1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) 2006 ARM Ltd.
4 * Copyright (c) 2010 ST-Ericsson SA
5 * Copyirght (c) 2017 Linaro Ltd.
6 *
7 * Author: Peter Pearse <peter.pearse@arm.com>
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Documentation: ARM DDI 0196G == PL080
11 * Documentation: ARM DDI 0218E == PL081
12 * Documentation: S3C6410 User's Manual == PL080S
13 *
14 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
15 * channel.
16 *
17 * The PL080 has 8 channels available for simultaneous use, and the PL081
18 * has only two channels. So on these DMA controllers the number of channels
19 * and the number of incoming DMA signals are two totally different things.
20 * It is usually not possible to theoretically handle all physical signals,
21 * so a multiplexing scheme with possible denial of use is necessary.
22 *
23 * The PL080 has a dual bus master, PL081 has a single master.
24 *
25 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
26 * It differs in following aspects:
27 * - CH_CONFIG register at different offset,
28 * - separate CH_CONTROL2 register for transfer size,
29 * - bigger maximum transfer size,
30 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
31 * - no support for peripheral flow control.
32 *
33 * Memory to peripheral transfer may be visualized as
34 *	Get data from memory to DMAC
35 *	Until no data left
36 *		On burst request from peripheral
37 *			Destination burst from DMAC to peripheral
38 *			Clear burst request
39 *	Raise terminal count interrupt
40 *
41 * For peripherals with a FIFO:
42 * Source      burst size == half the depth of the peripheral FIFO
43 * Destination burst size == the depth of the peripheral FIFO
44 *
45 * (Bursts are irrelevant for mem to mem transfers - there are no burst
46 * signals, the DMA controller will simply facilitate its AHB master.)
47 *
48 * ASSUMES default (little) endianness for DMA transfers
49 *
50 * The PL08x has two flow control settings:
51 *  - DMAC flow control: the transfer size defines the number of transfers
52 *    which occur for the current LLI entry, and the DMAC raises TC at the
53 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
54 *    to both the BREQ and SREQ signals (contrary to documented),
55 *    transferring data if either is active.  The LBREQ and LSREQ signals
56 *    are ignored.
57 *
58 *  - Peripheral flow control: the transfer size is ignored (and should be
59 *    zero).  The data is transferred from the current LLI entry, until
60 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
61 *    will then move to the next LLI entry. Unsupported by PL080S.
62 */
63#include <linux/amba/bus.h>
64#include <linux/amba/pl08x.h>
65#include <linux/debugfs.h>
66#include <linux/delay.h>
67#include <linux/device.h>
68#include <linux/dmaengine.h>
69#include <linux/dmapool.h>
70#include <linux/dma-mapping.h>
71#include <linux/export.h>
72#include <linux/init.h>
73#include <linux/interrupt.h>
74#include <linux/module.h>
75#include <linux/of.h>
76#include <linux/of_dma.h>
77#include <linux/pm_runtime.h>
78#include <linux/seq_file.h>
79#include <linux/slab.h>
80#include <linux/amba/pl080.h>
81
82#include "dmaengine.h"
83#include "virt-dma.h"
84
85#define DRIVER_NAME	"pl08xdmac"
86
87#define PL80X_DMA_BUSWIDTHS \
88	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
89	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
90	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
91	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
92
93static struct amba_driver pl08x_amba_driver;
94struct pl08x_driver_data;
95
96/**
97 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
98 * @config_offset: offset to the configuration register
99 * @channels: the number of channels available in this variant
100 * @signals: the number of request signals available from the hardware
101 * @dualmaster: whether this version supports dual AHB masters or not.
102 * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
103 *	channels have Nomadik security extension bits that need to be checked
104 *	for permission before use and some registers are missing
105 * @pl080s: whether this variant is a Samsung PL080S, which has separate
106 *	register and LLI word for transfer size.
107 * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
108 * @max_transfer_size: the maximum single element transfer size for this
109 *	PL08x variant.
110 */
111struct vendor_data {
112	u8 config_offset;
113	u8 channels;
114	u8 signals;
115	bool dualmaster;
116	bool nomadik;
117	bool pl080s;
118	bool ftdmac020;
119	u32 max_transfer_size;
120};
121
122/**
123 * struct pl08x_bus_data - information of source or destination
124 * busses for a transfer
125 * @addr: current address
126 * @maxwidth: the maximum width of a transfer on this bus
127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
128 */
129struct pl08x_bus_data {
130	dma_addr_t addr;
131	u8 maxwidth;
132	u8 buswidth;
133};
134
135#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
136
137/**
138 * struct pl08x_phy_chan - holder for the physical channels
139 * @id: physical index to this channel
140 * @base: memory base address for this physical channel
141 * @reg_config: configuration address for this physical channel
142 * @reg_control: control address for this physical channel
143 * @reg_src: transfer source address register
144 * @reg_dst: transfer destination address register
145 * @reg_lli: transfer LLI address register
146 * @reg_busy: if the variant has a special per-channel busy register,
147 * this contains a pointer to it
148 * @lock: a lock to use when altering an instance of this struct
149 * @serving: the virtual channel currently being served by this physical
150 * channel
151 * @locked: channel unavailable for the system, e.g. dedicated to secure
152 * world
153 * @ftdmac020: channel is on a FTDMAC020
154 * @pl080s: channel is on a PL08s
155 */
156struct pl08x_phy_chan {
157	unsigned int id;
158	void __iomem *base;
159	void __iomem *reg_config;
160	void __iomem *reg_control;
161	void __iomem *reg_src;
162	void __iomem *reg_dst;
163	void __iomem *reg_lli;
164	void __iomem *reg_busy;
165	spinlock_t lock;
166	struct pl08x_dma_chan *serving;
167	bool locked;
168	bool ftdmac020;
169	bool pl080s;
170};
171
172/**
173 * struct pl08x_sg - structure containing data per sg
174 * @src_addr: src address of sg
175 * @dst_addr: dst address of sg
176 * @len: transfer len in bytes
177 * @node: node for txd's dsg_list
178 */
179struct pl08x_sg {
180	dma_addr_t src_addr;
181	dma_addr_t dst_addr;
182	size_t len;
183	struct list_head node;
184};
185
186/**
187 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
188 * @vd: virtual DMA descriptor
189 * @dsg_list: list of children sg's
190 * @llis_bus: DMA memory address (physical) start for the LLIs
191 * @llis_va: virtual memory address start for the LLIs
192 * @cctl: control reg values for current txd
193 * @ccfg: config reg values for current txd
194 * @done: this marks completed descriptors, which should not have their
195 *   mux released.
196 * @cyclic: indicate cyclic transfers
197 */
198struct pl08x_txd {
199	struct virt_dma_desc vd;
200	struct list_head dsg_list;
201	dma_addr_t llis_bus;
202	u32 *llis_va;
203	/* Default cctl value for LLIs */
204	u32 cctl;
205	/*
206	 * Settings to be put into the physical channel when we
207	 * trigger this txd.  Other registers are in llis_va[0].
208	 */
209	u32 ccfg;
210	bool done;
211	bool cyclic;
212};
213
214/**
215 * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
216 * states
217 * @PL08X_CHAN_IDLE: the channel is idle
218 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
219 * channel and is running a transfer on it
220 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
221 * channel, but the transfer is currently paused
222 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
223 * channel to become available (only pertains to memcpy channels)
224 */
225enum pl08x_dma_chan_state {
226	PL08X_CHAN_IDLE,
227	PL08X_CHAN_RUNNING,
228	PL08X_CHAN_PAUSED,
229	PL08X_CHAN_WAITING,
230};
231
232/**
233 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
234 * @vc: wrapped virtual channel
235 * @phychan: the physical channel utilized by this channel, if there is one
236 * @name: name of channel
237 * @cd: channel platform data
238 * @cfg: slave configuration
239 * @at: active transaction on this channel
240 * @host: a pointer to the host (internal use)
241 * @state: whether the channel is idle, paused, running etc
242 * @slave: whether this channel is a device (slave) or for memcpy
243 * @signal: the physical DMA request signal which this channel is using
244 * @mux_use: count of descriptors using this DMA request signal setting
245 * @waiting_at: time in jiffies when this channel moved to waiting state
246 */
247struct pl08x_dma_chan {
248	struct virt_dma_chan vc;
249	struct pl08x_phy_chan *phychan;
250	const char *name;
251	struct pl08x_channel_data *cd;
252	struct dma_slave_config cfg;
253	struct pl08x_txd *at;
254	struct pl08x_driver_data *host;
255	enum pl08x_dma_chan_state state;
256	bool slave;
257	int signal;
258	unsigned mux_use;
259	unsigned long waiting_at;
260};
261
262/**
263 * struct pl08x_driver_data - the local state holder for the PL08x
264 * @slave: optional slave engine for this instance
265 * @memcpy: memcpy engine for this instance
266 * @has_slave: the PL08x has a slave engine (routed signals)
267 * @base: virtual memory base (remapped) for the PL08x
268 * @adev: the corresponding AMBA (PrimeCell) bus entry
269 * @vd: vendor data for this PL08x variant
270 * @pd: platform data passed in from the platform/machine
271 * @phy_chans: array of data for the physical channels
272 * @pool: a pool for the LLI descriptors
273 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
274 * fetches
275 * @mem_buses: set to indicate memory transfers on AHB2.
276 * @lli_words: how many words are used in each LLI item for this variant
277 */
278struct pl08x_driver_data {
279	struct dma_device slave;
280	struct dma_device memcpy;
281	bool has_slave;
282	void __iomem *base;
283	struct amba_device *adev;
284	const struct vendor_data *vd;
285	struct pl08x_platform_data *pd;
286	struct pl08x_phy_chan *phy_chans;
287	struct dma_pool *pool;
288	u8 lli_buses;
289	u8 mem_buses;
290	u8 lli_words;
291};
292
293/*
294 * PL08X specific defines
295 */
296
297/* The order of words in an LLI. */
298#define PL080_LLI_SRC		0
299#define PL080_LLI_DST		1
300#define PL080_LLI_LLI		2
301#define PL080_LLI_CCTL		3
302#define PL080S_LLI_CCTL2	4
303
304/* Total words in an LLI. */
305#define PL080_LLI_WORDS		4
306#define PL080S_LLI_WORDS	8
307
308/*
309 * Number of LLIs in each LLI buffer allocated for one transfer
310 * (maximum times we call dma_pool_alloc on this pool without freeing)
311 */
312#define MAX_NUM_TSFR_LLIS	512
313#define PL08X_ALIGN		8
314
315static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
316{
317	return container_of(chan, struct pl08x_dma_chan, vc.chan);
318}
319
320static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
321{
322	return container_of(tx, struct pl08x_txd, vd.tx);
323}
324
325/*
326 * Mux handling.
327 *
328 * This gives us the DMA request input to the PL08x primecell which the
329 * peripheral described by the channel data will be routed to, possibly
330 * via a board/SoC specific external MUX.  One important point to note
331 * here is that this does not depend on the physical channel.
