1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4 *
5 * Copyright (C) 2008 Atmel Corporation
6 * Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries
7 *
8 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
9 * The only Atmel DMA Controller that is not covered by this driver is the one
10 * found on AT91SAM9263.
11 */
12
13#include <dt-bindings/dma/at91.h>
14#include <linux/bitfield.h>
15#include <linux/clk.h>
16#include <linux/dmaengine.h>
17#include <linux/dmapool.h>
18#include <linux/dma-mapping.h>
19#include <linux/interrupt.h>
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/overflow.h>
23#include <linux/of_platform.h>
24#include <linux/of_dma.h>
25#include <linux/platform_device.h>
26#include <linux/slab.h>
27
28#include "dmaengine.h"
29#include "virt-dma.h"
30
31/*
32 * Glossary
33 * --------
34 *
35 * at_hdmac		: Name of the ATmel AHB DMA Controller
36 * at_dma_ / atdma	: ATmel DMA controller entity related
37 * atc_	/ atchan	: ATmel DMA Channel entity related
38 */
39
40#define	AT_DMA_MAX_NR_CHANNELS	8
41
42/* Global Configuration Register */
43#define AT_DMA_GCFG		0x00
44#define AT_DMA_IF_BIGEND(i)	BIT((i))	/* AHB-Lite Interface i in Big-endian mode */
45#define AT_DMA_ARB_CFG		BIT(4)		/* Arbiter mode. */
46
47/* Controller Enable Register */
48#define AT_DMA_EN		0x04
49#define AT_DMA_ENABLE		BIT(0)
50
51/* Software Single Request Register */
52#define AT_DMA_SREQ		0x08
53#define AT_DMA_SSREQ(x)		BIT((x) << 1)		/* Request a source single transfer on channel x */
54#define AT_DMA_DSREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination single transfer on channel x */
55
56/* Software Chunk Transfer Request Register */
57#define AT_DMA_CREQ		0x0c
58#define AT_DMA_SCREQ(x)		BIT((x) << 1)		/* Request a source chunk transfer on channel x */
59#define AT_DMA_DCREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination chunk transfer on channel x */
60
61/* Software Last Transfer Flag Register */
62#define AT_DMA_LAST		0x10
63#define AT_DMA_SLAST(x)		BIT((x) << 1)		/* This src rq is last tx of buffer on channel x */
64#define AT_DMA_DLAST(x)		BIT(1 + ((x) << 1))	/* This dst rq is last tx of buffer on channel x */
65
66/* Request Synchronization Register */
67#define AT_DMA_SYNC		0x14
68#define AT_DMA_SYR(h)		BIT((h))		/* Synchronize handshake line h */
69
70/* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */
71#define AT_DMA_EBCIER		0x18			/* Enable register */
72#define AT_DMA_EBCIDR		0x1c			/* Disable register */
73#define AT_DMA_EBCIMR		0x20			/* Mask Register */
74#define AT_DMA_EBCISR		0x24			/* Status Register */
75#define AT_DMA_CBTC_OFFSET	8
76#define AT_DMA_ERR_OFFSET	16
77#define AT_DMA_BTC(x)		BIT((x))
78#define AT_DMA_CBTC(x)		BIT(AT_DMA_CBTC_OFFSET + (x))
79#define AT_DMA_ERR(x)		BIT(AT_DMA_ERR_OFFSET + (x))
80
81/* Channel Handler Enable Register */
82#define AT_DMA_CHER		0x28
83#define AT_DMA_ENA(x)		BIT((x))
84#define AT_DMA_SUSP(x)		BIT(8 + (x))
85#define AT_DMA_KEEP(x)		BIT(24 + (x))
86
87/* Channel Handler Disable Register */
88#define AT_DMA_CHDR		0x2c
89#define AT_DMA_DIS(x)		BIT(x)
90#define AT_DMA_RES(x)		BIT(8 + (x))
91
92/* Channel Handler Status Register */
93#define AT_DMA_CHSR		0x30
94#define AT_DMA_EMPT(x)		BIT(16 + (x))
95#define AT_DMA_STAL(x)		BIT(24 + (x))
96
97/* Channel registers base address */
98#define AT_DMA_CH_REGS_BASE	0x3c
99#define ch_regs(x)		(AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */
100
101/* Hardware register offset for each channel */
102#define ATC_SADDR_OFFSET	0x00	/* Source Address Register */
103#define ATC_DADDR_OFFSET	0x04	/* Destination Address Register */
104#define ATC_DSCR_OFFSET		0x08	/* Descriptor Address Register */
105#define ATC_CTRLA_OFFSET	0x0c	/* Control A Register */
106#define ATC_CTRLB_OFFSET	0x10	/* Control B Register */
107#define ATC_CFG_OFFSET		0x14	/* Configuration Register */
108#define ATC_SPIP_OFFSET		0x18	/* Src PIP Configuration Register */
109#define ATC_DPIP_OFFSET		0x1c	/* Dst PIP Configuration Register */
110
111
112/* Bitfield definitions */
113
114/* Bitfields in DSCR */
115#define ATC_DSCR_IF		GENMASK(1, 0)	/* Dsc feched via AHB-Lite Interface */
116
117/* Bitfields in CTRLA */
118#define ATC_BTSIZE_MAX		GENMASK(15, 0)	/* Maximum Buffer Transfer Size */
119#define ATC_BTSIZE		GENMASK(15, 0)	/* Buffer Transfer Size */
120#define ATC_SCSIZE		GENMASK(18, 16)	/* Source Chunk Transfer Size */
121#define ATC_DCSIZE		GENMASK(22, 20)	/* Destination Chunk Transfer Size */
122#define ATC_SRC_WIDTH		GENMASK(25, 24)	/* Source Single Transfer Size */
123#define ATC_DST_WIDTH		GENMASK(29, 28)	/* Destination Single Transfer Size */
124#define ATC_DONE		BIT(31)	/* Tx Done (only written back in descriptor) */
125
126/* Bitfields in CTRLB */
127#define ATC_SIF			GENMASK(1, 0)	/* Src tx done via AHB-Lite Interface i */
128#define ATC_DIF			GENMASK(5, 4)	/* Dst tx done via AHB-Lite Interface i */
129#define AT_DMA_MEM_IF		0x0		/* interface 0 as memory interface */
130#define AT_DMA_PER_IF		0x1		/* interface 1 as peripheral interface */
131#define ATC_SRC_PIP		BIT(8)		/* Source Picture-in-Picture enabled */
132#define ATC_DST_PIP		BIT(12)		/* Destination Picture-in-Picture enabled */
133#define ATC_SRC_DSCR_DIS	BIT(16)		/* Src Descriptor fetch disable */
134#define ATC_DST_DSCR_DIS	BIT(20)		/* Dst Descriptor fetch disable */
135#define ATC_FC			GENMASK(23, 21)	/* Choose Flow Controller */
136#define ATC_FC_MEM2MEM		0x0		/* Mem-to-Mem (DMA) */
137#define ATC_FC_MEM2PER		0x1		/* Mem-to-Periph (DMA) */
138#define ATC_FC_PER2MEM		0x2		/* Periph-to-Mem (DMA) */
139#define ATC_FC_PER2PER		0x3		/* Periph-to-Periph (DMA) */
140#define ATC_FC_PER2MEM_PER	0x4		/* Periph-to-Mem (Peripheral) */
141#define ATC_FC_MEM2PER_PER	0x5		/* Mem-to-Periph (Peripheral) */
142#define ATC_FC_PER2PER_SRCPER	0x6		/* Periph-to-Periph (Src Peripheral) */
143#define ATC_FC_PER2PER_DSTPER	0x7		/* Periph-to-Periph (Dst Peripheral) */
144#define ATC_SRC_ADDR_MODE	GENMASK(25, 24)
145#define ATC_SRC_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
146#define ATC_SRC_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
147#define ATC_SRC_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
148#define ATC_DST_ADDR_MODE	GENMASK(29, 28)
149#define ATC_DST_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
150#define ATC_DST_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
151#define ATC_DST_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
152#define ATC_IEN			BIT(30)		/* BTC interrupt enable (active low) */
153#define ATC_AUTO		BIT(31)		/* Auto multiple buffer tx enable */
154
155/* Bitfields in CFG */
156#define ATC_SRC_PER		GENMASK(3, 0)	/* Channel src rq associated with periph handshaking ifc h */
157#define ATC_DST_PER		GENMASK(7, 4)	/* Channel dst rq associated with periph handshaking ifc h */
158#define ATC_SRC_REP		BIT(8)		/* Source Replay Mod */
159#define ATC_SRC_H2SEL		BIT(9)		/* Source Handshaking Mod */
160#define ATC_SRC_PER_MSB		GENMASK(11, 10)	/* Channel src rq (most significant bits) */
161#define ATC_DST_REP		BIT(12)		/* Destination Replay Mod */
162#define ATC_DST_H2SEL		BIT(13)		/* Destination Handshaking Mod */
163#define ATC_DST_PER_MSB		GENMASK(15, 14)	/* Channel dst rq (most significant bits) */
164#define ATC_SOD			BIT(16)		/* Stop On Done */
165#define ATC_LOCK_IF		BIT(20)		/* Interface Lock */
166#define ATC_LOCK_B		BIT(21)		/* AHB Bus Lock */
167#define ATC_LOCK_IF_L		BIT(22)		/* Master Interface Arbiter Lock */
168#define ATC_AHB_PROT		GENMASK(26, 24)	/* AHB Protection */
169#define ATC_FIFOCFG		GENMASK(29, 28)	/* FIFO Request Configuration */
170#define ATC_FIFOCFG_LARGESTBURST	0x0
171#define ATC_FIFOCFG_HALFFIFO		0x1
172#define ATC_FIFOCFG_ENOUGHSPACE		0x2
173
174/* Bitfields in SPIP */
175#define ATC_SPIP_HOLE		GENMASK(15, 0)
176#define ATC_SPIP_BOUNDARY	GENMASK(25, 16)
177
178/* Bitfields in DPIP */
179#define ATC_DPIP_HOLE		GENMASK(15, 0)
180#define ATC_DPIP_BOUNDARY	GENMASK(25, 16)
181
182#define ATC_PER_MSB		GENMASK(5, 4)	/* Extract MSBs of a handshaking identifier */
183#define ATC_SRC_PER_ID(id)					       \
184	({ typeof(id) _id = (id);				       \
185	   FIELD_PREP(ATC_SRC_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
186	   FIELD_PREP(ATC_SRC_PER, _id); })
187#define ATC_DST_PER_ID(id)					       \
188	({ typeof(id) _id = (id);				       \
189	   FIELD_PREP(ATC_DST_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
190	   FIELD_PREP(ATC_DST_PER, _id); })
191
192
193
194/*--  descriptors  -----------------------------------------------------*/
195
196/* LLI == Linked List Item; aka DMA buffer descriptor */
197struct at_lli {
198	/* values that are not changed by hardware */
199	u32 saddr;
200	u32 daddr;
201	/* value that may get written back: */
202	u32 ctrla;
203	/* more values that are not changed by hardware */
204	u32 ctrlb;
205	u32 dscr;	/* chain to next lli */
206};
207
208/**
209 * struct atdma_sg - atdma scatter gather entry
210 * @len: length of the current Linked List Item.
