
1001	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1002	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1003		return false;
1004	#endif
1005
1006	#if IS_ENABLED(CONFIG_ASYNC_XOR)
1007	if (!dma_has_cap(DMA_XOR, device->cap_mask))
1008		return false;
1009
1010	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1011	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1012		return false;
1013	#endif
1014	#endif
1015
1016	#if IS_ENABLED(CONFIG_ASYNC_PQ)
1017	if (!dma_has_cap(DMA_PQ, device->cap_mask))
1018		return false;
1019
1020	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1021	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1022		return false;
1023	#endif
1024	#endif
1025
1026	return true;
1027}
1028
1029static int get_dma_id(struct dma_device *device)
1030{
1031	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1032
1033	if (rc < 0)
1034		return rc;
1035	device->dev_id = rc;
1036	return 0;
1037}
1038
1039static int __dma_async_device_channel_register(struct dma_device *device,
1040					       struct dma_chan *chan)
1041{
1042	int rc;
1043
1044	chan->local = alloc_percpu(typeof(*chan->local));
1045	if (!chan->local)
1046		return -ENOMEM;
1047	chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1048	if (!chan->dev) {
1049		rc = -ENOMEM;
1050		goto err_free_local;
1051	}
1052
1053	/*
1054	 * When the chan_id is a negative value, we are dynamically adding
1055	 * the channel. Otherwise we are static enumerating.
1056	 */
1057	chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL);
1058	if (chan->chan_id < 0) {
1059		pr_err("%s: unable to alloc ida for chan: %d\n",
1060		       __func__, chan->chan_id);
1061		rc = chan->chan_id;
1062		goto err_free_dev;
1063	}
1064
1065	chan->dev->device.class = &dma_devclass;
1066	chan->dev->device.parent = device->dev;
1067	chan->dev->chan = chan;
1068	chan->dev->dev_id = device->dev_id;
1069	dev_set_name(&chan->dev->device, "dma%dchan%d",
1070		     device->dev_id, chan->chan_id);
1071	rc = device_register(&chan->dev->device);
1072	if (rc)
1073		goto err_out_ida;
1074	chan->client_count = 0;
1075	device->chancnt++;
1076
1077	return 0;
1078
1079 err_out_ida:
1080	ida_free(&device->chan_ida, chan->chan_id);
1081 err_free_dev:
1082	kfree(chan->dev);
1083 err_free_local:
1084	free_percpu(chan->local);
1085	chan->local = NULL;
1086	return rc;
1087}
1088
1089int dma_async_device_channel_register(struct dma_device *device,
1090				      struct dma_chan *chan)
1091{
1092	int rc;
1093
1094	rc = __dma_async_device_channel_register(device, chan);
1095	if (rc < 0)
1096		return rc;
1097
1098	dma_channel_rebalance();
1099	return 0;
1100}
1101EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1102
1103static void __dma_async_device_channel_unregister(struct dma_device *device,
1104						  struct dma_chan *chan)
1105{
1106	if (chan->local == NULL)
1107		return;
1108
1109	WARN_ONCE(!device->device_release && chan->client_count,
1110		  "%s called while %d clients hold a reference\n",
1111		  __func__, chan->client_count);
1112	mutex_lock(&dma_list_mutex);
1113	device->chancnt--;
1114	chan->dev->chan = NULL;
1115	mutex_unlock(&dma_list_mutex);
1116	ida_free(&device->chan_ida, chan->chan_id);
1117	device_unregister(&chan->dev->device);
1118	free_percpu(chan->local);
1119}
1120
1121void dma_async_device_channel_unregister(struct dma_device *device,
1122					 struct dma_chan *chan)
1123{
1124	__dma_async_device_channel_unregister(device, chan);
1125	dma_channel_rebalance();
1126}
1127EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1128
1129/**
1130 * dma_async_device_register - registers DMA devices found
1131 * @device:	pointer to &struct dma_device
1132 *
1133 * After calling this routine the structure should not be freed except in the
1134 * device_release() callback which will be called after
1135 * dma_async_device_unregister() is called and no further references are taken.
