1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Cryptographic API.
4 *
5 * Support for VIA PadLock hardware crypto engine.
6 *
7 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
8 *
9 */
10
11#include <crypto/algapi.h>
12#include <crypto/aes.h>
13#include <crypto/internal/skcipher.h>
14#include <crypto/padlock.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/types.h>
18#include <linux/errno.h>
19#include <linux/interrupt.h>
20#include <linux/kernel.h>
21#include <linux/mm.h>
22#include <linux/percpu.h>
23#include <linux/smp.h>
24#include <linux/slab.h>
25#include <asm/cpu_device_id.h>
26#include <asm/byteorder.h>
27#include <asm/processor.h>
28#include <asm/fpu/api.h>
29
30/*
31 * Number of data blocks actually fetched for each xcrypt insn.
32 * Processors with prefetch errata will fetch extra blocks.
33 */
34static unsigned int ecb_fetch_blocks = 2;
35#define MAX_ECB_FETCH_BLOCKS (8)
36#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
37
38static unsigned int cbc_fetch_blocks = 1;
39#define MAX_CBC_FETCH_BLOCKS (4)
40#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
41
42/* Control word. */
43struct cword {
44	unsigned int __attribute__ ((__packed__))
45		rounds:4,
46		algo:3,
47		keygen:1,
48		interm:1,
49		encdec:1,
50		ksize:2;
51} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
52
53/* Whenever making any changes to the following
54 * structure *make sure* you keep E, d_data
55 * and cword aligned on 16 Bytes boundaries and
56 * the Hardware can access 16 * 16 bytes of E and d_data
57 * (only the first 15 * 16 bytes matter but the HW reads
58 * more).
59 */
60struct aes_ctx {
61	u32 E[AES_MAX_KEYLENGTH_U32]
62		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
63	u32 d_data[AES_MAX_KEYLENGTH_U32]
64		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
65	struct {
66		struct cword encrypt;
67		struct cword decrypt;
68	} cword;
69	u32 *D;
70};
71
72static DEFINE_PER_CPU(struct cword *, paes_last_cword);
73
74/* Tells whether the ACE is capable to generate
75   the extended key for a given key_len. */
76static inline int
77aes_hw_extkey_available(uint8_t key_len)
78{
79	/* TODO: We should check the actual CPU model/stepping
80	         as it's possible that the capability will be
81	         added in the next CPU revisions. */
82	if (key_len == 16)
83		return 1;
84	return 0;
85}
86
87static inline struct aes_ctx *aes_ctx_common(void *ctx)
88{
89	unsigned long addr = (unsigned long)ctx;
90	unsigned long align = PADLOCK_ALIGNMENT;
91
92	if (align <= crypto_tfm_ctx_alignment())
93		align = 1;
94	return (struct aes_ctx *)ALIGN(addr, align);
95}
96
97static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
98{
99	return aes_ctx_common(crypto_tfm_ctx(tfm));
100}
101
102static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
103{
104	return aes_ctx_common(crypto_skcipher_ctx(tfm));
105}
106
107static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
108		       unsigned int key_len)
109{
110	struct aes_ctx *ctx = aes_ctx(tfm);
111	const __le32 *key = (const __le32 *)in_key;
112	struct crypto_aes_ctx gen_aes;
113	int cpu;
114
115	if (key_len % 8)
116		return -EINVAL;
117
118	/*
119	 * If the hardware is capable of generating the extended key
120	 * itself we must supply the plain key for both encryption
121	 * and decryption.
122	 */
123	ctx->D = ctx->E;
124
125	ctx->E[0] = le32_to_cpu(key[0]);
126	ctx->E[1] = le32_to_cpu(key[1]);
127	ctx->E[2] = le32_to_cpu(key[2]);
128	ctx->E[3] = le32_to_cpu(key[3]);
129
130	/* Prepare control words. */
131	memset(&ctx->cword, 0, sizeof(ctx->cword));
132
133	ctx->cword.decrypt.encdec = 1;
134	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138
139	/* Don't generate extended keys if the hardware can do it. */
140	if (aes_hw_extkey_available(key_len))
141		goto ok;
142
143	ctx->D = ctx->d_data;
144	ctx->cword.encrypt.keygen = 1;
145	ctx->cword.decrypt.keygen = 1;
146
147	if (aes_expandkey(&gen_aes, in_key, key_len))
148		return -EINVAL;
149
150	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
151	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
152
153ok:
154	for_each_online_cpu(cpu)
155		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
156		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
157			per_cpu(paes_last_cword, cpu) = NULL;
158
159	return 0;
160}
161
162static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
163				unsigned int key_len)
164{
165	return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
166}
167
168/* ====== Encryption/decryption routines ====== */
169
170/* These are the real call to PadLock. */
171static inline void padlock_reset_key(struct cword *cword)
172{
173	int cpu = raw_smp_processor_id();
174
175	if (cword != per_cpu(paes_last_cword, cpu))
176#ifndef CONFIG_X86_64
177		asm volatile ("pushfl; popfl");
178#else
179		asm volatile ("pushfq; popfq");
180#endif
181}
182
183static inline void padlock_store_cword(struct cword *cword)
184{
185	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
186}
187
188/*
189 * While the padlock instructions don't use FP/SSE registers, they
190 * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately,
191 * the kernel doesn't use CR0.TS.