211 * @lli: linked list item that is passed to the DMA controller
212 * @lli_phys: physical address of the LLI.
213 */
214struct atdma_sg {
215	unsigned int len;
216	struct at_lli *lli;
217	dma_addr_t lli_phys;
218};
219
220/**
221 * struct at_desc - software descriptor
222 * @vd: pointer to the virtual dma descriptor.
223 * @atchan: pointer to the atmel dma channel.
224 * @total_len: total transaction byte count
225 * @sglen: number of sg entries.
226 * @sg: array of sgs.
227 * @boundary: number of transfers to perform before the automatic address increment operation
228 * @dst_hole: value to add to the destination address when the boundary has been reached
229 * @src_hole: value to add to the source address when the boundary has been reached
230 * @memset_buffer: buffer used for the memset operation
231 * @memset_paddr: physical address of the buffer used for the memset operation
232 * @memset_vaddr: virtual address of the buffer used for the memset operation
233 */
234struct at_desc {
235	struct				virt_dma_desc vd;
236	struct				at_dma_chan *atchan;
237	size_t				total_len;
238	unsigned int			sglen;
239	/* Interleaved data */
240	size_t				boundary;
241	size_t				dst_hole;
242	size_t				src_hole;
243
244	/* Memset temporary buffer */
245	bool				memset_buffer;
246	dma_addr_t			memset_paddr;
247	int				*memset_vaddr;
248	struct atdma_sg			sg[] __counted_by(sglen);
249};
250
251/*--  Channels  --------------------------------------------------------*/
252
253/**
254 * enum atc_status - information bits stored in channel status flag
255 *
256 * @ATC_IS_PAUSED: If channel is pauses
257 * @ATC_IS_CYCLIC: If channel is cyclic
258 *
259 * Manipulated with atomic operations.
260 */
261enum atc_status {
262	ATC_IS_PAUSED = 1,
263	ATC_IS_CYCLIC = 24,
264};
265
266/**
267 * struct at_dma_chan - internal representation of an Atmel HDMAC channel
268 * @vc: virtual dma channel entry.
269 * @atdma: pointer to the driver data.
270 * @ch_regs: memory mapped register base
271 * @mask: channel index in a mask
272 * @per_if: peripheral interface
273 * @mem_if: memory interface
274 * @status: transmit status information from irq/prep* functions
275 *                to tasklet (use atomic operations)
276 * @save_cfg: configuration register that is saved on suspend/resume cycle
277 * @save_dscr: for cyclic operations, preserve next descriptor address in
278 *             the cyclic list on suspend/resume cycle
279 * @dma_sconfig: configuration for slave transfers, passed via
280 * .device_config
281 * @desc: pointer to the atmel dma descriptor.
282 */
283struct at_dma_chan {
284	struct virt_dma_chan	vc;
285	struct at_dma		*atdma;
286	void __iomem		*ch_regs;
287	u8			mask;
288	u8			per_if;
289	u8			mem_if;
290	unsigned long		status;
291	u32			save_cfg;
292	u32			save_dscr;
293	struct dma_slave_config	dma_sconfig;
294	struct at_desc		*desc;
295};
296
297#define	channel_readl(atchan, name) \
298	__raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET)
299
300#define	channel_writel(atchan, name, val) \
301	__raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET)
302
303/*
304 * Fix sconfig's burst size according to at_hdmac. We need to convert them as:
305 * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7.
306 *
307 * This can be done by finding most significant bit set.
308 */
309static inline void convert_burst(u32 *maxburst)
310{
311	if (*maxburst > 1)
312		*maxburst = fls(*maxburst) - 2;
313	else
314		*maxburst = 0;
315}
316
317/*
318 * Fix sconfig's bus width according to at_hdmac.
319 * 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2.
320 */
321static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width)
322{
323	switch (addr_width) {
324	case DMA_SLAVE_BUSWIDTH_2_BYTES:
325		return 1;
326	case DMA_SLAVE_BUSWIDTH_4_BYTES:
327		return 2;
328	default:
329		/* For 1 byte width or fallback */
330		return 0;
331	}
332}
333
334/*--  Controller  ------------------------------------------------------*/
335
336/**
337 * struct at_dma - internal representation of an Atmel HDMA Controller
338 * @dma_device: dmaengine dma_device object members
339 * @regs: memory mapped register base
340 * @clk: dma controller clock
341 * @save_imr: interrupt mask register that is saved on suspend/resume cycle
342 * @all_chan_mask: all channels availlable in a mask
343 * @lli_pool: hw lli table
344 * @memset_pool: hw memset pool
345 * @chan: channels table to store at_dma_chan structures
346 */
347struct at_dma {
348	struct dma_device	dma_device;
349	void __iomem		*regs;
350	struct clk		*clk;
351	u32			save_imr;
352
353	u8			all_chan_mask;
354
355	struct dma_pool		*lli_pool;
356	struct dma_pool		*memset_pool;
357	/* AT THE END channels table */
358	struct at_dma_chan	chan[];
359};
360
361#define	dma_readl(atdma, name) \
362	__raw_readl((atdma)->regs + AT_DMA_##name)
363#define	dma_writel(atdma, name, val) \
364	__raw_writel((val), (atdma)->regs + AT_DMA_##name)
365
366static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t)
367{
368	return container_of(t, struct at_desc, vd.tx);
369}
370
371static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan)
372{
373	return container_of(chan, struct at_dma_chan, vc.chan);
374}
375
376static inline struct at_dma *to_at_dma(struct dma_device *ddev)
377{
378	return container_of(ddev, struct at_dma, dma_device);
379}
380
381
382/*--  Helper functions  ------------------------------------------------*/
383
384static struct device *chan2dev(struct dma_chan *chan)
385{
386	return &chan->dev->device;
387}
388
389#if defined(VERBOSE_DEBUG)
390static void vdbg_dump_regs(struct at_dma_chan *atchan)
391{
392	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
393
394	dev_err(chan2dev(&atchan->vc.chan),
395		"  channel %d : imr = 0x%x, chsr = 0x%x\n",
396		atchan->vc.chan.chan_id,
397		dma_readl(atdma, EBCIMR),
398		dma_readl(atdma, CHSR));
399
400	dev_err(chan2dev(&atchan->vc.chan),
401		"  channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n",
402		channel_readl(atchan, SADDR),
403		channel_readl(atchan, DADDR),
404		channel_readl(atchan, CTRLA),
405		channel_readl(atchan, CTRLB),
406		channel_readl(atchan, CFG),
407		channel_readl(atchan, DSCR));
408}
409#else
410static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
411#endif
412
413static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
414{
415	dev_crit(chan2dev(&atchan->vc.chan),
416		 "desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n",
417		 &lli->saddr, &lli->daddr,
418		 lli->ctrla, lli->ctrlb, &lli->dscr);
419}
420
421
422static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on)
423{
424	u32 ebci;
425
426	/* enable interrupts on buffer transfer completion & error */
427	ebci =    AT_DMA_BTC(chan_id)
428		| AT_DMA_ERR(chan_id);
429	if (on)
430		dma_writel(atdma, EBCIER, ebci);
431	else
432		dma_writel(atdma, EBCIDR, ebci);
433}
434
435static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id)
436{
437	atc_setup_irq(atdma, chan_id, 1);
438}
439
440static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id)
441{
442	atc_setup_irq(atdma, chan_id, 0);
443}
444
445
446/**
447 * atc_chan_is_enabled - test if given channel is enabled
448 * @atchan: channel we want to test status
449 */
450static inline int atc_chan_is_enabled(struct at_dma_chan *atchan)
451{
452	struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
453
454	return !!(dma_readl(atdma, CHSR) & atchan->mask);
455}
456
457/**
458 * atc_chan_is_paused - test channel pause/resume status
459 * @atchan: channel we want to test status
460 */
461static inline int atc_chan_is_paused(struct at_dma_chan *atchan)
462{
463	return test_bit(ATC_IS_PAUSED, &atchan->status);
464}
465
466/**
467 * atc_chan_is_cyclic - test if given channel has cyclic property set
468 * @atchan: channel we want to test status
469 */
470static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan)
471{
472	return test_bit(ATC_IS_CYCLIC, &atchan->status);
473}
474
475/**
476 * set_lli_eol - set end-of-link to descriptor so it will end transfer
477 * @desc: descriptor, signle or at the end of a chain, to end chain on
478 * @i: index of the atmel scatter gather entry that is at the end of the chain.