1136 */
1137int dma_async_device_register(struct dma_device *device)
1138{
1139	int rc;
1140	struct dma_chan* chan;
1141
1142	if (!device)
1143		return -ENODEV;
1144
1145	/* validate device routines */
1146	if (!device->dev) {
1147		pr_err("DMAdevice must have dev\n");
1148		return -EIO;
1149	}
1150
1151	device->owner = device->dev->driver->owner;
1152
1153#define CHECK_CAP(_name, _type)								\
1154{											\
1155	if (dma_has_cap(_type, device->cap_mask) && !device->device_prep_##_name) {	\
1156		dev_err(device->dev,							\
1157			"Device claims capability %s, but op is not defined\n",		\
1158			__stringify(_type));						\
1159		return -EIO;								\
1160	}										\
1161}
1162
1163	CHECK_CAP(dma_memcpy,      DMA_MEMCPY);
1164	CHECK_CAP(dma_xor,         DMA_XOR);
1165	CHECK_CAP(dma_xor_val,     DMA_XOR_VAL);
1166	CHECK_CAP(dma_pq,          DMA_PQ);
1167	CHECK_CAP(dma_pq_val,      DMA_PQ_VAL);
1168	CHECK_CAP(dma_memset,      DMA_MEMSET);
1169	CHECK_CAP(dma_interrupt,   DMA_INTERRUPT);
1170	CHECK_CAP(dma_cyclic,      DMA_CYCLIC);
1171	CHECK_CAP(interleaved_dma, DMA_INTERLEAVE);
1172
1173#undef CHECK_CAP
1174
1175	if (!device->device_tx_status) {
1176		dev_err(device->dev, "Device tx_status is not defined\n");
1177		return -EIO;
1178	}
1179
1180
1181	if (!device->device_issue_pending) {
1182		dev_err(device->dev, "Device issue_pending is not defined\n");
1183		return -EIO;
1184	}
1185
1186	if (!device->device_release)
1187		dev_dbg(device->dev,
1188			 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1189
1190	kref_init(&device->ref);
1191
1192	/* note: this only matters in the
1193	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1194	 */
1195	if (device_has_all_tx_types(device))
1196		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1197
1198	rc = get_dma_id(device);
1199	if (rc != 0)
1200		return rc;
1201
1202	ida_init(&device->chan_ida);
1203
1204	/* represent channels in sysfs. Probably want devs too */
1205	list_for_each_entry(chan, &device->channels, device_node) {
1206		rc = __dma_async_device_channel_register(device, chan);
1207		if (rc < 0)
1208			goto err_out;
1209	}
1210
1211	mutex_lock(&dma_list_mutex);
1212	/* take references on public channels */
1213	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1214		list_for_each_entry(chan, &device->channels, device_node) {
1215			/* if clients are already waiting for channels we need
1216			 * to take references on their behalf
1217			 */
1218			if (dma_chan_get(chan) == -ENODEV) {
1219				/* note we can only get here for the first
1220				 * channel as the remaining channels are
1221				 * guaranteed to get a reference
1222				 */
1223				rc = -ENODEV;
1224				mutex_unlock(&dma_list_mutex);
1225				goto err_out;
1226			}
1227		}
1228	list_add_tail_rcu(&device->global_node, &dma_device_list);
1229	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1230		device->privatecnt++;	/* Always private */
1231	dma_channel_rebalance();
1232	mutex_unlock(&dma_list_mutex);
1233
1234	dmaengine_debug_register(device);
1235
1236	return 0;
1237
1238err_out:
1239	/* if we never registered a channel just release the idr */
1240	if (!device->chancnt) {
1241		ida_free(&dma_ida, device->dev_id);
1242		return rc;
1243	}
1244
1245	list_for_each_entry(chan, &device->channels, device_node) {
1246		if (chan->local == NULL)
1247			continue;
1248		mutex_lock(&dma_list_mutex);
1249		chan->dev->chan = NULL;
1250		mutex_unlock(&dma_list_mutex);
1251		device_unregister(&chan->dev->device);
1252		free_percpu(chan->local);
1253	}
1254	return rc;
1255}
1256EXPORT_SYMBOL(dma_async_device_register);
1257
1258/**
1259 * dma_async_device_unregister - unregister a DMA device
1260 * @device:	pointer to &struct dma_device
1261 *
1262 * This routine is called by dma driver exit routines, dmaengine holds module
1263 * references to prevent it being called while channels are in use.