332 */
333static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
334{
335	const struct pl08x_platform_data *pd = plchan->host->pd;
336	int ret;
337
338	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
339		ret = pd->get_xfer_signal(plchan->cd);
340		if (ret < 0) {
341			plchan->mux_use = 0;
342			return ret;
343		}
344
345		plchan->signal = ret;
346	}
347	return 0;
348}
349
350static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
351{
352	const struct pl08x_platform_data *pd = plchan->host->pd;
353
354	if (plchan->signal >= 0) {
355		WARN_ON(plchan->mux_use == 0);
356
357		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
358			pd->put_xfer_signal(plchan->cd, plchan->signal);
359			plchan->signal = -1;
360		}
361	}
362}
363
364/*
365 * Physical channel handling
366 */
367
368/* Whether a certain channel is busy or not */
369static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
370{
371	unsigned int val;
372
373	/* If we have a special busy register, take a shortcut */
374	if (ch->reg_busy) {
375		val = readl(ch->reg_busy);
376		return !!(val & BIT(ch->id));
377	}
378	val = readl(ch->reg_config);
379	return val & PL080_CONFIG_ACTIVE;
380}
381
382/*
383 * pl08x_write_lli() - Write an LLI into the DMA controller.
384 *
385 * The PL08x derivatives support linked lists, but the first item of the
386 * list containing the source, destination, control word and next LLI is
387 * ignored. Instead the driver has to write those values directly into the
388 * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
389 * register need to be set up for the first transfer.
390 */
391static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
392		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
393{
394	if (pl08x->vd->pl080s)
395		dev_vdbg(&pl08x->adev->dev,
396			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
397			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
398			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
399			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
400			lli[PL080S_LLI_CCTL2], ccfg);
401	else
402		dev_vdbg(&pl08x->adev->dev,
403			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
404			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
405			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
406			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
407
408	writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
409	writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
410	writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
411
412	/*
413	 * The FTMAC020 has a different layout in the CCTL word of the LLI
414	 * and the CCTL register which is split in CSR and SIZE registers.
415	 * Convert the LLI item CCTL into the proper values to write into
416	 * the CSR and SIZE registers.
417	 */
418	if (phychan->ftdmac020) {
419		u32 llictl = lli[PL080_LLI_CCTL];
420		u32 val = 0;
421
422		/* Write the transfer size (12 bits) to the size register */
423		writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
424			       phychan->base + FTDMAC020_CH_SIZE);
425		/*
426		 * Then write the control bits 28..16 to the control register
427		 * by shuffleing the bits around to where they are in the
428		 * main register. The mapping is as follows:
429		 * Bit 28: TC_MSK - mask on all except last LLI
430		 * Bit 27..25: SRC_WIDTH
431		 * Bit 24..22: DST_WIDTH
432		 * Bit 21..20: SRCAD_CTRL
433		 * Bit 19..17: DSTAD_CTRL
434		 * Bit 17: SRC_SEL
435		 * Bit 16: DST_SEL
436		 */
437		if (llictl & FTDMAC020_LLI_TC_MSK)
438			val |= FTDMAC020_CH_CSR_TC_MSK;
439		val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
440			(FTDMAC020_LLI_SRC_WIDTH_SHIFT -
441			 FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
442		val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >>
443			(FTDMAC020_LLI_DST_WIDTH_SHIFT -
444			 FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
445		val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
446			(FTDMAC020_LLI_SRCAD_CTL_SHIFT -
447			 FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
448		val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
449			(FTDMAC020_LLI_DSTAD_CTL_SHIFT -
450			 FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
451		if (llictl & FTDMAC020_LLI_SRC_SEL)
452			val |= FTDMAC020_CH_CSR_SRC_SEL;
453		if (llictl & FTDMAC020_LLI_DST_SEL)
454			val |= FTDMAC020_CH_CSR_DST_SEL;
455
456		/*
457		 * Set up the bits that exist in the CSR but are not
458		 * part the LLI, i.e. only gets written to the control
459		 * register right here.
460		 *
461		 * FIXME: do not just handle memcpy, also handle slave DMA.
462		 */
463		switch (pl08x->pd->memcpy_burst_size) {
464		default:
465		case PL08X_BURST_SZ_1:
466			val |= PL080_BSIZE_1 <<
467				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
468			break;
469		case PL08X_BURST_SZ_4:
470			val |= PL080_BSIZE_4 <<
471				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
472			break;
473		case PL08X_BURST_SZ_8:
474			val |= PL080_BSIZE_8 <<
475				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
476			break;
477		case PL08X_BURST_SZ_16:
478			val |= PL080_BSIZE_16 <<
479				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
480			break;
481		case PL08X_BURST_SZ_32:
482			val |= PL080_BSIZE_32 <<
483				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
484			break;
485		case PL08X_BURST_SZ_64:
486			val |= PL080_BSIZE_64 <<
487				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
488			break;
489		case PL08X_BURST_SZ_128:
490			val |= PL080_BSIZE_128 <<
491				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
492			break;
493		case PL08X_BURST_SZ_256:
494			val |= PL080_BSIZE_256 <<
495				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
496			break;
497		}
498
499		/* Protection flags */
500		if (pl08x->pd->memcpy_prot_buff)
501			val |= FTDMAC020_CH_CSR_PROT2;
502		if (pl08x->pd->memcpy_prot_cache)
503			val |= FTDMAC020_CH_CSR_PROT3;
504		/* We are the kernel, so we are in privileged mode */
505		val |= FTDMAC020_CH_CSR_PROT1;
506
507		writel_relaxed(val, phychan->reg_control);
508	} else {
509		/* Bits are just identical */
510		writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
511	}
512
513	/* Second control word on the PL080s */
514	if (pl08x->vd->pl080s)
515		writel_relaxed(lli[PL080S_LLI_CCTL2],
516				phychan->base + PL080S_CH_CONTROL2);
517
518	writel(ccfg, phychan->reg_config);
519}
520
521/*
522 * Set the initial DMA register values i.e. those for the first LLI
523 * The next LLI pointer and the configuration interrupt bit have
524 * been set when the LLIs were constructed.  Poke them into the hardware
525 * and start the transfer.
526 */
527static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
528{
529	struct pl08x_driver_data *pl08x = plchan->host;
530	struct pl08x_phy_chan *phychan = plchan->phychan;
531	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
532	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
533	u32 val;
534
535	list_del(&txd->vd.node);
536
537	plchan->at = txd;
538
539	/* Wait for channel inactive */
540	while (pl08x_phy_channel_busy(phychan))
541		cpu_relax();
542
543	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
544
545	/* Enable the DMA channel */
546	/* Do not access config register until channel shows as disabled */
547	while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
548		cpu_relax();
549
550	/* Do not access config register until channel shows as inactive */
551	if (phychan->ftdmac020) {
552		val = readl(phychan->reg_config);
553		while (val & FTDMAC020_CH_CFG_BUSY)
554			val = readl(phychan->reg_config);
555
556		val = readl(phychan->reg_control);
557		while (val & FTDMAC020_CH_CSR_EN)
558			val = readl(phychan->reg_control);
559
560		writel(val | FTDMAC020_CH_CSR_EN,
561		       phychan->reg_control);
562	} else {
563		val = readl(phychan->reg_config);
564		while ((val & PL080_CONFIG_ACTIVE) ||
565		       (val & PL080_CONFIG_ENABLE))
566			val = readl(phychan->reg_config);
567
568		writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
569	}
570}
571
572/*
573 * Pause the channel by setting the HALT bit.
574 *
575 * For M->P transfers, pause the DMAC first and then stop the peripheral -
576 * the FIFO can only drain if the peripheral is still requesting data.
577 * (note: this can still timeout if the DMAC FIFO never drains of data.)
578 *
579 * For P->M transfers, disable the peripheral first to stop it filling
580 * the DMAC FIFO, and then pause the DMAC.
581 */
582static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
583{
584	u32 val;
585	int timeout;
586
587	if (ch->ftdmac020) {
588		/* Use the enable bit on the FTDMAC020 */
589		val = readl(ch->reg_control);
590		val &= ~FTDMAC020_CH_CSR_EN;
591		writel(val, ch->reg_control);
592		return;
593	}
594
595	/* Set the HALT bit and wait for the FIFO to drain */
596	val = readl(ch->reg_config);
597	val |= PL080_CONFIG_HALT;
598	writel(val, ch->reg_config);
599
600	/* Wait for channel inactive */
601	for (timeout = 1000; timeout; timeout--) {
602		if (!pl08x_phy_channel_busy(ch))
603			break;
604		udelay(1);
605	}
606	if (pl08x_phy_channel_busy(ch))
607		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
608}
609
610static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
611{
612	u32 val;
613
614	/* Use the enable bit on the FTDMAC020 */
615	if (ch->ftdmac020) {
616		val = readl(ch->reg_control);
617		val |= FTDMAC020_CH_CSR_EN;
618		writel(val, ch->reg_control);
619		return;
620	}
621
622	/* Clear the HALT bit */
623	val = readl(ch->reg_config);
624	val &= ~PL080_CONFIG_HALT;
625	writel(val, ch->reg_config);
626}
627
628/*
629 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
630 * clears any pending interrupt status.  This should not be used for
631 * an on-going transfer, but as a method of shutting down a channel
632 * (eg, when it's no longer used) or terminating a transfer.
633 */
634static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
635	struct pl08x_phy_chan *ch)
636{
637	u32 val;
638
639	/* The layout for the FTDMAC020 is different */
640	if (ch->ftdmac020) {
641		/* Disable all interrupts */
642		val = readl(ch->reg_config);
643		val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
644			FTDMAC020_CH_CFG_INT_ERR_MASK |
645			FTDMAC020_CH_CFG_INT_TC_MASK);
646		writel(val, ch->reg_config);
647
648		/* Abort and disable channel */
649		val = readl(ch->reg_control);
650		val &= ~FTDMAC020_CH_CSR_EN;
651		val |= FTDMAC020_CH_CSR_ABT;
652		writel(val, ch->reg_control);
653
654		/* Clear ABT and ERR interrupt flags */
655		writel(BIT(ch->id) | BIT(ch->id + 16),
656		       pl08x->base + PL080_ERR_CLEAR);
657		writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
658
659		return;
660	}
661
662	val = readl(ch->reg_config);
663	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
664		 PL080_CONFIG_TC_IRQ_MASK);
665	writel(val, ch->reg_config);
666
667	writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
668	writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
669}
670
671static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
672{
673	u32 val;
674	u32 bytes;
675
676	if (ch->ftdmac020) {
677		bytes = readl(ch->base + FTDMAC020_CH_SIZE);
678
679		val = readl(ch->reg_control);
680		val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
681		val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
682	} else if (ch->pl080s) {
683		val = readl(ch->base + PL080S_CH_CONTROL2);
684		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
685
686		val = readl(ch->reg_control);
687		val &= PL080_CONTROL_SWIDTH_MASK;
688		val >>= PL080_CONTROL_SWIDTH_SHIFT;
689	} else {
690		/* Plain PL08x */
691		val = readl(ch->reg_control);
692		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
693
694		val &= PL080_CONTROL_SWIDTH_MASK;
695		val >>= PL080_CONTROL_SWIDTH_SHIFT;
696	}
697
698	switch (val) {
699	case PL080_WIDTH_8BIT:
700		break;
701	case PL080_WIDTH_16BIT:
702		bytes *= 2;
703		break;
704	case PL080_WIDTH_32BIT:
705		bytes *= 4;
706		break;
707	}
708	return bytes;
709}
710
711static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
712{
713	u32 val;
714	u32 bytes;
715
716	if (ch->ftdmac020) {
717		val = llis_va[PL080_LLI_CCTL];
718		bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
719
720		val = llis_va[PL080_LLI_CCTL];
721		val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
722		val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
723	} else if (ch->pl080s) {
724		val = llis_va[PL080S_LLI_CCTL2];
725		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
726
727		val = llis_va[PL080_LLI_CCTL];
728		val &= PL080_CONTROL_SWIDTH_MASK;
729		val >>= PL080_CONTROL_SWIDTH_SHIFT;
730	} else {
731		/* Plain PL08x */
732		val = llis_va[PL080_LLI_CCTL];
733		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
734
735		val &= PL080_CONTROL_SWIDTH_MASK;
736		val >>= PL080_CONTROL_SWIDTH_SHIFT;
737	}
738
739	switch (val) {
740	case PL080_WIDTH_8BIT:
741		break;
742	case PL080_WIDTH_16BIT:
743		bytes *= 2;
744		break;
745	case PL080_WIDTH_32BIT:
746		bytes *= 4;
747		break;
748	}
749	return bytes;
750}
751
752/* The channel should be paused when calling this */
753static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
754{
755	struct pl08x_driver_data *pl08x = plchan->host;
756	const u32 *llis_va, *llis_va_limit;
757	struct pl08x_phy_chan *ch;
758	dma_addr_t llis_bus;
759	struct pl08x_txd *txd;
760	u32 llis_max_words;
761	size_t bytes;
762	u32 clli;
763
764	ch = plchan->phychan;
765	txd = plchan->at;
766
767	if (!ch || !txd)
768		return 0;
769
770	/*
771	 * Follow the LLIs to get the number of remaining
772	 * bytes in the currently active transaction.