479 */
480static void set_lli_eol(struct at_desc *desc, unsigned int i)
481{
482	u32 ctrlb = desc->sg[i].lli->ctrlb;
483
484	ctrlb &= ~ATC_IEN;
485	ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS;
486
487	desc->sg[i].lli->ctrlb = ctrlb;
488	desc->sg[i].lli->dscr = 0;
489}
490
491#define	ATC_DEFAULT_CFG		FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO)
492#define	ATC_DEFAULT_CTRLB	(FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \
493				 FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF))
494#define ATC_DMA_BUSWIDTHS\
495	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
496	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
497	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
498	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
499
500#define ATC_MAX_DSCR_TRIALS	10
501
502/*
503 * Initial number of descriptors to allocate for each channel. This could
504 * be increased during dma usage.
505 */
506static unsigned int init_nr_desc_per_channel = 64;
507module_param(init_nr_desc_per_channel, uint, 0644);
508MODULE_PARM_DESC(init_nr_desc_per_channel,
509		 "initial descriptors per channel (default: 64)");
510
511/**
512 * struct at_dma_platform_data - Controller configuration parameters
513 * @nr_channels: Number of channels supported by hardware (max 8)
514 * @cap_mask: dma_capability flags supported by the platform
515 */
516struct at_dma_platform_data {
517	unsigned int	nr_channels;
518	dma_cap_mask_t  cap_mask;
519};
520
521/**
522 * struct at_dma_slave - Controller-specific information about a slave
523 * @dma_dev: required DMA master device
524 * @cfg: Platform-specific initializer for the CFG register
525 */
526struct at_dma_slave {
527	struct device		*dma_dev;
528	u32			cfg;
529};
530
531static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
532						size_t len)
533{
534	unsigned int width;
535
536	if (!((src | dst  | len) & 3))
537		width = 2;
538	else if (!((src | dst | len) & 1))
539		width = 1;
540	else
541		width = 0;
542
543	return width;
544}
545
546static void atdma_lli_chain(struct at_desc *desc, unsigned int i)
547{
548	struct atdma_sg *atdma_sg = &desc->sg[i];
549
550	if (i)
551		desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys;
552}
553
554/**
555 * atc_dostart - starts the DMA engine for real
556 * @atchan: the channel we want to start
557 */
558static void atc_dostart(struct at_dma_chan *atchan)
559{
560	struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc);
561	struct at_desc *desc;
562
563	if (!vd) {
564		atchan->desc = NULL;
565		return;
566	}
567
568	vdbg_dump_regs(atchan);
569
570	list_del(&vd->node);
571	atchan->desc = desc = to_atdma_desc(&vd->tx);
572
573	channel_writel(atchan, SADDR, 0);
574	channel_writel(atchan, DADDR, 0);
575	channel_writel(atchan, CTRLA, 0);
576	channel_writel(atchan, CTRLB, 0);
577	channel_writel(atchan, DSCR, desc->sg[0].lli_phys);
578	channel_writel(atchan, SPIP,
579		       FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) |
580		       FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary));
581	channel_writel(atchan, DPIP,
582		       FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) |
583		       FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary));
584
585	/* Don't allow CPU to reorder channel enable. */
586	wmb();
587	dma_writel(atchan->atdma, CHER, atchan->mask);
588
589	vdbg_dump_regs(atchan);
590}
591
592static void atdma_desc_free(struct virt_dma_desc *vd)
593{
594	struct at_dma *atdma = to_at_dma(vd->tx.chan->device);
595	struct at_desc *desc = to_atdma_desc(&vd->tx);
596	unsigned int i;
597
598	for (i = 0; i < desc->sglen; i++) {
599		if (desc->sg[i].lli)
600			dma_pool_free(atdma->lli_pool, desc->sg[i].lli,
601				      desc->sg[i].lli_phys);
602	}
603
604	/* If the transfer was a memset, free our temporary buffer */
605	if (desc->memset_buffer) {
606		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
607			      desc->memset_paddr);
608		desc->memset_buffer = false;
609	}
610
611	kfree(desc);
612}
613
614/**
615 * atc_calc_bytes_left - calculates the number of bytes left according to the
616 * value read from CTRLA.
617 *
618 * @current_len: the number of bytes left before reading CTRLA
619 * @ctrla: the value of CTRLA
620 */
621static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla)
622{
623	u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla);
624	u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla);
625
626	/*
627	 * According to the datasheet, when reading the Control A Register
628	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
629	 * number of transfers completed on the Source Interface.
630	 * So btsize is always a number of source width transfers.
631	 */
632	return current_len - (btsize << src_width);
633}
634
635/**
636 * atc_get_llis_residue - Get residue for a hardware linked list transfer
637 * @atchan: pointer to an atmel hdmac channel.
638 * @desc: pointer to the descriptor for which the residue is calculated.
639 * @residue: residue to be set to dma_tx_state.
640 *
641 * Calculate the residue by removing the length of the Linked List Item (LLI)
642 * already transferred from the total length. To get the current LLI we can use
643 * the value of the channel's DSCR register and compare it against the DSCR
644 * value of each LLI.
645 *
646 * The CTRLA register provides us with the amount of data already read from the
647 * source for the LLI. So we can compute a more accurate residue by also
648 * removing the number of bytes corresponding to this amount of data.
649 *
650 * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a
651 * race condition may occur: the first read register may refer to one LLI
652 * whereas the second read may refer to a later LLI in the list because of the
653 * DMA transfer progression inbetween the two reads.
654 *
655 * One solution could have been to pause the DMA transfer, read the DSCR and
656 * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some
657 * drawbacks:
658 * - If the DMA transfer is paused, RX overruns or TX underruns are more likey
659 *   to occur depending on the system latency. Taking the USART driver as an
660 *   example, it uses a cyclic DMA transfer to read data from the Receive
661 *   Holding Register (RHR) to avoid RX overruns since the RHR is not protected
662 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the
663 *   residue would break the USART driver design.
664 * - The atc_pause() function masks interrupts but we'd rather avoid to do so
665 * for system latency purpose.
666 *
667 * Then we'd rather use another solution: the DSCR is read a first time, the
668 * CTRLA is read in turn, next the DSCR is read a second time. If the two
669 * consecutive read values of the DSCR are the same then we assume both refers
670 * to the very same LLI as well as the CTRLA value read inbetween does. For
671 * cyclic tranfers, the assumption is that a full loop is "not so fast". If the
672 * two DSCR values are different, we read again the CTRLA then the DSCR till two
673 * consecutive read values from DSCR are equal or till the maximum trials is
674 * reach. This algorithm is very unlikely not to find a stable value for DSCR.
675 *
676 * Returns: %0 on success, -errno otherwise.
677 */
678static int atc_get_llis_residue(struct at_dma_chan *atchan,
679				struct at_desc *desc, u32 *residue)
680{
681	u32 len, ctrla, dscr;
682	unsigned int i;
683
684	len = desc->total_len;
685	dscr = channel_readl(atchan, DSCR);
686	rmb(); /* ensure DSCR is read before CTRLA */
687	ctrla = channel_readl(atchan, CTRLA);
688	for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
689		u32 new_dscr;
690
691		rmb(); /* ensure DSCR is read after CTRLA */
692		new_dscr = channel_readl(atchan, DSCR);
693
694		/*
695		 * If the DSCR register value has not changed inside the DMA
696		 * controller since the previous read, we assume that both the
697		 * dscr and ctrla values refers to the very same descriptor.
698		 */
699		if (likely(new_dscr == dscr))
700			break;
701
702		/*
703		 * DSCR has changed inside the DMA controller, so the previouly
704		 * read value of CTRLA may refer to an already processed
705		 * descriptor hence could be outdated. We need to update ctrla
706		 * to match the current descriptor.
707		 */
708		dscr = new_dscr;
709		rmb(); /* ensure DSCR is read before CTRLA */
710		ctrla = channel_readl(atchan, CTRLA);
711	}
712	if (unlikely(i == ATC_MAX_DSCR_TRIALS))
713		return -ETIMEDOUT;
714
715	/* For the first descriptor we can be more accurate. */
716	if (desc->sg[0].lli->dscr == dscr) {
717		*residue = atc_calc_bytes_left(len, ctrla);
718		return 0;
719	}
720	len -= desc->sg[0].len;
721
722	for (i = 1; i < desc->sglen; i++) {
723		if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr)
724			break;
725		len -= desc->sg[i].len;
726	}
727
728	/*
729	 * For the current LLI in the chain we can calculate the remaining bytes
730	 * using the channel's CTRLA register.