192 */
193
194static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
195				  struct cword *control_word, int count)
196{
197	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
198		      : "+S"(input), "+D"(output)
199		      : "d"(control_word), "b"(key), "c"(count));
200}
201
202static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
203				 u8 *iv, struct cword *control_word, int count)
204{
205	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
206		      : "+S" (input), "+D" (output), "+a" (iv)
207		      : "d" (control_word), "b" (key), "c" (count));
208	return iv;
209}
210
211static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
212			   struct cword *cword, int count)
213{
214	/*
215	 * Padlock prefetches extra data so we must provide mapped input buffers.
216	 * Assume there are at least 16 bytes of stack already in use.
217	 */
218	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
219	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
220
221	memcpy(tmp, in, count * AES_BLOCK_SIZE);
222	rep_xcrypt_ecb(tmp, out, key, cword, count);
223}
224
225static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
226			   u8 *iv, struct cword *cword, int count)
227{
228	/*
229	 * Padlock prefetches extra data so we must provide mapped input buffers.
230	 * Assume there are at least 16 bytes of stack already in use.
231	 */
232	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
233	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
234
235	memcpy(tmp, in, count * AES_BLOCK_SIZE);
236	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
237}
238
239static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
240			     struct cword *cword, int count)
241{
242	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
243	 * We could avoid some copying here but it's probably not worth it.
244	 */
245	if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
246		ecb_crypt_copy(in, out, key, cword, count);
247		return;
248	}
249
250	rep_xcrypt_ecb(in, out, key, cword, count);
251}
252
253static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
254			    u8 *iv, struct cword *cword, int count)
255{
256	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
257	if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
258		return cbc_crypt_copy(in, out, key, iv, cword, count);
259
260	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
261}
262
263static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
264				      void *control_word, u32 count)
265{
266	u32 initial = count & (ecb_fetch_blocks - 1);
267
268	if (count < ecb_fetch_blocks) {
269		ecb_crypt(input, output, key, control_word, count);
270		return;
271	}
272
273	count -= initial;
274
275	if (initial)
276		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
277			      : "+S"(input), "+D"(output)
278			      : "d"(control_word), "b"(key), "c"(initial));
279
280	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
281		      : "+S"(input), "+D"(output)
282		      : "d"(control_word), "b"(key), "c"(count));
283}
284
285static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
286				     u8 *iv, void *control_word, u32 count)
287{
288	u32 initial = count & (cbc_fetch_blocks - 1);
289
290	if (count < cbc_fetch_blocks)
291		return cbc_crypt(input, output, key, iv, control_word, count);
292
293	count -= initial;
294
295	if (initial)
296		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
297			      : "+S" (input), "+D" (output), "+a" (iv)
298			      : "d" (control_word), "b" (key), "c" (initial));
299
300	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
301		      : "+S" (input), "+D" (output), "+a" (iv)
302		      : "d" (control_word), "b" (key), "c" (count));
303	return iv;
304}
305
306static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
307{
308	struct aes_ctx *ctx = aes_ctx(tfm);
309
310	padlock_reset_key(&ctx->cword.encrypt);
311	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
312	padlock_store_cword(&ctx->cword.encrypt);
313}
314
315static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
316{
317	struct aes_ctx *ctx = aes_ctx(tfm);
318
319	padlock_reset_key(&ctx->cword.encrypt);
320	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
321	padlock_store_cword(&ctx->cword.encrypt);
322}
323
324static struct crypto_alg aes_alg = {
325	.cra_name		=	"aes",
326	.cra_driver_name	=	"aes-padlock",
327	.cra_priority		=	PADLOCK_CRA_PRIORITY,
328	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
329	.cra_blocksize		=	AES_BLOCK_SIZE,
330	.cra_ctxsize		=	sizeof(struct aes_ctx),
331	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
332	.cra_module		=	THIS_MODULE,
333	.cra_u			=	{
334		.cipher = {
335			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
336			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
337			.cia_setkey	   	= 	aes_set_key,
338			.cia_encrypt	 	=	padlock_aes_encrypt,
339			.cia_decrypt	  	=	padlock_aes_decrypt,
340		}
341	}
342};
343
344static int ecb_aes_encrypt(struct skcipher_request *req)
345{
346	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
347	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
348	struct skcipher_walk walk;
349	unsigned int nbytes;
350	int err;
351
352	padlock_reset_key(&ctx->cword.encrypt);
353
354	err = skcipher_walk_virt(&walk, req, false);
355
356	while ((nbytes = walk.nbytes) != 0) {