773	 */
774	clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
775
776	/* First get the remaining bytes in the active transfer */
777	bytes = get_bytes_in_phy_channel(ch);
778
779	if (!clli)
780		return bytes;
781
782	llis_va = txd->llis_va;
783	llis_bus = txd->llis_bus;
784
785	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
786	BUG_ON(clli < llis_bus || clli >= llis_bus +
787						sizeof(u32) * llis_max_words);
788
789	/*
790	 * Locate the next LLI - as this is an array,
791	 * it's simple maths to find.
792	 */
793	llis_va += (clli - llis_bus) / sizeof(u32);
794
795	llis_va_limit = llis_va + llis_max_words;
796
797	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
798		bytes += get_bytes_in_lli(ch, llis_va);
799
800		/*
801		 * A LLI pointer going backward terminates the LLI list
802		 */
803		if (llis_va[PL080_LLI_LLI] <= clli)
804			break;
805	}
806
807	return bytes;
808}
809
810/*
811 * Allocate a physical channel for a virtual channel
812 *
813 * Try to locate a physical channel to be used for this transfer. If all
814 * are taken return NULL and the requester will have to cope by using
815 * some fallback PIO mode or retrying later.
816 */
817static struct pl08x_phy_chan *
818pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
819		      struct pl08x_dma_chan *virt_chan)
820{
821	struct pl08x_phy_chan *ch = NULL;
822	unsigned long flags;
823	int i;
824
825	for (i = 0; i < pl08x->vd->channels; i++) {
826		ch = &pl08x->phy_chans[i];
827
828		spin_lock_irqsave(&ch->lock, flags);
829
830		if (!ch->locked && !ch->serving) {
831			ch->serving = virt_chan;
832			spin_unlock_irqrestore(&ch->lock, flags);
833			break;
834		}
835
836		spin_unlock_irqrestore(&ch->lock, flags);
837	}
838
839	if (i == pl08x->vd->channels) {
840		/* No physical channel available, cope with it */
841		return NULL;
842	}
843
844	return ch;
845}
846
847/* Mark the physical channel as free.  Note, this write is atomic. */
848static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
849					 struct pl08x_phy_chan *ch)
850{
851	ch->serving = NULL;
852}
853
854/*
855 * Try to allocate a physical channel.  When successful, assign it to
856 * this virtual channel, and initiate the next descriptor.  The
857 * virtual channel lock must be held at this point.
858 */
859static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
860{
861	struct pl08x_driver_data *pl08x = plchan->host;
862	struct pl08x_phy_chan *ch;
863
864	ch = pl08x_get_phy_channel(pl08x, plchan);
865	if (!ch) {
866		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
867		plchan->state = PL08X_CHAN_WAITING;
868		plchan->waiting_at = jiffies;
869		return;
870	}
871
872	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
873		ch->id, plchan->name);
874
875	plchan->phychan = ch;
876	plchan->state = PL08X_CHAN_RUNNING;
877	pl08x_start_next_txd(plchan);
878}
879
880static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
881	struct pl08x_dma_chan *plchan)
882{
883	struct pl08x_driver_data *pl08x = plchan->host;
884
885	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
886		ch->id, plchan->name);
887
888	/*
889	 * We do this without taking the lock; we're really only concerned
890	 * about whether this pointer is NULL or not, and we're guaranteed
891	 * that this will only be called when it _already_ is non-NULL.
892	 */
893	ch->serving = plchan;
894	plchan->phychan = ch;
895	plchan->state = PL08X_CHAN_RUNNING;
896	pl08x_start_next_txd(plchan);
897}
898
899/*
900 * Free a physical DMA channel, potentially reallocating it to another
901 * virtual channel if we have any pending.
902 */
903static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
904{
905	struct pl08x_driver_data *pl08x = plchan->host;
906	struct pl08x_dma_chan *p, *next;
907	unsigned long waiting_at;
908 retry:
909	next = NULL;
910	waiting_at = jiffies;
911
912	/*
913	 * Find a waiting virtual channel for the next transfer.
914	 * To be fair, time when each channel reached waiting state is compared
915	 * to select channel that is waiting for the longest time.
916	 */
917	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
918		if (p->state == PL08X_CHAN_WAITING &&
919		    p->waiting_at <= waiting_at) {
920			next = p;
921			waiting_at = p->waiting_at;
922		}
923
924	if (!next && pl08x->has_slave) {
925		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
926			if (p->state == PL08X_CHAN_WAITING &&
927			    p->waiting_at <= waiting_at) {
928				next = p;
929				waiting_at = p->waiting_at;
930			}
931	}
932
933	/* Ensure that the physical channel is stopped */
934	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
935
936	if (next) {
937		bool success;
938
939		/*
940		 * Eww.  We know this isn't going to deadlock
941		 * but lockdep probably doesn't.
942		 */
943		spin_lock(&next->vc.lock);
944		/* Re-check the state now that we have the lock */
945		success = next->state == PL08X_CHAN_WAITING;
946		if (success)
947			pl08x_phy_reassign_start(plchan->phychan, next);
948		spin_unlock(&next->vc.lock);
949
950		/* If the state changed, try to find another channel */
951		if (!success)
952			goto retry;
953	} else {
954		/* No more jobs, so free up the physical channel */
955		pl08x_put_phy_channel(pl08x, plchan->phychan);
956	}
957
958	plchan->phychan = NULL;
959	plchan->state = PL08X_CHAN_IDLE;
960}
961
962/*
963 * LLI handling
964 */
965
966static inline unsigned int
967pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
968			u32 cctl,
969			bool source)
970{
971	u32 val;
972
973	if (pl08x->vd->ftdmac020) {
974		if (source)
975			val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
976				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
977		else
978			val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
979				FTDMAC020_LLI_DST_WIDTH_SHIFT;
980	} else {
981		if (source)
982			val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
983				PL080_CONTROL_SWIDTH_SHIFT;
984		else
985			val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
986				PL080_CONTROL_DWIDTH_SHIFT;
987	}
988
989	switch (val) {
990	case PL080_WIDTH_8BIT:
991		return 1;
992	case PL080_WIDTH_16BIT:
993		return 2;
994	case PL080_WIDTH_32BIT:
995		return 4;
996	default:
997		break;
998	}
999	BUG();
1000	return 0;
1001}
1002
1003static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1004					 u32 cctl,
1005					 u8 srcwidth, u8 dstwidth,
1006					 size_t tsize)
1007{
1008	u32 retbits = cctl;
1009
1010	/*
1011	 * Remove all src, dst and transfer size bits, then set the
1012	 * width and size according to the parameters. The bit offsets
1013	 * are different in the FTDMAC020 so we need to accound for this.
1014	 */
1015	if (pl08x->vd->ftdmac020) {
1016		retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1017		retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1018		retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1019
1020		switch (srcwidth) {
1021		case 1:
1022			retbits |= PL080_WIDTH_8BIT <<
1023				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1024			break;
1025		case 2:
1026			retbits |= PL080_WIDTH_16BIT <<
1027				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1028			break;
1029		case 4:
1030			retbits |= PL080_WIDTH_32BIT <<
1031				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1032			break;
1033		default:
1034			BUG();
1035			break;
1036		}
1037
1038		switch (dstwidth) {
1039		case 1:
1040			retbits |= PL080_WIDTH_8BIT <<
1041				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1042			break;
1043		case 2:
1044			retbits |= PL080_WIDTH_16BIT <<
1045				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1046			break;
1047		case 4:
1048			retbits |= PL080_WIDTH_32BIT <<
1049				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1050			break;
1051		default:
1052			BUG();
1053			break;
1054		}
1055
1056		tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1057		retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1058	} else {
1059		retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1060		retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1061		retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1062
1063		switch (srcwidth) {
1064		case 1:
1065			retbits |= PL080_WIDTH_8BIT <<
1066				PL080_CONTROL_SWIDTH_SHIFT;
1067			break;
1068		case 2:
1069			retbits |= PL080_WIDTH_16BIT <<
1070				PL080_CONTROL_SWIDTH_SHIFT;
1071			break;
1072		case 4:
1073			retbits |= PL080_WIDTH_32BIT <<
1074				PL080_CONTROL_SWIDTH_SHIFT;
1075			break;
1076		default:
1077			BUG();
1078			break;
1079		}
1080
1081		switch (dstwidth) {
1082		case 1:
1083			retbits |= PL080_WIDTH_8BIT <<
1084				PL080_CONTROL_DWIDTH_SHIFT;
1085			break;
1086		case 2:
1087			retbits |= PL080_WIDTH_16BIT <<
1088				PL080_CONTROL_DWIDTH_SHIFT;
1089			break;
1090		case 4:
1091			retbits |= PL080_WIDTH_32BIT <<
1092				PL080_CONTROL_DWIDTH_SHIFT;
1093			break;
1094		default:
1095			BUG();
1096			break;
1097		}
1098
1099		tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1100		retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1101	}
1102
1103	return retbits;
1104}
1105
1106struct pl08x_lli_build_data {
1107	struct pl08x_txd *txd;
1108	struct pl08x_bus_data srcbus;
1109	struct pl08x_bus_data dstbus;
1110	size_t remainder;
1111	u32 lli_bus;
1112};
1113
1114/*
1115 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1116 * victim in case src & dest are not similarly aligned. i.e. If after aligning
1117 * masters address with width requirements of transfer (by sending few byte by
1118 * byte data), slave is still not aligned, then its width will be reduced to
1119 * BYTE.
1120 * - prefers the destination bus if both available
1121 * - prefers bus with fixed address (i.e. peripheral)
1122 */
1123static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1124				    struct pl08x_lli_build_data *bd,
1125				    struct pl08x_bus_data **mbus,
1126				    struct pl08x_bus_data **sbus,
1127				    u32 cctl)
1128{
1129	bool dst_incr;
1130	bool src_incr;
1131
1132	/*
1133	 * The FTDMAC020 only supports memory-to-memory transfer, so
1134	 * source and destination always increase.