731	 */
732	*residue = atc_calc_bytes_left(len, ctrla);
733	return 0;
734
735}
736
737/**
738 * atc_get_residue - get the number of bytes residue for a cookie.
739 * The residue is passed by address and updated on success.
740 * @chan: DMA channel
741 * @cookie: transaction identifier to check status of
742 * @residue: residue to be updated.
743 *
744 * Return: %0 on success, -errno otherwise.
745 */
746static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie,
747			   u32 *residue)
748{
749	struct at_dma_chan *atchan = to_at_dma_chan(chan);
750	struct virt_dma_desc *vd;
751	struct at_desc *desc = NULL;
752	u32 len, ctrla;
753
754	vd = vchan_find_desc(&atchan->vc, cookie);
755	if (vd)
756		desc = to_atdma_desc(&vd->tx);
757	else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie)
758		desc = atchan->desc;
759
760	if (!desc)
761		return -EINVAL;
762
763	if (desc->sg[0].lli->dscr)
764		/* hardware linked list transfer */
765		return atc_get_llis_residue(atchan, desc, residue);
766
767	/* single transfer */
768	len = desc->total_len;
769	ctrla = channel_readl(atchan, CTRLA);
770	*residue = atc_calc_bytes_left(len, ctrla);
771	return 0;
772}
773
774/**
775 * atc_handle_error - handle errors reported by DMA controller
776 * @atchan: channel where error occurs.
777 * @i: channel index
778 */
779static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i)
780{
781	struct at_desc *desc = atchan->desc;
782
783	/* Disable channel on AHB error */
784	dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask);
785
786	/*
787	 * KERN_CRITICAL may seem harsh, but since this only happens
788	 * when someone submits a bad physical address in a
789	 * descriptor, we should consider ourselves lucky that the
790	 * controller flagged an error instead of scribbling over
791	 * random memory locations.
792	 */
793	dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n");
794	dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n",
795		 desc->vd.tx.cookie);
796	for (i = 0; i < desc->sglen; i++)
797		atc_dump_lli(atchan, desc->sg[i].lli);
798}
799
800static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending,
801				   unsigned int i)
802{
803	struct at_desc *desc;
804
805	spin_lock(&atchan->vc.lock);
806	desc = atchan->desc;
807
808	if (desc) {
809		if (pending & AT_DMA_ERR(i)) {
810			atc_handle_error(atchan, i);
811			/* Pretend the descriptor completed successfully */
812		}
813
814		if (atc_chan_is_cyclic(atchan)) {
815			vchan_cyclic_callback(&desc->vd);
816		} else {
817			vchan_cookie_complete(&desc->vd);
818			atchan->desc = NULL;
819			if (!(atc_chan_is_enabled(atchan)))
820				atc_dostart(atchan);
821		}
822	}
823	spin_unlock(&atchan->vc.lock);
824}
825
826static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
827{
828	struct at_dma		*atdma = dev_id;
829	struct at_dma_chan	*atchan;
830	int			i;
831	u32			status, pending, imr;
832	int			ret = IRQ_NONE;
833
834	do {
835		imr = dma_readl(atdma, EBCIMR);
836		status = dma_readl(atdma, EBCISR);
837		pending = status & imr;
838
839		if (!pending)
840			break;
841
842		dev_vdbg(atdma->dma_device.dev,
843			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
844			 status, imr, pending);
845
846		for (i = 0; i < atdma->dma_device.chancnt; i++) {
847			atchan = &atdma->chan[i];
848			if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))))
849				continue;
850			atdma_handle_chan_done(atchan, pending, i);
851			ret = IRQ_HANDLED;
852		}
853
854	} while (pending);
855
856	return ret;
857}
858
859/*--  DMA Engine API  --------------------------------------------------*/
860/**
861 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
862 * @chan: the channel to prepare operation on
863 * @xt: Interleaved transfer template
864 * @flags: tx descriptor status flags
865 */
866static struct dma_async_tx_descriptor *
867atc_prep_dma_interleaved(struct dma_chan *chan,
868			 struct dma_interleaved_template *xt,
869			 unsigned long flags)
870{
871	struct at_dma		*atdma = to_at_dma(chan->device);
872	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
873	struct data_chunk	*first;
874	struct atdma_sg		*atdma_sg;
875	struct at_desc		*desc;
876	struct at_lli		*lli;
877	size_t			xfer_count;
878	unsigned int		dwidth;
879	u32			ctrla;
880	u32			ctrlb;
881	size_t			len = 0;
882	int			i;
883
884	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
885		return NULL;
886
887	first = xt->sgl;
888
889	dev_info(chan2dev(chan),
890		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
891		__func__, &xt->src_start, &xt->dst_start, xt->numf,
892		xt->frame_size, flags);
893
894	/*
895	 * The controller can only "skip" X bytes every Y bytes, so we
896	 * need to make sure we are given a template that fit that
897	 * description, ie a template with chunks that always have the
898	 * same size, with the same ICGs.
899	 */
900	for (i = 0; i < xt->frame_size; i++) {
901		struct data_chunk *chunk = xt->sgl + i;
902
903		if ((chunk->size != xt->sgl->size) ||
904		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
905		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
906			dev_err(chan2dev(chan),
907				"%s: the controller can transfer only identical chunks\n",
908				__func__);
909			return NULL;
910		}
911
912		len += chunk->size;
913	}
914
915	dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len);
916
917	xfer_count = len >> dwidth;
918	if (xfer_count > ATC_BTSIZE_MAX) {
919		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
920		return NULL;
921	}
922
923	ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) |
924		FIELD_PREP(ATC_DST_WIDTH, dwidth);
925
926	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
927		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
928		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
929		ATC_SRC_PIP | ATC_DST_PIP |
930		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
931
932	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
933	if (!desc)
934		return NULL;
935	desc->sglen = 1;
936
937	atdma_sg = desc->sg;
938	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
939				       &atdma_sg->lli_phys);
940	if (!atdma_sg->lli) {
941		kfree(desc);
942		return NULL;
943	}
944	lli = atdma_sg->lli;
945
946	lli->saddr = xt->src_start;
947	lli->daddr = xt->dst_start;
948	lli->ctrla = ctrla | xfer_count;
949	lli->ctrlb = ctrlb;
950
951	desc->boundary = first->size >> dwidth;
952	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
953	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
954
955	atdma_sg->len = len;
956	desc->total_len = len;
957
958	set_lli_eol(desc, 0);
959	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
960}
961
962/**
963 * atc_prep_dma_memcpy - prepare a memcpy operation
964 * @chan: the channel to prepare operation on
965 * @dest: operation virtual destination address
966 * @src: operation virtual source address
967 * @len: operation length
968 * @flags: tx descriptor status flags
969 */
970static struct dma_async_tx_descriptor *
971atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
972		size_t len, unsigned long flags)
973{
974	struct at_dma		*atdma = to_at_dma(chan->device);
975	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
976	struct at_desc		*desc = NULL;
977	size_t			xfer_count;
978	size_t			offset;
979	size_t			sg_len;
980	unsigned int		src_width;
981	unsigned int		dst_width;
982	unsigned int		i;
983	u32			ctrla;
984	u32			ctrlb;
985
986	dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
987		&dest, &src, len, flags);
988
989	if (unlikely(!len)) {
990		dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
991		return NULL;
992	}
993
994	sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX);
995	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
996	if (!desc)
997		return NULL;
998	desc->sglen = sg_len;
999
1000	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1001		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1002		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1003		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1004
1005	/*
1006	 * We can be a lot more clever here, but this should take care
1007	 * of the most common optimization.