357		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
358				   ctx->E, &ctx->cword.encrypt,
359				   nbytes / AES_BLOCK_SIZE);
360		nbytes &= AES_BLOCK_SIZE - 1;
361		err = skcipher_walk_done(&walk, nbytes);
362	}
363
364	padlock_store_cword(&ctx->cword.encrypt);
365
366	return err;
367}
368
369static int ecb_aes_decrypt(struct skcipher_request *req)
370{
371	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
372	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
373	struct skcipher_walk walk;
374	unsigned int nbytes;
375	int err;
376
377	padlock_reset_key(&ctx->cword.decrypt);
378
379	err = skcipher_walk_virt(&walk, req, false);
380
381	while ((nbytes = walk.nbytes) != 0) {
382		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
383				   ctx->D, &ctx->cword.decrypt,
384				   nbytes / AES_BLOCK_SIZE);
385		nbytes &= AES_BLOCK_SIZE - 1;
386		err = skcipher_walk_done(&walk, nbytes);
387	}
388
389	padlock_store_cword(&ctx->cword.encrypt);
390
391	return err;
392}
393
394static struct skcipher_alg ecb_aes_alg = {
395	.base.cra_name		=	"ecb(aes)",
396	.base.cra_driver_name	=	"ecb-aes-padlock",
397	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
398	.base.cra_blocksize	=	AES_BLOCK_SIZE,
399	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
400	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
401	.base.cra_module	=	THIS_MODULE,
402	.min_keysize		=	AES_MIN_KEY_SIZE,
403	.max_keysize		=	AES_MAX_KEY_SIZE,
404	.setkey			=	aes_set_key_skcipher,
405	.encrypt		=	ecb_aes_encrypt,
406	.decrypt		=	ecb_aes_decrypt,
407};
408
409static int cbc_aes_encrypt(struct skcipher_request *req)
410{
411	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
412	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
413	struct skcipher_walk walk;
414	unsigned int nbytes;
415	int err;
416
417	padlock_reset_key(&ctx->cword.encrypt);
418
419	err = skcipher_walk_virt(&walk, req, false);
420
421	while ((nbytes = walk.nbytes) != 0) {
422		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
423					    walk.dst.virt.addr, ctx->E,
424					    walk.iv, &ctx->cword.encrypt,
425					    nbytes / AES_BLOCK_SIZE);
426		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
427		nbytes &= AES_BLOCK_SIZE - 1;
428		err = skcipher_walk_done(&walk, nbytes);
429	}
430
431	padlock_store_cword(&ctx->cword.decrypt);
432
433	return err;
434}
435
436static int cbc_aes_decrypt(struct skcipher_request *req)
437{
438	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
439	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
440	struct skcipher_walk walk;
441	unsigned int nbytes;
442	int err;
443
444	padlock_reset_key(&ctx->cword.encrypt);
445
446	err = skcipher_walk_virt(&walk, req, false);
447
448	while ((nbytes = walk.nbytes) != 0) {
449		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
450				   ctx->D, walk.iv, &ctx->cword.decrypt,
451				   nbytes / AES_BLOCK_SIZE);
452		nbytes &= AES_BLOCK_SIZE - 1;
453		err = skcipher_walk_done(&walk, nbytes);
454	}
455
456	padlock_store_cword(&ctx->cword.encrypt);
457
458	return err;
459}
460
461static struct skcipher_alg cbc_aes_alg = {
462	.base.cra_name		=	"cbc(aes)",
463	.base.cra_driver_name	=	"cbc-aes-padlock",
464	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
465	.base.cra_blocksize	=	AES_BLOCK_SIZE,
466	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
467	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
468	.base.cra_module	=	THIS_MODULE,
469	.min_keysize		=	AES_MIN_KEY_SIZE,
470	.max_keysize		=	AES_MAX_KEY_SIZE,
471	.ivsize			=	AES_BLOCK_SIZE,
472	.setkey			=	aes_set_key_skcipher,
473	.encrypt		=	cbc_aes_encrypt,
474	.decrypt		=	cbc_aes_decrypt,
475};
476
477static const struct x86_cpu_id padlock_cpu_id[] = {
478	X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL),
479	{}
480};
481MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
482
483static int __init padlock_init(void)
484{
485	int ret;
486	struct cpuinfo_x86 *c = &cpu_data(0);
487
488	if (!x86_match_cpu(padlock_cpu_id))
489		return -ENODEV;
490
491	if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
492		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
493		return -ENODEV;
494	}
495
496	if ((ret = crypto_register_alg(&aes_alg)) != 0)
497		goto aes_err;
498
499	if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
500		goto ecb_aes_err;
501
502	if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
503		goto cbc_aes_err;
504
505	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
506
507	if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
508		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
509		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
510		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
511	}
512
513out:
514	return ret;
515
516cbc_aes_err:
517	crypto_unregister_skcipher(&ecb_aes_alg);
518ecb_aes_err:
519	crypto_unregister_alg(&aes_alg);
520aes_err:
521	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
522	goto out;
523}
524
525static void __exit padlock_fini(void)
526{
527	crypto_unregister_skcipher(&cbc_aes_alg);
528	crypto_unregister_skcipher(&ecb_aes_alg);
529	crypto_unregister_alg(&aes_alg);
530}
531
532module_init(padlock_init);
533module_exit(padlock_fini);
534
535MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
536MODULE_LICENSE("GPL");
537MODULE_AUTHOR("Michal Ludvig");
538
539MODULE_ALIAS_CRYPTO("aes");
540