1135	 */
1136	if (pl08x->vd->ftdmac020) {
1137		dst_incr = true;
1138		src_incr = true;
1139	} else {
1140		dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1141		src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1142	}
1143
1144	/*
1145	 * If either bus is not advancing, i.e. it is a peripheral, that
1146	 * one becomes master
1147	 */
1148	if (!dst_incr) {
1149		*mbus = &bd->dstbus;
1150		*sbus = &bd->srcbus;
1151	} else if (!src_incr) {
1152		*mbus = &bd->srcbus;
1153		*sbus = &bd->dstbus;
1154	} else {
1155		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1156			*mbus = &bd->dstbus;
1157			*sbus = &bd->srcbus;
1158		} else {
1159			*mbus = &bd->srcbus;
1160			*sbus = &bd->dstbus;
1161		}
1162	}
1163}
1164
1165/*
1166 * Fills in one LLI for a certain transfer descriptor and advance the counter
1167 */
1168static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1169				    struct pl08x_lli_build_data *bd,
1170				    int num_llis, int len, u32 cctl, u32 cctl2)
1171{
1172	u32 offset = num_llis * pl08x->lli_words;
1173	u32 *llis_va = bd->txd->llis_va + offset;
1174	dma_addr_t llis_bus = bd->txd->llis_bus;
1175
1176	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1177
1178	/* Advance the offset to next LLI. */
1179	offset += pl08x->lli_words;
1180
1181	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1182	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1183	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1184	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1185	llis_va[PL080_LLI_CCTL] = cctl;
1186	if (pl08x->vd->pl080s)
1187		llis_va[PL080S_LLI_CCTL2] = cctl2;
1188
1189	if (pl08x->vd->ftdmac020) {
1190		/* FIXME: only memcpy so far so both increase */
1191		bd->srcbus.addr += len;
1192		bd->dstbus.addr += len;
1193	} else {
1194		if (cctl & PL080_CONTROL_SRC_INCR)
1195			bd->srcbus.addr += len;
1196		if (cctl & PL080_CONTROL_DST_INCR)
1197			bd->dstbus.addr += len;
1198	}
1199
1200	BUG_ON(bd->remainder < len);
1201
1202	bd->remainder -= len;
1203}
1204
1205static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1206			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1207			int num_llis, size_t *total_bytes)
1208{
1209	*cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1210	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1211	(*total_bytes) += len;
1212}
1213
1214#if 1
1215static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1216			   const u32 *llis_va, int num_llis)
1217{
1218	int i;
1219
1220	if (pl08x->vd->pl080s) {
1221		dev_vdbg(&pl08x->adev->dev,
1222			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
1223			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1224		for (i = 0; i < num_llis; i++) {
1225			dev_vdbg(&pl08x->adev->dev,
1226				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1227				i, llis_va, llis_va[PL080_LLI_SRC],
1228				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1229				llis_va[PL080_LLI_CCTL],
1230				llis_va[PL080S_LLI_CCTL2]);
1231			llis_va += pl08x->lli_words;
1232		}
1233	} else {
1234		dev_vdbg(&pl08x->adev->dev,
1235			"%-3s %-9s  %-10s %-10s %-10s %s\n",
1236			"lli", "", "csrc", "cdst", "clli", "cctl");
1237		for (i = 0; i < num_llis; i++) {
1238			dev_vdbg(&pl08x->adev->dev,
1239				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1240				i, llis_va, llis_va[PL080_LLI_SRC],
1241				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1242				llis_va[PL080_LLI_CCTL]);
1243			llis_va += pl08x->lli_words;
1244		}
1245	}
1246}
1247#else
1248static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1249				  const u32 *llis_va, int num_llis) {}
1250#endif
1251
1252/*
1253 * This fills in the table of LLIs for the transfer descriptor
1254 * Note that we assume we never have to change the burst sizes
1255 * Return 0 for error
1256 */
1257static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1258			      struct pl08x_txd *txd)
1259{
1260	struct pl08x_bus_data *mbus, *sbus;
1261	struct pl08x_lli_build_data bd;
1262	int num_llis = 0;
1263	u32 cctl, early_bytes = 0;
1264	size_t max_bytes_per_lli, total_bytes;
1265	u32 *llis_va, *last_lli;
1266	struct pl08x_sg *dsg;
1267
1268	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1269	if (!txd->llis_va) {
1270		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1271		return 0;
1272	}
1273
1274	bd.txd = txd;
1275	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1276	cctl = txd->cctl;
1277
1278	/* Find maximum width of the source bus */
1279	bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1280
1281	/* Find maximum width of the destination bus */
1282	bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1283
1284	list_for_each_entry(dsg, &txd->dsg_list, node) {
1285		total_bytes = 0;
1286		cctl = txd->cctl;
1287
1288		bd.srcbus.addr = dsg->src_addr;
1289		bd.dstbus.addr = dsg->dst_addr;
1290		bd.remainder = dsg->len;
1291		bd.srcbus.buswidth = bd.srcbus.maxwidth;
1292		bd.dstbus.buswidth = bd.dstbus.maxwidth;
1293
1294		pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1295
1296		dev_vdbg(&pl08x->adev->dev,
1297			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1298			(u64)bd.srcbus.addr,
1299			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1300			bd.srcbus.buswidth,
1301			(u64)bd.dstbus.addr,
1302			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1303			bd.dstbus.buswidth,
1304			bd.remainder);
1305		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1306			mbus == &bd.srcbus ? "src" : "dst",
1307			sbus == &bd.srcbus ? "src" : "dst");
1308
1309		/*
1310		 * Zero length is only allowed if all these requirements are
1311		 * met:
1312		 * - flow controller is peripheral.
1313		 * - src.addr is aligned to src.width
1314		 * - dst.addr is aligned to dst.width
1315		 *
1316		 * sg_len == 1 should be true, as there can be two cases here:
1317		 *
1318		 * - Memory addresses are contiguous and are not scattered.
1319		 *   Here, Only one sg will be passed by user driver, with
1320		 *   memory address and zero length. We pass this to controller
1321		 *   and after the transfer it will receive the last burst
1322		 *   request from peripheral and so transfer finishes.
1323		 *
1324		 * - Memory addresses are scattered and are not contiguous.
1325		 *   Here, Obviously as DMA controller doesn't know when a lli's
1326		 *   transfer gets over, it can't load next lli. So in this
1327		 *   case, there has to be an assumption that only one lli is
1328		 *   supported. Thus, we can't have scattered addresses.
1329		 */
1330		if (!bd.remainder) {
1331			u32 fc;
1332
1333			/* FTDMAC020 only does memory-to-memory */
1334			if (pl08x->vd->ftdmac020)
1335				fc = PL080_FLOW_MEM2MEM;
1336			else
1337				fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1338					PL080_CONFIG_FLOW_CONTROL_SHIFT;
1339			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1340					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1341				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1342					__func__);
1343				return 0;
1344			}
1345
1346			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1347				!IS_BUS_ALIGNED(&bd.dstbus)) {
1348				dev_err(&pl08x->adev->dev,
1349					"%s src & dst address must be aligned to src"
1350					" & dst width if peripheral is flow controller",
1351					__func__);
1352				return 0;
1353			}
1354
1355			cctl = pl08x_lli_control_bits(pl08x, cctl,
1356					bd.srcbus.buswidth, bd.dstbus.buswidth,
1357					0);
1358			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1359					0, cctl, 0);
1360			break;
1361		}
1362
1363		/*
1364		 * Send byte by byte for following cases
1365		 * - Less than a bus width available
1366		 * - until master bus is aligned
1367		 */
1368		if (bd.remainder < mbus->buswidth)
1369			early_bytes = bd.remainder;
1370		else if (!IS_BUS_ALIGNED(mbus)) {
1371			early_bytes = mbus->buswidth -
1372				(mbus->addr & (mbus->buswidth - 1));
1373			if ((bd.remainder - early_bytes) < mbus->buswidth)
1374				early_bytes = bd.remainder;
1375		}
1376
1377		if (early_bytes) {
1378			dev_vdbg(&pl08x->adev->dev,
1379				"%s byte width LLIs (remain 0x%08zx)\n",
1380				__func__, bd.remainder);
1381			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1382				num_llis++, &total_bytes);
1383		}
1384
1385		if (bd.remainder) {
1386			/*
1387			 * Master now aligned
1388			 * - if slave is not then we must set its width down
1389			 */
1390			if (!IS_BUS_ALIGNED(sbus)) {
1391				dev_dbg(&pl08x->adev->dev,
1392					"%s set down bus width to one byte\n",
1393					__func__);
1394
1395				sbus->buswidth = 1;
1396			}
1397
1398			/*
1399			 * Bytes transferred = tsize * src width, not
1400			 * MIN(buswidths)
1401			 */
1402			max_bytes_per_lli = bd.srcbus.buswidth *
1403						pl08x->vd->max_transfer_size;
1404			dev_vdbg(&pl08x->adev->dev,
1405				"%s max bytes per lli = %zu\n",
1406				__func__, max_bytes_per_lli);
1407
1408			/*
1409			 * Make largest possible LLIs until less than one bus
1410			 * width left
1411			 */
1412			while (bd.remainder > (mbus->buswidth - 1)) {
1413				size_t lli_len, tsize, width;
1414
1415				/*
1416				 * If enough left try to send max possible,
1417				 * otherwise try to send the remainder
1418				 */
1419				lli_len = min(bd.remainder, max_bytes_per_lli);
1420
1421				/*
1422				 * Check against maximum bus alignment:
1423				 * Calculate actual transfer size in relation to
1424				 * bus width an get a maximum remainder of the
1425				 * highest bus width - 1
1426				 */
1427				width = max(mbus->buswidth, sbus->buswidth);
1428				lli_len = (lli_len / width) * width;
1429				tsize = lli_len / bd.srcbus.buswidth;
1430
1431				dev_vdbg(&pl08x->adev->dev,
1432					"%s fill lli with single lli chunk of "
1433					"size 0x%08zx (remainder 0x%08zx)\n",
1434					__func__, lli_len, bd.remainder);
1435
1436				cctl = pl08x_lli_control_bits(pl08x, cctl,
1437					bd.srcbus.buswidth, bd.dstbus.buswidth,
1438					tsize);
1439				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1440						lli_len, cctl, tsize);
1441				total_bytes += lli_len;
1442			}
1443
1444			/*
1445			 * Send any odd bytes
1446			 */
1447			if (bd.remainder) {
1448				dev_vdbg(&pl08x->adev->dev,
1449					"%s align with boundary, send odd bytes (remain %zu)\n",
1450					__func__, bd.remainder);
1451				prep_byte_width_lli(pl08x, &bd, &cctl,
1452					bd.remainder, num_llis++, &total_bytes);
1453			}
1454		}
1455
1456		if (total_bytes != dsg->len) {
1457			dev_err(&pl08x->adev->dev,
1458				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1459				__func__, total_bytes, dsg->len);
1460			return 0;
1461		}
1462
1463		if (num_llis >= MAX_NUM_TSFR_LLIS) {
1464			dev_err(&pl08x->adev->dev,
1465				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1466				__func__, MAX_NUM_TSFR_LLIS);
1467			return 0;
1468		}
1469	}
1470
1471	llis_va = txd->llis_va;
1472	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1473
1474	if (txd->cyclic) {
1475		/* Link back to the first LLI. */
1476		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1477	} else {
1478		/* The final LLI terminates the LLI. */
1479		last_lli[PL080_LLI_LLI] = 0;
1480		/* The final LLI element shall also fire an interrupt. */
1481		if (pl08x->vd->ftdmac020)
1482			last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1483		else
1484			last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1485	}
1486
1487	pl08x_dump_lli(pl08x, llis_va, num_llis);
1488
1489	return num_llis;
1490}
1491
1492static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1493			   struct pl08x_txd *txd)
1494{
1495	struct pl08x_sg *dsg, *_dsg;
1496
1497	if (txd->llis_va)
1498		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1499
1500	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1501		list_del(&dsg->node);
1502		kfree(dsg);
1503	}
1504
1505	kfree(txd);
1506}
1507
1508static void pl08x_desc_free(struct virt_dma_desc *vd)
1509{
1510	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1511	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1512
1513	dma_descriptor_unmap(&vd->tx);
1514	if (!txd->done)
1515		pl08x_release_mux(plchan);
1516
1517	pl08x_free_txd(plchan->host, txd);
1518}
1519
1520static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1521				struct pl08x_dma_chan *plchan)
1522{
1523	LIST_HEAD(head);
1524
1525	vchan_get_all_descriptors(&plchan->vc, &head);
1526	vchan_dma_desc_free_list(&plchan->vc, &head);
1527}
1528
1529/*
1530 * The DMA ENGINE API
1531 */
1532static void pl08x_free_chan_resources(struct dma_chan *chan)
1533{
1534	/* Ensure all queued descriptors are freed */
1535	vchan_free_chan_resources(to_virt_chan(chan));
1536}
1537
1538/*
1539 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1540 * If slaves are relying on interrupts to signal completion this function
1541 * must not be called with interrupts disabled.