1008	 */
1009	src_width = dst_width = atc_get_xfer_width(src, dest, len);
1010
1011	ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) |
1012		FIELD_PREP(ATC_DST_WIDTH, dst_width);
1013
1014	for (offset = 0, i = 0; offset < len;
1015	     offset += xfer_count << src_width, i++) {
1016		struct atdma_sg *atdma_sg = &desc->sg[i];
1017		struct at_lli *lli;
1018
1019		atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1020					       &atdma_sg->lli_phys);
1021		if (!atdma_sg->lli)
1022			goto err_desc_get;
1023		lli = atdma_sg->lli;
1024
1025		xfer_count = min_t(size_t, (len - offset) >> src_width,
1026				   ATC_BTSIZE_MAX);
1027
1028		lli->saddr = src + offset;
1029		lli->daddr = dest + offset;
1030		lli->ctrla = ctrla | xfer_count;
1031		lli->ctrlb = ctrlb;
1032
1033		desc->sg[i].len = xfer_count << src_width;
1034
1035		atdma_lli_chain(desc, i);
1036	}
1037
1038	desc->total_len = len;
1039
1040	/* set end-of-link to the last link descriptor of list*/
1041	set_lli_eol(desc, i - 1);
1042
1043	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1044
1045err_desc_get:
1046	atdma_desc_free(&desc->vd);
1047	return NULL;
1048}
1049
1050static int atdma_create_memset_lli(struct dma_chan *chan,
1051				   struct atdma_sg *atdma_sg,
1052				   dma_addr_t psrc, dma_addr_t pdst, size_t len)
1053{
1054	struct at_dma *atdma = to_at_dma(chan->device);
1055	struct at_lli *lli;
1056	size_t xfer_count;
1057	u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2);
1058	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1059		    FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) |
1060		    FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1061		    FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1062
1063	xfer_count = len >> 2;
1064	if (xfer_count > ATC_BTSIZE_MAX) {
1065		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
1066		return -EINVAL;
1067	}
1068
1069	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1070				       &atdma_sg->lli_phys);
1071	if (!atdma_sg->lli)
1072		return -ENOMEM;
1073	lli = atdma_sg->lli;
1074
1075	lli->saddr = psrc;
1076	lli->daddr = pdst;
1077	lli->ctrla = ctrla | xfer_count;
1078	lli->ctrlb = ctrlb;
1079
1080	atdma_sg->len = len;
1081
1082	return 0;
1083}
1084
1085/**
1086 * atc_prep_dma_memset - prepare a memcpy operation
1087 * @chan: the channel to prepare operation on
1088 * @dest: operation virtual destination address
1089 * @value: value to set memory buffer to
1090 * @len: operation length
1091 * @flags: tx descriptor status flags
1092 */
1093static struct dma_async_tx_descriptor *
1094atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1095		    size_t len, unsigned long flags)
1096{
1097	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1098	struct at_dma		*atdma = to_at_dma(chan->device);
1099	struct at_desc		*desc;
1100	void __iomem		*vaddr;
1101	dma_addr_t		paddr;
1102	char			fill_pattern;
1103	int			ret;
1104
1105	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
1106		&dest, value, len, flags);
1107
1108	if (unlikely(!len)) {
1109		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
1110		return NULL;
1111	}
1112
1113	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1114		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
1115			__func__);
1116		return NULL;
1117	}
1118
1119	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1120	if (!vaddr) {
1121		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1122			__func__);
1123		return NULL;
1124	}
1125
1126	/* Only the first byte of value is to be used according to dmaengine */
1127	fill_pattern = (char)value;
1128
1129	*(u32*)vaddr = (fill_pattern << 24) |
1130		       (fill_pattern << 16) |
1131		       (fill_pattern << 8) |
1132		       fill_pattern;
1133
1134	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
1135	if (!desc)
1136		goto err_free_buffer;
1137	desc->sglen = 1;
1138
1139	ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len);
1140	if (ret)
1141		goto err_free_desc;
1142
1143	desc->memset_paddr = paddr;
1144	desc->memset_vaddr = vaddr;
1145	desc->memset_buffer = true;
1146
1147	desc->total_len = len;
1148
1149	/* set end-of-link on the descriptor */
1150	set_lli_eol(desc, 0);
1151
1152	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1153
1154err_free_desc:
1155	kfree(desc);
1156err_free_buffer:
1157	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1158	return NULL;
1159}
1160
1161static struct dma_async_tx_descriptor *
1162atc_prep_dma_memset_sg(struct dma_chan *chan,
1163		       struct scatterlist *sgl,
1164		       unsigned int sg_len, int value,
1165		       unsigned long flags)
1166{
1167	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1168	struct at_dma		*atdma = to_at_dma(chan->device);
1169	struct at_desc		*desc;
1170	struct scatterlist	*sg;
1171	void __iomem		*vaddr;
1172	dma_addr_t		paddr;
1173	size_t			total_len = 0;
1174	int			i;
1175	int			ret;
1176
1177	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1178		 value, sg_len, flags);
1179
1180	if (unlikely(!sgl || !sg_len)) {
1181		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1182			__func__);
1183		return NULL;
1184	}
1185
1186	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1187	if (!vaddr) {
1188		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1189			__func__);
1190		return NULL;
1191	}
1192	*(u32*)vaddr = value;
1193
1194	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1195	if (!desc)
1196		goto err_free_dma_buf;
1197	desc->sglen = sg_len;
1198
1199	for_each_sg(sgl, sg, sg_len, i) {
1200		dma_addr_t dest = sg_dma_address(sg);
1201		size_t len = sg_dma_len(sg);
1202
1203		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1204			 __func__, &dest, len);
1205
1206		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1207			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1208				__func__);
1209			goto err_free_desc;
1210		}
1211
1212		ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest,
1213					      len);
1214		if (ret)
1215			goto err_free_desc;
1216
1217		atdma_lli_chain(desc, i);
1218		total_len += len;
1219	}
1220
1221	desc->memset_paddr = paddr;
1222	desc->memset_vaddr = vaddr;
1223	desc->memset_buffer = true;
1224
1225	desc->total_len = total_len;
1226
1227	/* set end-of-link on the descriptor */
1228	set_lli_eol(desc, i - 1);
1229
1230	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1231
1232err_free_desc:
1233	atdma_desc_free(&desc->vd);
1234err_free_dma_buf:
1235	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1236	return NULL;
1237}
1238
1239/**
1240 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1241 * @chan: DMA channel
1242 * @sgl: scatterlist to transfer to/from
1243 * @sg_len: number of entries in @scatterlist
1244 * @direction: DMA direction
1245 * @flags: tx descriptor status flags
1246 * @context: transaction context (ignored)
1247 */
1248static struct dma_async_tx_descriptor *
1249atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1250		unsigned int sg_len, enum dma_transfer_direction direction,
1251		unsigned long flags, void *context)
1252{
1253	struct at_dma		*atdma = to_at_dma(chan->device);
1254	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1255	struct at_dma_slave	*atslave = chan->private;
1256	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1257	struct at_desc		*desc;
1258	u32			ctrla;
1259	u32			ctrlb;
1260	dma_addr_t		reg;
1261	unsigned int		reg_width;
1262	unsigned int		mem_width;
1263	unsigned int		i;
1264	struct scatterlist	*sg;
1265	size_t			total_len = 0;
1266
1267	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1268			sg_len,
1269			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1270			flags);
1271
1272	if (unlikely(!atslave || !sg_len)) {
1273		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1274		return NULL;
1275	}
1276
1277	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1278	if (!desc)
1279		return NULL;
1280	desc->sglen = sg_len;
1281
1282	ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1283		FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst);
1284	ctrlb = ATC_IEN;
1285
1286	switch (direction) {
1287	case DMA_MEM_TO_DEV:
1288		reg_width = convert_buswidth(sconfig->dst_addr_width);
1289		ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width);
1290		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE,
1291				    ATC_DST_ADDR_MODE_FIXED) |
1292			 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1293			 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1294			 FIELD_PREP(ATC_SIF, atchan->mem_if) |
1295			 FIELD_PREP(ATC_DIF, atchan->per_if);
1296		reg = sconfig->dst_addr;
1297		for_each_sg(sgl, sg, sg_len, i) {
1298			struct atdma_sg *atdma_sg = &desc->sg[i];
1299			struct at_lli *lli;
1300			u32		len;
1301			u32		mem;
1302
1303			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1304						       GFP_NOWAIT,
1305						       &atdma_sg->lli_phys);
1306			if (!atdma_sg->lli)
1307				goto err_desc_get;
1308			lli = atdma_sg->lli;
1309
1310			mem = sg_dma_address(sg);
1311			len = sg_dma_len(sg);
1312			if (unlikely(!len)) {
1313				dev_dbg(chan2dev(chan),
1314					"prep_slave_sg: sg(%d) data length is zero\n", i);
1315				goto err;
1316			}
1317			mem_width = 2;
1318			if (unlikely(mem & 3 || len & 3))
1319				mem_width = 0;
1320
1321			lli->saddr = mem;
1322			lli->daddr = reg;
1323			lli->ctrla = ctrla |
1324				     FIELD_PREP(ATC_SRC_WIDTH, mem_width) |
1325				     len >> mem_width;
1326			lli->ctrlb = ctrlb;
1327
1328			atdma_sg->len = len;
1329			total_len += len;
1330
1331			desc->sg[i].len = len;
1332			atdma_lli_chain(desc, i);
1333		}
1334		break;
1335	case DMA_DEV_TO_MEM:
1336		reg_width = convert_buswidth(sconfig->src_addr_width);
1337		ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width);
1338		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1339			 FIELD_PREP(ATC_SRC_ADDR_MODE,
1340				    ATC_SRC_ADDR_MODE_FIXED) |
1341			 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1342			 FIELD_PREP(ATC_SIF, atchan->per_if) |
1343			 FIELD_PREP(ATC_DIF, atchan->mem_if);
1344
1345		reg = sconfig->src_addr;