1264 */
1265void dma_async_device_unregister(struct dma_device *device)
1266{
1267	struct dma_chan *chan, *n;
1268
1269	dmaengine_debug_unregister(device);
1270
1271	list_for_each_entry_safe(chan, n, &device->channels, device_node)
1272		__dma_async_device_channel_unregister(device, chan);
1273
1274	mutex_lock(&dma_list_mutex);
1275	/*
1276	 * setting DMA_PRIVATE ensures the device being torn down will not
1277	 * be used in the channel_table
1278	 */
1279	dma_cap_set(DMA_PRIVATE, device->cap_mask);
1280	dma_channel_rebalance();
1281	ida_free(&dma_ida, device->dev_id);
1282	dma_device_put(device);
1283	mutex_unlock(&dma_list_mutex);
1284}
1285EXPORT_SYMBOL(dma_async_device_unregister);
1286
1287static void dmaenginem_async_device_unregister(void *device)
1288{
1289	dma_async_device_unregister(device);
1290}
1291
1292/**
1293 * dmaenginem_async_device_register - registers DMA devices found
1294 * @device:	pointer to &struct dma_device
1295 *
1296 * The operation is managed and will be undone on driver detach.
1297 */
1298int dmaenginem_async_device_register(struct dma_device *device)
1299{
1300	int ret;
1301
1302	ret = dma_async_device_register(device);
1303	if (ret)
1304		return ret;
1305
1306	return devm_add_action_or_reset(device->dev, dmaenginem_async_device_unregister, device);
1307}
1308EXPORT_SYMBOL(dmaenginem_async_device_register);
1309
1310struct dmaengine_unmap_pool {
1311	struct kmem_cache *cache;
1312	const char *name;
1313	mempool_t *pool;
1314	size_t size;
1315};
1316
1317#define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1318static struct dmaengine_unmap_pool unmap_pool[] = {
1319	__UNMAP_POOL(2),
1320	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1321	__UNMAP_POOL(16),
1322	__UNMAP_POOL(128),
1323	__UNMAP_POOL(256),
1324	#endif
1325};
1326
1327static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1328{
1329	int order = get_count_order(nr);
1330
1331	switch (order) {
1332	case 0 ... 1:
1333		return &unmap_pool[0];
1334#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1335	case 2 ... 4:
1336		return &unmap_pool[1];
1337	case 5 ... 7:
1338		return &unmap_pool[2];
1339	case 8:
1340		return &unmap_pool[3];
1341#endif
1342	default:
1343		BUG();
1344		return NULL;
1345	}
1346}
1347
1348static void dmaengine_unmap(struct kref *kref)
1349{
1350	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1351	struct device *dev = unmap->dev;
1352	int cnt, i;
1353
1354	cnt = unmap->to_cnt;
1355	for (i = 0; i < cnt; i++)
1356		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1357			       DMA_TO_DEVICE);
1358	cnt += unmap->from_cnt;
1359	for (; i < cnt; i++)
1360		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1361			       DMA_FROM_DEVICE);
1362	cnt += unmap->bidi_cnt;
1363	for (; i < cnt; i++) {
1364		if (unmap->addr[i] == 0)
1365			continue;
1366		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1367			       DMA_BIDIRECTIONAL);
1368	}
1369	cnt = unmap->map_cnt;
1370	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1371}
1372
1373void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1374{
1375	if (unmap)
1376		kref_put(&unmap->kref, dmaengine_unmap);
1377}
1378EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1379
1380static void dmaengine_destroy_unmap_pool(void)
1381{
1382	int i;
1383
1384	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1385		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1386
1387		mempool_destroy(p->pool);
1388		p->pool = NULL;
1389		kmem_cache_destroy(p->cache);
1390		p->cache = NULL;
1391	}
1392}
1393
1394static int __init dmaengine_init_unmap_pool(void)
1395{
1396	int i;
1397
1398	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1399		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1400		size_t size;
1401
1402		size = sizeof(struct dmaengine_unmap_data) +
1403		       sizeof(dma_addr_t) * p->size;
1404
1405		p->cache = kmem_cache_create(p->name, size, 0,
1406					     SLAB_HWCACHE_ALIGN, NULL);
1407		if (!p->cache)
1408			break;
1409		p->pool = mempool_create_slab_pool(1, p->cache);
1410		if (!p->pool)
1411			break;
1412	}
1413
1414	if (i == ARRAY_SIZE(unmap_pool))
1415		return 0;
1416
1417	dmaengine_destroy_unmap_pool();
1418	return -ENOMEM;
1419}
1420
1421struct dmaengine_unmap_data *
1422dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1423{
1424	struct dmaengine_unmap_data *unmap;
1425
1426	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1427	if (!unmap)
1428		return NULL;
1429
1430	memset(unmap, 0, sizeof(*unmap));
1431	kref_init(&unmap->kref);
1432	unmap->dev = dev;
1433	unmap->map_cnt = nr;