1542 */
1543static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1544		dma_cookie_t cookie, struct dma_tx_state *txstate)
1545{
1546	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1547	struct virt_dma_desc *vd;
1548	unsigned long flags;
1549	enum dma_status ret;
1550	size_t bytes = 0;
1551
1552	ret = dma_cookie_status(chan, cookie, txstate);
1553	if (ret == DMA_COMPLETE)
1554		return ret;
1555
1556	/*
1557	 * There's no point calculating the residue if there's
1558	 * no txstate to store the value.
1559	 */
1560	if (!txstate) {
1561		if (plchan->state == PL08X_CHAN_PAUSED)
1562			ret = DMA_PAUSED;
1563		return ret;
1564	}
1565
1566	spin_lock_irqsave(&plchan->vc.lock, flags);
1567	ret = dma_cookie_status(chan, cookie, txstate);
1568	if (ret != DMA_COMPLETE) {
1569		vd = vchan_find_desc(&plchan->vc, cookie);
1570		if (vd) {
1571			/* On the issued list, so hasn't been processed yet */
1572			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1573			struct pl08x_sg *dsg;
1574
1575			list_for_each_entry(dsg, &txd->dsg_list, node)
1576				bytes += dsg->len;
1577		} else {
1578			bytes = pl08x_getbytes_chan(plchan);
1579		}
1580	}
1581	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1582
1583	/*
1584	 * This cookie not complete yet
1585	 * Get number of bytes left in the active transactions and queue
1586	 */
1587	dma_set_residue(txstate, bytes);
1588
1589	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1590		ret = DMA_PAUSED;
1591
1592	/* Whether waiting or running, we're in progress */
1593	return ret;
1594}
1595
1596/* PrimeCell DMA extension */
1597struct burst_table {
1598	u32 burstwords;
1599	u32 reg;
1600};
1601
1602static const struct burst_table burst_sizes[] = {
1603	{
1604		.burstwords = 256,
1605		.reg = PL080_BSIZE_256,
1606	},
1607	{
1608		.burstwords = 128,
1609		.reg = PL080_BSIZE_128,
1610	},
1611	{
1612		.burstwords = 64,
1613		.reg = PL080_BSIZE_64,
1614	},
1615	{
1616		.burstwords = 32,
1617		.reg = PL080_BSIZE_32,
1618	},
1619	{
1620		.burstwords = 16,
1621		.reg = PL080_BSIZE_16,
1622	},
1623	{
1624		.burstwords = 8,
1625		.reg = PL080_BSIZE_8,
1626	},
1627	{
1628		.burstwords = 4,
1629		.reg = PL080_BSIZE_4,
1630	},
1631	{
1632		.burstwords = 0,
1633		.reg = PL080_BSIZE_1,
1634	},
1635};
1636
1637/*
1638 * Given the source and destination available bus masks, select which
1639 * will be routed to each port.  We try to have source and destination
1640 * on separate ports, but always respect the allowable settings.
1641 */
1642static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1643{
1644	u32 cctl = 0;
1645	u32 dst_ahb2;
1646	u32 src_ahb2;
1647
1648	/* The FTDMAC020 use different bits to indicate src/dst bus */
1649	if (ftdmac020) {
1650		dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1651		src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1652	} else {
1653		dst_ahb2 = PL080_CONTROL_DST_AHB2;
1654		src_ahb2 = PL080_CONTROL_SRC_AHB2;
1655	}
1656
1657	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1658		cctl |= dst_ahb2;
1659	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1660		cctl |= src_ahb2;
1661
1662	return cctl;
1663}
1664
1665static u32 pl08x_cctl(u32 cctl)
1666{
1667	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1668		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1669		  PL080_CONTROL_PROT_MASK);
1670
1671	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1672	return cctl | PL080_CONTROL_PROT_SYS;
1673}
1674
1675static u32 pl08x_width(enum dma_slave_buswidth width)
1676{
1677	switch (width) {
1678	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1679		return PL080_WIDTH_8BIT;
1680	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1681		return PL080_WIDTH_16BIT;
1682	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1683		return PL080_WIDTH_32BIT;
1684	default:
1685		return ~0;
1686	}
1687}
1688
1689static u32 pl08x_burst(u32 maxburst)
1690{
1691	int i;
1692
1693	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1694		if (burst_sizes[i].burstwords <= maxburst)
1695			break;
1696
1697	return burst_sizes[i].reg;
1698}
1699
1700static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1701	enum dma_slave_buswidth addr_width, u32 maxburst)
1702{
1703	u32 width, burst, cctl = 0;
1704
1705	width = pl08x_width(addr_width);
1706	if (width == ~0)
1707		return ~0;
1708
1709	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1710	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1711
1712	/*
1713	 * If this channel will only request single transfers, set this
1714	 * down to ONE element.  Also select one element if no maxburst
1715	 * is specified.
1716	 */
1717	if (plchan->cd->single)
1718		maxburst = 1;
1719
1720	burst = pl08x_burst(maxburst);
1721	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1722	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1723
1724	return pl08x_cctl(cctl);
1725}
1726
1727/*
1728 * Slave transactions callback to the slave device to allow
1729 * synchronization of slave DMA signals with the DMAC enable
1730 */
1731static void pl08x_issue_pending(struct dma_chan *chan)
1732{
1733	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1734	unsigned long flags;
1735
1736	spin_lock_irqsave(&plchan->vc.lock, flags);
1737	if (vchan_issue_pending(&plchan->vc)) {
1738		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1739			pl08x_phy_alloc_and_start(plchan);
1740	}
1741	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1742}
1743
1744static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1745{
1746	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1747
1748	if (txd)
1749		INIT_LIST_HEAD(&txd->dsg_list);
1750	return txd;
1751}
1752
1753static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1754{
1755	u32 cctl = 0;
1756
1757	/* Conjure cctl */
1758	switch (pl08x->pd->memcpy_burst_size) {
1759	default:
1760		dev_err(&pl08x->adev->dev,
1761			"illegal burst size for memcpy, set to 1\n");
1762		fallthrough;
1763	case PL08X_BURST_SZ_1:
1764		cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1765			PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1766		break;
1767	case PL08X_BURST_SZ_4:
1768		cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1769			PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1770		break;
1771	case PL08X_BURST_SZ_8:
1772		cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1773			PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1774		break;
1775	case PL08X_BURST_SZ_16:
1776		cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1777			PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1778		break;
1779	case PL08X_BURST_SZ_32:
1780		cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1781			PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1782		break;
1783	case PL08X_BURST_SZ_64:
1784		cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1785			PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1786		break;
1787	case PL08X_BURST_SZ_128:
1788		cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1789			PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1790		break;
1791	case PL08X_BURST_SZ_256:
1792		cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1793			PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1794		break;
1795	}
1796
1797	switch (pl08x->pd->memcpy_bus_width) {
1798	default:
1799		dev_err(&pl08x->adev->dev,
1800			"illegal bus width for memcpy, set to 8 bits\n");
1801		fallthrough;
1802	case PL08X_BUS_WIDTH_8_BITS:
1803		cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1804			PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1805		break;
1806	case PL08X_BUS_WIDTH_16_BITS:
1807		cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1808			PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1809		break;
1810	case PL08X_BUS_WIDTH_32_BITS:
1811		cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1812			PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1813		break;
1814	}
1815
1816	/* Protection flags */
1817	if (pl08x->pd->memcpy_prot_buff)
1818		cctl |= PL080_CONTROL_PROT_BUFF;
1819	if (pl08x->pd->memcpy_prot_cache)
1820		cctl |= PL080_CONTROL_PROT_CACHE;
1821
1822	/* We are the kernel, so we are in privileged mode */
1823	cctl |= PL080_CONTROL_PROT_SYS;
1824
1825	/* Both to be incremented or the code will break */
1826	cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1827
1828	if (pl08x->vd->dualmaster)
1829		cctl |= pl08x_select_bus(false,
1830					 pl08x->mem_buses,
1831					 pl08x->mem_buses);
1832
1833	return cctl;
1834}
1835
1836static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1837{
1838	u32 cctl = 0;
1839
1840	/* Conjure cctl */
1841	switch (pl08x->pd->memcpy_bus_width) {
1842	default:
1843		dev_err(&pl08x->adev->dev,
1844			"illegal bus width for memcpy, set to 8 bits\n");
1845		fallthrough;
1846	case PL08X_BUS_WIDTH_8_BITS:
1847		cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1848			PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1849		break;
1850	case PL08X_BUS_WIDTH_16_BITS:
1851		cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1852			PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1853		break;
1854	case PL08X_BUS_WIDTH_32_BITS:
1855		cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1856			PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1857		break;
1858	}
1859
1860	/*
1861	 * By default mask the TC IRQ on all LLIs, it will be unmasked on
1862	 * the last LLI item by other code.
1863	 */
1864	cctl |= FTDMAC020_LLI_TC_MSK;
1865
1866	/*
1867	 * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1868	 * and FTDMAC020_LLI_DSTAD_CTL as zero
1869	 */
1870	if (pl08x->vd->dualmaster)
1871		cctl |= pl08x_select_bus(true,
1872					 pl08x->mem_buses,
1873					 pl08x->mem_buses);
1874
1875	return cctl;
1876}
1877
1878/*
1879 * Initialize a descriptor to be used by memcpy submit
1880 */
1881static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1882		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1883		size_t len, unsigned long flags)
1884{
1885	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1886	struct pl08x_driver_data *pl08x = plchan->host;
1887	struct pl08x_txd *txd;
1888	struct pl08x_sg *dsg;
1889	int ret;
1890
1891	txd = pl08x_get_txd(plchan);
1892	if (!txd) {
1893		dev_err(&pl08x->adev->dev,
1894			"%s no memory for descriptor\n", __func__);
1895		return NULL;
1896	}
1897
1898	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1899	if (!dsg) {
1900		pl08x_free_txd(pl08x, txd);
1901		return NULL;
1902	}
1903	list_add_tail(&dsg->node, &txd->dsg_list);
1904
1905	dsg->src_addr = src;
1906	dsg->dst_addr = dest;
1907	dsg->len = len;
1908	if (pl08x->vd->ftdmac020) {
1909		/* Writing CCFG zero ENABLES all interrupts */
1910		txd->ccfg = 0;
1911		txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1912	} else {
1913		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1914			PL080_CONFIG_TC_IRQ_MASK |
1915			PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1916		txd->cctl = pl08x_memcpy_cctl(pl08x);
1917	}
1918
1919	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1920	if (!ret) {
1921		pl08x_free_txd(pl08x, txd);
1922		return NULL;
1923	}
1924
1925	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1926}
1927
1928static struct pl08x_txd *pl08x_init_txd(
1929		struct dma_chan *chan,
1930		enum dma_transfer_direction direction,
1931		dma_addr_t *slave_addr)
1932{
1933	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1934	struct pl08x_driver_data *pl08x = plchan->host;
1935	struct pl08x_txd *txd;
1936	enum dma_slave_buswidth addr_width;
1937	int ret, tmp;
1938	u8 src_buses, dst_buses;
1939	u32 maxburst, cctl;
1940
1941	txd = pl08x_get_txd(plchan);
1942	if (!txd) {
1943		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1944		return NULL;
1945	}
1946
1947	/*
1948	 * Set up addresses, the PrimeCell configured address
1949	 * will take precedence since this may configure the
1950	 * channel target address dynamically at runtime.