1346		for_each_sg(sgl, sg, sg_len, i) {
1347			struct atdma_sg *atdma_sg = &desc->sg[i];
1348			struct at_lli *lli;
1349			u32		len;
1350			u32		mem;
1351
1352			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1353						       GFP_NOWAIT,
1354						       &atdma_sg->lli_phys);
1355			if (!atdma_sg->lli)
1356				goto err_desc_get;
1357			lli = atdma_sg->lli;
1358
1359			mem = sg_dma_address(sg);
1360			len = sg_dma_len(sg);
1361			if (unlikely(!len)) {
1362				dev_dbg(chan2dev(chan),
1363					"prep_slave_sg: sg(%d) data length is zero\n", i);
1364				goto err;
1365			}
1366			mem_width = 2;
1367			if (unlikely(mem & 3 || len & 3))
1368				mem_width = 0;
1369
1370			lli->saddr = reg;
1371			lli->daddr = mem;
1372			lli->ctrla = ctrla |
1373				     FIELD_PREP(ATC_DST_WIDTH, mem_width) |
1374				     len >> reg_width;
1375			lli->ctrlb = ctrlb;
1376
1377			desc->sg[i].len = len;
1378			total_len += len;
1379
1380			atdma_lli_chain(desc, i);
1381		}
1382		break;
1383	default:
1384		return NULL;
1385	}
1386
1387	/* set end-of-link to the last link descriptor of list*/
1388	set_lli_eol(desc, i - 1);
1389
1390	desc->total_len = total_len;
1391
1392	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1393
1394err_desc_get:
1395	dev_err(chan2dev(chan), "not enough descriptors available\n");
1396err:
1397	atdma_desc_free(&desc->vd);
1398	return NULL;
1399}
1400
1401/*
1402 * atc_dma_cyclic_check_values
1403 * Check for too big/unaligned periods and unaligned DMA buffer
1404 */
1405static int
1406atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1407		size_t period_len)
1408{
1409	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1410		goto err_out;
1411	if (unlikely(period_len & ((1 << reg_width) - 1)))
1412		goto err_out;
1413	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1414		goto err_out;
1415
1416	return 0;
1417
1418err_out:
1419	return -EINVAL;
1420}
1421
1422/*
1423 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1424 */
1425static int
1426atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1427		unsigned int i, dma_addr_t buf_addr,
1428		unsigned int reg_width, size_t period_len,
1429		enum dma_transfer_direction direction)
1430{
1431	struct at_dma		*atdma = to_at_dma(chan->device);
1432	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1433	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1434	struct atdma_sg		*atdma_sg = &desc->sg[i];
1435	struct at_lli		*lli;
1436
1437	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC,
1438				       &atdma_sg->lli_phys);
1439	if (!atdma_sg->lli)
1440		return -ENOMEM;
1441	lli = atdma_sg->lli;
1442
1443	switch (direction) {
1444	case DMA_MEM_TO_DEV:
1445		lli->saddr = buf_addr + (period_len * i);
1446		lli->daddr = sconfig->dst_addr;
1447		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1448					ATC_DST_ADDR_MODE_FIXED) |
1449			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1450					ATC_SRC_ADDR_MODE_INCR) |
1451			     FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1452			     FIELD_PREP(ATC_SIF, atchan->mem_if) |
1453			     FIELD_PREP(ATC_DIF, atchan->per_if);
1454
1455		break;
1456
1457	case DMA_DEV_TO_MEM:
1458		lli->saddr = sconfig->src_addr;
1459		lli->daddr = buf_addr + (period_len * i);
1460		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1461					ATC_DST_ADDR_MODE_INCR) |
1462			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1463					ATC_SRC_ADDR_MODE_FIXED) |
1464			     FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1465			     FIELD_PREP(ATC_SIF, atchan->per_if) |
1466			     FIELD_PREP(ATC_DIF, atchan->mem_if);
1467		break;
1468
1469	default:
1470		return -EINVAL;
1471	}
1472
1473	lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1474		     FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) |
1475		     FIELD_PREP(ATC_DST_WIDTH, reg_width) |
1476		     FIELD_PREP(ATC_SRC_WIDTH, reg_width) |
1477		     period_len >> reg_width;
1478	desc->sg[i].len = period_len;
1479
1480	return 0;
1481}
1482
1483/**
1484 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1485 * @chan: the DMA channel to prepare
1486 * @buf_addr: physical DMA address where the buffer starts
1487 * @buf_len: total number of bytes for the entire buffer
1488 * @period_len: number of bytes for each period
1489 * @direction: transfer direction, to or from device
1490 * @flags: tx descriptor status flags
1491 */
1492static struct dma_async_tx_descriptor *
1493atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1494		size_t period_len, enum dma_transfer_direction direction,
1495		unsigned long flags)
1496{
1497	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1498	struct at_dma_slave	*atslave = chan->private;
1499	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1500	struct at_desc		*desc;
1501	unsigned long		was_cyclic;
1502	unsigned int		reg_width;
1503	unsigned int		periods = buf_len / period_len;
1504	unsigned int		i;
1505
1506	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1507			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1508			&buf_addr,
1509			periods, buf_len, period_len);
1510
1511	if (unlikely(!atslave || !buf_len || !period_len)) {
1512		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1513		return NULL;
1514	}
1515
1516	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1517	if (was_cyclic) {
1518		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1519		return NULL;
1520	}
1521
1522	if (unlikely(!is_slave_direction(direction)))
1523		goto err_out;
1524
1525	if (direction == DMA_MEM_TO_DEV)
1526		reg_width = convert_buswidth(sconfig->dst_addr_width);
1527	else
1528		reg_width = convert_buswidth(sconfig->src_addr_width);
1529
1530	/* Check for too big/unaligned periods and unaligned DMA buffer */
1531	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1532		goto err_out;
1533
1534	desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC);
1535	if (!desc)
1536		goto err_out;
1537	desc->sglen = periods;
1538
1539	/* build cyclic linked list */
1540	for (i = 0; i < periods; i++) {
1541		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1542					     reg_width, period_len, direction))
1543			goto err_fill_desc;
1544		atdma_lli_chain(desc, i);
1545	}
1546	desc->total_len = buf_len;
1547	/* lets make a cyclic list */
1548	desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys;
1549
1550	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1551
1552err_fill_desc:
1553	atdma_desc_free(&desc->vd);
1554err_out:
1555	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1556	return NULL;
1557}
1558
1559static int atc_config(struct dma_chan *chan,
1560		      struct dma_slave_config *sconfig)
1561{
1562	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1563
1564	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1565
1566	/* Check if it is chan is configured for slave transfers */
1567	if (!chan->private)
1568		return -EINVAL;
1569
1570	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1571
1572	convert_burst(&atchan->dma_sconfig.src_maxburst);
1573	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1574
1575	return 0;
1576}
1577
1578static int atc_pause(struct dma_chan *chan)
1579{
1580	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1581	struct at_dma		*atdma = to_at_dma(chan->device);
1582	int			chan_id = atchan->vc.chan.chan_id;
1583	unsigned long		flags;
1584
1585	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1586
1587	spin_lock_irqsave(&atchan->vc.lock, flags);
1588
1589	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1590	set_bit(ATC_IS_PAUSED, &atchan->status);
1591
1592	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1593
1594	return 0;
1595}
1596
1597static int atc_resume(struct dma_chan *chan)
1598{
1599	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1600	struct at_dma		*atdma = to_at_dma(chan->device);
1601	int			chan_id = atchan->vc.chan.chan_id;
1602	unsigned long		flags;
1603
1604	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1605
1606	if (!atc_chan_is_paused(atchan))
1607		return 0;
1608
1609	spin_lock_irqsave(&atchan->vc.lock, flags);
1610
1611	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1612	clear_bit(ATC_IS_PAUSED, &atchan->status);
1613
1614	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1615
1616	return 0;
1617}
1618
1619static int atc_terminate_all(struct dma_chan *chan)
1620{
1621	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1622	struct at_dma		*atdma = to_at_dma(chan->device);
1623	int			chan_id = atchan->vc.chan.chan_id;
1624	unsigned long		flags;
1625
1626	LIST_HEAD(list);
1627
1628	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1629
1630	/*
1631	 * This is only called when something went wrong elsewhere, so
1632	 * we don't really care about the data. Just disable the
1633	 * channel. We still have to poll the channel enable bit due
1634	 * to AHB/HSB limitations.
1635	 */
1636	spin_lock_irqsave(&atchan->vc.lock, flags);
1637
1638	/* disabling channel: must also remove suspend state */
1639	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1640
1641	/* confirm that this channel is disabled */
1642	while (dma_readl(atdma, CHSR) & atchan->mask)
1643		cpu_relax();
1644
1645	if (atchan->desc) {
1646		vchan_terminate_vdesc(&atchan->desc->vd);
1647		atchan->desc = NULL;
1648	}
1649
1650	vchan_get_all_descriptors(&atchan->vc, &list);
1651
1652	clear_bit(ATC_IS_PAUSED, &atchan->status);
1653	/* if channel dedicated to cyclic operations, free it */
1654	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1655
1656	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1657
1658	vchan_dma_desc_free_list(&atchan->vc, &list);
1659
1660	return 0;
1661}
1662
1663/**
1664 * atc_tx_status - poll for transaction completion
1665 * @chan: DMA channel
1666 * @cookie: transaction identifier to check status of
1667 * @txstate: if not %NULL updated with transaction state
1668 *
1669 * If @txstate is passed in, upon return it reflect the driver
1670 * internal state and can be used with dma_async_is_complete() to check
1671 * the status of multiple cookies without re-checking hardware state.