1434
1435	return unmap;
1436}
1437EXPORT_SYMBOL(dmaengine_get_unmap_data);
1438
1439void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1440	struct dma_chan *chan)
1441{
1442	tx->chan = chan;
1443	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1444	spin_lock_init(&tx->lock);
1445	#endif
1446}
1447EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1448
1449static inline int desc_check_and_set_metadata_mode(
1450	struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1451{
1452	/* Make sure that the metadata mode is not mixed */
1453	if (!desc->desc_metadata_mode) {
1454		if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1455			desc->desc_metadata_mode = mode;
1456		else
1457			return -ENOTSUPP;
1458	} else if (desc->desc_metadata_mode != mode) {
1459		return -EINVAL;
1460	}
1461
1462	return 0;
1463}
1464
1465int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1466				   void *data, size_t len)
1467{
1468	int ret;
1469
1470	if (!desc)
1471		return -EINVAL;
1472
1473	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1474	if (ret)
1475		return ret;
1476
1477	if (!desc->metadata_ops || !desc->metadata_ops->attach)
1478		return -ENOTSUPP;
1479
1480	return desc->metadata_ops->attach(desc, data, len);
1481}
1482EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1483
1484void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1485				      size_t *payload_len, size_t *max_len)
1486{
1487	int ret;
1488
1489	if (!desc)
1490		return ERR_PTR(-EINVAL);
1491
1492	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1493	if (ret)
1494		return ERR_PTR(ret);
1495
1496	if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1497		return ERR_PTR(-ENOTSUPP);
1498
1499	return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1500}
1501EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1502
1503int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1504				    size_t payload_len)
1505{
1506	int ret;
1507
1508	if (!desc)
1509		return -EINVAL;
1510
1511	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1512	if (ret)
1513		return ret;
1514
1515	if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1516		return -ENOTSUPP;
1517
1518	return desc->metadata_ops->set_len(desc, payload_len);
1519}
1520EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1521
1522/**
1523 * dma_wait_for_async_tx - spin wait for a transaction to complete
1524 * @tx:		in-flight transaction to wait on
1525 */
1526enum dma_status
1527dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1528{
1529	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1530
1531	if (!tx)
1532		return DMA_COMPLETE;
1533
1534	while (tx->cookie == -EBUSY) {
1535		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1536			dev_err(tx->chan->device->dev,
1537				"%s timeout waiting for descriptor submission\n",
1538				__func__);
1539			return DMA_ERROR;
1540		}
1541		cpu_relax();
1542	}
1543	return dma_sync_wait(tx->chan, tx->cookie);
1544}
1545EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1546
1547/**
1548 * dma_run_dependencies - process dependent operations on the target channel
1549 * @tx:		transaction with dependencies
1550 *
1551 * Helper routine for DMA drivers to process (start) dependent operations
1552 * on their target channel.
1553 */
1554void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1555{
1556	struct dma_async_tx_descriptor *dep = txd_next(tx);
1557	struct dma_async_tx_descriptor *dep_next;
1558	struct dma_chan *chan;
1559
1560	if (!dep)
1561		return;
1562
1563	/* we'll submit tx->next now, so clear the link */
1564	txd_clear_next(tx);
1565	chan = dep->chan;
1566
1567	/* keep submitting up until a channel switch is detected
1568	 * in that case we will be called again as a result of
1569	 * processing the interrupt from async_tx_channel_switch
1570	 */
1571	for (; dep; dep = dep_next) {
1572		txd_lock(dep);
1573		txd_clear_parent(dep);
1574		dep_next = txd_next(dep);
1575		if (dep_next && dep_next->chan == chan)
1576			txd_clear_next(dep); /* ->next will be submitted */
1577		else
1578			dep_next = NULL; /* submit current dep and terminate */
1579		txd_unlock(dep);
1580
1581		dep->tx_submit(dep);
1582	}
1583
1584	chan->device->device_issue_pending(chan);
1585}
1586EXPORT_SYMBOL_GPL(dma_run_dependencies);
1587
1588static int __init dma_bus_init(void)
1589{
1590	int err = dmaengine_init_unmap_pool();
1591
1592	if (err)
1593		return err;
1594
1595	err = class_register(&dma_devclass);
1596	if (!err)
1597		dmaengine_debugfs_init();
1598
1599	return err;
1600}
1601arch_initcall(dma_bus_init);
1602