1951	 */
1952	if (direction == DMA_MEM_TO_DEV) {
1953		cctl = PL080_CONTROL_SRC_INCR;
1954		*slave_addr = plchan->cfg.dst_addr;
1955		addr_width = plchan->cfg.dst_addr_width;
1956		maxburst = plchan->cfg.dst_maxburst;
1957		src_buses = pl08x->mem_buses;
1958		dst_buses = plchan->cd->periph_buses;
1959	} else if (direction == DMA_DEV_TO_MEM) {
1960		cctl = PL080_CONTROL_DST_INCR;
1961		*slave_addr = plchan->cfg.src_addr;
1962		addr_width = plchan->cfg.src_addr_width;
1963		maxburst = plchan->cfg.src_maxburst;
1964		src_buses = plchan->cd->periph_buses;
1965		dst_buses = pl08x->mem_buses;
1966	} else {
1967		pl08x_free_txd(pl08x, txd);
1968		dev_err(&pl08x->adev->dev,
1969			"%s direction unsupported\n", __func__);
1970		return NULL;
1971	}
1972
1973	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1974	if (cctl == ~0) {
1975		pl08x_free_txd(pl08x, txd);
1976		dev_err(&pl08x->adev->dev,
1977			"DMA slave configuration botched?\n");
1978		return NULL;
1979	}
1980
1981	txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1982
1983	if (plchan->cfg.device_fc)
1984		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1985			PL080_FLOW_PER2MEM_PER;
1986	else
1987		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1988			PL080_FLOW_PER2MEM;
1989
1990	txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1991		PL080_CONFIG_TC_IRQ_MASK |
1992		tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1993
1994	ret = pl08x_request_mux(plchan);
1995	if (ret < 0) {
1996		pl08x_free_txd(pl08x, txd);
1997		dev_dbg(&pl08x->adev->dev,
1998			"unable to mux for transfer on %s due to platform restrictions\n",
1999			plchan->name);
2000		return NULL;
2001	}
2002
2003	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2004		 plchan->signal, plchan->name);
2005
2006	/* Assign the flow control signal to this channel */
2007	if (direction == DMA_MEM_TO_DEV)
2008		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2009	else
2010		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2011
2012	return txd;
2013}
2014
2015static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2016			   enum dma_transfer_direction direction,
2017			   dma_addr_t slave_addr,
2018			   dma_addr_t buf_addr,
2019			   unsigned int len)
2020{
2021	struct pl08x_sg *dsg;
2022
2023	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2024	if (!dsg)
2025		return -ENOMEM;
2026
2027	list_add_tail(&dsg->node, &txd->dsg_list);
2028
2029	dsg->len = len;
2030	if (direction == DMA_MEM_TO_DEV) {
2031		dsg->src_addr = buf_addr;
2032		dsg->dst_addr = slave_addr;
2033	} else {
2034		dsg->src_addr = slave_addr;
2035		dsg->dst_addr = buf_addr;
2036	}
2037
2038	return 0;
2039}
2040
2041static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2042		struct dma_chan *chan, struct scatterlist *sgl,
2043		unsigned int sg_len, enum dma_transfer_direction direction,
2044		unsigned long flags, void *context)
2045{
2046	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2047	struct pl08x_driver_data *pl08x = plchan->host;
2048	struct pl08x_txd *txd;
2049	struct scatterlist *sg;
2050	int ret, tmp;
2051	dma_addr_t slave_addr;
2052
2053	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2054			__func__, sg_dma_len(sgl), plchan->name);
2055
2056	txd = pl08x_init_txd(chan, direction, &slave_addr);
2057	if (!txd)
2058		return NULL;
2059
2060	for_each_sg(sgl, sg, sg_len, tmp) {
2061		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2062				      sg_dma_address(sg),
2063				      sg_dma_len(sg));
2064		if (ret) {
2065			pl08x_release_mux(plchan);
2066			pl08x_free_txd(pl08x, txd);
2067			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2068					__func__);
2069			return NULL;
2070		}
2071	}
2072
2073	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2074	if (!ret) {
2075		pl08x_release_mux(plchan);
2076		pl08x_free_txd(pl08x, txd);
2077		return NULL;
2078	}
2079
2080	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2081}
2082
2083static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2084		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2085		size_t period_len, enum dma_transfer_direction direction,
2086		unsigned long flags)
2087{
2088	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2089	struct pl08x_driver_data *pl08x = plchan->host;
2090	struct pl08x_txd *txd;
2091	int ret, tmp;
2092	dma_addr_t slave_addr;
2093
2094	dev_dbg(&pl08x->adev->dev,
2095		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2096		__func__, period_len, buf_len,
2097		direction == DMA_MEM_TO_DEV ? "to" : "from",
2098		plchan->name);
2099
2100	txd = pl08x_init_txd(chan, direction, &slave_addr);
2101	if (!txd)
2102		return NULL;
2103
2104	txd->cyclic = true;
2105	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2106	for (tmp = 0; tmp < buf_len; tmp += period_len) {
2107		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2108				      buf_addr + tmp, period_len);
2109		if (ret) {
2110			pl08x_release_mux(plchan);
2111			pl08x_free_txd(pl08x, txd);
2112			return NULL;
2113		}
2114	}
2115
2116	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2117	if (!ret) {
2118		pl08x_release_mux(plchan);
2119		pl08x_free_txd(pl08x, txd);
2120		return NULL;
2121	}
2122
2123	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2124}
2125
2126static int pl08x_config(struct dma_chan *chan,
2127			struct dma_slave_config *config)
2128{
2129	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2130	struct pl08x_driver_data *pl08x = plchan->host;
2131
2132	if (!plchan->slave)
2133		return -EINVAL;
2134
2135	/* Reject definitely invalid configurations */
2136	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2137	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2138		return -EINVAL;
2139
2140	if (config->device_fc && pl08x->vd->pl080s) {
2141		dev_err(&pl08x->adev->dev,
2142			"%s: PL080S does not support peripheral flow control\n",
2143			__func__);
2144		return -EINVAL;
2145	}
2146
2147	plchan->cfg = *config;
2148
2149	return 0;
2150}
2151
2152static int pl08x_terminate_all(struct dma_chan *chan)
2153{
2154	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2155	struct pl08x_driver_data *pl08x = plchan->host;
2156	unsigned long flags;
2157
2158	spin_lock_irqsave(&plchan->vc.lock, flags);
2159	if (!plchan->phychan && !plchan->at) {
2160		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2161		return 0;
2162	}
2163
2164	plchan->state = PL08X_CHAN_IDLE;
2165
2166	if (plchan->phychan) {
2167		/*
2168		 * Mark physical channel as free and free any slave
2169		 * signal
2170		 */
2171		pl08x_phy_free(plchan);
2172	}
2173	/* Dequeue jobs and free LLIs */
2174	if (plchan->at) {
2175		vchan_terminate_vdesc(&plchan->at->vd);
2176		plchan->at = NULL;
2177	}
2178	/* Dequeue jobs not yet fired as well */
2179	pl08x_free_txd_list(pl08x, plchan);
2180
2181	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2182
2183	return 0;
2184}
2185
2186static void pl08x_synchronize(struct dma_chan *chan)
2187{
2188	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2189
2190	vchan_synchronize(&plchan->vc);
2191}
2192
2193static int pl08x_pause(struct dma_chan *chan)
2194{
2195	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2196	unsigned long flags;
2197
2198	/*
2199	 * Anything succeeds on channels with no physical allocation and
2200	 * no queued transfers.
2201	 */
2202	spin_lock_irqsave(&plchan->vc.lock, flags);
2203	if (!plchan->phychan && !plchan->at) {
2204		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2205		return 0;
2206	}
2207
2208	pl08x_pause_phy_chan(plchan->phychan);
2209	plchan->state = PL08X_CHAN_PAUSED;
2210
2211	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2212
2213	return 0;
2214}
2215
2216static int pl08x_resume(struct dma_chan *chan)
2217{
2218	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2219	unsigned long flags;
2220
2221	/*
2222	 * Anything succeeds on channels with no physical allocation and
2223	 * no queued transfers.
2224	 */
2225	spin_lock_irqsave(&plchan->vc.lock, flags);
2226	if (!plchan->phychan && !plchan->at) {
2227		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2228		return 0;
2229	}
2230
2231	pl08x_resume_phy_chan(plchan->phychan);
2232	plchan->state = PL08X_CHAN_RUNNING;
2233
2234	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2235
2236	return 0;
2237}
2238
2239bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2240{
2241	struct pl08x_dma_chan *plchan;
2242	const char *name = chan_id;
2243
2244	/* Reject channels for devices not bound to this driver */
2245	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2246		return false;
2247
2248	plchan = to_pl08x_chan(chan);
2249
2250	/* Check that the channel is not taken! */
2251	if (!strcmp(plchan->name, name))
2252		return true;
2253
2254	return false;
2255}
2256EXPORT_SYMBOL_GPL(pl08x_filter_id);
2257
2258static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2259{
2260	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2261
2262	return plchan->cd == chan_id;
2263}
2264
2265/*
2266 * Just check that the device is there and active
2267 * TODO: turn this bit on/off depending on the number of physical channels
2268 * actually used, if it is zero... well shut it off. That will save some
2269 * power. Cut the clock at the same time.
2270 */
2271static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2272{
2273	/* The Nomadik variant does not have the config register */
2274	if (pl08x->vd->nomadik)
2275		return;
2276	/* The FTDMAC020 variant does this in another register */
2277	if (pl08x->vd->ftdmac020) {
2278		writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2279		return;
2280	}
2281	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2282}
2283
2284static irqreturn_t pl08x_irq(int irq, void *dev)
2285{
2286	struct pl08x_driver_data *pl08x = dev;
2287	u32 mask = 0, err, tc, i;
2288
2289	/* check & clear - ERR & TC interrupts */
2290	err = readl(pl08x->base + PL080_ERR_STATUS);
2291	if (err) {
2292		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2293			__func__, err);
2294		writel(err, pl08x->base + PL080_ERR_CLEAR);
2295	}
2296	tc = readl(pl08x->base + PL080_TC_STATUS);
2297	if (tc)
2298		writel(tc, pl08x->base + PL080_TC_CLEAR);
2299
2300	if (!err && !tc)
2301		return IRQ_NONE;
2302
2303	for (i = 0; i < pl08x->vd->channels; i++) {
2304		if ((BIT(i) & err) || (BIT(i) & tc)) {
2305			/* Locate physical channel */
2306			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2307			struct pl08x_dma_chan *plchan = phychan->serving;
2308			struct pl08x_txd *tx;
2309
2310			if (!plchan) {
2311				dev_err(&pl08x->adev->dev,
2312					"%s Error TC interrupt on unused channel: 0x%08x\n",
2313					__func__, i);
2314				continue;
2315			}
2316
2317			spin_lock(&plchan->vc.lock);
2318			tx = plchan->at;
2319			if (tx && tx->cyclic) {
2320				vchan_cyclic_callback(&tx->vd);
2321			} else if (tx) {
2322				plchan->at = NULL;
2323				/*
2324				 * This descriptor is done, release its mux
2325				 * reservation.