1672 */
1673static enum dma_status
1674atc_tx_status(struct dma_chan *chan,
1675		dma_cookie_t cookie,
1676		struct dma_tx_state *txstate)
1677{
1678	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1679	unsigned long		flags;
1680	enum dma_status		dma_status;
1681	u32 residue;
1682	int ret;
1683
1684	dma_status = dma_cookie_status(chan, cookie, txstate);
1685	if (dma_status == DMA_COMPLETE || !txstate)
1686		return dma_status;
1687
1688	spin_lock_irqsave(&atchan->vc.lock, flags);
1689	/*  Get number of bytes left in the active transactions */
1690	ret = atc_get_residue(chan, cookie, &residue);
1691	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1692
1693	if (unlikely(ret < 0)) {
1694		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1695		return DMA_ERROR;
1696	} else {
1697		dma_set_residue(txstate, residue);
1698	}
1699
1700	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n",
1701		 dma_status, cookie, residue);
1702
1703	return dma_status;
1704}
1705
1706static void atc_issue_pending(struct dma_chan *chan)
1707{
1708	struct at_dma_chan *atchan = to_at_dma_chan(chan);
1709	unsigned long flags;
1710
1711	spin_lock_irqsave(&atchan->vc.lock, flags);
1712	if (vchan_issue_pending(&atchan->vc) && !atchan->desc) {
1713		if (!(atc_chan_is_enabled(atchan)))
1714			atc_dostart(atchan);
1715	}
1716	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1717}
1718
1719/**
1720 * atc_alloc_chan_resources - allocate resources for DMA channel
1721 * @chan: allocate descriptor resources for this channel
1722 *
1723 * Return: the number of allocated descriptors
1724 */
1725static int atc_alloc_chan_resources(struct dma_chan *chan)
1726{
1727	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1728	struct at_dma		*atdma = to_at_dma(chan->device);
1729	struct at_dma_slave	*atslave;
1730	u32			cfg;
1731
1732	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1733
1734	/* ASSERT:  channel is idle */
1735	if (atc_chan_is_enabled(atchan)) {
1736		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1737		return -EIO;
1738	}
1739
1740	cfg = ATC_DEFAULT_CFG;
1741
1742	atslave = chan->private;
1743	if (atslave) {
1744		/*
1745		 * We need controller-specific data to set up slave
1746		 * transfers.
1747		 */
1748		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev);
1749
1750		/* if cfg configuration specified take it instead of default */
1751		if (atslave->cfg)
1752			cfg = atslave->cfg;
1753	}
1754
1755	/* channel parameters */
1756	channel_writel(atchan, CFG, cfg);
1757
1758	return 0;
1759}
1760
1761/**
1762 * atc_free_chan_resources - free all channel resources
1763 * @chan: DMA channel
1764 */
1765static void atc_free_chan_resources(struct dma_chan *chan)
1766{
1767	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1768
1769	BUG_ON(atc_chan_is_enabled(atchan));
1770
1771	vchan_free_chan_resources(to_virt_chan(chan));
1772	atchan->status = 0;
1773
1774	/*
1775	 * Free atslave allocated in at_dma_xlate()
1776	 */
1777	kfree(chan->private);
1778	chan->private = NULL;
1779
1780	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1781}
1782
1783#ifdef CONFIG_OF
1784static bool at_dma_filter(struct dma_chan *chan, void *slave)
1785{
1786	struct at_dma_slave *atslave = slave;
1787
1788	if (atslave->dma_dev == chan->device->dev) {
1789		chan->private = atslave;
1790		return true;
1791	} else {
1792		return false;
1793	}
1794}
1795
1796static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1797				     struct of_dma *of_dma)
1798{
1799	struct dma_chan *chan;
1800	struct at_dma_chan *atchan;
1801	struct at_dma_slave *atslave;
1802	dma_cap_mask_t mask;
1803	unsigned int per_id;
1804	struct platform_device *dmac_pdev;
1805
1806	if (dma_spec->args_count != 2)
1807		return NULL;
1808
1809	dmac_pdev = of_find_device_by_node(dma_spec->np);
1810	if (!dmac_pdev)
1811		return NULL;
1812
1813	dma_cap_zero(mask);
1814	dma_cap_set(DMA_SLAVE, mask);
1815
1816	atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1817	if (!atslave) {
1818		put_device(&dmac_pdev->dev);
1819		return NULL;
1820	}
1821
1822	atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL;
1823	/*
1824	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1825	 * ignored depending on DMA transfer direction.
1826	 */
1827	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1828	atslave->cfg |= ATC_DST_PER_ID(per_id) |  ATC_SRC_PER_ID(per_id);
1829	/*
1830	 * We have to translate the value we get from the device tree since
1831	 * the half FIFO configuration value had to be 0 to keep backward
1832	 * compatibility.
1833	 */
1834	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1835	case AT91_DMA_CFG_FIFOCFG_ALAP:
1836		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1837					   ATC_FIFOCFG_LARGESTBURST);
1838		break;
1839	case AT91_DMA_CFG_FIFOCFG_ASAP:
1840		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1841					   ATC_FIFOCFG_ENOUGHSPACE);
1842		break;
1843	case AT91_DMA_CFG_FIFOCFG_HALF:
1844	default:
1845		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO);
1846	}
1847	atslave->dma_dev = &dmac_pdev->dev;
1848
1849	chan = dma_request_channel(mask, at_dma_filter, atslave);
1850	if (!chan) {
1851		put_device(&dmac_pdev->dev);
1852		kfree(atslave);
1853		return NULL;
1854	}
1855
1856	atchan = to_at_dma_chan(chan);
1857	atchan->per_if = dma_spec->args[0] & 0xff;
1858	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1859
1860	return chan;
1861}
1862#else
1863static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1864				     struct of_dma *of_dma)
1865{
1866	return NULL;
1867}
1868#endif
1869
1870/*--  Module Management  -----------------------------------------------*/
1871
1872/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1873static struct at_dma_platform_data at91sam9rl_config = {
1874	.nr_channels = 2,
1875};
1876static struct at_dma_platform_data at91sam9g45_config = {
1877	.nr_channels = 8,
1878};
1879
1880#if defined(CONFIG_OF)
1881static const struct of_device_id atmel_dma_dt_ids[] = {
1882	{
1883		.compatible = "atmel,at91sam9rl-dma",
1884		.data = &at91sam9rl_config,
1885	}, {
1886		.compatible = "atmel,at91sam9g45-dma",
1887		.data = &at91sam9g45_config,
1888	}, {
1889		/* sentinel */
1890	}
1891};
1892
1893MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1894#endif
1895
1896static const struct platform_device_id atdma_devtypes[] = {
1897	{
1898		.name = "at91sam9rl_dma",
1899		.driver_data = (unsigned long) &at91sam9rl_config,
1900	}, {
1901		.name = "at91sam9g45_dma",
1902		.driver_data = (unsigned long) &at91sam9g45_config,
1903	}, {
1904		/* sentinel */
1905	}
1906};
1907
1908static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1909						struct platform_device *pdev)
1910{
1911	if (pdev->dev.of_node) {
1912		const struct of_device_id *match;
1913		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1914		if (match == NULL)
1915			return NULL;
1916		return match->data;
1917	}
1918	return (struct at_dma_platform_data *)
1919			platform_get_device_id(pdev)->driver_data;
1920}
1921
1922/**
1923 * at_dma_off - disable DMA controller
1924 * @atdma: the Atmel HDAMC device
1925 */
1926static void at_dma_off(struct at_dma *atdma)
1927{
1928	dma_writel(atdma, EN, 0);
1929
1930	/* disable all interrupts */
1931	dma_writel(atdma, EBCIDR, -1L);
1932
1933	/* confirm that all channels are disabled */
1934	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1935		cpu_relax();
1936}
1937
1938static int __init at_dma_probe(struct platform_device *pdev)
1939{
1940	struct at_dma		*atdma;
1941	int			irq;
1942	int			err;
1943	int			i;
1944	const struct at_dma_platform_data *plat_dat;
1945
1946	/* setup platform data for each SoC */
1947	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1948	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1949	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1950	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1951	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1952	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1953	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1954
1955	/* get DMA parameters from controller type */
1956	plat_dat = at_dma_get_driver_data(pdev);
1957	if (!plat_dat)
1958		return -ENODEV;
1959
1960	atdma = devm_kzalloc(&pdev->dev,
1961			     struct_size(atdma, chan, plat_dat->nr_channels),
1962			     GFP_KERNEL);
1963	if (!atdma)
1964		return -ENOMEM;
1965
1966	atdma->regs = devm_platform_ioremap_resource(pdev, 0);
1967	if (IS_ERR(atdma->regs))
1968		return PTR_ERR(atdma->regs);
1969
1970	irq = platform_get_irq(pdev, 0);
1971	if (irq < 0)
1972		return irq;
1973
1974	/* discover transaction capabilities */
1975	atdma->dma_device.cap_mask = plat_dat->cap_mask;
1976	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1977
1978	atdma->clk = devm_clk_get(&pdev->dev, "dma_clk");
1979	if (IS_ERR(atdma->clk))
1980		return PTR_ERR(atdma->clk);
1981
1982	err = clk_prepare_enable(atdma->clk);
1983	if (err)
1984		return err;
1985
1986	/* force dma off, just in case */
1987	at_dma_off(atdma);
1988
1989	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1990	if (err)
1991		goto err_irq;
1992
1993	platform_set_drvdata(pdev, atdma);
1994
1995	/* create a pool of consistent memory blocks for hardware descriptors */
1996	atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool",
1997					  &pdev->dev, sizeof(struct at_lli),
1998					  4 /* word alignment */, 0);