2326				 */
2327				pl08x_release_mux(plchan);
2328				tx->done = true;
2329				vchan_cookie_complete(&tx->vd);
2330
2331				/*
2332				 * And start the next descriptor (if any),
2333				 * otherwise free this channel.
2334				 */
2335				if (vchan_next_desc(&plchan->vc))
2336					pl08x_start_next_txd(plchan);
2337				else
2338					pl08x_phy_free(plchan);
2339			}
2340			spin_unlock(&plchan->vc.lock);
2341
2342			mask |= BIT(i);
2343		}
2344	}
2345
2346	return mask ? IRQ_HANDLED : IRQ_NONE;
2347}
2348
2349static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2350{
2351	chan->slave = true;
2352	chan->name = chan->cd->bus_id;
2353	chan->cfg.src_addr = chan->cd->addr;
2354	chan->cfg.dst_addr = chan->cd->addr;
2355}
2356
2357/*
2358 * Initialise the DMAC memcpy/slave channels.
2359 * Make a local wrapper to hold required data
2360 */
2361static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2362		struct dma_device *dmadev, unsigned int channels, bool slave)
2363{
2364	struct pl08x_dma_chan *chan;
2365	int i;
2366
2367	INIT_LIST_HEAD(&dmadev->channels);
2368
2369	/*
2370	 * Register as many memcpy as we have physical channels,
2371	 * we won't always be able to use all but the code will have
2372	 * to cope with that situation.
2373	 */
2374	for (i = 0; i < channels; i++) {
2375		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2376		if (!chan)
2377			return -ENOMEM;
2378
2379		chan->host = pl08x;
2380		chan->state = PL08X_CHAN_IDLE;
2381		chan->signal = -1;
2382
2383		if (slave) {
2384			chan->cd = &pl08x->pd->slave_channels[i];
2385			/*
2386			 * Some implementations have muxed signals, whereas some
2387			 * use a mux in front of the signals and need dynamic
2388			 * assignment of signals.
2389			 */
2390			chan->signal = i;
2391			pl08x_dma_slave_init(chan);
2392		} else {
2393			chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2394			if (!chan->cd) {
2395				kfree(chan);
2396				return -ENOMEM;
2397			}
2398			chan->cd->bus_id = "memcpy";
2399			chan->cd->periph_buses = pl08x->pd->mem_buses;
2400			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2401			if (!chan->name) {
2402				kfree(chan->cd);
2403				kfree(chan);
2404				return -ENOMEM;
2405			}
2406		}
2407		dev_dbg(&pl08x->adev->dev,
2408			 "initialize virtual channel \"%s\"\n",
2409			 chan->name);
2410
2411		chan->vc.desc_free = pl08x_desc_free;
2412		vchan_init(&chan->vc, dmadev);
2413	}
2414	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2415		 i, slave ? "slave" : "memcpy");
2416	return i;
2417}
2418
2419static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2420{
2421	struct pl08x_dma_chan *chan = NULL;
2422	struct pl08x_dma_chan *next;
2423
2424	list_for_each_entry_safe(chan,
2425				 next, &dmadev->channels, vc.chan.device_node) {
2426		list_del(&chan->vc.chan.device_node);
2427		kfree(chan);
2428	}
2429}
2430
2431#ifdef CONFIG_DEBUG_FS
2432static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2433{
2434	switch (state) {
2435	case PL08X_CHAN_IDLE:
2436		return "idle";
2437	case PL08X_CHAN_RUNNING:
2438		return "running";
2439	case PL08X_CHAN_PAUSED:
2440		return "paused";
2441	case PL08X_CHAN_WAITING:
2442		return "waiting";
2443	default:
2444		break;
2445	}
2446	return "UNKNOWN STATE";
2447}
2448
2449static int pl08x_debugfs_show(struct seq_file *s, void *data)
2450{
2451	struct pl08x_driver_data *pl08x = s->private;
2452	struct pl08x_dma_chan *chan;
2453	struct pl08x_phy_chan *ch;
2454	unsigned long flags;
2455	int i;
2456
2457	seq_printf(s, "PL08x physical channels:\n");
2458	seq_printf(s, "CHANNEL:\tUSER:\n");
2459	seq_printf(s, "--------\t-----\n");
2460	for (i = 0; i < pl08x->vd->channels; i++) {
2461		struct pl08x_dma_chan *virt_chan;
2462
2463		ch = &pl08x->phy_chans[i];
2464
2465		spin_lock_irqsave(&ch->lock, flags);
2466		virt_chan = ch->serving;
2467
2468		seq_printf(s, "%d\t\t%s%s\n",
2469			   ch->id,
2470			   virt_chan ? virt_chan->name : "(none)",
2471			   ch->locked ? " LOCKED" : "");
2472
2473		spin_unlock_irqrestore(&ch->lock, flags);
2474	}
2475
2476	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2477	seq_printf(s, "CHANNEL:\tSTATE:\n");
2478	seq_printf(s, "--------\t------\n");
2479	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2480		seq_printf(s, "%s\t\t%s\n", chan->name,
2481			   pl08x_state_str(chan->state));
2482	}
2483
2484	if (pl08x->has_slave) {
2485		seq_printf(s, "\nPL08x virtual slave channels:\n");
2486		seq_printf(s, "CHANNEL:\tSTATE:\n");
2487		seq_printf(s, "--------\t------\n");
2488		list_for_each_entry(chan, &pl08x->slave.channels,
2489				    vc.chan.device_node) {
2490			seq_printf(s, "%s\t\t%s\n", chan->name,
2491				   pl08x_state_str(chan->state));
2492		}
2493	}
2494
2495	return 0;
2496}
2497
2498DEFINE_SHOW_ATTRIBUTE(pl08x_debugfs);
2499
2500static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2501{
2502	/* Expose a simple debugfs interface to view all clocks */
2503	debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
2504			    NULL, pl08x, &pl08x_debugfs_fops);
2505}
2506
2507#else
2508static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2509{
2510}
2511#endif
2512
2513#ifdef CONFIG_OF
2514static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2515					 u32 id)
2516{
2517	struct pl08x_dma_chan *chan;
2518
2519	/* Trying to get a slave channel from something with no slave support */
2520	if (!pl08x->has_slave)
2521		return NULL;
2522
2523	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2524		if (chan->signal == id)
2525			return &chan->vc.chan;
2526	}
2527
2528	return NULL;
2529}
2530
2531static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2532				       struct of_dma *ofdma)
2533{
2534	struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2535	struct dma_chan *dma_chan;
2536	struct pl08x_dma_chan *plchan;
2537
2538	if (!pl08x)
2539		return NULL;
2540
2541	if (dma_spec->args_count != 2) {
2542		dev_err(&pl08x->adev->dev,
2543			"DMA channel translation requires two cells\n");
2544		return NULL;
2545	}
2546
2547	dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2548	if (!dma_chan) {
2549		dev_err(&pl08x->adev->dev,
2550			"DMA slave channel not found\n");
2551		return NULL;
2552	}
2553
2554	plchan = to_pl08x_chan(dma_chan);
2555	dev_dbg(&pl08x->adev->dev,
2556		"translated channel for signal %d\n",
2557		dma_spec->args[0]);
2558
2559	/* Augment channel data for applicable AHB buses */
2560	plchan->cd->periph_buses = dma_spec->args[1];
2561	return dma_get_slave_channel(dma_chan);
2562}
2563
2564static int pl08x_of_probe(struct amba_device *adev,
2565			  struct pl08x_driver_data *pl08x,
2566			  struct device_node *np)
2567{
2568	struct pl08x_platform_data *pd;
2569	struct pl08x_channel_data *chanp = NULL;
2570	u32 val;
2571	int ret;
2572	int i;
2573
2574	pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2575	if (!pd)
2576		return -ENOMEM;
2577
2578	/* Eligible bus masters for fetching LLIs */
2579	if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2580		pd->lli_buses |= PL08X_AHB1;
2581	if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2582		pd->lli_buses |= PL08X_AHB2;
2583	if (!pd->lli_buses) {
2584		dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2585		pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2586	}
2587
2588	/* Eligible bus masters for memory access */
2589	if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2590		pd->mem_buses |= PL08X_AHB1;
2591	if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2592		pd->mem_buses |= PL08X_AHB2;
2593	if (!pd->mem_buses) {
2594		dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2595		pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2596	}
2597
2598	/* Parse the memcpy channel properties */
2599	ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2600	if (ret) {
2601		dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2602		val = 1;
2603	}
2604	switch (val) {
2605	default:
2606		dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2607		fallthrough;
2608	case 1:
2609		pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2610		break;
2611	case 4:
2612		pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2613		break;
2614	case 8:
2615		pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2616		break;
2617	case 16:
2618		pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2619		break;
2620	case 32:
2621		pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2622		break;
2623	case 64:
2624		pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2625		break;
2626	case 128:
2627		pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2628		break;
2629	case 256:
2630		pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2631		break;
2632	}
2633
2634	ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2635	if (ret) {
2636		dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2637		val = 8;
2638	}
2639	switch (val) {
2640	default:
2641		dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2642		fallthrough;
2643	case 8:
2644		pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2645		break;
2646	case 16:
2647		pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2648		break;
2649	case 32:
2650		pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2651		break;
2652	}
2653
2654	/*
2655	 * Allocate channel data for all possible slave channels (one
2656	 * for each possible signal), channels will then be allocated
2657	 * for a device and have it's AHB interfaces set up at
2658	 * translation time.
2659	 */
2660	if (pl08x->vd->signals) {
2661		chanp = devm_kcalloc(&adev->dev,
2662				     pl08x->vd->signals,
2663				     sizeof(struct pl08x_channel_data),
2664				     GFP_KERNEL);
2665		if (!chanp)
2666			return -ENOMEM;
2667
2668		pd->slave_channels = chanp;
2669		for (i = 0; i < pl08x->vd->signals; i++) {
2670			/*
2671			 * chanp->periph_buses will be assigned at translation
2672			 */
2673			chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2674			chanp++;
2675		}
2676		pd->num_slave_channels = pl08x->vd->signals;
2677	}
2678
2679	pl08x->pd = pd;
2680
2681	return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2682					  pl08x);
2683}
2684#else
2685static inline int pl08x_of_probe(struct amba_device *adev,
2686				 struct pl08x_driver_data *pl08x,
2687				 struct device_node *np)
2688{
2689	return -EINVAL;
2690}
2691#endif
2692
2693static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2694{
2695	struct pl08x_driver_data *pl08x;
2696	struct vendor_data *vd = id->data;
2697	struct device_node *np = adev->dev.of_node;
2698	u32 tsfr_size;
2699	int ret = 0;
2700	int i;
2701
2702	ret = amba_request_regions(adev, NULL);
2703	if (ret)
2704		return ret;
2705
2706	/* Ensure that we can do DMA */
2707	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2708	if (ret)
2709		goto out_no_pl08x;
2710
2711	/* Create the driver state holder */
2712	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2713	if (!pl08x) {
2714		ret = -ENOMEM;
2715		goto out_no_pl08x;
2716	}
2717
2718	/* Assign useful pointers to the driver state */
2719	pl08x->adev = adev;
2720	pl08x->vd = vd;
2721
2722	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2723	if (!pl08x->base) {
2724		ret = -ENOMEM;
2725		goto out_no_ioremap;
2726	}
2727
2728	if (vd->ftdmac020) {
2729		u32 val;
2730
2731		val = readl(pl08x->base + FTDMAC020_REVISION);
2732		dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2733			 (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2734		val = readl(pl08x->base + FTDMAC020_FEATURE);
2735		dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2736			 "%s built-in bridge, %s, %s linked lists\n",
2737			 (val >> 12) & 0x0f,
2738			 (val & BIT(10)) ? "no" : "has",
2739			 (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2740			 (val & BIT(8)) ? "supports" : "does not support");
2741
2742		/* Vendor data from feature register */
2743		if (!(val & BIT(8)))
2744			dev_warn(&pl08x->adev->dev,
2745				 "linked lists not supported, required\n");
2746		vd->channels = (val >> 12) & 0x0f;
2747		vd->dualmaster = !!(val & BIT(9));
2748	}
2749
2750	/* Initialize memcpy engine */
2751	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2752	pl08x->memcpy.dev = &adev->dev;
2753	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2754	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2755	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2756	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2757	pl08x->memcpy.device_config = pl08x_config;
2758	pl08x->memcpy.device_pause = pl08x_pause;
2759	pl08x->memcpy.device_resume = pl08x_resume;
2760	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2761	pl08x->memcpy.device_synchronize = pl08x_synchronize;
2762	pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2763	pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2764	pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2765	pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2766	if (vd->ftdmac020)
2767		pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2768
2769
2770	/*
2771	 * Initialize slave engine, if the block has no signals, that means
2772	 * we have no slave support.
2773	 */
2774	if (vd->signals) {
2775		pl08x->has_slave = true;
2776		dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2777		dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2778		pl08x->slave.dev = &adev->dev;
2779		pl08x->slave.device_free_chan_resources =
2780			pl08x_free_chan_resources;
2781		pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2782		pl08x->slave.device_issue_pending = pl08x_issue_pending;
2783		pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2784		pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2785		pl08x->slave.device_config = pl08x_config;
2786		pl08x->slave.device_pause = pl08x_pause;
2787		pl08x->slave.device_resume = pl08x_resume;
2788		pl08x->slave.device_terminate_all = pl08x_terminate_all;
2789		pl08x->slave.device_synchronize = pl08x_synchronize;
2790		pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2791		pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2792		pl08x->slave.directions =
2793			BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2794		pl08x->slave.residue_granularity =
2795			DMA_RESIDUE_GRANULARITY_SEGMENT;
2796	}
2797
2798	/* Get the platform data */
2799	pl08x->pd = dev_get_platdata(&adev->dev);
2800	if (!pl08x->pd) {
2801		if (np) {
2802			ret = pl08x_of_probe(adev, pl08x, np);
2803			if (ret)
2804				goto out_no_platdata;
2805		} else {
2806			dev_err(&adev->dev, "no platform data supplied\n");
2807			ret = -EINVAL;
2808			goto out_no_platdata;
2809		}
2810	} else {
2811		pl08x->slave.filter.map = pl08x->pd->slave_map;
2812		pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2813		pl08x->slave.filter.fn = pl08x_filter_fn;
2814	}
2815
2816	/* By default, AHB1 only.  If dualmaster, from platform */
2817	pl08x->lli_buses = PL08X_AHB1;
2818	pl08x->mem_buses = PL08X_AHB1;
2819	if (pl08x->vd->dualmaster) {
2820		pl08x->lli_buses = pl08x->pd->lli_buses;
2821		pl08x->mem_buses = pl08x->pd->mem_buses;
2822	}
2823
2824	if (vd->pl080s)
2825		pl08x->lli_words = PL080S_LLI_WORDS;
2826	else
2827		pl08x->lli_words = PL080_LLI_WORDS;
2828	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2829
2830	/* A DMA memory pool for LLIs, align on 1-byte boundary */
2831	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2832						tsfr_size, PL08X_ALIGN, 0);
2833	if (!pl08x->pool) {
2834		ret = -ENOMEM;
2835		goto out_no_lli_pool;
2836	}
2837
2838	/* Turn on the PL08x */
2839	pl08x_ensure_on(pl08x);
2840
2841	/* Clear any pending interrupts */
2842	if (vd->ftdmac020)
2843		/* This variant has error IRQs in bits 16-19 */
2844		writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2845	else
2846		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2847	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2848
2849	/* Attach the interrupt handler */
2850	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2851	if (ret) {
2852		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2853			__func__, adev->irq[0]);
2854		goto out_no_irq;
2855	}
2856
2857	/* Initialize physical channels */
2858	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2859			GFP_KERNEL);
2860	if (!pl08x->phy_chans) {
2861		ret = -ENOMEM;
2862		goto out_no_phychans;
2863	}
2864
2865	for (i = 0; i < vd->channels; i++) {
2866		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2867
2868		ch->id = i;
2869		ch->base = pl08x->base + PL080_Cx_BASE(i);
2870		if (vd->ftdmac020) {
2871			/* FTDMA020 has a special channel busy register */
2872			ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2873			ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2874			ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2875			ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2876			ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2877			ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2878			ch->ftdmac020 = true;
2879		} else {
2880			ch->reg_config = ch->base + vd->config_offset;
2881			ch->reg_control = ch->base + PL080_CH_CONTROL;
2882			ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2883			ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2884			ch->reg_lli = ch->base + PL080_CH_LLI;
2885		}
2886		if (vd->pl080s)
2887			ch->pl080s = true;
2888
2889		spin_lock_init(&ch->lock);
2890
2891		/*
2892		 * Nomadik variants can have channels that are locked
2893		 * down for the secure world only. Lock up these channels
2894		 * by perpetually serving a dummy virtual channel.
2895		 */
2896		if (vd->nomadik) {
2897			u32 val;
2898
2899			val = readl(ch->reg_config);
2900			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2901				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2902				ch->locked = true;
2903			}
2904		}
2905
2906		dev_dbg(&adev->dev, "physical channel %d is %s\n",
2907			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2908	}
2909
2910	/* Register as many memcpy channels as there are physical channels */
2911	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2912					      pl08x->vd->channels, false);
2913	if (ret <= 0) {
2914		dev_warn(&pl08x->adev->dev,
2915			 "%s failed to enumerate memcpy channels - %d\n",
2916			 __func__, ret);
2917		goto out_no_memcpy;
2918	}
2919
2920	/* Register slave channels */
2921	if (pl08x->has_slave) {
2922		ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2923					pl08x->pd->num_slave_channels, true);
2924		if (ret < 0) {
2925			dev_warn(&pl08x->adev->dev,
2926				 "%s failed to enumerate slave channels - %d\n",
2927				 __func__, ret);
2928			goto out_no_slave;
2929		}
2930	}
2931
2932	ret = dma_async_device_register(&pl08x->memcpy);
2933	if (ret) {
2934		dev_warn(&pl08x->adev->dev,
2935			"%s failed to register memcpy as an async device - %d\n",
2936			__func__, ret);
2937		goto out_no_memcpy_reg;
2938	}
2939
2940	if (pl08x->has_slave) {
2941		ret = dma_async_device_register(&pl08x->slave);
2942		if (ret) {
2943			dev_warn(&pl08x->adev->dev,
2944			"%s failed to register slave as an async device - %d\n",
2945			__func__, ret);
2946			goto out_no_slave_reg;
2947		}
2948	}
2949
2950	amba_set_drvdata(adev, pl08x);
2951	init_pl08x_debugfs(pl08x);
2952	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2953		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2954		 (unsigned long long)adev->res.start, adev->irq[0]);
2955
2956	return 0;
2957
2958out_no_slave_reg:
2959	dma_async_device_unregister(&pl08x->memcpy);
2960out_no_memcpy_reg:
2961	if (pl08x->has_slave)
2962		pl08x_free_virtual_channels(&pl08x->slave);
2963out_no_slave:
2964	pl08x_free_virtual_channels(&pl08x->memcpy);
2965out_no_memcpy:
2966	kfree(pl08x->phy_chans);
2967out_no_phychans:
2968	free_irq(adev->irq[0], pl08x);
2969out_no_irq:
2970	dma_pool_destroy(pl08x->pool);
2971out_no_lli_pool:
2972out_no_platdata:
2973	iounmap(pl08x->base);
2974out_no_ioremap:
2975	kfree(pl08x);
2976out_no_pl08x:
2977	amba_release_regions(adev);
2978	return ret;
2979}
2980
2981/* PL080 has 8 channels and the PL080 have just 2 */
2982static struct vendor_data vendor_pl080 = {
2983	.config_offset = PL080_CH_CONFIG,
2984	.channels = 8,
2985	.signals = 16,
2986	.dualmaster = true,
2987	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2988};
2989
2990static struct vendor_data vendor_nomadik = {
2991	.config_offset = PL080_CH_CONFIG,
2992	.channels = 8,
2993	.signals = 32,
2994	.dualmaster = true,
2995	.nomadik = true,
2996	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2997};
2998
2999static struct vendor_data vendor_pl080s = {
3000	.config_offset = PL080S_CH_CONFIG,
3001	.channels = 8,
3002	.signals = 32,
3003	.pl080s = true,
3004	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3005};
3006
3007static struct vendor_data vendor_pl081 = {
3008	.config_offset = PL080_CH_CONFIG,
3009	.channels = 2,
3010	.signals = 16,
3011	.dualmaster = false,
3012	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3013};
3014
3015static struct vendor_data vendor_ftdmac020 = {
3016	.config_offset = PL080_CH_CONFIG,
3017	.ftdmac020 = true,
3018	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3019};
3020
3021static const struct amba_id pl08x_ids[] = {
3022	/* Samsung PL080S variant */
3023	{
3024		.id	= 0x0a141080,
3025		.mask	= 0xffffffff,
3026		.data	= &vendor_pl080s,
3027	},
3028	/* PL080 */
3029	{
3030		.id	= 0x00041080,
3031		.mask	= 0x000fffff,
3032		.data	= &vendor_pl080,
3033	},
3034	/* PL081 */
3035	{
3036		.id	= 0x00041081,
3037		.mask	= 0x000fffff,
3038		.data	= &vendor_pl081,
3039	},
3040	/* Nomadik 8815 PL080 variant */
3041	{
3042		.id	= 0x00280080,
3043		.mask	= 0x00ffffff,
3044		.data	= &vendor_nomadik,
3045	},
3046	/* Faraday Technology FTDMAC020 */
3047	{
3048		.id	= 0x0003b080,
3049		.mask	= 0x000fffff,
3050		.data	= &vendor_ftdmac020,
3051	},
3052	{ 0, 0 },
3053};
3054
3055MODULE_DEVICE_TABLE(amba, pl08x_ids);
3056
3057static struct amba_driver pl08x_amba_driver = {
3058	.drv.name	= DRIVER_NAME,
3059	.id_table	= pl08x_ids,
3060	.probe		= pl08x_probe,
3061};
3062
3063static int __init pl08x_init(void)
3064{
3065	int retval;
3066	retval = amba_driver_register(&pl08x_amba_driver);
3067	if (retval)
3068		printk(KERN_WARNING DRIVER_NAME
3069		       "failed to register as an AMBA device (%d)\n",
3070		       retval);
3071	return retval;
3072}
3073subsys_initcall(pl08x_init);
3074