1999	if (!atdma->lli_pool) {
2000		dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n");
2001		err = -ENOMEM;
2002		goto err_desc_pool_create;
2003	}
2004
2005	/* create a pool of consistent memory blocks for memset blocks */
2006	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2007					     &pdev->dev, sizeof(int), 4, 0);
2008	if (!atdma->memset_pool) {
2009		dev_err(&pdev->dev, "No memory for memset dma pool\n");
2010		err = -ENOMEM;
2011		goto err_memset_pool_create;
2012	}
2013
2014	/* clear any pending interrupt */
2015	while (dma_readl(atdma, EBCISR))
2016		cpu_relax();
2017
2018	/* initialize channels related values */
2019	INIT_LIST_HEAD(&atdma->dma_device.channels);
2020	for (i = 0; i < plat_dat->nr_channels; i++) {
2021		struct at_dma_chan	*atchan = &atdma->chan[i];
2022
2023		atchan->mem_if = AT_DMA_MEM_IF;
2024		atchan->per_if = AT_DMA_PER_IF;
2025
2026		atchan->ch_regs = atdma->regs + ch_regs(i);
2027		atchan->mask = 1 << i;
2028
2029		atchan->atdma = atdma;
2030		atchan->vc.desc_free = atdma_desc_free;
2031		vchan_init(&atchan->vc, &atdma->dma_device);
2032		atc_enable_chan_irq(atdma, i);
2033	}
2034
2035	/* set base routines */
2036	atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources;
2037	atdma->dma_device.device_free_chan_resources = atc_free_chan_resources;
2038	atdma->dma_device.device_tx_status = atc_tx_status;
2039	atdma->dma_device.device_issue_pending = atc_issue_pending;
2040	atdma->dma_device.dev = &pdev->dev;
2041
2042	/* set prep routines based on capability */
2043	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask))
2044		atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2045
2046	if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask))
2047		atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2048
2049	if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) {
2050		atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset;
2051		atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2052		atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES;
2053	}
2054
2055	if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) {
2056		atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg;
2057		/* controller can do slave DMA: can trigger cyclic transfers */
2058		dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask);
2059		atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2060		atdma->dma_device.device_config = atc_config;
2061		atdma->dma_device.device_pause = atc_pause;
2062		atdma->dma_device.device_resume = atc_resume;
2063		atdma->dma_device.device_terminate_all = atc_terminate_all;
2064		atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS;
2065		atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2066		atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2067		atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2068	}
2069
2070	dma_writel(atdma, EN, AT_DMA_ENABLE);
2071
2072	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
2073	  dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "",
2074	  dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "",
2075	  dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)  ? "slave " : "",
2076	  plat_dat->nr_channels);
2077
2078	err = dma_async_device_register(&atdma->dma_device);
2079	if (err) {
2080		dev_err(&pdev->dev, "Unable to register: %d.\n", err);
2081		goto err_dma_async_device_register;
2082	}
2083
2084	/*
2085	 * Do not return an error if the dmac node is not present in order to
2086	 * not break the existing way of requesting channel with
2087	 * dma_request_channel().
2088	 */
2089	if (pdev->dev.of_node) {
2090		err = of_dma_controller_register(pdev->dev.of_node,
2091						 at_dma_xlate, atdma);
2092		if (err) {
2093			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2094			goto err_of_dma_controller_register;
2095		}
2096	}
2097
2098	return 0;
2099
2100err_of_dma_controller_register:
2101	dma_async_device_unregister(&atdma->dma_device);
2102err_dma_async_device_register:
2103	dma_pool_destroy(atdma->memset_pool);
2104err_memset_pool_create:
2105	dma_pool_destroy(atdma->lli_pool);
2106err_desc_pool_create:
2107	free_irq(platform_get_irq(pdev, 0), atdma);
2108err_irq:
2109	clk_disable_unprepare(atdma->clk);
2110	return err;
2111}
2112
2113static void at_dma_remove(struct platform_device *pdev)
2114{
2115	struct at_dma		*atdma = platform_get_drvdata(pdev);
2116	struct dma_chan		*chan, *_chan;
2117
2118	at_dma_off(atdma);
2119	if (pdev->dev.of_node)
2120		of_dma_controller_free(pdev->dev.of_node);
2121	dma_async_device_unregister(&atdma->dma_device);
2122
2123	dma_pool_destroy(atdma->memset_pool);
2124	dma_pool_destroy(atdma->lli_pool);
2125	free_irq(platform_get_irq(pdev, 0), atdma);
2126
2127	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2128			device_node) {
2129		/* Disable interrupts */
2130		atc_disable_chan_irq(atdma, chan->chan_id);
2131		list_del(&chan->device_node);
2132	}
2133
2134	clk_disable_unprepare(atdma->clk);
2135}
2136
2137static void at_dma_shutdown(struct platform_device *pdev)
2138{
2139	struct at_dma	*atdma = platform_get_drvdata(pdev);
2140
2141	at_dma_off(platform_get_drvdata(pdev));
2142	clk_disable_unprepare(atdma->clk);
2143}
2144
2145static int at_dma_prepare(struct device *dev)
2146{
2147	struct at_dma *atdma = dev_get_drvdata(dev);
2148	struct dma_chan *chan, *_chan;
2149
2150	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2151			device_node) {
2152		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2153		/* wait for transaction completion (except in cyclic case) */
2154		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2155			return -EAGAIN;
2156	}
2157	return 0;
2158}
2159
2160static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2161{
2162	struct dma_chan	*chan = &atchan->vc.chan;
2163
2164	/* Channel should be paused by user
2165	 * do it anyway even if it is not done already */
2166	if (!atc_chan_is_paused(atchan)) {
2167		dev_warn(chan2dev(chan),
2168		"cyclic channel not paused, should be done by channel user\n");
2169		atc_pause(chan);
2170	}
2171
2172	/* now preserve additional data for cyclic operations */
2173	/* next descriptor address in the cyclic list */
2174	atchan->save_dscr = channel_readl(atchan, DSCR);
2175
2176	vdbg_dump_regs(atchan);
2177}
2178
2179static int at_dma_suspend_noirq(struct device *dev)
2180{
2181	struct at_dma *atdma = dev_get_drvdata(dev);
2182	struct dma_chan *chan, *_chan;
2183
2184	/* preserve data */
2185	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2186			device_node) {
2187		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2188
2189		if (atc_chan_is_cyclic(atchan))
2190			atc_suspend_cyclic(atchan);
2191		atchan->save_cfg = channel_readl(atchan, CFG);
2192	}
2193	atdma->save_imr = dma_readl(atdma, EBCIMR);
2194
2195	/* disable DMA controller */
2196	at_dma_off(atdma);
2197	clk_disable_unprepare(atdma->clk);
2198	return 0;
2199}
2200
2201static void atc_resume_cyclic(struct at_dma_chan *atchan)
2202{
2203	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
2204
2205	/* restore channel status for cyclic descriptors list:
2206	 * next descriptor in the cyclic list at the time of suspend */
2207	channel_writel(atchan, SADDR, 0);
2208	channel_writel(atchan, DADDR, 0);
2209	channel_writel(atchan, CTRLA, 0);
2210	channel_writel(atchan, CTRLB, 0);
2211	channel_writel(atchan, DSCR, atchan->save_dscr);
2212	dma_writel(atdma, CHER, atchan->mask);
2213
2214	/* channel pause status should be removed by channel user
2215	 * We cannot take the initiative to do it here */
2216
2217	vdbg_dump_regs(atchan);
2218}
2219
2220static int at_dma_resume_noirq(struct device *dev)
2221{
2222	struct at_dma *atdma = dev_get_drvdata(dev);
2223	struct dma_chan *chan, *_chan;
2224
2225	/* bring back DMA controller */
2226	clk_prepare_enable(atdma->clk);
2227	dma_writel(atdma, EN, AT_DMA_ENABLE);
2228
2229	/* clear any pending interrupt */
2230	while (dma_readl(atdma, EBCISR))
2231		cpu_relax();
2232
2233	/* restore saved data */
2234	dma_writel(atdma, EBCIER, atdma->save_imr);
2235	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2236			device_node) {
2237		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2238
2239		channel_writel(atchan, CFG, atchan->save_cfg);
2240		if (atc_chan_is_cyclic(atchan))
2241			atc_resume_cyclic(atchan);
2242	}
2243	return 0;
2244}
2245
2246static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = {
2247	.prepare = at_dma_prepare,
2248	.suspend_noirq = at_dma_suspend_noirq,
2249	.resume_noirq = at_dma_resume_noirq,
2250};
2251
2252static struct platform_driver at_dma_driver = {
2253	.remove_new	= at_dma_remove,
2254	.shutdown	= at_dma_shutdown,
2255	.id_table	= atdma_devtypes,
2256	.driver = {
2257		.name	= "at_hdmac",
2258		.pm	= pm_ptr(&at_dma_dev_pm_ops),
2259		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2260	},
2261};
2262
2263static int __init at_dma_init(void)
2264{
2265	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2266}
2267subsys_initcall(at_dma_init);
2268
2269static void __exit at_dma_exit(void)
2270{
2271	platform_driver_unregister(&at_dma_driver);
2272}
2273module_exit(at_dma_exit);
2274
2275MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2276MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2277MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
2278MODULE_LICENSE("GPL");
2279MODULE_ALIAS("platform:at_hdmac");
2280